
  
    
  
Chapter 8. Table of Formulas*



 
        
Table 8.1. 	Analog	Time Discrete
	Delta function	Unit sample
	
			                  
			                     δ(t) = 0
			 for
			
                        t ≠ 0,
			
		                	
		                   
		                
	 	 
	Unit step function	Unit step function
	
			                  
		                	
		                   
		                
	 	 
	Angular frequency	Angular frequency
	
		    	              		
			                     Ω = 2π
                        F
			                  
		                	
		    	              		
			                     ω = 2π
                        f
			                  
		                
	 	 
	Energy
		    			
		                	Energy
			
		                
	 	 
	Power
		    
                  	Power
	    
		                
	 	 
	Convol.
			
		                	Convol.
		        
		                
	 	 
	Fourier Transformation	Discrete Time Fourier Transform
	
		                   

		                	
		                      
	                 
	 	 
	Inverse Fourier Transform	Inverse DTFT
	
	     
	                    
	     
	                 	
	                    
	                 
	 	 
	Fourier coeffecients	Discrete Fourier Transform
	
	                    	
	                 	
		                      
	                 
	 	 
	Series expansion	Inverse DFT
	
	                    
	                 	
	                       
	                 
	 	 
	Parseval	Parseval
	
		                   
	                 	
		                   
	                 


   
    

Chapter 2. Convolution



2.1. Introduction to Convolution*



 
        In addition to the operations performed on signals
	in the Signals chapter there are several more.
	The most important operation is linear filtering, which can be
	performed by convolution. The reason that linear filtering
	is so important to signal processing is that it solves many problems
	and that is relatively simple to describe mathematically. In this chapter
	we will be looking at convolution.
      
 
          Convolution helps to determine the effect a system has on an
	  input signal.  It can be shown that a linear, time-invariant system is
	  completely characterized by its impulse response.
	  Using the sampling property 
	  of the delta function for
	  for continuous time signals and the 
	  unit sample 
	  for discrete time signals we can decompose a signal into an infinite 
	  sum / integral of scaled and shifted impulses.  By knowing how a
	  system affects a single impulse, and by understanding the way
	  a signal is comprised of scaled and summed impulses, it seems
	  reasonable that it should be possible to scale and sum the
	  impulse responses of a system in order to determine what
	  output signal will results from a particular input.  This is
	  precisely what convolution does -  convolution
	  determines the system's output from knowledge of the input
	  and the system's impulse response.
       
 Contents of this chapter
	Introduction (current module)

	
            Convolution - Discrete time
         

	
            Convolution - Continuous time
         

	
            Properties of convolution
         




2.2. Discrete Time Convolution*



Introduction



 Convolution, one of the most important concepts in electrical engineering, can be used to determine the output a system produces for a given input signal. It can be shown that a linear time invariant system is completely characterized by its impulse response. The sifting property of the discrete time impulse function tells us that the input signal to a system can be represented as a sum of scaled and shifted unit impulses. Thus, by linearity, it would seem reasonable to compute of the output signal as the sum of scaled and shifted unit impulse responses. That is exactly what the operation of convolution accomplishes. Hence, convolution can be used to determine a linear time invariant system's output from knowledge of the input and the impulse response.

Convolution and Circular Convolution



Convolution



Operation Definition



 Discrete time convolution is an operation on two discrete time signals defined by the integral
(2.1)

 for all signals 
                  f,g
                defined on Z. It is important to note that the operation of convolution is commutative, meaning that
(2.2)
            
                  f
               * 
              g
               = 
              g
               * 
              f
            
               
 for all signals 
                  f,g
                defined on Z. Thus, the convolution operation could have been just as easily stated using the equivalent definition
(2.3)

 for all signals 
                  f,g
                defined on Z. Convolution has several other important properties not listed here but explained and derived in a later module.

Definition Motivation



 The above operation definition has been chosen to be particularly useful in the study of linear time invariant systems. In order to see this, consider a linear time invariant system 
                  H
                with unit impulse response 
                  h
               . Given a system input signal 
                  x
                we would like to compute the system output signal 
                  H(x). First, we note that the input can be expressed as the convolution
(2.4)

 by the sifting property of the unit impulse function.
By linearity
(2.5)

 Since 
                  H
                  δ(n – k) is the shifted unit impulse response 
                  h(n – k), this gives the result
(2.6)

 Hence, convolution has been defined such that the output of a linear time invariant system is given by the convolution of the system input with the system unit impulse response.

Graphical Intuition



 It is often helpful to be able to visualize the computation of a convolution in terms of graphical processes. Consider the convolution of two functions 
                  f,g
                given by
(2.7)

 The first step in graphically understanding the operation of convolution is to plot each of the functions. Next, one of the functions must be selected, and its plot reflected across the 
                  k = 0 axis. For each real 
                  t
               , that same function must be shifted left by 
                  t
               . The product of the two resulting plots is then constructed. Finally, the area under the resulting curve is computed.

 Example 2.1. 
 Recall that the impulse response for a discrete time echoing feedback system with gain 
                  a
                is
(2.8)
          
                  h
            
              (
              n
              )
            
             = 
            a
                  
                     n
                  
                  u
            
              (
              n
              )
            
            ,
          
        
 and consider the response to an input signal that is another exponential
(2.9)
          
                  x
            
              (
              n
              )
            
             = 
            b
                  
                     n
                  
                  u
            
              (
              n
              )
            
            .
          
        
 We know that the output for this input is given by the convolution of the impulse response with the input signal
(2.10)
          
                  y
            (
            n
            )
             = 
            x
            (
            n
            )
             * 
            h
            (
            n
            )
            .
          
        
 We would like to compute this operation by beginning in a way that minimizes the algebraic complexity of the expression. However, in this case, each possible coice is equally simple. Thus, we would like to compute
(2.11)

 The step functions can be used to further simplify this sum. Therefore,
(2.12)
          
                  y
            (
            n
            )
             = 
            0
          
        
 for 
                  n < 0 and
(2.13)

 for 
                  n ≥ 0.
Hence, provided 
                  a
                  b ≠ 1, we have that
(2.14)





Circular Convolution



 Discrete time circular convolution is an operation on two finite length or periodic discrete time signals defined by the integral
(2.15)

 for all signals 
               f,g
             defined on Z[0,N – 1] where  are periodic extensions of 
               f
             and 
               g
            . It is important to note that the operation of circular convolution is commutative, meaning that
(2.16)
          
               f
             * 
            g
             = 
            g
             * 
            f
          
            
 for all signals 
               f,g
             defined on Z[0,N – 1]. Thus, the circular convolution operation could have been just as easily stated using the equivalent definition
(2.17)

 for all signals 
               f,g
             defined on Z[0,N – 1] where  are periodic extensions of 
               f
             and 
               g
            . Circular convolution has several other important properties not listed here but explained and derived in a later module.
 Alternatively, discrete time circular convolution can be expressed as the sum of two summations given by
(2.18)

  for all signals 
               f,g
             defined on Z[0,N – 1].
 Meaningful examples of computing discrete time circular convolutions in the time domain would involve complicated algebraic manipulations dealing with the wrap around behavior, which would ultimately be more confusing than helpful. Thus, none will be provided in this section. Of course, example computations in the time domain are easy to program and demonstrate. However, disrete time circular convolutions are more easily computed using frequency domain tools as will be shown in the discrete time Fourier series section.
Definition Motivation



 The above operation definition has been chosen to be particularly useful in the study of linear time invariant systems. In order to see this, consider a linear time invariant system 
                  H
                with unit impulse response 
                  h
               . Given a finite or periodic system input signal 
                  x
                we would like to compute the system output signal 
                  H(x). First, we note that the input can be expressed as the circular convolution
(2.19)

 by the sifting property of the unit impulse function.
By linearity,
(2.20)

 Since 
                  H
                  δ(n – k) is the shifted unit impulse response 
                  h(n – k), this gives the result
(2.21)

 Hence, circular convolution has been defined such that the output of a linear time invariant system is given by the convolution of the system input with the system unit impulse response.

Graphical Intuition



 It is often helpful to be able to visualize the computation of a circular convolution in terms of graphical processes. Consider the circular convolution of two finite length functions 
                  f,g
                given by
(2.22)

 The first step in graphically understanding the operation of convolution is to plot each of the periodic extensions of the functions. Next, one of the functions must be selected, and its plot reflected across the 
                  k = 0 axis. For each 
                  k ∈ Z[0,N – 1], that same function must be shifted left by 
                  k
               . The product of the two resulting plots is then constructed. Finally, the area under the resulting curve on Z[0,N – 1] is computed.



Interactive Element



 Figure 2.1. 
 [image: timeshiftDemo]
Interact (when online) with the Mathematica CDF demonstrating Discrete Linear Convolution. To download, right click and save file as .cdf




Convolution Summary



 Convolution, one of the most important concepts in electrical engineering, can be used to determine the output signal of a linear time invariant system for a given input signal with knowledge of the system's unit impulse response. The operation of discrete time convolution is defined such that it performs this function for infinite length discrete time signals and systems. The operation of discrete time circular convolution is defined such that it performs this function for finite length and periodic discrete time signals. In each case, the output of the system is the convolution or circular convolution of the input signal with the unit impulse response.


2.3. Convolution - Analog*



 
	In this module we examine convolution for continuous
	time signals. This will
	result in the convolution integral and
	its properties.
	These concepts are very important in Electrical
	Engineering and will make any engineer's life a lot easier if
	the time is spent now to truly understand what is going on.
      
 
	In order to fully understand convolution,
	you may find it useful to look at the discrete-time convolution as well.
	Accompanied to this module there is a fully worked out example with mathematics and figures.
	It will also be helpful to experiment with the Convolution
        - Continuous time applet available from
	Johns Hopkins University.  These resources offers different approaches
	to this crucial concept.
      
Derivation of the convolution integral



 
	The derivation used here closely follows the one discussed in
	the motivation	section above.  To begin this, it is necessary to state the
	assumptions we will be making.  In this instance, the only
	constraints on our system are that it be linear and
	time-invariant.

	
 Brief Overview of Derivation Steps:
	An impulse input leads to an impulse response output.

	
	    A shifted impulse input leads to a shifted impulse response
	    output.  This is due to the time-invariance of the system.
	  

	
	    We now scale the impulse input to get a scaled impulse
	    output.  This is using the scalar multiplication property of
	    linearity.
	  

	
	    We can now "sum up" an infinite number of these scaled
	    impulses to get a sum of an infinite number of scaled
	    impulse responses.  This is using the additivity attribute
	    of linearity.
	  

	
	    Now we recognize that this infinite sum is nothing more than
	    an integral, so we convert both sides into integrals.
	  

	
	    Recognizing that the input is the function
	    
	                    f(t)
	    , we also recognize that the output is exactly the
	    convolution integral.
	  




      
 Figure 2.2. 
 [image: Figure (ctimpresp1.png)]

	  We begin with a system defined by its impulse response,
	  
	              h(t)
	  .
	



 Figure 2.3. 
 [image: Figure (ctimpresp2.png)]

	  We then consider a shifted version of the input impulse.
	  Due to the time invariance of the system, we obtain a
	  shifted version of the output impulse response.
	



 Figure 2.4. 
 [image: Figure (ctimpresp3.png)]

	  Now we use the scaling part of linearity by scaling the
	  system by a value,
	  
	              f(τ)
	  ,
	  that is constant with respect to the system variable,
	  
               t
            .
	



 Figure 2.5. 
 [image: Figure (ctimpresp4.png)]

	  We can now use the additivity aspect of linearity to add an
	  infinite number of these, one for each possible
	  
               τ
            .  Since an infinite sum
	  is exactly an integral, we end up with the integration known
	  as the Convolution Integral.  Using the 
	  sampling property, we recognize the left-hand side simply as the input
	  
	              f(t)
	  .
	




Convolution Integral



 
	As mentioned above, the convolution integral provides an easy
	mathematical way to express the output of an LTI system based
	on an arbitrary signal,
	
	           x(t)
	, and the system's impulse response,
	
	           h(t)
	.  The
	convolution integral is expressed as

	

	Convolution is such an important tool that it is represented
	by the symbol *, and can be written as

	
	              y(t) = x(t) * h(t)
	  

	By making a simple change of variables into the convolution
	integral,
	
	           τ = t − τ
	        ,
	we can easily show that convolution is
	commutative:

	
	              x(t) * h(t) = h(t) * x(t)
	   which gives an equivivalent form of Equation
	        
	

	For more information on the characteristics of the convolution
	integral, read about the Properties of Convolution.
      

Implementation of Convolution



 
	Taking a closer look at the convolution integral, we find that
	we are multiplying the input signal by the time-reversed
	impulse response and integrating.  This will give us the value
	of the output at one given value of 
            t
         .  If we then shift
	the time-reversed impulse response by a small amount, we get
	the output for another value of 
            t
         .  Repeating this for
	every possible value of 
            t
         , yields the total
	output function.  While we would never actually do this
	computation by hand in this fashion, it does provide us with
	some insight into what is actually happening.  We find that we
	are essentially reversing the impulse response function and
	sliding it across the input function, integrating as we go.
	This method, referred to as the graphical method,
	provides us with a much simpler way to solve for the output
	for simple (contrived) signals, while improving our intuition
	for the more complex cases where we rely on computers.  In
	fact Texas Instruments
	develops Digital
	Signal Processors which have special instruction sets
	for computations such as convolution.
      

Summary



 
	    Convolution is a truly important concept, which must
	    be well understood.
	
 Convoltion integral

 Convoltion integral


 
	    Go to? 
	    Introduction; Convolution - Full example; Convolution - Discrete time; Properties of convolution
	     


2.4. Convolution - Complete example*



Basic Example



 
	Let us look at a basic continuous-time convolution example to
	help express some of the important ideas.  We will convolve together two square pulses,
	
            x(t) and
	
            h(t),
	as shown in Figure 2.6
      
 Figure 2.6. 
 [image: Subfigure (a) (x_t.png)]
(a)
 [image: Subfigure (b) (h_t.png)]
(b)

	  Two basic signals that we will convolve together.
	



Reflect and Shift



 
      	  Now we will take one of the functions and reflect it around
      	  the y-axis.  Then we must shift the function, such that the
      	  origin, the point of the function that was originally on the
      	  origin, is labeled as point 
               t
            .  This
	  step is shown in Figure 2.7,
	  
	              h(t − τ)
	  . 
	  
 Figure 2.7. 
 [image: Subfigure (a) (h_-tau.png)](a) Reflected square pulse.
 [image: Subfigure (b) (h_t-tau.png)](b) Reflected and shifted square pulse.

	                    h( – τ)
	   and
	    
	                    h(t − τ)
	  .
	  
	



	  


	  Note that in Figure 2.7  
            
               τ
            
	  is the 1st axis variable while 
               t
             is
	  a constant (in this figure).

	  Since convolution is commutative it will never
	  matter which function is reflected and shifted; however, as
	  the functions become more complicated reflecting and shifting
	  the "right one" will often make the problem much easier.
	

Regions of Integration



 
	    We start out with the convolution integral,
	    .
	    The value of the function 
               y
            
	    at time 
               t
             is given by
	    the amount of overlap(to be precise the integral of the
	    overlapping region) between
	    
	              h(t − τ)
	   and
	  
	              x(τ)
	  .

	     
	
 
      	  Next, we want to look at the functions and divide the span
      	  of the functions into different limits of integration.
      	  These different regions can be understood by thinking about
      	  how we slide 
	  
	              h(t − τ)
	   over
	  
	              x(τ)
	  , see Figure 2.8.
	  
	  
 Figure 2.8. 
 [image: Subfigure (a) (convolve1.png)](a) 
		     No overlap.
		  
 [image: Subfigure (b) (convolve2.png)](b) 
	                    h(t − τ)
	   on its way "into"
	  
	                    x(τ)
	  
 [image: Subfigure (c) (convolve3.png)](c) 
	                    h(t − τ)
	   on its way "out of"
	  
	                    x(τ)
	  
 [image: Subfigure (d) (convolve4.png)](d) No overlap.
Figures to help understand the regions of intergration





	  In this case we will have the following four
	  regions.  Compare these limits of integration to the
	  four illustrations of 
	              h(t − τ)
	   and 
	              x(τ)
	   in Figure 2.8.

	  
 Four Limits of Integration
	
	                    
		                      t < 0
	      
	                 

	
	                    
		0 ≤ t < 1
	      
	                 

	
	                    
		1 ≤ t < 2
	      
	                 

	
	                    
		                      t ≥ 2
	      
	                 





	        

Using the Convolution Integral



 

	  Finally we are ready for a little math.  Using the convolution
	  integral, let us integrate the product of
	  
	              x(τ)h(t − τ)
	  .  For our first and fourth region this will be
	  trivial as it will always be 0.
	  The second region,
	  
	    0 ≤ t < 1
	  , will require the following math:

	  

	  The third region,
	  
	    1 ≤ t < 2
	  , is solved in much the same manner.  Take note of
	  the changes in our integration though.  As we move
	  
	              h(t − τ)
	   across our other function, the left-hand edge of the
	  function,
	  
	              t − 1
	           , becomes our lowlimit for the integral.  This is
	  shown through our convolution integral as

	  

	  The above formulas show the method for calculating
	  convolution; however, do not let the simplicity of this
	  example confuse you when you work on other problems.  The
	  method will be the same, you will just have to deal with
	  more math in more complicated integrals.
	
 
	    Note that the value of 
               y(t)
	    at all time is given by the integral of the overlapping functions. In this
	    example 
               y
             for a given  
               t
            
	    equals the gray area in the plots in Figure 2.8.

	

Convolution Results



 

	  Thus, we have the following results for our four regions:

	  

	  Now that we have found the resulting function for each of the
	  four regions, we can combine them together and graph the
	  convolution of
	  
	              x(t) * h(t)
	  .
	
 Figure 2.9. 
 [image: Figure (y_t.png)]

	    Shows the system's output in response to the input,
	    
                  x(t)
	    .
	  




Common sense approach



 
	      By looking at Figure 2.8 we can obtain
	      the system output,
	      
               y(t),
	      by "common" sense. 
	      For 
               t < 0
	      there is no overlap, so 
               y(t) is 0.
	      As 
               t
             goes from 0 to 1 the overlap will linearly
	      increase with a maximum for 
               t = 1,
	      the maximum corresponds to the peak value in the triangular pulse. 
	      As 
               t
             goes from 1 to 2 the overlap will linearly
	      decrease. For 
               t > 2
	      there will be no overlap and hence no output.
	  
 
	      We see readily from the "common" sense approach that the output function
	      
               y(t) is the
	      same as obtained above with calculations. When convolving to square
	      pulses the result will always be a
	      triangular pulse. Its origin, peak value and strech will, of course, vary.
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2.5. Properties of Continuous Time Convolution*



Introduction



 We have already shown the important role that continuous time convolution plays in signal processing. This section provides discussion and proof of some of the important properties of continuous time convolution. Analogous properties can be shown for continuous time circular convolution with trivial modification of the proofs provided except where explicitly noted otherwise.

Continuous Time Convolution Properties



Associativity



 The operation of convolution is associative. That is, for all continuous time signals 
               f
               1,f
               2,f
               3
             the following relationship holds.
(2.23)

 In order to show this, note that
(2.24)

 
proving the relationship as desired through the substitution 
               τ
               3 = τ
               1 + τ
               2
            .

Commutativity



 The operation of convolution is commutative. That is, for all continuous time signals 
               f
               1,f
               2
             the following relationship holds.
(2.25)
            
              f
               1
               * 
              f
               2
               = 
              f
               2
               * 
              f
               1
            
            
 In order to show this, note that
(2.26)

 
proving the relationship as desired through the substitution 
               τ
               2 = t – τ
               1
            .

Distribitivity



 The operation of convolution is distributive over the operation of addition. That is, for all continuous time signals 
               f
               1,f
               2,f
               3
             the following relationship holds.
(2.27)

 In order to show this, note that
(2.28)

 
proving the relationship as desired.

Multilinearity



 The operation of convolution is linear in each of the two function variables. Additivity in each variable results from distributivity of convolution over addition. Homogenity of order one in each varible results from the fact that for all continuous time signals 
               f
               1,f
               2
             and scalars 
               a
             the following relationship holds.
(2.29)

 In order to show this, note that
(2.30)

 
proving the relationship as desired.

Conjugation



 The operation of convolution has the following property for all continuous time signals 
               f
               1,f
               2
            .
(2.31)

 In order to show this, note that
(2.32)

 
proving the relationship as desired.

Time Shift



 The operation of convolution has the following property for all continuous time signals 
               f
               1,f
               2
             where 
               S
               
                  T
               
             is the time shift operator.
(2.33)

 In order to show this, note that
(2.34)

 
proving the relationship as desired.

Differentiation



 The operation of convolution has the following property for all continuous time signals 
               f
               1,f
               2
            .
(2.35)

 In order to show this, note that
(2.36)

 
proving the relationship as desired.

Impulse Convolution



 The operation of convolution has the following property for all continuous time signals 
               f
             where 
               δ
             is the Dirac delta funciton.
(2.37)
            
              f
               * 
              δ
               = 
              f
            
            
 In order to show this, note that
(2.38)

 
proving the relationship as desired.

Width



 The operation of convolution has the following property for all continuous time signals 
               f
               1,f
               2
             where Duration(f) gives the duration of a signal 
               f
            .
(2.39)

 .
In order to show this informally, note that  is nonzero for all 
               t
             for which there is a 
               τ
             such that 
               f
               1(τ)f
               2(t – τ) is nonzero. When viewing one function as reversed and sliding past the other, it is easy to see that such a 
               τ
             exists for all 
               t
             on an interval of length . Note that this is not always true of circular convolution of finite length and periodic signals as there is then a maximum possible duration within a period.


Convolution Properties Summary



 As can be seen the operation of continuous time convolution has several important properties that have been listed and proven in this module. With slight modifications to proofs, most of these also extend to continuous time circular convolution as well and the cases in which exceptions occur have been noted above. These identities will be useful to keep in mind as the reader continues to study signals and systems.



Chapter 6. Decibel scale with signal processing applications*



6.1. Introduction



 The concept of decibel originates from
	telephone engineers who were working with power loss in a telephone
	line consisting of cascaded circuits. The power loss in each circuit is the ratio of
	the power in to the power out, or equivivalently, the power gain is
	the ratio of the power out to the power in.
 Let 
	
            P
            in
          
	be the power input to a telephone line and
	
            P
            out
          
	the power out. The power gain is then given by 

	
	
	Taking the logarithm of the gain formula we obtain a
	comparative measure called Bel. 
	
 Bel



	This measure is in honour of Alexander G. Bell, see Figure 6.1.
      
 Figure 6.1. 
 [image: Figure (agbell.jpg)]
Alexander G. Bell




6.2. Decibel



 Bel is often a to large quantity, so we
	define a more useful measure, decibel:
	
	
	Please note from the definition that the gain in dB is relative to the input power. 
	In general we define:
	
      
 
	If no reference level is given it is customary 	to use 
	
	           P
            ref = 1 W
	, 
	in which case we have: 
	
 Decibel
         
	    Number of decibels = 10log10(P)
	  

      
 Example 6.1. 
 
	  Given the power spectrum density (psd) function of a
	  signal 
	  
               x(n), 
	  
	              S
               xx(ⅈf)
	  . Express the magnitude of the psd in decibels.
	
 
	  We find
	            
	              S
               xx(dB) = 10log10(|S
               xx(ⅈf)|)
	  .
	




6.3. More about decibels



 Above we’ve calculated the decibel
	equivalent of power. Power is a quadratic variable, whereas voltage
	and current are linear variables. This can be seen, for example,
	from the formulas 
	 and

	
	           P = I
            2
            R
	        .
      
 So if we want to find the decibel value of a
	current or voltage, or more general an amplitude we use: 
	
	
	
	This is illustrated in the following example.
      
 Example 6.2. 
 
	  Express the magnitude of the filter 
	  
	              H(ⅈf)
	  
	  in dB scale.
	
 
	  The magnitude is given by
	  
	    |H(ⅈf)|
	  ,
	  
	  which gives: 
	  
	           
	    |H(dB)| = 20log10(|H(ⅈf)|)
	  .







 Plots of the magnitude of an example filter
	
	  |H(ⅈf)|
	
	and its decibel equivalent are shown in Figure 6.2.
	
 Figure 6.2. 
 [image: Figure (filters.png)]Magnitude responses.




	
      

6.4. Some basic arithmetic



 The ratios 1,10,100, 1000 give dB values 0 dB,
	10 dB, 20 dB and 30 dB respectively. This implies that an increase
	of 10 dB corresponds to a ratio increase by a factor 10.
 This can easily be shown: Given a ratio R we
	have R[dB] = 10 log R. Increasing the ratio by a factor of 10 we
	have: 10 log (10*R) = 10 log 10 + 10 log R = 10 dB + R dB.
 Another important dB-value is 3dB. This comes
	from the fact that:
 An increase by a factor 2 gives: an increase
	of 10 log 2 ≈ 3 dB. A “increase” by a factor 1/2
	gives: an “increase” of 10 log 1/2 ≈ -3
	dB.
 Example 6.3. 
 
	  In filter terminology the cut-off frequency is
	  a term that often appears. The cutoff frequency (for lowpass and highpass filters), 
	  
               f
               
                  c
               
            ,
	  is the frequency at which the squared magnitude response in dB is ½. In decibel
	  scale this corresponds to about -3 dB.
	




6.5. Decibels in linear systems



 In signal processing we have the following
	relations for linear systems:
	
	              Y(ⅈf) = H(ⅈf)X(ⅈf)
	  
	where X and H denotes the input signal and the filter respectively.
	Taking absolute values on both sides of Equation and converting to decibels we get:
	
	
 Input and output relations for linear systems

	  The output amplitude at a
	  given frequency is simply given by the sum of the filter gain and
	  the input amplitude, both in dB.
	


	

      

6.6. Other references:



 Above we have used 
	
	           P
            ref = 1 W
	 
	as a reference and obtained the standard dB measure. In some applications it is more
	useful to use
	
	           P
            ref = 1 mW
	 
	and we then have the dBm measure.
 Another example is when calculating the gain
	of different antennas. Then it is customary to use an isotropic
	(equal radiation in all directions) antenna as a reference. So for
	a given antenna  we can use the dBi measure. (i -> isotropic)

6.7. Matlab files



 
         filter_example.m

         



    
      [image: Information and Signal Theory]
    

  Chapter 3. Analog Filtering



 In this module we calculate the frequency response from a circuit diagram of a simple analog filter, as shown in
Figure 3.1. We know that the frequency response, denoted by 
      [ERROR: MathML not converted], is calculated as ratio of the output and input voltages (in the frequency domain). That is,
   
	[ERROR: MathML not converted]
      
      Notice that we use capital letters in these relations. This is to indicate that they are frequency domain descriptions.
    
 
      Now, to calculate the frequency response we find expressions for 
      
	Vin
      , and
      
	Vout
      , as follows
      
	  Vin = IR + Vout
	
      Further, the current in the circuit can be expressed as
      
	  I = ⅈCΩVout
	
      Then, the frequency response is given as:



      
	[ERROR: MathML not converted]
      
    Note that above we have used impedance considerations. Have a look at The Impedance concept and Impedance for a quick summary of impedance considerations.
    
 
      
      Implicit in using the transfer function is that the input is a complex exponential, and the output is also a complex
      exponential having the same frequency. The transfer function reveals how the circuit modifies the input amplitude in creating
      the output amplitude. Thus, the transfer function completely describes how the circuit
      processes the input complex exponential to produce the output complex exponential. The circuit's function is thus summarized
      by the transfer function. In fact, circuits are often designed to meet transfer function specifications. Because transfer
      functions are complex-valued, frequency-dependent quantities, we can better appreciate a circuit's function by examining the
      magnitude and phase of its transfer function (Figure 3.2). Note that in Figure 3.2 we plot the magnitude
      phase as a function of the frequency F, instead of the angular frequency Ω. Since
      
	Ω = 2πF
      ,
this is just a matter of taste, see Frequency definitions and peridocity for details.
    
 Figure 3.1. Simple Circuit
 [image: Simple Circuit (circuit5.png)]

	A simple   
	
	  R
	  C
	
	circuit.
      



 Figure 3.2. Magnitude and phase of the transfer function
 [image: Subfigure (a) (Hmagrc.png)]
(a) 
	  [ERROR: MathML not converted]
	
 [image: Subfigure (b) (Hangrc.png)]
(b) 
	    ∠(H(ⅈF)) =  – (arctan(2πFRC))
	  

	Magnitude and phase of the transfer function of the RC circuit
	shown in Figure 3.1 when
	
	  RC = 1
	.
      



 
      Several things to note about this transfer function.
    
 
      We can compute the frequency response for both positive and
      negative frequencies.  Recall that sinusoids consist of the sum
      of two complex exponentials, one having the negative frequency
      of the other. We will consider how the circuit acts on a
      sinusoid soon.  Do note that the magnitude has even
	symmetry: The negative frequency portion is a mirror
      image of the positive frequency portion:
      
	|H( – (ⅈF))| = |H(ⅈF)|
      .  
      The phase has odd symmetry: 
      
	∠(H( – (ⅈF))) =  – (∠(H(ⅈF)))
      .  These properties of this specific example apply for
      all transfer functions associated with
      circuits.  Consequently, we don't need to plot the negative
      frequency component; we know what it is from the positive
      frequency part.
    
  
      The magnitude equals   
      [ERROR: MathML not converted] 
      of its maximum gain (1 at 
      
	F = 0
      )
      when
      
	2πFRC = 1
      
      (the two terms in the denominator of the magnitude are
      equal). The frequency  
      [ERROR: MathML not converted]
      defines the boundary between two operating ranges.
    
      
 	 For frequencies below this frequency, the circuit does
	  not much alter the amplitude of the complex exponential
	  source.
	

	 For frequencies greater than 
	  
	    Fc
	  , the circuit strongly attenuates the amplitude.
	  Thus, when the source frequency is in this range, the
	  circuit's output has a much smaller amplitude than that of
	  the source.
	




    
      For these reasons, this frequency is known as the cutoff
      frequency.  In this circuit the cutoff frequency depends
      only on the product of the resistance and
      the capacitance. Thus, a cutoff frequency of 1 kHz occurs when
      [ERROR: MathML not converted] 
      or
      [ERROR: MathML not converted].  Thus resistance-capacitance combinations of 1.59
      kΩ and 100 nF or 10 Ω and 1.59 μF result in the
      same cutoff frequency.
    
  
      The phase shift caused by the circuit at the cutoff frequency
      precisely equals
      [ERROR: MathML not converted].
      Thus, below the cutoff frequency, phase is little affected, but at
      higher frequencies, the phase shift caused by the circuit becomes
      [ERROR: MathML not converted].  This phase shift corresponds to the difference
      between a cosine and a sine.
    
  
      We can use the transfer function to find the output when the
      input voltage is a sinusoid for two reasons.  First of all, a
      sinusoid is the sum of two complex exponentials, each having a
      frequency equal to the negative of the other. Secondly, because
      the circuit is linear, superposition applies.  If the source is
      a sine wave, we know that

       
	[ERROR: MathML not converted]
      

      Since the input is the sum of two complex exponentials, we know
      that the output is also a sum of two similar complex
      exponentials, the only difference being that the complex
      amplitude of each is multiplied by the transfer function
      evaluated at each exponential's frequency.

       
	[ERROR: MathML not converted]
      

      As noted earlier, the transfer function is most conveniently
      expressed in polar form:
      
	H(ⅈΩ) = |H(ⅈΩ)|ⅇⅈ∠(H(ⅈΩ))
      . 
      Furthermore, 
      
	|H( – (ⅈΩ))| = |H(ⅈΩ)|
       
      (even symmetry of the magnitude) and 
      
	∠(H( – (ⅈΩ))) =  – (∠(H(ⅈΩ)))
             
      (odd symmetry of the phase). The output voltage expression
      simplifies to

      
	[ERROR: MathML not converted]
      

      The circuit's output to a sinusoidal input is also a
	sinusoid, having a gain equal to the magnitude of the
	circuit's transfer function evaluated at the source frequency
	and a phase equal to the phase of the transfer function at the
	source frequency. It will turn out that this
	input-output relation description applies to any linear
	circuit having a sinusoidal source.
    
  
      The notion of impedance arises when we assume the sources are
      complex exponentials. This assumption may seem restrictive; 
      what would we do if the source were a unit step? When we use
      impedances to find the transfer function between the source
      and the output variable, we can derive from it the differential
      equation that relates input and output. The differential equation 
      applies no matter what the source may be. As we have argued, it is
      far simpler to use impedances to find the differential equation
      (because we can use series and parallel combination rules) than 
      any other method. In this sense, we have not lost anything by
      temporarily pretending the source is a complex exponential.
    
  
      In fact we can also solve the differential equation using
      impedances! Thus, despite the apparent restrictiveness of
      impedances, assuming complex exponential sources is actually
      quite general.
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	    	Welcome to 
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               Connexions pages. 
               At these pages we will present the following topics: 
	       
 	
                  Signals
               

	
                  Convolution
               

	
                  the Sampling Theorem
               

	
                  Basic Information Theory
               

	
                  Filters
               

	
                  Decibel with DSP applications
               




            
  
 
                The material in these pages are partly based on the book
                Representing Information by Signals,4th edition, by Tor Ramstad.
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Chapter 9. Library*



 
	What follows is a collection of links to other
	Signal processing and Information theory resources
	avaliable. Please report dead links and suggestions to
	links that we should include.
    
 
	In addition to these links you should try the 
	Connexions 
	search function which allows you to search through all
	the material in the Connexions system.
    
9.1. Signal processing



 
	        Fundamentals
	   of Electrical Engineering.
	   A comprehensive course availiable in Roadmap/Connexions.
	
 
	        Signals
	   and Systems.
	   A comprehensive course availiable in Roadmap/Connexions.
	
 
	        Complex to Real
	    Basic concepts, Fourier Analysis, ISI, Eye diagram...
	
 
	        
	    Johns Hopkins University: Signals, Systems and Control Demonstrations. Signal Processing Tutorial
	    An impressive collection of Java Applets
	    demonstrating various concepts. Recommended.
	
 
	        Java Digital
	   Signal Processing Editor.
	   The J-DSP Editor, the first on-line DSP editor, is used 
	   to simulate various DSP techniques. The simulation
	   is performed at a high level which gives the "big picture".
	
 
	        
	   IEEE Signal Processing Society.

	

9.2. Information Theory



 
    	    
	    Information Theory, Inference, and Learning Algorithms. Free
	    book by David MacKay of University of Cambridge.
	
 
    	    
	    A short course in Information Theory,
	    by David MacKay of University of Cambridge.
	
 
    	    
	    IEEE Information Theory Society . 

	


Chapter 1. Basic properties of signals



1.1. Introduction*



 
	  To describe signals and to understand that signals can carry information we
	  need tools for mathematical description and manipulation of signals.
      
 
	In this chapter we introduce several important signals and show simple methods
	of describing them. Depending on which type of signals we are looking at, it will be
	different methods availiable for manipulating them. The elementary operations for
	manipulating signals and sequences will be described.
      
 Contents of this chapter
	Introduction (current module)

	
            Discrete time signals
         

	
            Analog signals
         

	
            Discrete vs Analog signals
         

	
            Frequency definitions and periodicity
         

	
            Energy & Power
         

	
            Exercises
         



 
          The simplest signals are one-dimensional and what follows is a classification of them.
      
Classification of signals



Analog signals



 
		  An analog signal is a continuous function of
		  a continuous variable. Referring to Figure 1.1, this corresponds
		  to that both the 1st AND the 2nd axis is continuous. The 1st axis
		  will in general correspond to the variable 
               t
            , meaning time.
		  In this context we define
		  
 	signal range - the possible amplitude values the signal can take

	signal axis - the time interval for which the signal exists




                  
 Figure 1.1. 
 [image: Figure (axes.png)]Reference axes




	        

Time discrete signals



 
	          A time discrete signal is a continuous signal of a discrete variable.
		  Referring to Figure 1.1, we have the 1st axis discrete while the 2nd axis is continuous.
		  Often we assign the values of the 1st axis to a variable 
               n
            .
		  Time discrete signals often originate from analog signals being sampled.
		  More on that in the Sampling theorem chapter.
		  
 Figure 1.2. 
 [image: Figure (time_discrete.png)]Time discrete signal





		  Note that the signal is only defined for integer values along the 1st axis.
		  We do not have any information other than the values at index points.
		  
	      

Digital signals



 
	          Let the signal be a discrete function of a discrete variable, e.g. 1st and 2nd
		  axis discrete, then the signal will be digital. Examples of digital
		  signals are a binary sequence. Digital signals often arise from sampling
		  analog signals and the samples being assigned to a discrete value.
	      

Periodic vs non periodic signals



 
	          All the signals mentioned above can be periodic. For time discrete and digital
		  signals one has to be extra cautious when "declaring" periodicity as we
		  will see in Frequency definitions & periodicity.
 		  Figure 1.3 shows a periodic signal with period
		  
               T
               0
            
		  and an aperiodic signal.

		  
 Figure 1.3. 
 [image: Subfigure (a) (sigclass3.png)](a) Periodic signal
 [image: Subfigure (b) (sigclass4.png)](b) Aperiodic signal
(Figures by Melissa Selik)




	        


Matlab file



 
	        time_discrete.m
	     

 
	  Take a look at
	  Discrete time signals; Analog signals; Discrete vs Analog signals; Frequency definitions and periodicity; Energy & Power; Exercises ?
      


1.2. Discrete time signals*



 
          The signals and relations presented in this module are quite similar to
          those in the Analog signals module.
          So do compare and find similarities and differences!
      
Sequences



 
	      Generally a time discrete signal is a sequence of
	      real or complex numbers. Each component in the sequence is identified
	      by an index: ...x(n-1),x(n), x(n+1),...
	  
 Example 1.1. 
 
		      [x(n)] = [0.5 2.4 3.2 4.5] is a sequence. Using the index
		      to identify a component we have
		      
		             x(0) = 0.5
		      ,
		      
		             x(1) = 2.4
		       and so on.
		  




Manipulating sequences



 
	         
	
               Addition: Add individually each component with similar index
	
               Multiplication by a constant: Multiply every component by the constant
	
               Multiplication of sequences: Multiply each component individually
	
               Delay: A delay by k implies that we
		        shift the sequence by k. For this to make sense the sequence has to be of infinite length.
		  


	     
 Example 1.2. 
 
		      Given the sequences [x(n)] = [0.5 2.4 3.2 4.5] and  
		      [y(n)] = [0.0 2.2 7.2 5.5].
		  
 
		      a)Addition. [z(n)]=[x(n)]+[y(n)]=[0.5 4.6 10.4 10.0]
		  
 
		      b)Multiplication by a constant c=2. [w(n)]= 2 *[x(n)] = [1.0 4.8 6.4 9.0]
		  




Elementary signals & relations



The unit sample



 
	          The unit sample is a signal which is
		  zero everywhere except when its argument is zero, then
		  it is equal to 1. Mathematically
		  
		  
 Unit sample


		  The unit sample function is very useful in that it can be seen as the
		  elementary constituent in any discrete signal.
		  Let 
               x(n) be
		  a sequence. Then we can express 
               x(n)
		  as follows (using the unit sample definition and the delay operation)
		  
		    
		       

The unit step



 
		  The unit step function is equal to zero when its index is
		  negative and equal to one for non-negative indexes,
                  see Figure 1.4 for plots.
		  
 Unit step


		          
 Figure 1.4. 
 [image: Subfigure (a) (unit_step_no_delay.png)](a) Unit step function, no delay.
 [image: Subfigure (b) (unit_step_delay_5.png)](b) Unit step function, delayed by 5.
Two unit step functions.




	        

Trigonometric functions



 
		  The discrete trigonometric functions are defined as follows.
		  n is the sequence index and
		  ω is the angular frequency.
		  
		             ω = 2π
               f
		          , where f is the digital frequency.
		  
 Discrete sine

			               x(n) = sin(ωn)
			


		          
 Discrete cosine

			               x(n) = cos(ωn)
			

		          
 Figure 1.5. 
 [image: Figure (sine_discrete.png)]A discrete sine with digital frequency 1/20.




	        

The complex exponential function



 
		  The complex exponential function is central
		  to signal processing and some call it the most important signal. 
		  Remember that it is a sequence and that
		   is the imaginary unit.
		  
		  
 Complex exponential

			               x(n) = ⅇ
                  
                     ⅈωn
                  
			            

		  
	        


Euler's relations



 
		  The complex exponential function can be written
		  as a sum of its real and imaginary part.
		  
		             x(n) = ⅇ
               
                  ⅈωn
                = cos(ωn) + ⅈsin(ωn)
		     

		  By complex conjugating Equation and add / subtract the result with Equation
		  we obtain Euler's relations.
		  
 Euler relation 1


		       
 Euler relation 2


		  The importance of Euler's relations can hardly be stressed enough.
	      

Matlab files



 
	          unit_step_discrete.m
              

 
	          Take a look at
		  Introduction; Analog signals; Discrete vs Analog signals; Frequency definitions and periodicity; Energy & Power; Exercises ?
	      


1.3. Analog signals*



 
      The signals signals and relations presented in this module are quite similar to
      those in the Discrete time signals module.
      So do compare and find similarities and differences!
  
Manipulating signals



 
	      Mathematical operations on analog signals are unambiguous. 
	      We require that the signals are defined over the same time
	      interval when using operations such as addition, multiplication, division and so on.
	  

Elementary signals & relations



The (Dirac) delta function



 
	          The delta function is a peculiar function
		  that has zero duration, infinite height, but still unit area!
		  Mathematically we have the following two properties
		  
		  
 Delta function property I

			               δ(t) = 0
			
			for 
                  t ≠ 0

		          
 Delta function property II


		  
		  The delta function has a useful property, namely the sampling property.
		  
		  
		  At this stage this may seem not particulary useful, so for now just
		  convince yourself that the above relation holds.
		
 
		    (We assume that 
               x(t)
		    is "well behaved" at  
               t = τ
            ,
		    that is continuous and finite.)
 
		

The unit step function



 
		  The unit step function is equal to zero when its argument is
		  negative and equal to one for non-negative arguments, see
                  Figure 1.6 for plots.
		  
 Unit step


                  
 Figure 1.6. 
 [image: Subfigure (a) (unit_step_no_delay_analog.png)](a) Unit step function, no delay.
 [image: Subfigure (b) (unit_step_delay_5_analog.png)](b) Unit step function, delayed by 5.
Two unit step functions.




              

Trigonometric functions



 
		  The trigonometric functions are central
		  to signal processing and telecommunications. They are defined as follows, where
		  Ω is the angular frequency.
		  
		      Ω = 2π
               F
               0
		          , where 
               F
               0
            
		  is the frequency of the signal.
		  
 Sine

			               x(t) = sin(Ωt)
			


		          
 Cosine

			               x(t) = cos(Ωt)
			

		  See also Frequency definitions & periodicity.
	      

The complex exponential function



 
		  The complex exponential function is central
		  to signal processing and some call it the most important signal. 
		   is the imaginary unit.
		   
		  
 Complex exponential

			               x(t) = ⅇ
                  
                     ⅈΩt
                  
			            

		  
	        


Euler's relations



 
		  The complex exponential function can be written
		  as a sum of its real and imaginary part.
		  
		             x(t) = ⅇ
               
                  ⅈΩt
                = cos(Ωt) + ⅈsin(Ωt)
		     

		  By complex conjugating Equation and add / subtract the result with Equation
		  we obtain Euler's relations.
		  
 Euler relation 1


		       
 Euler relation 2


		  The importance of Euler's relations can hardly be stressed enough.
	      

Matlab file



 
	          unit_step_analog.m
	      

 
	       Take a look at
	       Introduction; Discrete time signals; Discrete vs Analog signals; Frequency definitions and periodicity; Energy & Power; Exercises ?
      


1.4. Discrete vs Analog*



 
	When comparing analog vs discrete time, we find that there
	are many similarities. Often we only need to substitute the varible
	t with n and integration with summation. Still there are some
	important differences that we need to know.
	As the complex exponential signal is truly central to signal processing
	we will study that in more detail.
    
Analog



 
	    The complex exponential function is defined:
	    
		          x(t) = ⅇ
            
               ⅈΩt
            
	        .
	    If Ω(rad/second) is increased the rate of oscillation will increase continuously.
	    The complex exponential function is also periodic for any
	    value of Ω. In figure Figure 1.7 we have plotted
	    
		          ⅇ
            
               ⅈπt
            
	         and
	    
		          ⅇ
            
               ⅈ3π
               t
            
	         (the real parts only). In Figure 1.7 we see that
	    the red plot, corresponding to a higher value of Ω, has a higher rate
	    of oscillation.
	    
 Figure 1.7. 
 [image: Figure (analog_complex_exp.png)]Real parts of complex exponentials.




	
	     

Discrete time



 
	    The discrete time complex exponential function is defined:
	    
		          x(n) = ⅇ
            
               ⅈωn
            
	        .
	
 
	        If we increase ω (rad/sample) the rate of oscillation
		will increase and decrease periodically.

		The reason is:
		
		          ⅇ
            
               ⅈ(ω + 2π
               k)n
             = ⅇ
            
               ⅈωn
            
            ⅇ
            
               ⅈ2π
               k
               n
             = ⅇ
            
               ⅈωn
            
	        , where
                
                   n,k ∈ ℤ
                 .
		
	    
 
	        This implies that the complex exponential with digital
		angular frequency ω is identical to
		a complex exponential with
		
		          ω
            1 = ω + 2π
		       , see Figure 1.8
		       
 Figure 1.8. 
 [image: Figure (discrete_complex_exp2.png)]Two discrete exponentials that are identical





		The rate of oscillation will increase until
		
		          ω = π
		       , then it decreases and repeats after 2π. In Figure 1.9
		we see that as we increase the angular frequency towards π the rate of
		oscillation increases. If you download the Matlab files included at the
		end of this module you can adjust the parameters and see that the rate
		of oscillation will decrease when exceeding π (but less than 2π).
		
 Figure 1.9. 
 [image: Figure (discrete_complex_exp1.png)]Two discrete exponentials with different frequency.





		       
 Consequence

		    We need to consider discrete time exponentials at an (digital angular) frequency interval of 2π only.
		


		Low (digital angular) frequencies will correspond to ω near even multiplies of π.
		High (digital angular) frequencies will correspond to ω near odd multiplies of π.
		
	    

Matlab files



 
	        complex_exponential.m
	     

 
	    Take a look at
	    Introduction; Discrete time signals; Analog signals; Frequency definitions and periodicity; Energy & Power; Exercises ?
      


1.5. Frequency definitions and periodicity*



Frequency definitions



 
          In signal processing we use several types of frequencies. This may seem confusing at first,
	  but it is really not that difficult.
      
Analog frequency



 
	      The frequency of an analog signal is the easiest to understand.
	      A trigonometric function with argument
	      
	              Ωt = 2π
               F
               t
	           
	      generates a periodic function with 
	      
 	a single frequency F.

	period T

	the relation 
		      
		                




	      Frequency is then interpreted as how many periods there are per time unit.
	      If we choose seconds as our time unit, frequency will be measured in Hertz, which is most common.
	  

Digital frequency



 
	      The digital frequency is defined as
	      ,
	      where 
               F
               
                  s
               
            
	      is the sampling frequency.
	      The sampling interval is the inverse of the sampling frequency,
	      .
	      A discrete time signal with digital frequency f therefore has
	      a frequency given by
	      
		             F = f
               F
               
                  s
               
	           
	      if the samples are spaced at
	      .
	  

Consequences



 
	      In design of digital sinusoids we do not have to settle for a physical
	      frequency. We can associate any physical frequency F
	      with the digital frequency f, by choosing the appropriate sampling
	      frequency
	      
               F
               
                  s
               
            .
	      (Using the relation
	      )
	  
 
	      According to the relation
	      
	      choosing an appropriate sampling frequency is equivivalent to choosing
	      a sampling interval, which implies that digital sinusoids can
	      be designed by specifying the sampling interval.
	  

Angular frequencies



 
	      The angular frequencies are obtained by multiplying the
	      frequencies by the factor 2π
            :
	       
	
                  Angular frequency: 
		                
		                   Ω = 2π
                     F
	                 
	              
	
                  Digital angular frequency: 
		                
		                   ω = 2π
                     f
	                 
	              


	        


Signal periodicity



 
          Any analog sine or cosine function is periodic. So it may seem surprising
	  that discrete trigonometric signals not necessarily are periodic. Let us define
	  periodicity mathematically.
      
 

          If for all
	  
	           k ∈ ℤ
	         we have
	   
	
               Analog signals: 
	              
		                x(t) = x(n + k
                  T
                  0)
		  , then 
                  x(t) is periodic
		  with period 
                  T
                  0
               . 
	      
	
               Discrete time signals: 
	              
		                x(n) = x(n + kN)
		  , then 
                  x(n) is periodic with period N.
	      


      
 Example 1.3. 
 
		    Consider the signal
		    
		             x(t) = sin(2π
               F
               t)
	             which obviously is periodic. You can check by using the periodicity definition
		    and some 
		    trigonometric identitites.
	      



 Example 1.4. 
 
		    Consider the signal
		    
		             x(n) = sin(2π
               f
               n)
	            . Q:Is this signal periodic? 
	      
 	    
		    A: To check we will use the periodicity definition and some 
		    trigonometric identities.
	      
 
	          Periodicity is obtained if we can find an N which leads to
		  
		             x(n) = x(n + kN)
		   for all
		  
		             k ∈ ℤ
		          . Let us expand
		  
		      sin(2π
               f(n + kN))
		  .


		  
		          sin(2π
                  f(n + kN)) = sin(2π
                  f
                  n)cos(2π
                  f
                  k
                  N) + cos(2π
                  f
                  n)sin(2π
                  f
                  k
                  N)
		      
		  To make the right hand side of Equation equal to
		  
		      sin(2π
               f
               n)
		  ,
		  we need to impose a restriction on the digital frequency f.
		  According to Equation only
		  
		             fN = m
		           will yield periodicity,
		  
		             m ∈ ℤ
		          .
	      



 Example 1.5. 
 
	          Consider the following signals
		   and 
		    , as shown in Figure 1.10.
		    
 Figure 1.10. 
 [image: Subfigure (a) (periodicity1.png)](a) a) 
			        
 [image: Subfigure (b) (periodicity2.png)](b) b) 
			        




		    Are the signals periodic, and if so, what are the periods?		  
	      
 
	          Both the physical and digital frequency is 1/8 so both signals are periodic with period 8.
	      



 Example 1.6. 
 
	          Consider the following signals
		   and 
		    , as shown in Figure 1.11.
		    
 Figure 1.11. 
 [image: Subfigure (a) (periodicity3.png)](a) a) 
			        
 [image: Subfigure (b) (periodicity4.png)](b) b) 
			        




		    Are the signals periodic, and if so, what are the periods?		  
	      
 
	          The frequencies are 2/3 in both cases. The analog signal then has period 3/2. The discrete
		  signal has to have a period that is an integer, so the smallest possible period is then 3.
	      



 Example 1.7. 
 
	          Consider the following signals
		  
		             x(t) = cos(2t)
	             and 
		    
		             x(n) = cos(2n)
	            , as shown in Figure 1.12.
		    
 Figure 1.12. 
 [image: Subfigure (a) (periodicity5.png)](a) a) 
			        
				    cos(2t)
			        
 [image: Subfigure (b) (periodicity6.png)](b) b) 
			        
				    cos(2n)
			        




		    Are the signals periodic, and if so, what are the periods?		  
	      
 
	          The frequencies are 1/π in both cases. The analog signal then has period π. The discrete
		  signal is not periodic because the digital frequency is not a rational number.
	      



Conclusion



 
	          For a time discrete trigonometric signal to be periodic its digital
		  frequency has to be a rational number, i.e. given by the ratio of two integers.
		  Contrast this to analog trigonometric signals. 		  

	      


Matlab file



 
	        periodicity.m
	     

 
	       Take a look at
	       Introduction; Discrete time signals; Analog signals; Discrete vs Analog signals; Energy & Power; Exercises ?
      


1.6. Energy and Power*



 
      From physics we've learned that energy is work and power is work per time
      unit. Energy was measured in Joule (J) and work in Watts(W).
      In signal processing energy and power are defined more loosely without
      any necessary physical units, because the signals may represent very
      different physical entities. We can say that energy and power are a
      measure of the signal's "size".
  
Signal Energy



Analog signals



 
	      Since we often think of a signal as a function of varying
	      amplitude through time, it seems to reason that a good
	      measurement of the strength of a signal would be the area
	      under the curve.  However, this area may have a negative part.
	      This negative part does not have less strength than a positive
	      signal of the same size. This suggests either squaring the signal or taking its absolute
	      value, then finding the area under that curve.  It turns out
	      that what we call the energy of a signal is the
	      area under the squared signal, see Figure 1.13
	        
 
	           
 Energy - Analog signal


	      Note that we have used squared magnitude(absolute value) if the signal
	      should be complex valued. If the signal is real, we can leave out the magnitude
	      operation.

	      
 Figure 1.13. 
 [image: Subfigure (a) (signal.png)](a) Signal x(t)
 [image: Subfigure (b) (signal_energy.png)](b) The energy of x(t) is the shaded region
Sketch of energy calculation




	        

Discrete signals



 
	      For time discrete signals the "area under the squared signal"
	      makes no sense, so we will have to use another energy definiton.
	      We define energy as the sum of the squared magnitude of the samples.
	      Mathematically
	      
 Energy - Discrete time signal

	      
	        
 Example 1.8. 
 
		      Given the sequence
		      
		                y(l) = b
                  
                     l
                  
                  u(l)
		      , where u(l) is the unit step function. 
		      Find the energy of the sequence.
		  
 
		      We recognize y(l) as a geometric series. Thus we can use the formula for
		      the sum of a geometric series and we obtain the energy,
		      .
		      This expression is only valid for
		      
		          |b| < 1
		      . If we have a larger |b|, the series will diverge. The signal
		      y(l) then has infinite energy. So let's have a look at power...
		  





Signal Power



 
	  Our definition of energy seems reasonable, and it is.
	  However, what if the signal does not decay fast enough?  In this case we
	  have infinite energy for any such signal.  Does this mean that
	  a fifty hertz sine wave feeding into your headphones is as
	  strong as the fifty hertz sine wave coming out of your outlet?
	  Obviously not.  This is what leads us to the idea of
	  signal power, which in such cases is a more
	  adequate description.

	  
 Figure 1.14. 
 [image: Figure (infinite_energy.png)]Signal with inifinite energy




      
Analog signals



 
	      For analog signals we define power as
	      energy per time interval.
	      
 Power - analog signal


	        

Discrete signals



 
	      For time discrete signals we define power as energy per sample.
	      
 Power - Discrete time


	        
 Example 1.9. 
 
		      Given the signals
		      
			               x
                  1(t) = sin(2π
                  t)
		       and
		      , shown in Figure 1.15, calculate the power for one period.
		  
 
		      For the analog sine we have
		      .
	          
 
		      For the discrete sine we get
		      . Download  power_sine.m for plots and calculation.
		      			

		      
 Figure 1.15. 
 [image: Subfigure (a) (sine_analog.png)](a) Analog sine
 [image: Subfigure (b) (sine_discrete.png)](b) Discrete time sine
Analog and discrete time sine.




		      
		          





Matlab files



 
           energy_area.m
	         power_sine.m
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1.7. Exercises*



 Problems related to the Signals chapter.
   
 Exercise 1.7.1. (Go to Solution)

	     
		        Find the digital frequency of
		    . Is the signal periodic?
		    If so, find the shortest possible period.
		

	    

	    
	  


 Exercise 1.7.2. (Go to Solution)

	     
		        
		    Find the digital frequency of
		    . Is the signal periodic?
		    If so, find the shortest possible period.
		

	    

	    
	  


 Exercise 1.7.3. (Go to Solution)

	     
		        
		    Find the digital frequency of
		    
		             x(n) = sin(2π1.5n)
		    . Is the signal periodic?
		    If so, find the shortest possible period.
		

	    


	    
	  


 Exercise 1.7.4. (Go to Solution)

	     
		        
		    Referring to example 2 find the analog
		    and digital frequency of
		    
			            x
               1(t)
		     and
		    
			            x
               2(n)
		     respectively.

		

	    

	    
	  


Solutions to Exercises



 Solution to Exercise 1.7.1. (Return to Exercise)

		        
		    Write
		     as
		    
			    cos(2π
               f
               n)
		    , where 
               f
             is the digital frequency.
		    We see that the digital frequency is
		    . For a trigonometric signal to be periodic the
		    digital frequency has to be a rational number, i.e
		    , where both m,N are integers. N is the signal period.
		Here the digital frequency is not a rational number,
		hence the signal is not periodic.
		

	    


 Solution to Exercise 1.7.2. (Return to Exercise)

		        
		    Write
		     as
		    
			    cos(2π
               f
               n)
		    , where 
               f
             is the digital frequency.
		    We see that the digital frequency is
		    . 
		    For a trigonometric signal to be periodic the
		    digital frequency has to be a rational number, i.e
		    , where both m,N are integers. N is the signal period.
		    In this case the digital frequency is a rational number,
		    ,
		    hence the signal is periodic. The period, N, is
		    given by
		    . Since N has to be an integer, we obtain
		    the shortest possible period letting
		     
			            m = 2
		     , which yields
		      
			            N = 1
		     .
		

	    


 Solution to Exercise 1.7.3. (Return to Exercise)

		        
		    Write
		    
			 sin(2π1.5n)
		     as
		    
			    sin(2π
               f
               n)
		    , where 
               f
             is the digital frequency.
		    We see that the digital frequency is 1.5.
		    The digital frequency is a rational number(3/2),
		    hence the signal is periodic.

		    The period, N, is given by
		    . Since N has to be an integer, we obtain
		    the shortest possible period letting
		     
			            m = 3
		     , which yields
		      
			            N = 2
		     .		

		

	    


 Solution to Exercise 1.7.4. (Return to Exercise)

		        
		    Using the same reasoning as above we easily see
                    that the analog sine has frequency 1, while the discrete
                    time sine has digital frequency 1/20.
		

	    





