
  
    
  
Chapter 8. Complex Analysis 2



8.1. Cauchy's Theorem*



Introduction



 
	Our main goal is a better understanding of the partial
	fraction expansion of a given transfer function.  With respect
	to the example that closed the discussion of complex
	differentiation, see this equation  - In this equation, we found
	
	

	where the 
	  Pj
	

	and 
	  Dj
	 enjoy the amazing properties

	
 	
	    
()


	    and 

	    
	      BP2=P2B=λ2P2
	    

	
	    
()
		P1+P2=I
	      

	  
	    
	      P12=P1
	    
	    
	    
	      P22=P2
	     
	    
	    and
	    
	    
	      D12=0
	    
	  

	
	    
()


	    and

	    
	      P2D1=D1P2=0
	    





	In order to show that this always
	happens, i.e., that it is not a quirk
	produced by the particular B  in
	this
	equation, we require a few additional tools from the
	theory of complex variables.  In particular, we need the fact
	that partial fraction expansions may be carried out through
	complex integration.
      

Integration of Complex Functions Over Complex Curves



 
	We shall be integrating complex functions over complex
	curves. Such a curve is parameterized by one complex valued
	or, equivalently, two real valued, function(s) of a real
	parameter (typically denoted by

	
	  t
	). More precisely,

	
	  C≡{z(t)=x(t)+ⅈy(t)|a≤t≤b}
	

	For example, if

	
	  x(t)=y(t)=t
	

	while

	
	  a=0
	 and
	
	  b=1
	, then
	
	  C
	

	is the line segment joining

	
	  0+ⅈ0
	

	to

	
	  1+ⅈ
	.
      
 

	We now define

	
	
	For example, if
	
	
	  C={t+ⅈt|0≤t≤1}
	 as above and
	
	
	  f(z)=z
	
	
	then
	
	
	while if
	
	
	  C
	
	
	is the unit circle

	
	
	then

	
      
 
	Remaining with the unit circle but now integrating

	 we find

	
      
 
	We generalize this calculation to arbitrary (integer) powers
	over arbitrary circles.  More precisely, for integer
	
	  m
	
	and fixed complex
	
	  a
	
	we integrate

	
	  (z−a)m
	

	over

	 the circle of radius

	
	  r
	
	centered at

	
	  a
	.  We find
	
	
()

	
	
	

      
 
	When integrating more general functions it is often convenient
	to express the integral in terms of its real and imaginary
	parts. More precisely
	
	
	
	

	
	
      
 
	The second line should invoke memories of:

	
Theorem 8.1.
  If
	      
		C
	      
	      is a closed curve and
	      
		M
	      
	      and 
	      
		N
	      
	      are continuously differentiable real-valued functions on

	      
		Cin 
	      , the region enclosed by

	      
		C
	      , then

	      
	    




      
 
	Applying this to the situation above, we find, so long as
	
	  C
	 is closed, that

	
      
 
	At first glance it appears that Green's Theorem only serves to
	muddy the waters. Recalling the Cauchy-Riemann
	  equations however we find that each of these double
	integrals is in fact identically zero! In brief, we have
	proven:

	
Theorem 8.2.
  If
	      
		f
	      
	      is differentiable on and in the closed curve
	      
		C
	       then
	      
	      .
	    




      
 
	Strictly speaking, in order to invoke Green's Theorem we
	require not only that
	
	  f
	
	be differentiable but that its derivative in fact be
	continuous. This however is simply a limitation of our simple
	mode of proof; Cauchy's Theorem is true as stated.
      
 
	This theorem, together with Equation, permits us to integrate every proper rational
	function.  More precisely, if
	 where f
	 is a polynomial of degree at most 
	
	
	  m−1
	 and 
	
	g is an 
	mth degree polynomial with
	h distinct zeros at 
	
	 with respective multiplicities of
	
	 we found that

	
()

	
	Observe now that if we choose 
	
	
	  rj
	 so small that 
	
	
	  λj
	 

	is the only zero of g encircled by 
	
	
	  Cj≡C(λj, rj)
	 then by Cauchy's Theorem
	
	
	
	In Equation we found that each, save
	the first, of the integrals under the sum is in fact zero.
	Hence, 
	
	
()


	With 
	
	  q
		j
		,
		1
	      

	in hand, say from this equation or residue, one
	may view Equation as a means for
	computing the indicated integral.  The opposite reading,
	i.e., that the integral is a convenient
	means of expressing
	
	
	  q
		j
		,
		1
	      
	, will prove just as useful.  With that in mind, we
	note that the remaining residues may be computed as integrals
	of the product of q
	 and the appropriate factor.  More precisely,

	
()


	One may be led to believe that the precision of this result is
	due to the very special choice of curve and function.  We
	shall see ...
      


8.2. Cauchy's Integral Formula*



The Residue Theorem



 
	After Cauchy's
	  Theorem eqn6 and Cauchy's Theorem eqn7 perhaps the most
	  useful consequence of Cauchy's
	  Theorem is the
	
	
Lemma 8.1.
 Suppose that
	      
		C2
	      
	      is a closed curve that lies inside the region encircled by
	      the closed curve
	      
		C1
	      . If f 
	      is differentiable in the annular region outside
	      
		C2
	      
	      and inside
	      
		C1
	      
	      then
	      
	      .
	    

Proof



 
	      With reference to Figure 8.1 we
	      introduce two vertical segments and define the closed
	      curves
	  
	      
		C3=abcda
	      
	      (where the 
	      
		bc	      
	       arc is clockwise and the
	      
		da  arc is counter-clockwise)
	      and
	     
	      
		C4=adcba
	      
	      
	      (where the 
	      
		ad	      
	      
	      arc is counter-clockwise and the
	      
		cb	      
	      
	      arc is clockwise). By merely following the arrows we learn that
	      
	      

	      As Cauchy's Theorem implies that
	      the integrals over
	      
	      
		C3
	      
	      
	      and
	      
	      
		C4
	       each vanish, we have our result.
	    




      
 [image: Curve Replacement Figure (curvelemma2.png)]

Figure 8.1. Curve Replacement Figure
The Curve Replacement Lemma

 
	This Lemma says that in order to integrate a function it
	suffices to integrate it over regions where it is singular,
	i.e. nondifferentiable.
      
 
	Let us apply this reasoning to the integral
	
	
	
	where C encircles both 
	
	
	  λ1
	 and 
	
	
	  λ2
	 as depicted in Figure 8.2.  We find that
	
	
	Developing the integrand in partial fractions we find
	
	


	Similarly,
	
	
	Putting things back together we find

	
()

      
 [image: Figure (notdone.png)]

Figure 8.2. 
Concentrating on the poles.

 
	We may view Equation as a special
	instance of integrating a rational function around a curve
	that encircles all of the zeros of its denominator.  In
	particular, recalling that cauchy's theorem eqn5 and Cauchy's theorem
	eqn6, we find
	
	
()

      
 
	To take a slightly more complicated example let us integrate
	
	
	
	over some closed curve C inside
	of which f is differentiable and
	a resides. Our Curve Replacement
	Lemma now permits us to claim that
	
	

	It appears that one can go no further without specifying
	f.  The alert reader however
	recognizes that in the integral over

	
	  C(a, r)
	
	is independent of r and so
	proceeds to let
	
	
	  r→0
	, in which case
	
	
	  z→a
	
	and
	
	
	  f(z)→f(a)
	.  Computing the integral of
	
	
	along the way we are led to the hope that
	
	
      
 
	In support of this conclusion we note that
	
	
	
	Now the first term is
	
	
	  f(a)2πⅈ
	
	
	regardless of r while, as 
	
	
	  r→0
	, the integrand of the second term approaches
	
	
	
	and the region of integration approaches the point
	a.  Regarding this second term,
	as the integrand remains bounded as the perimeter of
	
	
	  C(a, r)
	
	approaches zero the value of the integral must itself be zero.
	This result if typically known as
      
Formula
 
	    If f is differentiable on
	    and in the closed curve C
	    then
	    
	    
()

	    
	    for each a lying inside C. 
	  



 
	The consequences of such a formula run far and deep. We shall
	delve into only one or two.  First, we note that, as a does
	not lie on C, the right hand
	side is a perfectly smooth function of
	a. Hence, differentiating each
	side, we find
	
	
()



	for each a lying inside C.
	Applying this reasoning n times
	we arrive at a formula for the n-th derivative of
	f at
	a,


	
()



	for each a lying inside C. The
	upshot is that once f is shown
	to be differentiable it must in fact be infinitely
	differentiable.  As a simple extension let us consider
	
	
	
	where f is still assumed
	differentiable on and in C and
	that C encircles both
	
	
	  λ1
	 and 
	
	  λ2.  By the curve replacement
	lemma this integral is the sum
	
	
	
	where
	
	
	  λj
	
	
	now lies in only
	
	
	  Cj
	.  As
	
	
	
	is well behaved in 
	
	
	  C1
	 
	
	we may use Equation to
	conclude that
	
	
	
	Similarly, as 
	
	
	
	is well behaved in 
	
	
	  C2
	
	
	we may use Equation to conclude that
	
	  
	
	These calculations can be read as a concrete instance of
      
Theorem 8.3.
 
	    If g is a polynomial with roots
	    
	    
	    
	    of degree
	    
	    
	    and C is a closed curve
	    encircling each of the
	    
	      λj
	    
	    and f is differentiable on
	    and in C then

	    
	    
	    where
	    
	    
	   
	    is called the residue of 
	       at
	      
	      
		λj
	      .



 
	One of the most important instances of
	this theorem is the formula for the Inverse Laplace Transform.
      


8.3. The Inverse Laplace Transform: Complex Integration*



The Inverse Laplace Transform



 
	If q is a rational function with
	poles 
	then the inverse Laplace transform of
	q is 
	
()

	where C is a curve that encloses
	each of the poles of q.  As a
	result 
	
()

	Let us put this lovely formula to the test.  We take our
	examples from discussion of the Laplace Transform and the inverse Laplace
	Transform.  Let us first compute the inverse Laplace
	Transform of
	
	According to Equation it is simply
	the residue of 
	  q(z)ⅇzt
	 
	at 
	  z=-1
	, i.e.,

	
	This closes the circle on the example begun in the discussion
	of the Laplace
	Transform and continued in exercise one for chapter 6.
      
 
	For our next example we recall
	
	from the Inverse Laplace
	  Transform.  Using numde,
	  sym2poly and
	  residue, see
	  fib4.m for details, returns
	
	and
	
	You will be asked in the exercises to show that this indeed
	jibes with the
	
	achieved in the Laplace
	Transform via ilaplace.
    


8.4. Exercises:  Complex Integration*



 
      
 	Let us confirm the representation of this Cauchy's Theorem equation in the
	matrix case.  More precisely, if
	  
	    Φ(z)≡(zI−B)-1
	  
	  is the transfer function associated with
	  B then  this Cauchy's Theorem equation
	  states that
	  
	  where
	  
()

	  Compute the 
	    Φ
		  j
		  ,
		  k
		  per Equation for the B in
	  this
	  equation from the discussion of Complex
	  Differentiation.  Confirm that they agree with those
	  appearing in this equation from the Complex
	  Differentiation discussion.  
	

	
	  Use this inverse Laplace Transform equation to
	  compute the inverse Laplace transform of 
	  .
	

	
	  Use the result of the previous exercise to solve, via the
	  Laplace transform, the differential equation
	  
	  Hint:  Take the Laplace transform of each side.
	

	Explain how one gets from 
	    r1
	   and 
	  
	    p1
	   to
	  
	    x1(t)
	  .
	  

	Compute, as in fib4.m, the residues
	of 
	    ℒ{x2(s)}
	  
	  and
	  
	    ℒ{x3(s)}
	  
	  and confirm that they give rise to the 
	  
	    x2(t)
	  
	  and
	  
	    x3(t)
	  
  you derived in the discussion of Chapter 1.
	  




    

Solutions


Chapter 2. Matrix Methods for Electrical Systems



2.1. Nerve Fibers and the Strang Quartet*



Nerve Fibers and the Strang Quartet



 
      We wish to confirm, by example, the prefatory claim that matrix
      algebra is a useful means of organizing (stating and solving)
      multivariable problems.  In our first such example we
      investigate the response of a nerve fiber to a constant current
      stimulus. Ideally, a nerve fiber is simply a cylinder of radius
      a and length
      l that conducts electricity both
      along its length and across its lateral membrane. Though we
      shall, in subsequent chapters, delve more deeply into the
      biophysics, here, in our first outing, we shall stick to its
      purely resistive properties. The latter are expressed via two
      quantities:

      
 	 
	  
	    ρi
	  ,
	  
	  
	  the resistivity in 
	  
	    Ω
	    cm
	  
	  
	  
	  of the cytoplasm that fills the cell, and 
	

	 
	  
	    ρm
	  ,
	  
	  
	  the resistivity in 
	  
	  
	    Ω
	    cm2
	  
	  
	  
	  of the cell's lateral membrane.
	




    
 [image: A 3 compartment model of a nerve cell (cell.png)]

Figure 2.1. A 3 compartment model of a nerve cell

 
      Although current surely varies from point to point along the
      fiber it is hoped that these variations are regular enough to be
      captured by a multicompartment model. By that we mean that we
      choose a number N and divide the
      fiber into N segments each of
      length

      .
      

      Denoting a segment's 
      
	 Definition: axial resistance 
	 
	  
	  
	





      and

      
	 Definition: membrane resistance
	 
	  
	  
	





      we arrive at the lumped circuit model of Figure 2.1.  For a fiber in
      culture we may assume a constant extracellular potential,
      e.g., zero. We accomplish this by connecting
      and grounding the extracellular nodes, see Figure 2.2.
    
 [image: A rudimentary circuit model (cell2.png)]

Figure 2.2. A rudimentary circuit model

 
      Figure 2.2 also
      incorporates the  exogenous disturbance, a current
      stimulus between ground and the left end of the fiber. Our
      immediate goal is to compute the resulting currents through each
      resistor and the potential at each of the nodes. Our long--range
      goal is to provide a modeling methodology that can be used
      across the engineering and science disciplines. As an aid to
      computing the desired quantities we give them names. With
      respect to Figure 2.3,
      we label the vector of potentials
      
      
      
      
      and the vector of currents

       
      
      
      We have also (arbitrarily) assigned directions to the currents
      as a graphical aid in the consistent application of the basic
      circuit laws.
    
 [image: The fully dressed circuit model (cell3.png)]

Figure 2.3. The fully dressed circuit model

 
      We incorporate the circuit laws in a modeling methodology that
      takes the form of a  Strang
      Quartet [link]:
      
 	 
	  (S1)  Express the voltage drops via
	  
	    e=–(Ax)
	  .
	  
	

	 
	  (S2)  Express  Ohm's Law via
	  
	    y=Ge
	  .
	   
	

	 
	  (S3)  Express  Kirchhoff's Current Law via 
	  
	    ATy=–f
	  .
	  
	

	 
	  (S4)  Combine the above into
	  
	    ATGAx=f
	  .
	  
	




    
 
      The A in (S1) is the
       node-edge adjacency matrix -- it encodes the
      network's connectivity. The G in (S2) is the diagonal matrix
      of edge conductances -- it encodes the physics of the
      network. The f in
      (S3) is the vector of current sources -- it encodes the
      network's stimuli. The culminating
      
	ATGA
      
       in (S4) is the symmetric matrix whose inverse,
      when applied to f,
      reveals the vector of potentials, x.  In order to make these ideas
      our own we must work many, many examples.
    

Example



Strang Quartet, Step 1



 
	With respect to the circuit of Figure 2.3, in accordance
	with step (S1), we express the six potential
	differences (always tail minus head)
	
	
	  e1=x1−x2
	
	
	
	
	  e2=x2
	
	

	
	  e3=x2−x3
	
	

	
	  e4=x3
	
	

	
	  e5=x3−x4
	
	

	
	  e6=x4
	
	

	Such long, tedious lists cry out for matrix representation, to wit
	
	
	  e=–(Ax)
	
	

	where
	
	
      

Strang Quartet, Step 2



 
	Step (S2), Ohm's
	Law, states:
	
	
Law 2.1.
 
	      The current along an edge is equal to the potential drop
	      across the edge divided by the resistance of the edge.
	    




	
	In our case,
	
	  
	  
	  or, in matrix notation,
	  
	    y=Ge
	  
	  
	  
	  where
	  
	
      

Strang Quartet, Step 3



 
	Step (S3),  Kirchhoff's
	Current Law, states:

	
Law 2.2.
 
	      The sum of the currents into each node must be zero. 
	    





	In our case
	
	  i0−y1=0
	
	

	
	  y1−y2−y3=0
	
	

	
	  y3−y4−y5=0
	
	

	
	  y5−y6=0
	
	

	or, in matrix terms
	
	  By=–f
	
	

	where
	
	
      

Strang Quartet, Step 4



 
	Looking back at A:

	
	

	we recognize in B
	the  transpose of A.  Calling it such, we recall
	our main steps
	
	
 	
	    (S1) 
	    
	      e=–(Ax)
	    ,
	    
	  

	
	    (S2) 
	    
	      y=Ge
	    , and
	     
	  

	
	    (S3)  
	    
	      ATy=–f
	    .
	    
	  





	On substitution of the first two into the third we arrive, in
	accordance with (S4), at

	
()
	    ATGAx=f
	    .
	  


	This is a system of four equations for the 4 unknown potentials, 
	
	  x1
	
	

	through
	
	  x4
	.
	
	
	As you know, the system Equation
	may have either 1, 0, or infinitely many solutions, depending
	on f and

	
	  ATGA
	.
	

	We shall devote (FIX ME CNXN TO CHAPTER 3 AND 4) to an 
	unraveling of the previous sentence. For now, we cross our fingers and 
	`solve' by invoking the Matlab program,
	fib1.m
	.
      
 [image: Results of a 64 compartment simulation (fib1_fig1.png)]

Figure 2.4. Results of a 64 compartment simulation

	  [image: Subfigure (a) (fib1_fig2.png)](a)

	  [image: Subfigure (b) (fib1_fig3.png)](b)



Figure 2.5. Results of a 64 compartment simulation

 
	This program is a bit more ambitious than the above in that it
	allows us to specify the number of compartments and that
	rather than just spewing the x
	and y values it
	plots them as a function of distance along the fiber.  We note
	that, as expected, everything tapers off with distance from
	the source and that the axial current is significantly greater
	than the membrane, or leakage, current.
      


Example



 
      We have seen in the previous example how a current source may
      produce a potential difference across a cell's membrane.  We
      note that, even in the absence of electrical stimuli, there is
      always a difference in potential between the inside and outside
      of a living cell. In fact, this difference is the biologist's
      definition of `living.' Life is maintained by the fact that the
      cell's interior is rich in potassium ions,

      
	K+
      ,
      

      and poor in sodium ions,

      
	Na+
      ,
      

      while in the exterior medium it is just the opposite. These
      concentration differences beget potential differences under the
      guise of the Nernst potentials:

      
	 Definition: Nernst potentials
	 
	  

	  where R is the gas constant,
	  T is
	  temperature, and F is the
	  Faraday constant.
	





      Associated with these potentials are membrane resistances
      
	  ρ
	      m 
	      ,
	      Na
	    
	
	
	  and  
	
	  ρ
	    m 
	    ,
	    K
	  
      
      
	
      that together produce the
      
	ρm
      

      above  via

      
      
      
      and produce the aforementioned rest potential
      
      
    
 
      With respect to our old circuit model, each compartment
	now sports a battery in series with its membrane resistance,
	as shown in Figure 2.6.
    
 [image: Circuit model with resting potentials (cell4.png)]

Figure 2.6. Circuit model with resting potentials

 
      Revisiting  steps
      (S1-4) we note that in (S1) the even numbered voltage
      drops are now
      
      
	e2=x2−Em
      
      

      
	e4=x3−Em
      
      
      
      
	e6=x4−Em
      
      

      We accommodate such things by generalizing 
      (S1) to:

      
 	
	 (S1') Express the voltage drops as
	  
	  
	    e=b−Ax
	  
	  
	  where b is the vector of batteries.
	





      No changes are necessary for (S2) and (S3). The final step now reads,
      
      
 	(S4') Combine
	  (S1'),
	  (S2), and 
	  (S3)  to produce

	  
	    ATGAx=ATGb+f
	  .
	  
	




    
 
      Returning to Figure 2.6,
      we note that

      

	This requires only minor changes to our old code. The new
	program is called fib2.m
	 and results of its use are indicated in the next two
	figures.
      
 [image: Results of a 64 compartment simulation with batteries (fib2_fig1.png)]

Figure 2.7. Results of a 64 compartment simulation with batteries

	  [image: Subfigure (a) (fib2_fig2.png)](a)

	  [image: Subfigure (b) (fib2_fig3.png)](b)



Figure 2.8. Results of a 64 compartment simulation with batteries
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2.2. CAAM 335 Chapter 1 Exercises*



Problem
  
	  
Question 1



 
	      In order to refresh your matrix-vector multiply skills
	      please calculate, by hand, the product 
	      
	  
	    ATGA
	  
	  
	  in the 3 compartment case and write out the 4 equations in
	  the vector equation we arrived at in step (S4):
	  
	    ATGAx=f
	  .
	      
	


	



	  Feedback



 
	      The second equation should read
	      
	      
()

	


	



Problem
  
	  
Question 2



 
	      We began our discussion with the 'hope' that a
	      multicompartment model could indeed adequately capture
	      the fiber's true potential and current profiles.  In
	      order to check this one should run fib1.m
	      with increasing values of N until one can
	      no longer detect changes in the computed potentials.
	
 	(a) Please run 
	      
		fib1.m
	      with N = 8, 16, 32, and 64. 
	      
	      Plot all of the potentials on the same (use 
	      hold) graph, using different line types for each.  (You
	      may wish to alter fib1.m so that it accepts 
	  N as an argument).
	



 
	    Let us now interpret this convergence.  The main
	    observation is that the difference equation, Equation, approaches a differential
	    equation.  We can see this by noting that

	  
	  
	  acts as a spatial 'step' size and that 
	  
	  
	    xk
	    
	  ,
	  
	  the potential at 
	  
	  
	    (k−1)ⅆz
	    
	  ,
	  
	  is approximately the value of the true potential at
	  
	  
	    (k−1)ⅆz
	    
	  .
	  
	  In a slight abuse of notation, we denote the latter
	  
	  
	    x((k−1)ⅆz)
	    
	  
	  
	  Applying these conventions to Equation and recalling the definitions of
	  
	  
	    Ri
	    
	  

	  and 
	  
	  
	    Rm
	    
	  
	  
	  we see Equation become 
	  
	  
	  
	  or, after multiplying through by 
	  
	  ,
	  
	  .
	  
	  We note that a similar equation holds at each node (save the
	  ends) and that as
	  
	  
	    N→∞
	    
	  
	  
	  and therefore
	  
	  
	    ⅆz→0
	    
	  
	  
	  we arrive at
	  
	  
()

	
 	(b) With 
	      
	  
	  
	  show that
	  
	  
()


	  satisfies Equation regardless of 
	  α and
	  β.
	



 
	    We shall determine α and β by paying
	  attention to the ends of the fiber.  At the near end we find

	  

	  which, as 

	  
	    ⅆz→0
	    
	  

	  becomes
	  
	  
()


	  At the far end, we interpret the condition that no axial
	  current may leave the last node to mean

	  
()

	
 	(c) Substitute Equation
	      into Equation and Equation and solve for α and
	      β
	      and write out the final
	  
	  
	    x(z)
	  .
	

	(d) Substitute into x the l, a,
	  
	  
	    ρi
	    
	  ,

	  and

	  
	    ρm
	    
	  

	  values used in 
	  
	    fib1.m, plot the resulting function (using,
	  e.g., ezplot) and compare
	  this to the plot achieved in part (a).
	





	




Glossary



	Definition: Nernst potentials
	
	  block
	    
		  E
		  Na
		=RTFlog 
			[Na]
			o
		      
			[Na]
			i
		      
	    

	      and  

	    
		  E
		  K
		=RTFlog 
			[K]
			o
		      
			[K]
			i
		      
	    
	  

	  where simplemathmathml-miitalicsRR is the gas constant,
	  simplemathmathml-miitalicsTinlineT is
	  temperature, and simplemathmathml-miitalicsFF is the
	  Faraday constant.
	

	Definition: axial resistance 
	
	  block
	    
		  R
		  i
		=
		      ρ
		      i
		    lNπa2
	  
	  
	

	Definition: membrane resistance
	
	  block
	    
		  R
		  m
		=
		    ρ
		    m
		  2πalN
	  
	  
	



Solutions


Chapter 6. Matrix Methods for Dynamical Systems



6.1. Nerve Fibers and the Dynamic Strang Quartet*



Introduction



 
	Up to this point we have largely been concerned with

	
 	Deriving linear systems of algebraic equations (from 
	    considerations of static equilibrium) and 

	The solution of such systems via Gaussian elimination.




      
 
	In this module we hope to begin to persuade the reader that
	our tools extend in a natural fashion to the class of dynamic
	processes. More precisely, we shall argue that

	
 	Matrix Algebra plays a central role in the derivation of 
	    mathematical models of dynamical systems and that, 

	With the aid of the Laplace transform in an analytical setting 
	    or the Backward Euler method in the numerical setting, Gaussian 
	    elimination indeed produces the solution. 




      

Nerve Fibers and the Dynamic Strang Quartet



Gathering Information



 
	  A nerve fiber's natural electrical stimulus is not direct current but
	  rather a short burst of current, the so-called 
	   nervous impulse. In such a dynamic environment the 
	  cell's membrane behaves not only like a leaky conductor but also 
	  like a charge separator, or  capacitor.
	
 [image: An RC model of a nerve fiber (cell4.png)]

Figure 6.1. An RC model of a nerve fiber

 
	  The typical value of a cell's membrane capacitance is

	  
	  
	  where
	  
		  μF
	    
	  

	  denotes micro-Farad.  Recalling
	  our variable 
	    conventions, the capacitance of a single compartment is
	  
	  

	  and runs parallel to each 
	  
	    Rm
	    
	  ,

	  see Figure 6.1.  This figure also
	  differs from 
	  
	    the simpler circuit from the introductory electrical 
	  modeling module in that it possesses two edges to the left of the 
	  stimuli.  These edges serve to mimic that portion of the stimulus 
	  current that is shunted by the cell body.  If

	  
	    Acb
	    
	  

	  denotes the surface area of the cell body, then it has

	  
	 Definition: capacitance of cell body
	 
	      
		Ccb=Acbc
		
	      
	    





	  
	 Definition: resistance of cell body
	 
	      
		Rcb=Acbρm
		
	      .
	    




	

Updating the Strang Quartet



 
	  We ask now how the 
	  
	    static Strang Quartet of the introductory electrical module 
	  should be augmented. 
	
Updating (S1')



 
	    Regarding 
	      (S1') we proceed as before. The voltage drops are

	    
	      e1=x1
	      
	    

	     
	      e2=x1−Em
	      
	    

	    
	      e3=x1−x2
	      
	    

	    
	      e4=x2
	      
	    

	    
	      e5=x2−Em
	      
	    

	    
	      e6=x2−x3
	      
	    
	      
	    
	      e7=x3
	      
	    

	    
	      e8=x3−Em
	      
	    

	    and so
	    
	  

Updating (S2)



 
	    To update (S2) 
	    we must now augment Ohm's law with

	    
	 Definition: Voltage-current law obeyed by a capacitor
	 The current through a capacitor is proportional
	      to the time rate of change of the potential across
	      it.




	    
	    This yields, (denoting derivative by '),

	    

	    

	    
	    
	    

	    

	     

	    

	    

	    or, in matrix terms,
	    

	    where
	    

	    and
	    

	    are the conductance and capacitance matrices.
	  

Updating (S3)



 
	    As Kirchhoff's Current law is insensitive to the type of
	    device occupying an edge, step (S3) proceeds exactly as
	    before.
	    
	    
	      i0−y1−y2−y3=0
	      
	    

	    
	      y3−y4−y5−y6=0
	      
	    
	    
	    
	      y6−y7−y8=0
	      
	    
	    
	    or, in matrix terms,

	    
	  

Step (S4): Assembling



 
	    Step (S4) remains one of assembling,

	    
	    
	    becomes

	    
()

	  

 
	  This is the general form of the potential equations for an
	  RC circuit.  It presumes of the user knowledge of the
	  initial value of each of the potentials,

	  
()
	      x(0)=X
	      
	    

	  
	  Regarding the circuit of Figure 6.1, and letting

	  , we find

	  

	  
	  
	  and an initial (rest) potential of
	  
	

Modes of Attack



 
	  We shall now outline two modes of attack on such
	  problems. The Laplace
	  Transform is an analytical tool that produces exact,
	  closed-form solutions for small tractable systems and
	  therefore offers insight into how larger systems 'should'
	  behave. The Backward-Euler method is a technique for
	  solving a discretized (and therefore approximate) version of
	  Equation.  It is highly
	  flexible, easy to code, and works on problems of great
	  size. Both the Backward-Euler and Laplace Transform methods
	  require, at their core, the algebraic solution of a linear
	  system of equations. In deriving these methods we shall find
	  it more convenient to proceed from the generic system

	  
()

	  
	  With respect to our fiber problem
	  
	  
()


	  and

	  
	



6.2. The Laplace Transform*



 
      The Laplace Transform is typically credited with taking
      dynamical problems into static problems.  Recall that the
      Laplace Transform of the function h is

      
	ℒ{h(s)}≡∫0∞ⅇ–(st)h(t)dt
	.
      

      MATLAB is very adept at such things.  For example:
    
Example 6.1. The Laplace Transform in MATLAB
 
	>> syms t

	>> laplace(exp(t))

	ans = 1/(s-1)

	>> laplace(t*(exp(-t))

	ans = 1/(s+1)^2
      


 
      The Laplace Transform of a matrix of functions is simply the
      matrix of Laplace transforms of the individual elements.
    
Example 6.2. Laplace Transform of a matrix of functions
 
	
      


 
      Now, in preparing to apply the Laplace transform to  our equation from
      the dynamic strang quartet module:
      
      

      we write it as

      
()


      and so must determine how
      ℒ acts on derivatives
      and sums.  With respect to the latter it follows directly from
      the definition that

      
()


      Regarding its effect on the derivative we find, on integrating
      by parts, that

      
      
      Supposing that
      x and
      s are such that

      
	x(t)ⅇ–(st)→0
	
      

      as
      
	t→∞
	
      

      we arrive at
      
()

      
      Now, upon substituting Equation and
      Equation into Equation we find

      
	sℒ{x}−x(0)=Bℒ{x}+ℒ{g}
	,
	
      

      which is easily recognized to be a linear system for
      
      
	ℒ{x}
      , namely

      
()
	  (sI−B)ℒ{x}=ℒ{g}+x(0)
	  .
	  
	


      The only thing that distinguishes this system from those
      encountered since our first
      brush with these systems is the presence of the complex
      variable s.  This
      complicates the mechanical steps of Gaussian Elimination or the
      Gauss-Jordan Method but the methods indeed apply without
      change. Taking up the latter method, we write

      
	ℒ{x}=(sI−B)-1(ℒ{g}+x(0))
	
	.
      
      
      The matrix

      
	(sI−B)-1
      
      
      is typically called the  transfer function or
       resolvent, associated with B, at
      s.  We turn to
      MATLAB for its  symbolic calculation.  (for more
      information, see the
      tutorial on MATLAB's symbolic toolbox).  For example,
    
Example 6.3. 
 
	>> B = [2 -1; -1 2]
	
	>> R = inv(s*eye(2)-B)
	
	R =
	
	[ (s-2)/(s*s-4*s+3), -1/(s*s-4*s+3)]
	
	[ -1/(s*s-4*s+3), (s-2)/(s*s-4*s+3)]
      


 
      We note that 

      
	(sI−B)-1
	
      
      
      is well defined except at the roots of the quadratic,

      
	s2−4s+3
	
      .

      This quadratic is the  determinant of 
      
      
	sI−B
	
       
      
      and is often referred to as the  characteristic
      polynomial of B.  Its roots are called the
       eigenvalues of B.
    
Example 6.4. 
 
	As a second example let us take the B matrix
	of the
	dynamic Strang quartet module with the parameter
	choices specified in fib3.m,
	namely

	
()


	The associated 

	
	  (sI−B)-1
	  
	
	
	is a bit bulky (please run fib3.m)
	so we display here only the denominator of each term,
	i.e.,

	
()
	    s3+1.655s2+0.4078s+0.0039
	    .
	    
	  


	Assuming a current stimulus of the form

	 and

	
	  Em=0
	  
	

	brings

	

	and so Equation persists in

	
      


 
      Now comes the rub.  A simple linear solve (or inversion) has
      left us with the Laplace transform of x.  The
      accursed

      
Theorem 6.1.
 
	    We shall have to do some work in order to recover
	    x from
	    
	    
	      ℒ{x}
	      
	    .
	  




      confronts us.  We shall face it down in the Inverse Laplace module.
    

6.3. The Inverse Laplace Transform*



To Come



 
	In The Transfer
	Function we shall establish that the inverse Laplace
	transform of a function h is

	
()


	where
	

	and the real number c is chosen
	so that all of the  singularities of h lie to the left of the line of
	integration.
      

Proceeding with the Inverse Laplace Transform



 
	With the inverse Laplace transform one may express the
	solution of

	
	, as

	
()
	    x(t)=ℒ-1((sI−B)-1)(ℒ{g}+x(0))
	    
	  


	As an example, let us take the first component of 

	
	  ℒ{x}
	  
	, namely

	
	
	We define:
	
	 Definition: poles
	 Also called singularities, these are the points 
	    s at which 
	    
	    
	      ℒx1(s)
	      
	    
	    blows up. 
	  




	
	These are clearly the roots of its denominator, namely

	
()


	All four being negative, it suffices to take 
	
	
	  c=0
	  
	

	and so the integration in Equation proceeds up the imaginary axis.  We don't
	suppose the reader to have already encountered integration in
	the complex plane but hope that this example might provide the
	motivation necessary for a brief overview of such.  Before
	that however we note that MATLAB has digested the calculus we
	wish to develop.  Referring again to fib3.m
	for details we note that the ilaplace
	command produces

	
      
 [image: Figure (fib3_fig1.png)]

Figure 6.2. 

	  The 3 potentials associated with the RC circuit model
	  figure.
	

 
	The other potentials, see the figure above, possess similar
	expressions.  Please note that each of the poles of

	
	  ℒ{x1}
	  
	

	appear as exponents in
	
	
	  x1
	

	and that the coefficients of the exponentials are polynomials
	whose degrees is determined by the  order of the
	respective pole.
      


6.4. The Backward-Euler Method*



 
      Where in the Inverse Laplace
	Transform module we tackled the derivative in

      
()


      via an integral transform we pursue in this section a much
      simpler strategy, namely, replace the derivative with a finite
      difference quotient. That is, one chooses a small

      
	dt
      
      
      and 'replaces' Equation with
      
      
()


      The utility of Equation is that it
      gives a means of solving for

      

      at the present time, t, from the
      knowledge of
      
      
      
      in the immediate past,

      
	t−dt
	
      . 

      For example, as 

      

      is supposed known we write Equation
      as

      

      Solving this for 

      

      we return to Equation and find

      
      
      and solve for 

      .

      The general step from past to present,

      
()

      
      is repeated until some desired final time, 

      
	Tdt
	
      ,

      is reached.  This equation has been implemented in 
      fib3.m
      with 

      
	dt=1
      
      and B and g as in the dynamic Strang
      module.  The resulting
      
      

      ( run fib3.m
      yourself!) is indistinguishable from the plot we
      obtained in the Inverse Laplace module.
    
 
      Comparing the two representations, this equation and Equation, we see that they both produce
      the solution to the general linear system of ordinary equations,
      see this
      eqn, by simply inverting a shifted copy of B.  The
      former representation is hard but exact while the latter is easy
      but approximate.  Of course we should expect the approximate
      solution,
      
      , to approach the exact solution,
      x, as the time step,
      
	dt
      
      , approaches zero.  To see this let us return to Equation and assume, for now, that
      
	g≡0
      
      .  In this case, one can reverse the above steps and arrive at
      the representation
      
()

      Now, for a fixed time t we suppose
      that 
      and ask whether
      
      This limit, at least when B is one-by-one, yields the
      exponential
      
	x(t)=ⅇBtx(0)
      
      clearly the correct solution to this equation.  A careful
      explication of the  matrix exponential and its
      relationship to this equation will have to wait until we
      have mastered the inverse laplace transform.
    

6.5. Exercises: Matrix Methods for Dynamical Systems*



 
      
 	Compute, without the aid of a
	  machine, the Laplace transforms of
	  
	    ⅇt
	  
	  and
	  
	    tⅇ–t
	  .  Show ALL of your work.

	Extract from fib3.m analytical
	expressions for 
	  
	    x2
	  
	  and
	  
	    x3
	  .
	

	
    Use eig to compute the eigenvalues of
  B as given in this equation.  Use
  det to compute the characteristic polynomial of
  B.  Use roots to compute
  the roots of this characteristic polynomial.  Compare these to the
  results of eig. How does Matlab compute the roots of a
  polynomial? (type help roots for the answer).

	Adapt the Backward Euler portion of fib3.m so
  that one may specify an arbitrary number of compartments, as in
  fib1.m.  Submit your well documented M-file along with
  a plot of
	  
	    x1
	  
	  and
	   
	    x10
	  
	  versus time (on the same well labeled
    graph) for a nine compartment fiber of length
	  
	    l=1
	    cm
	  .

	Derive this
	  equation from a previous equation by working backwards
	  toward
	  
	    x(0)
	  .  Along the way you should explain why
	  .
	

	Show, for scalar B, that
	   as
	  
	    j→∞
	  .  Hint:  By definition
	  
	  now use L'Hopital's rule to show that 
	  .




		      
    

6.6. Supplemental



Matrix Analysis of the Branched Dendrite Nerve Fiber*



Introduction



 
	In the prior modules on static and dynamic electrical systems, we analyzed
	basic, hypothetical one-branch nerve fibers using a modeling
	methodology we dubbed the Strang Quartet.  You may be asking
	yourself whether this method is stout enough to handle the
	real fiber of our minds.  Indeed, can we use our tools in a
	real-world setting?
      

Presentation



 [image: An Actual Nerve Fiber (neuron.png)]

Figure 6.3. An Actual Nerve Fiber
A pyramidal neuron from the CA3
	region of a rat's hippocampus, scanned at (FIX ME) X
	magnification.
	

 
	To answer your question, the above is a rendering of a neuron
	from a rat's hippocampus.  The tools we have refined will
	enable us to model the electrical properties of a dendrite
	leaving the neuron's cell body.  A three-branch model of such
	a dendrite, traced out with painstaking accuracy, appears in
	the diagram below.
      
 [image: 3-branch Dendrite Model (dendrite_model.png)]

Figure 6.4. 3-branch Dendrite Model

	  Multi-compartment electrical model of a rendered dendrite
	  fiber.
	

 
	Our multi-compartment model reveals a 3 branch, 10 node, 27
	edge structure to the fiber.  Note that we have included the
	Nernst
	  potentials, the nervous impulse as
	a current source, and the additional leftmost edges depicting
	stimulus current shunted by the cell body.
      
 
	We will continue using our previous notation, namely: 

	
	  Ri
	  
	
	
	and
	
	  Rm
	  
	

	denoting cell body and membrane resistances, respectively;
	  x representing
	  the vector of potentials
	
	
	  
	    x1
	    …
	    
	    x10
	  
	  
	,
	
	and y denoting the
	vector of currents

	
	  
	  y1
	    …
	  y27
	  
	  
	.

	Using the typical value for a cell's membrane capacitance,

	
	  c=
	      1
	      
		(
		μ
		F
		/
		cm2
		)
	      
	    
	  ,
	  
	
	
	we derive (see 
	variable 
	  conventions):

	
	 Definition: Capacitance of a Single Compartment
	 
	    
	  




	
	This capacitance is modeled in parallel with the cell's
	membrane resistance.  Additionally, letting

	
	  Acb
	  
	

	denote the cell body's surface area, we recall that its capacitance and
	resistance are

	
	 Definition: Capacitance of cell body
	 
	    
	      Ccb=Acbc
	      
	    
	  




	
	
	 Definition: Resistance of cell body
	 
	    
	      Rcb=Acbρm
	      
	    .
	  




      

Applying the Strang Quartet



Step (S1')--Voltage Drops



 
	  Let's begin filling out the Strang Quartet.  For Step (S1'),
	  we first observe the voltage drops in the figure.  Since
	  there are a whopping 27 of them, we include only the first
	  six, which are slightly more than we need to cover all
	  variations in the set:

	  
	    e1=x1
	    
	  

	  
	    e2=x1−Em
	    
	  

	  
	    e3=x1−x2
	    
	  

	  
	    e4=x2
	    
	  

	  
	    e5=x2−Em
	    
	  

	  
	    e6=x2−x3
	    …
	     
	  
	  
	  
	    e27=x10−Em
	    
	  
	
 
	  In matrix for, letting
	  b
	  denote the
	  vector of 
	    batteries,

	  

	  and

	  
	  
	  Although our adjacency matrix A is appreciably larger than
	  our previous examples, we have captured the same phenomena
	  as before.
	

Applying (S2): Ohm's Law Augmented with Voltage-Current Law for 
	  Capacitors



 
	  Now, recalling Ohm's Law and remembering that the current
	  through a capacitor varies proportionately with the time
	  rate of change of the potential across it, we assemble our
	  vector of currents.  As before, we list only enough of the
	  27 currents to fully characterize the set:

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

	  In matrix terms, this compiles to

	  

	  where 

	  
(6.1)Conductance matrix


	  
	  and

	  
(6.2)Capacitance matrix


	

Step (S3): Applying Kirchoff's Law



 
	  Our next step is to write out the equations for Kirchoff's
	  Current Law.  We see:

	  
	    i0−y1−y2−y3=0
	    
	  
	  
	  
	    y3−y4−y5−y6=0
	    
	  

	  
	    y6−y7−y8−y9=0
	    
	  

	  
	    y9−y10−y19=0
	    
	  

	  
	    y10−y11−y12−y13=0
	    
	  
	  
	  
	    y10−y11−y12−y13=0
	    
	  

	  
	    y13−y14−y15−y16=0
	    
	  

	  
	    y16−y17−y18=0
	    
	  

	  
	    y19−y20−y21−y22=0
	    
	  

	  
	    y22−y23−y24−y25=0
	    
	  

	  
	    y25−y26−y27=0
	    
	  
	  
	  Since the B coefficient matrix we'd form
	  here is equal to

	  
	    AT
	    
	  ,

	  we can say in matrix terms:
	  
	    ATy=–f
	    
	  

	  where the vector f is composed of

	  
	    f1=i0
	    
	  
	  
	  and 
	  
	    f
		    2
		    ...
		    27
		  =0
	    
	  .
	

Step (S4): Stirring the Ingredients Together



 
	  Step (S4) directs us to assemble our previous toils together
	  into a final equation, which we will then endeavor to solve.
	  Using the process derived in the dynamic Strang
	  module, we arrive at the equation

	  
()

	  
	  which is the general form for RC circuit potential
	  equations.  As we have mentioned, this equation presumes
	  knowledge of the initial value of each of the potentials,

	  
	    x(0)=X
	    
	  .
	
 
	  Observing our circuit, and letting
	  
	  ,
	  
	  we calculate the necessary quantities to fill out Equation's pieces (for these
	  calculations, see 
	  dendrite.m):

	  
	  
	  
	  
	  

	  

	  and an initial (rest) potential of 

	  
	


Applying the Backward-Euler Method



 
	Since our system is so large, the Backward-Euler method is the
	best path to a solution.  Looking at the matrix

	
	  ATCA
	  
	,

	we observe that it is singular and therefore non-invertible.
	This singularity arises from the node connecting the three
	branches of the fiber and prevents us from using the simple
	equation

	

	we used in earlier
	  Backward-Euler-ings.  However, we will see that a
	  modest generalization to our previous form yields Equation:

	
()

	
	capturing the form of our system and allowing us to solve for 
	
	
	  x(t)
	  
	.
	
	We manipulate Equation
	as follows:

	
	
	
	

	
	

	
	
	where in our case

	
	  D=ATCA
	  ,
	  
	
	
	
	  E=–(ATGA)
	  , and 
	  
	

	
	  g=ATGb+f
	  .
	  
	

	This method is implemented in 
	
	  dendrite.m with typical cell dimensions and
	resistivity properties, yielding the following graph of
	potentials.
      
  [image: Subfigure (a) (potential_graph1.png)]
(a) Large view of potentials.

  [image: Subfigure (b) (potential_graph2.png)]
(b) Zoomed view of potentials showing maxima.


Figure 6.5. Graph of Dendrite Potentials




Glossary



	Definition: Capacitance of a Single Compartment
	
	    block
	      
		    C
		    m
		  =2πalNc
	      
	    
	  

	Definition: Capacitance of cell body
	
	    simplemath
	      mathml-miitalicsCcb=mathml-miitalicsAcbmathml-miitalicsc
	      
	    inline
	      
		    C
		    cb
		  =
		      A
		      cb
		    c
	      
	    
	  

	Definition: Resistance of cell body
	
	    simplemath
	      mathml-miitalicsRcb=mathml-miitalicsAcbmathml-miitalicsρmathml-miitalicsm
	      
	    inline
	      
		    R
		    cb
		  =
		      A
		      cb
		    
		      ρ
		      m
		    
	      
	    .
	  

	Definition: Voltage-current law obeyed by a capacitor
	The current through a capacitor is proportional
	      to the time rate of change of the potential across
	      it.

	Definition: capacitance of cell body
	
	      simplemath
		mathml-miitalicsCcb=mathml-miitalicsAcbmathml-miitalicsc
		
	      inline
		
		      C
		      cb
		    =
			A
			cb
		      c
		
	      
	    

	Definition: poles
	Also called singularities, these are the points 
	    simplemathmathml-miitalicssinlines at which 
	    
	    simplemath
	      ℒmathml-miitalicsx1(mathml-miitalicss)
	      
	    inline
	      
		    ℒ
		    
		      x
		      1
		    
		  s
	      
	    
	    blows up. 
	  

	Definition: resistance of cell body
	
	      simplemath
		mathml-miitalicsRcb=mathml-miitalicsAcbmathml-miitalicsρmathml-miitalicsm
		
	      inline
		
		      R
		      cb
		    =
			A
			cb
		      
		      ρ
			m
		      
		
	      .
	    



Solutions



    
      [image: Matrix Analysis]
    

  Chapter 3. Matrix Methods for Mechanical Systems



3.1. A Uniaxial Truss*



Introduction



 
	We now investigate the mechanical prospection of tissue, an
	application extending techniques developed in  the electrical analysis of a
	nerve cell. In this application, one applies traction
	to the edges of a square sample of planar tissue and seeks to
	identify, from measurement of the resulting deformation,
	regions of increased `hardness' or `stiffness.' For a sketch
	of the associated apparatus, visit the 
	Biaxial Test site .
      

A Uniaxial Truss



 [image: A uniaxial truss (lec2fig1.png)]

Figure 3.1. A uniaxial truss

 
	As a precursor to the biaxial problem let us first consider the
	uniaxial case. We connect 3 masses with four springs between
	two immobile walls, apply forces at the masses, and measure
	the associated displacement.  More precisely, we suppose that
	a horizontal force,

	
	  fj
	,
	

	is applied to each
	
	  mj
	,
	

	and produces a displacement
	
	  xj
	,
	

	with the sign convention that rightward means positive. The
	bars at the ends of the figure indicate rigid supports
	incapable of movement. The
	
	  kj
	
	

	denote the respective spring stiffnesses.  The analog of
	potential difference (see the electrical model)
	is here elongation.  If
	
	
	  ej
	
	
	
	denotes the elongation of the 
	jth spring then naturally,

	
	  e1=x1
	
	

	
	  e2=x2−x1
	
	

	
	  e3=x3−x2
	
	

	
	  e4=–x3
	
	

	or, in matrix terms,

	
	  e=Ax
	, 
	

	where
	
	

	We note that

	
	  ej
	
	
	
	is positive when the spring is stretched and negative when
	compressed.  This observation, Hooke's Law, is the analog of
	Ohm's
	Law in the electrical model.

	
	 Definition: Hooke's Law
	 1. The restoring force in a
	  spring is proportional to its elongation.  We call the
	  constant of proportionality the stiffness,

	    
	      kj
	    ,
	    

	    of the spring, and denote the restoring force by
	    
	      yj
	    .

	 2. 
	    The mathematical expression of this statement is:
	    
	      yj=kjej
	      
	    , or, 
	  

	 3. in matrix terms:
	    
	      y=Ke
	    
	    

	    where
	    
	  





	The analog of Kirchhoff's Current Law  is here typically
	called `force balance.'

	
	 Definition: force balance
	 1. Equilibrium is synonymous with the fact that the net force acting on
	    each mass must vanish.  
	  

	 2. 
	    In symbols,
	    
	      y1−y2−f1=0
	    
	    

	    
	      y2−y3−f2=0
	    
	    

	    
	      y3−y4−f3=0
	    
	    
	  

	 3. 
	    or, in matrix terms, 

	    
	      By=f
	    
	    

	    where
	    
	  




      
 
	As in the
	  electrical example we recognize in B the
	  transpose of A.  Gathering our three
	  important steps:

	
()
	    e=Ax
	  


	
()
	    y=Ke
	  


	
()
	    ATy=f
	  


	we arrive, via direct substitution, at an equation for 
	x.  Namely,

	
	  ATy=f⇒ATKe=f⇒ATKAx=f
	
	

	Assembling 
	
	  ATKAx
	
	

	we arrive at the final system:
	
()

      

Gaussian Elimination and the Uniaxial Truss



 
	Although Matlab solves systems like the one above with ease our aim here is to 
	develop a deeper understanding of  Gaussian Elimination and so we 
	proceed by hand.  This aim is motivated by a number of important considerations. 
	First, not all linear systems have solutions and even those that do do not 
	necessarily possess unique solutions. A careful look at Gaussian Elimination 
	will provide the general framework for not only classifying those systems that 
	possess unique solutions but also for providing detailed diagnoses of those
	defective systems that lack solutions or possess too many.
      
 
	In Gaussian Elimination one first uses linear combinations of preceding 
	rows to eliminate nonzeros below the main diagonal and then solves the
	resulting triangular system via back-substitution. To firm up our
	understanding let us take up the case where each
	
	
	  kj=1
	
	

	and so Equation takes the form

	
()

	
	We eliminate the (2,1) (row 2, column 1) element by implementing

	
	

	bringing

	
	
	
	We eliminate the current (3,2) element by implementing

	
	
	
	bringing the upper-triangular system
	
	
	

	One now simply reads off

	
	

	This in turn permits the solution of the second equation

	
	

	and, in turn,

	
	

	One must say that Gaussian Elimination has succeeded here. 
	For, regardless of the actual elements of
	f,
	we have produced an 
	x
	for which
	
	
	  ATKAx=f
	.
	
      

Alternate Paths to a Solution



 
	Although Gaussian Elimination remains the most efficient means for solving
	systems of the form 
	
	  Sx=f
	
	

	it pays, at times, to consider alternate means. At the algebraic level, suppose 
	that there exists a matrix that `undoes' multiplication by 
	S
	in the sense that multiplication by
	
	  2-1
	
	

	undoes multiplication by 2. The matrix analog of 
	
	  2-12=1
	
	is

	
	  S-1S=I
	
	

	where I
	denotes the  identity matrix (all zeros except the ones on the
	diagonal).  We refer to  
	
	  S-1
	 as:

	
	 Definition: Inverse of S
	 Also dubbed "S inverse" for short, the value of this matrix stems
	    from watching what happens when it is applied to each side of
	    
	    
	      Sx=f
	    .
	    

	    Namely,
	    
	      Sx=f⇒S-1Sx=S-1f⇒Ix=S-1f⇒x=S-1f
	    
	    
	  




	Hence, to solve 
	
	  Sx=f
	
	
	
	for x it
	suffices to multiply
	f by the
	inverse of S.
      

Gauss-Jordan Method:  Computing the Inverse of a Matrix



 
	Let us now consider how one goes about computing 
	
	  S-1
	.  
	

	In general this takes a little more than twice the work of Gaussian Elimination, 
	for we interpret
	
	  S-1S=I
	
	

	as n (the size of 
	S) applications 
	of Gaussian elimination, with
	f running through 
	n columns of the identity matrix. 
	The bundling of these n 
	applications into one is known as the  Gauss-Jordan method. Let us 
	demonstrate it on the 
	S appearing 
	in Equation.  We first augment
	S with
	I.

	
	

	We then eliminate down, being careful to address each of the three
	f vectors.
	This produces

	
	

	Now, rather than simple back--substitution we instead eliminate up. Eliminating 
	first the (2,3) element we find

	
	

	Now, eliminating the (1,2) element we achieve

	
	

	In the final step we scale each row in order that the matrix on the left
	takes on the form of the identity. This requires that we multiply row 1 by

	, 
	

	row 2 by 
	, 
	

	and row 3 by
	, 
	

	with the result
	
	
      
 
	Now in this transformation of 
	S into
	I we have,
	ipso facto, transformed
	I to
	
	
	  S-1
	;

	i.e., the matrix that appears on the right
	after applying the method of Gauss-Jordan is the inverse of
	the matrix that began on the left.  In this case,

	
	
	One should check that 
	
	  S-1f
	

	indeed coincides with the
	x
	computed above.
      

Invertibility



 
	Not all matrices possess inverses:
	
	 Definition: singular matrix
	 A matrix that does not have an inverse.
Example . 
 
	      A simple example is:
	      
	    







	Alternately, there are

	
	 Definition: Invertible, or Nonsingular Matrices
	 Matrices that do have an inverse.
Example . 
 
	      The matrix S
	      that we just studied is invertible.  Another simple example is 
	      
	      
	    






      


3.2. A Small Planar Truss*



 
      We return once again to the biaxial testing problem, introduced
      in the uniaxial truss module. It turns out that
      singular matrices are typical in the biaxial testing problem. As
      our initial step into the world of such planar structures let us
      consider the simple truss in the figure of a simple swing.
    
 [image: A simple swing (lec2fig2.png)]

Figure 3.2. A simple swing

 
      We denote by
      
	x1
      
      

      and
      
	x2
      
      

      the respective horizontal and vertical displacements of
      
	m1
      
      

      (positive is right and down). Similarly, 
      
	f1
      
      

      and
      
	f2
      
      

      will denote the associated components of force. The corresponding 
      displacements and forces at
      
	m2
      
      

      will be denoted by 
      
	x3
      ,
      

      
	x4
      
      

      and
      
	f3
      ,
      

      
	f4
      .
      

      In computing the elongations of the three springs we shall make
      reference to their unstretched lengths,
      
	L1
      ,
      

      
	L2
      ,
      

      and
      
	L3
      .
      
    
 
      Now, if spring 1 connects

      
	{0, –L1}
       
      

      to 
      
	{0, 1}
       when at rest and

      
	{0, –L1}
      
       

      to
      
	{x1, x2}
      
      

      when stretched then its elongation is simply
      
()

      
    
 
      The price one pays for moving to higher dimensions is that lengths
      are now expressed in terms of square roots. The upshot is that the
      elongations are not linear combinations of the end displacements
      as they were in the uniaxial case. If we presume, however,
      that the loads and stiffnesses are matched in the sense that the
      displacements are small compared with the original lengths, then
      we may effectively ignore the nonlinear contribution in Equation.  In order to make this precise we
      need only recall the
      
      
Rule 3.1.
 
	    The Taylor development of
	    
	    
	    about 
	    
	      t=0
	      
	    
	    
	    is
	    
	    

	    where the latter term signifies the remainder.
	  





      With regard to
      
	e1
      

      this allows
      
()


      
()

    
 
      If we now assume that
      
()


      then, as the O term is even
      smaller, we may neglect all but the first terms in the above and
      so arrive at
      
	e1=x2
	
      

      To take a concrete example, if 
      
	L1
      
      

      is one meter and
      
	x1
      
      
      and
      
	x2
      
      

      are each one centimeter, then
      
	x2
      
      

      is one hundred times
      .
      
    
 
      With regard to the second spring, arguing as above, its elongation is
      (approximately) its stretch along its initial direction. As its initial
      direction is horizontal, its elongation is just the difference of the
      respective horizontal end displacements, namely,
      
      
	e2=x3−x1
	
      

      Finally, the elongation of the third spring is (approximately)
      the difference of its respective vertical end displacements,
      i.e.,

      
	e3=x4
	
      

      We encode these three elongations in
      

      Hooke's
      law  is an elemental piece of physics and is not
      perturbed by our leap from uniaxial to biaxial structures. The
      upshot is that the restoring force in each spring is still
      proportional to its elongation, i.e.,

      
	yj=kjej
      
      
      
      where 
      
	kj
      
      

      is the stiffness of the jth spring. In matrix
      terms,
      

      Balancing horizontal and vertical forces at
      
	m1
      
      

      brings
      
	–y2−f1=0
      
      
      and
      
	y1−f2=0
	
      

      while balancing horizontal and vertical forces at 
      
	m2
      
      

      brings
      
	y2−f3=0
	
       and

      
	y3−f4=0
	
      

      We assemble these into 
      

      and recognize, as expected, that B is nothing more than

      
	AT
      .  Putting the pieces together, we find that
      x must satisfy

      
	Sx=f
	
      

      where 
      
      
    
 
      Applying one step of Gaussian Elimination
       brings
      
      

      and back substitution delivers
      

      
	0=f1+f3
	
      

      
      
      
    
 
      The second of these is remarkable in that it contains no
      components of x.
      Instead, it provides a condition on f.  In mechanical terms, it states
      that there can be no equilibrium unless the horizontal forces on
      the two masses are equal and opposite. Of course one could have
      observed this directly from the layout of the truss. In modern,
      three--dimensional structures with thousands of members meant to
      shelter or convey humans one should not however be satisfied
      with the `visual' integrity of the structure.  In particular,
      one desires a detailed description of all loads that can, and,
      especially, all loads that can not, be equilibrated by the
      proposed truss. In algebraic terms, given a matrix S, one
      desires a characterization of

      
 	
	  all those f for
	  which

	  
	    Sx=f
	    
	  
	  
	  possesses a solution
	

	
	  all those f for
	  which

	  
	    Sx=f
	    
	  
	  
	  does not possess a solution
	





      We will eventually provide such a characterization in our later
      discussion of the column
      space  of a matrix.
    
 
      Supposing now that 
    
      f1+f3=0
    
    

      we note that although the system above is consistent it still
      fails to uniquely determine the four components of x.  In
      particular, it specifies only the difference between
      
	x1 
      
      

      and
      
	x3 
      .
      

      As a result both 
      

      satisfy 
      
	Sx=f
	
      .

      In fact, one may add to either an arbitrary multiple of
      
()

      

      and still have a solution of 
      
	Sx=f
	
      .

      Searching for the source of this lack of uniqueness we observe
      some redundancies in the columns of S. In particular, the third is
      simply the opposite of the first. As S is simply

      
	ATKA
      
      

      we recognize that the original fault lies with A, where again, the first and
      third columns are opposites. These redundancies are encoded in
      z in the sense that

      
	Az=0
      
      

      Interpreting this in mechanical terms, we view z as a displacement and

      
	Az
      
      
      as the resulting elongation. In 

      
	Az=0
      
      
      
      we see a nonzero displacement producing zero elongation. One
      says in this case that the truss deforms without doing any work
      and speaks of z as
      an  unstable mode.  Again, this mode could have been
      observed by a simple glance at Figure 3.2.  Such is not the case for more complex
      structures and so the engineer seeks a systematic means by which
      all unstable modes may be identified. We
      shall see later that all these modes are captured by the null space of A.
    
 
      From
      
	Sz=0
      
      

      one easily deduces that S is singular.  More precisely,
      if

      
	S-1
      
      

      were to exist then
      
	S-1Sz
      
      

      would equal
      
	S-10
      , i.e.,

      
	z=0
      , contrary to Equation. As
      a result, Matlab will fail to solve

      
	Sx=f
	
      
      
      even when f is a force that the truss can
      equilibrate.  One way out is to use the
       pseudo-inverse, as we shall see in the General Planar Truss module.
    

3.3. The General Planar Truss*



 
      Let us now consider something that resembles the mechanical
      prospection problem introduced in the  introduction to matrix methods
      for mechanical systems.  In the figure below we offer a
      crude mechanical model of a planar tissue, say,
      e.g., an excised sample of the wall of a
      vein.
    
 [image: A crude tissue model (lec2fig3.png)]

Figure 3.3. A crude tissue model

 
      Elastic fibers, numbered 1 through 20, meet at nodes, numbered 1
      through 9. We limit our observation to the motion of the nodes
      by denoting the horizontal and vertical displacements of node
      j by
      
      
	x
	      2j–1
	    
	
      

      (horizontal) and

      
	x
	      2j
	    
	
      

      (vertical), respectively.  Retaining the convention that down
      and right are positive we note that the elongation of fiber 1 is

      
	e1=x2−x8
	
      

      while that of fiber 3 is

      
	e3=x3−x1
	.
	
      

      As fibers 2 and 4 are neither vertical nor horizontal their
      elongations, in terms of nodal displacements, are not so easy to
      read off.  This is more a nuisance than an obstacle however, for
      noting our
      discussion of elongation in the small planar truss
      module, the elongation is approximately just the stretch along
      its undeformed axis.  With respect to fiber 2, as it makes the
      angle

      

      with respect to the positive horizontal axis, we find

      

      Similarly, as fiber 4 makes the angle 
      
      

      with respect to the positive horizontal axis, its elongation is

      

      These are both direct applications of the general formula

      
()
	  ej=(x
			2
			n
			–
			1
		      −x
			2
			m
			–
			1
		      )cos(θj)+(x
			2n
		      −x
			2m
		      )sin(θj)
	


      for fiber j, as
      depicted in Figure 3.4 below,
      connecting node m
      to node n and
      making the angle
      
      
	θj
	
      

      with the positive horizontal axis when node m is assumed to lie at
      the point (0,0). The reader should check that our expressions
      for
      
      
	e1
      

      and

      
	e3
      

      indeed conform to this general formula and that 

      
	e2
      

      and

      
	e4
      

      agree with ones intuition.  For example, visual inspection of
      the specimen suggests that fiber 2 can not be supposed to
      stretch (i.e., have positive

      
	e2
      )

      unless 

      
	x9>x1
	
      

      and/or 

      
	x2>x10
	.
	
      

      Does this jive with Equation?
    
 [image: Figure (genbar.png)]

Figure 3.4. 

	Elongation of a generic bar, see Equation.
      

 
      Applying Equation to each of the
      remaining fibers we arrive at

      
	e=Ax
	
      

      where A is 20-by-18, one row for each
      fiber, and one column for each degree of freedom. For systems of
      such size with such a well defined structure one naturally hopes
      to automate the construction. We have done just that in the
      accompanying M-file
      and 
      diary.  The M-file begins with a matrix of raw data that
      anyone with a protractor could have keyed in directly from Figure 3.3:
    
 
      data =     [                                 % one row of data for each fiber, the
      1       4       -pi/2           % first two columns are starting and ending
      1       5       -pi/4           % node numbers, respectively, while the third is the 
      1       2       0               % angle the fiber makes with the positive horizontal axis
      2       4       -3*pi/4
      ...and so on...                  ] 
    
 
      This data is precisely what Equation
      requires in order to know which columns of A receive
      the proper cos or sin.  The final A matrix is displayed in the
      
      diary.
    
 
      The next two steps are now familiar.  If K denotes
      the diagonal matrix of fiber stiffnesses and f denotes
      the vector of nodal forces then
      
      
	y=Ke
	

	
	        
	  and
	        
	

	ATy=f
	
      

      and so one must solve

      
	Sx=f
	
      

      where

      
	S=ATKA
	
      .

      In this case there is an entire three--dimensional class of 
      z
      for which 
      
      
	Az=0
	
      

      and therefore

      
	Sz=0
	
      .

      The three indicates that there are three independent unstable
      modes of the specimen, e.g., two translations
      and a rotation. As a result S is singular and  x =
      S\f in MATLAB will get us nowhere.  The way out is to
      recognize that S has
      
      
	18−3=15
	
      

      stable modes and that if we restrict S to 'act'
      only in these directions then it `should' be invertible.  We will
      begin to make these notions precise in discussions on the Fundamental Theorem of Linear
      Algebra.  For now let us note that every matrix possesses
      such a  pseudo-inverse and that it may be computed
      in MATLAB via the pinv command.  Supposing
      the fiber stiffnesses to each be one and the edge traction to be
      of the form
      
      

      we arrive at x via
      x=pinv(S)*f and offer below its graphical
      representation.
    
Before-After Plot



 [image: Figure (lec2fig4.png)]

Figure 3.5. 

	  Before and after shots of the truss in Figure 3.3.  The solid
	  (dashed) circles correspond to the nodal positions before
	  (after) the application of the traction force, f.
	



3.4. CAAM 335 Chapter 2 Exercises*



Exercise 1.
 
	    
	 
	  With regard to  the uniaxial truss
	    figure,
	      
	  
 	
	      (i) Derive the A and K
	      matrices resulting from the removal of the fourth
	      spring,
	    

	
	      (ii) Compute the inverse, by hand via 
	      
		Gauss-Jordan, of the resulting

	      
		ATKA
		
	      

	      with 

	      
		k1=k2=k3=k
		
	      
	    

	
	      (iii) Use the result of (ii) to find the displacement
	      corresponding to the load
	      
	      
		f=(0, 0, F)T
		
	      .
	    




	

      


Exercise 2.
 
	 
	  Generalize example 3,
	    the general planar truss, to the case of 16 nodes
	    connected by 42 fibers.  Introduce one stiff (say
	  
	  
	    k=100
	    
	  ) 

	  fiber and show how to detect it by 'properly' choosing
	  f.  Submit your
	  well-documented M-file as well as the plots, similar to
	  the before-after
	  plot in the general planar module, from which you
	  conclude the presence of a stiff fiber.

	
 [image: Figure (beforeafter.png)]
Figure 3.5. 

	    A copy of the before-after figure from the general planar
	    module.


      

      



Glossary



	Definition: Hooke's Law
	1. The restoring force in a
	  spring is proportional to its elongation.  We call the
	  constant of proportionality the stiffness,

	    simplemath
	      mathml-miitalicskmathml-miitalicsj
	    inline
	      
		  k
		  j
		
	    ,
	    

	    of the spring, and denote the restoring force by
	    simplemath
	      mathml-miitalicsymathml-miitalicsj
	    inline
	      
		  y
		  j
		
	    .

	2. 
	    The mathematical expression of this statement is:
	    simplemath
	      mathml-miitalicsymathml-miitalicsj=mathml-miitalicskmathml-miitalicsjmathml-miitalicsemathml-miitalicsj
	      
	    inline
	      
		    y
		    j
		  =
		      k
		      j
		    
		      e
		      j
		    
	      
	    , or, 
	  

	3. in matrix terms:
	    simplemath
	      boldboldy=boldmathml-miKe
	    inline
	      boldy=Kbolde
	    
	    

	    where
	    block
	      K=
			k
			1
		      0000
			k
			2
		      0000
			k
			3
		      0000
			k
			4
		      
	    
	  

	Definition: Inverse of S
	Also dubbed "S inverse" for short, the value of this matrix stems
	    from watching what happens when it is applied to each side of
	    
	    simplemath
	      boldmathml-miSx=boldboldf
	    inline
	      Sboldx=boldf
	    .
	    

	    Namely,
	    simplemath
	      boldmathml-miSx=boldboldf⇒mathml-miitalicsS-1mathml-miitalicsSboldboldx=mathml-miitalicsS-1boldboldf⇒boldmathml-miIx=mathml-miitalicsS-1boldboldf⇒boldboldx=mathml-miitalicsS-1boldboldf
	    block
	      Sboldx=boldf⇒S-1Sboldx=S-1boldf⇒Iboldx=S-1boldf⇒boldx=S-1boldf
	    
	    
	  

	Definition: Invertible, or Nonsingular Matrices
	Matrices that bolddo have an inverse.
Example . 

	      The matrix simplemathmathml-miitalicsSinlineS
	      that we just studied is invertible.  Another simple example is 
	      
	      block
		0111
	      
	    



	Definition: force balance
	1. Equilibrium is synonymous with the fact that the net force acting on
	    each mass must vanish.  
	  

	2. 
	    In symbols,
	    simplemath
	      mathml-miitalicsy1−mathml-miitalicsy2−mathml-miitalicsf1=0
	    block
	      
			y
			1
		      −
			y
			2
		      −
		      f
		      1
		    =0
	    
	    

	    simplemath
	      mathml-miitalicsy2−mathml-miitalicsy3−mathml-miitalicsf2=0
	    block
	      
			y
			2
		      −
			y
			3
		      −
		      f
		      2
		    =0
	    
	    

	    simplemath
	      mathml-miitalicsy3−mathml-miitalicsy4−mathml-miitalicsf3=0
	    block
	      
			y
			3
		      −
			y
			4
		      −
		      f
		      3
		    =0
	    
	    
	  

	3. 
	    or, in matrix terms, 

	    simplemath
	      boldmathml-miBy=boldboldf
	    inline
	      Bboldy=boldf
	    
	    

	    where
	    block
	      boldf=()
		      f
		      1
		    
		      f
		      2
		    
		      f
		      3
		    
	      

	        and  
	      
	      B=1-10001-10001-1
	      
	    
	  

	Definition: singular matrix
	A matrix that bolddoes not have an inverse.
Example . 

	      A simple example is:
	      block
		1111
	      
	    





Solutions
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Chapter 9. The Eigenvalue Problem



9.1. Introduction*



Introduction



 
	Harking back to our previous discussion of The Laplace Transform we labeled the complex
	  number λ an
	   eigenvalue of B
	  if  
	  λI−B was not invertible. In
	  order to find such λ
	  one has only to find those s
	  for which  
	  (sI−B)-1
	
	is not defined. To take a concrete example we note that if
	
()

	then
	
()

	and so 
	  λ1=1 and 
	  λ2=2
	are the two eigenvalues of B.
	Now, to say that 
	  λjI−B is not invertible is to say that its columns
	are linearly dependent, or, equivalently, that the null space
	
	  𝒩(λjI−B) contains more than just the zero vector. We call
	
	  𝒩(λjI−B) 
	 the
	    jth  eigenspace
	    and call each of its nonzero members a
	    jth
	     eigenvector.  The dimension of 
	  𝒩(λjI−B)  is referred
	    to as the  geometric multiplicity of
	    
	  λj.
	    With respect to B above, we
	    compute  
	  𝒩(λ1I−B) by solving 
	  (I−B)x=0, i.e., 
	
	
	Clearly
	
	Arguing along the same lines we also find
	  That B
	is 3x3 but possesses only 2 linearly eigenvectors leads us to
	speak of B as defective. The
	cause of its defect is most likely the fact that
	λ1
	is a double pole of  
	  (sI−B)-1
	
	In order to flesh out that remark and uncover the missing eigenvector
	we must take a much closer look at the transfer function
	
	  R(s)≡(sI−B)-1
	  In the mathematical literature this
	quantity is typically referred to as the
	 Resolvent of B.
      


9.2. The Resolvent*



The Transfer Function



 
	One means by which to come to grips with R(s) is
	to treat it as the matrix analog of the scalar function
	
()

	This function is a scaled version of the even simpler function
	.
	This latter function satisfies the identity (just multiply across by
	
	  1−z
	to check it)
	
()

	for each positive integer
	n. Furthermore, if 
	  |z|<1 then 
	  zn→0
	 as 
	  n→∞
	
	and so  Equation  becomes, in the limit,
	 the familiar geometric
	series. Returning to Equation we write
	
	and hence, so long as 
	  |s|>|b|
	 we find,
	
	This same line of reasoning may be applied in the matrix
	case. That is, 
	
()

	and hence, so long as 
	  |s|>∥B∥
	 where
	
	  ∥B∥
	 is the magnitude of the
	largest element of B, we find
	
()
 Although Equation is indeed a formula for the transfer
	function you may, regarding computation, not find it any more
	attractive than the Gauss-Jordan method. We view Equation however as an analytical
	rather than computational tool. More precisely, it facilitates
	the computation of integrals of 
	  R(s)
	. For example, if 
	  Cρ
	 is the circle of radius
	ρ centered at the origin
	and  
	  ρ>∥B∥
	
	then 
	
()
 This result is essential to our study
	of the eigenvalue problem. As are the two resolvent
	identities. Regarding the first we deduce from the simple
	observation 
	 
	  (s2I−B)-1−(s1I−B)-1=(s2I−B)-1(s1I−B−s2I+B)(s1I−B)-1
	
	that
	
()
	    R(s2)−R(s1)=(s1−s2)R(s2)R(s1)
	  

	The second identity is simply a rewriting of 
	
	  (sI−B)(sI−B)-1=(sI−B)-1(sI−B)=I
	
	namely,
	
()

      


9.3. The Partial Fraction Expansion of the Resolvent*



Partial Fraction Expansion of the Transfer Function



 
	The Gauss-Jordan method informs us that R will be a matrix of rational
	functions with a common denominator. In keeping with the
	notation of the previous chapters, we assume the denominator
	to have the h distinct roots,
	
         

        with associated multiplicities 
        .
 
	Now, assembling the partial fraction expansions of each
	element of R we
	arrive at

	
()

	where, recalling the equation from Cauchy's Theorem, the matrix
	 
	  R
		j
		,
		k
	      
	 equals the following:

	
()

        
Example 9.1. Concrete Example
 
            As we look at this example with respect to the eigenvalue
	    problem eqn1 and eqn2, we find
         

          
         

          One notes immediately that these matrices enjoy some amazing
	properties.  For example 
	
()
	    R
		      1
		      ,
		      1
		    2=R
		    1
		    ,
		    1
		  
	    ,    
	    R
		      2
		      ,
		      1
		    2=R
		    2
		    ,
		    1
		  
	    ,    
	    R
		      1
		      ,
		      1
		    R
		      2
		      ,
		      1
		    =0
	    ,   and    
	    R
		      2
		      ,
		      1
		    2=0
	  


        Below we will now show that this is no accident. As a
	consequence of Equation and
	the first resolvent identity, we shall find that these results
	are true in general.
	



Proposition 9.1.
 
	
	  R
		    j
		    ,
		    1
		  2=R
		  j
		  ,
		  1
		
	 as seen above in Equation.
	

Proof



 
	Recall that the  Cj 
	  appearing in Equation is any
	  circle about
	  
	  λj
	
	that neither touches nor encircles any other root. Suppose
	  that
	  
	  Cj
	  
	  and
	  
	  are two such circles and
	  
	  encloses
	
	  Cj
	. Now

	  
	  and so 
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  We used the first resolvent identity, This Transfer
	  Function eqn, in moving from the second to the third
	  line.  In moving from the fourth to the fifth we used only
	
()
 and 
    
	The latter integrates to zero because
	
	  Cj
	 does not encircle w.
	
 
	From the definition of orthogonal projections, which states that matrices
	that equal their squares are projections, we adopt the
	abbreviation 
	
	  Pj≡R
		  j
		  ,
		  1
		
	
	  With respect to the product
	
	  PjPk
	, for 
	
	  j≠k
	, the calculation runs along the same lines.  The
	difference comes in Equation where, as
	
	    Cj
	   lies completely outside of 
	  
	    Ck , both integrals are
		zero. Hence,
	



Proposition 9.2.
 
	If 
	  j≠k
	 then 
	
	  PjPk=0
	.
      



 
	Along the same lines we define
	
	  Dj≡R
		  j
		  ,
		  2
		
	
	and prove
Proposition 9.3.
  If 
	    1≤k≤mj−1
	 then 
	  Djk=R
		  j
		  ,
		  
		    k
		    +
		    1
		  
		
	.  

	  
	    Djmj=0
	  .

Proof



 
	  For k and
	  l greater than or equal to
	  one,
	

	

	

	

	
	
	because

	
()
 and

	 

	With 
	  k=l=1
	 we have shown 
	
	  R
		    j
		    ,
		    2
		  2=R
		  j
		  ,
		  3
		
	, i.e., 
	
	  Dj2=R
		  j
		  ,
		  3
		
	.  Similarly, with 
	
	  k=1
	 and 
	
	  l=2
	 we find 
	
	  R
		    j
		    ,
		    2
		  R
		    j
		    ,
		    3
		  =R
		  j
		  ,
		  4
		
	, i.e.,
	
	  Dj3=R
		  j
		  ,
		  4
		
	.  Continuing in this fashion we find 
	
	  R
		    j
		    ,
		    k
		  R
		    j
		    ,
		    
		      k
		      +
		      1
		    
		  =R
		  j
		  ,
		  
		    k
		    +
		    2
		  
		=j
	, or
	
	  Djk+1=R
		  j
		  ,
		  
		    k
		    +
		    2
		  
		
	. Finally, at 
	
	  k=mj−1
	 this becomes 
	 
	by Cauchy's Theorem. 
 
	With this we now have the sought after expansion
	
()


	along with the verification of a number of the properties laid out
	in Complex
	Integration eqns 1-3.

      




9.4. The Spectral Representation*



 
      
      With just a little bit more work we shall arrive at a similar
      expansion for B itself.  We begin
      by applying the second resolvent identity to
      Pj . More precisely, we note that the second resolvent
      identity implies that
      
()


      

      

      
	PjB=Dj+λjPj
       

      Summing this over j we find 
      
()

      We can go one step further, namely the evaluation of the first
      sum.  This stems from the eqn in the discussion of the transfer
	function where we integrated
      
	R(s)
       over a circle
      
	Cρ
       where 
	ρ>∥B∥. The connection to the
      
	Pj
       is made by the residue theorem. More precisely,
      

      Comparing this to the eqn from the discussion of the transfer
      function we find
      
()
 
      and so Equation takes the form 
      
()


      It is this formula that we refer to as the  Spectral
	Representation of B. To the
      numerous connections between the
      
	Pj and
      
	Dj
       we wish to add one more. We first write Equation as
      
	(B−λjI)Pj=Dj
      
      and then raise each side to the 
	mj
       power. As
      
	Pj
		mj
	      =Pj
       and
      
	Dj
		mj
	      =0
       we find 
      
()
	  (B−λjI)mjPj=0
	
 For this reason we call the range of
      
	Pj the
      jth  generalized
	eigenspace, call each of its nonzero members a
      jth   generalized
	eigenvector and refer to the dimension of
      
	ℛ(Pj)
       as the  algebraic multiplicity of
      
	λj .  With regard to the first
	example from the discussion of the eigenvalue
      problem, we note that although it has only two linearly
      independent eigenvectors the span of the associated
      generalized eigenspaces indeed fills out
      
	ℝ3
      .  One may view this as a consequence of
      
	P1+P2=I
      , or, perhaps more concretely, as appending the generalized
      first eigenvector  to the original two eigenvectors 
       and 
      .  In still other words, the algebraic multiplicities
      sum to the ambient dimension (here 3), while the sum of
      geometric multiplicities falls short (here 2).

    

9.5. The Eigenvalue Problem:  Examples*



 
	We take a look back at our previous examples in light of the
      results of two previous sections The Spectral Representation and The Partial Fraction Expansion of
      the Transfer Function.  With respect to the rotation
      matrix
       we recall, see Cauchy's Theorem eqn6, that 
      

      
()

 
      
	and so 
      

 From
      
	m1=m2=1
       it follows that
      
	ℛ(P1)
       and
      
      ℛ(P2)
       are actual (as opposed to generalized) eigenspaces. These
	column spaces are easily determined. In particular,
      
	ℛ(P1)
       is the span of 
       while 
	ℛ(P2)
      
	is the span of 
      
      To recapitulate, from partial fraction expansion one can read
	off the projections from which one can read off the
	eigenvectors.  The reverse direction, producing projections
	from eigenvectors, is equally worthwhile. We laid the
	groundwork for this step in the discussion of Least Squares. In
	particular, this Least Squares projection equation
	stipulates that
      
	P1=e1(e1Te1)-1e1T
	  and  
	P2=e2(e2Te2)-1e2T
      

As 
	e1Te1=e1Te1=0
       these formulas can not possibly be correct.  Returning
	to the Least Squares discussion we realize that it was,
	perhaps implicitly, assumed that all quantities were real. At
	root is the notion of the length of a complex vector. It is
	not the square root of the sum of squares of its components
	but rather the square root of the sum of squares of the
	magnitudes of its components. That is,
	recalling that the magnitude of a complex quantity 
	z is , 
      

	Yes, we have had this discussion before, recall complex numbers, vectors, and
      matrices.  The upshot of all of this is that, when
      dealing with complex vectors and matrices, one should conjugate
      before every transpose. Matlab (of course) does this
      automatically, i.e., the ' symbol conjugates
      and transposes simultaneously. We use
      
	xH
      
      to denote `conjugate transpose', i.e.,
      
      All this suggests that the desired projections are more likely
      
()
	  P1=e1(e1He1)-1e1H
	    and  
	  P2=e2(e2He2)-1e2H
	
 Please check that Equation indeed jives with Equation.

    

9.6. The Eigenvalue Problem:  Exercises*



Exercises



 
	
 	Argue as in 
	Proposition 1 in the discussion of the partial fraction
	expansion of the transfer function that if 
	      j≠k
	     then
	    
	      DjPk=PjDk=0
	    .

	Argue from this equation from the
	  discussion of the Spectral Representation that
	    
	      DjPj=PjDj=Dj
	    .

	The two previous exercises come in very handy when
	computing powers of matrices. For example, suppose
	B is 4-by-4, that
	    
	      h=2
	     and
	    
	      m1=m2=2
	    . Use the spectral representation of
	B together with the first two
	exercises to arrive at simple formulas for
	    
	      B2
	     and
	    
	     B3
	    .

	Compute the spectral representation of the circulant
	matrix 
	      Carefully label all
	    eigenvalues, eigenprojections and eigenvectors.

	  




      


Solutions


Chapter 12. Singular Value Decomposition



12.1. The Singular Value Decomposition*



 
      The singular value decomposition is another name for the
      spectral representation of a rectangular matrix. Of course if
      A is
      m-by-n
      and 
      
	m≠n
       then it does not make sense to speak of the
      eigenvalues of A. We
      may, however, rely on the previous section to give us relevant
      spectral representations of the two symmetric matrices

      
 	
	  
	    ATA
	  
	

	
	  
	    AAT
	  
	





      That these two matrices together may indeed tell us 'everything'
      about A can be
      gleaned from
      
      
	𝒩(ATA)=𝒩(A)
      

      
	𝒩(AAT)=𝒩(AT)
      

       
	ℛ(ATA)=ℛ(AT)
      
      
       
	ℛ(AAT)=ℛ(A)
      

      You have proven the first of these in a previous exercise. The
      proof of the second is identical. The row and column space
      results follow from the first two via orthogonality.
    
 
      On the spectral side, we shall now see that the eigenvalues of 
      
	AAT
       and 

       
	ATA
       are nonnegative and that their nonzero eigenvalues
      coincide. Let us first confirm this on the adjacency matrix associated
      with the unstable swing (see figure in another module)

      
()


      The respective products are 

      

      

      Analysis of the first is particularly simple. Its null space is
      clearly just the zero vector while 
      
      
	λ1=2
       and 
      
      
	λ2=1
      
      
      are its eigenvalues. Their geometric multiplicities are 

      
	n1=1
       and 
      
      
	n2=2
      . 
      
      In 
      
	ATA
       we recognize the S matrix from the exercise in
      another moduleand recall that its eigenvalues are
      
      
	λ1=2
      , 
      
      
	λ2=1
      , and 

       
	λ3=0
       with multiplicities 

      
	n1=1
      , 
      
      
	n2=2
      , and 

      
	n3=1
      . Hence, at least for this A, the eigenvalues of

      
	AAT
       and 
      
      
	ATA
       are nonnegative and their nonzero eigenvalues
      coincide. In addition, the geometric multiplicities of the
      nonzero eigenvalues sum to 3, the rank of A.
    
Proposition
 
	  The eigenvalues of 
	  
	    AAT
	   and 	  
	  
	    ATA
	  	  
	  are nonnegative. Their nonzero eigenvalues, including
	  geometric multiplicities, coincide. The geometric
	  multiplicities of the nonzero eigenvalues sum to the rank of
	  A. 
	

Proof



 
	  If 
	  
	    ATAx=λx
	   then 

	  
	    xTATAx=λxTx
	  , i.e., 
	  
	  
	    (∥Ax∥)2=λ(∥x∥)2
	   and so λ ≥ 0. A similar argument works
	  for 
	  
	    AAT
	  . 
	



 
      Now suppose that 
      
	λj>0
       and that 

      

      constitutes an orthogonal basis for the eigenspace 
      
	ℛ(Pj)
      . Starting from 

      
()
	  ATAx
		    j
		    ,
		    k
		  =λjx
		    j
		    ,
		    k
		  
	


      we find, on multiplying through (from the left) by A that
      
      
	AATAx
		  j
		  ,
		  k
		=λjAx
		  j
		  ,
		  k
		
      
      
      i.e.,
      λj
      is an eigenvalue of 
      
	AAT
       with eigenvector 
      
      
	Ax
		j
		,
		k
	      
      , so long as 
      
      
	Ax
		  j
		  ,
		  k
		≠0
      . It follows from the first paragraph of this proof
      that 

      , which, by hypothesis, is nonzero. Hence, 

      
()


      is a collection of unit eigenvectors of 

      
	AAT
       associated with
      λj.
      Let us now show that these vectors are orthonormal for fixed
      j.

      
      
      We have now demonstrated that if 
      
      
	λj>0
       is an eigenvalue of 
      
      
	ATA
       of geometric multiplicity
      nj. Reversing
      the argument, i.e., generating eigenvectors of
       
	ATA
       from those of 
       
	AAT
       we find that the geometric multiplicities must indeed
      coincide. 
    
 
      Regarding the rank statement, we discern from Equation that if 

      
	λj>0
       then 

      
	x
		j
		,
		k
	      ∈ℛ(ATA)
      . The union of these vectors indeed constitutes a basis
      for 
      
	ℛ(ATA)
      , for anything orthogonal to each of these 
      
	x
	      j
	      ,
	      k
	    
       necessarily lies in the eigenspace corresponding to a
      zero eigenvalue, i.e., in 
       
	𝒩(ATA)
      . As 

       
	ℛ(ATA)=ℛ(AT)
       it follows that 
      
      
	dimℛ(ATA)=r
       and hence the
      nj,
      for 

      
	λj>0
      , sum to r. 
    
 
      Let us now gather together some of the separate pieces of the
      proof. For starters, we order the eigenvalues of 
      
      
	ATA
      
      
      from high to low, 

      
	λ1>λ2>…>λh
       

      and write 
      
      
()
	  ATA=XΛnXT
	


      where 

      
	X={X1, …, Xh}  ,  
	    Xj={x
		      j
		      ,
		      1
		    , …, x
		      j
		      ,
		      
			nj
		      
		    }
	    
      

      and
      Λn
      is the
      n-by-n
      diagonal matrix with
      λ1
      in the first
      n1
      slots,
      λ2
      in the next
      n2
      slots, etc. Similarly

      
()
	  AAT=YΛmYT
	


      where 
	      
      
	Y={Y1, …, Yh}  ,  
	    Yj={y
		      j
		      ,
		      1
		    , …, y
		      j
		      ,
		      
			nj
		      
		    }
	    
      

      and 
      Λm
      is the m-by-m diagonal matrix with 
      λ1
      in the first 
      n1
      slots, 
      λ2
      in the next 
      n2
      slots, etc. The 
      
	y
	      j
	      ,
	      k
	    
       were defined in Equation
      under the assumption that 
      
      
	λj>0
      . If 

      
	λj=0
       let 
      Yj
      denote an orthonormal basis for 

      
	𝒩(AAT)
      . Finally, call 

      

      and let Σ denote the
      m-by-n
      matrix diagonal matrix with
      σ1
      in the first
      n1
      slots,
      σ2
      in the next
      n2
      slots, etc. Notice that

      
()
	  ΣTΣ=Λn
	
 

      
()
	  ΣΣT=Λm
	
 
      
      Now recognize that Equation may be
      written 
      
      
	Ax
		  j
		  ,
		  k
		=σjy
		  j
		  ,
		  k
		
      

      and that this is simply the column by column rendition of 

      
	AX=YΣ
      

      As 
      
	XXT=I
       we may multiply through (from the right) by 
      
      
	XT
       and arrive at the  singular value
      decomposition of A,

      
()
	  A=YΣXT
	


      Let us confirm this on the A matrix in Equation. We have

      

      

        

      

      Hence, 

      
()


      and so 

      
	A=YΣXT
       says that A should coincide with

      

      This indeed agrees with A. It also agrees (up to sign
      changes on the columns of X) with what one receives upon
      typing [Y, SIG, X] = scd(A) in Matlab.
    
 
      You now ask what we get for our troubles. I express the first
      dividend as a proposition that looks to me like a quantitative
      version of the fundamental theorem of linear algebra.
   
      
Proposition
 
	    If 
	    
	      YΣXT
	     is the singular value decomposition of
	    A then
	    
	    
 	
		The rank of A, call it
		r, is the number of
		nonzero elements in
		Σ.
	      

	
		The first r columns of
		X
		constitute an orthonormal basis for

		
		  ℛ(AT)
		. The 
	      
		n−r
	      last columns of X constitute an
		orthonormal basis for

		
		  𝒩(A)
		. 
	      

	
		The first r columns of
		Y
		constitute an orthonormal basis for
		
		  ℛ(A)
		. The 
	      
		m−r
	       last columns of Y constitute an
		orthonormal basis for
		
		  𝒩(AT)
		. 
	      




	  





      Let us now 'solve' 
    
      Ax=b
     with the help of the pseudo-inverse of A. You know the 'right' thing to
      do, namely reciprocate all of the nonzero singular
      values. Because m is not
      necessarily n we must also be
      careful with dimensions. To be precise, let
      Σ+
      denote the
      n-by-m
      matrix whose first
      n1
      diagonal elements are
      , whose next 
      n2    
       diagonal elements are 
        and so on. In the case that 

      
	σh=0
      , set the final
      nh
      diagonal elements of
      Σ+
      to zero. Now, one defines the  pseudo-inverse of
      A to be

      
	A+≡XΣ+YT
      

      In the case of that A is that appearing in Equation we find

       

      and so 

      

      therefore, 

      

      in agreement with what appears from pinv(A). Let us
      now investigate the sense in which
      A+
      is the inverse of A. Suppose that

      
	b∈ℝm
       and that we wish to solve 
  
    Ax=b
  . We suspect that 
      
      
	A+b
       should be a good candidate. Observe by Equation that 

      
	(ATA)A+b=XΛnXTXΣ+YTb
        

      because 

      
	XTX=I
      

      
	(ATA)A+b=XΛnΣ+YTb
        

      by Equation and Equation 

       
	(ATA)A+b=XΣTΣΣ+YTb
        

      because 

      
	ΣTΣΣ+=ΣT
      

      
	(ATA)A+b=XΣTYTb
        

      by Equation
      
      
	(ATA)A+b=ATb
        

      that is 

      
	A+b
       satisfies the  least-squares problem

      
	ATAx=ATb
      .  
	    

    

Solutions


