
ECE 320 Spring 2004

Collection Editors:
Robert Morrison

Jason Laska

ECE 320 Spring 2004

Collection Editors:
Robert Morrison

Jason Laska

Authors:

Swaroop Appadwedula
Matthew Berry

Mark Butala
Richard Cantzler
Michael Frutiger

Mark Haun
Jake Janovetz

Douglas L. Jones

Matt Kleffner
Michael Kramer

Arjun Kulothungun
Jason Laska

Robert Morrison
Dima Moussa
Daniel Sachs
Brian Wade

Online:
< http://cnx.org/content/col10225/1.12/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Robert Morrison, Jason Laska. It is

licensed under the Creative Commons Attribution 1.0 license (http://creativecommons.org/licenses/by/1.0).

Collection structure revised: August 24, 2004

PDF generated: October 25, 2012

For copyright and attribution information for the modules contained in this collection, see p. 115.

Table of Contents

1 Weekly Labs

1.1 Lab 0 . 2
1.2 Lab 1 . 10
1.3 Lab 2 . 19
1.4 Lab 3 . 24
1.5 Lab 4 . 31
1.6 Lab 5 . 48

2 Project Labs

2.1 Adaptive Filtering . 59
2.2 Audio E�ects . 61
2.3 Communications . 64
2.4 Video Processing . 82
2.5 Surround Sound . 100
2.6 Speech . 105

Bibliography . 110
Index . 112
Attributions .115

iv

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

Chapter 1

Weekly Labs

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

1

2 CHAPTER 1. WEEKLY LABS

1.1 Lab 0

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

3

1.1.1 Lab 0: Hardware Introduction1

1.1.1.1 Introduction

This exercise introduces the hardware and software used in testing a simple DSP system. When you complete
it, you should be comfortable with the basics of testing a simple real-time DSP system with the debugging
environment you will use throughout the course. First, you will connect the laboratory equipment and test
a real-time DSP system with pre-written code to implement an eight-tap (eight coe�cient) �nite impulse
response (FIR) �lter. With a working system available, you will then begin to explore the debugging
software used for downloading, modifying, and testing code. Finally, exercises are included to refresh your
familiarity with MATLAB.

1.1.1.2 Lab Equipment

This exercise assumes you have access to a laboratory station equipped with a Texas Instruments
TMS320C549 digital signal processor chip mounted on a Spectrum Digital TMS320LC54x evaluation board.
The DSP evaluation module should be connected to a PC running Windows and will be controlled using the
PC application Code Composer Studio, a debugger and development environment. Mounted on top of each
DSP evaluation board is a Spectrum Digital surround-sound module employing a Crystal Semiconductor
CS4226 codec. This board provides two analog input channels and six analog output channels at the CD
sample rate of 44.1 kHz. The DSP board can also communicate with user code or a terminal emulator
running on the PC via a serial data interface.

In addition to the DSP board and PC, each laboratory station should also be equipped with a function
generator to provide test signals and an oscilloscope to display the processed waveforms.

1.1.1.2.1 Step 1: Connect cables

Use the provided BNC cables to connect the output of the function generator to input channel 1 on the DSP
evaluation board. Connect output channels 1 and 2 of the board to channels 1 and 2 of the oscilloscope.
The input and output connections for the DSP board are shown in Figure 1.1 (Example Hardware Setup).

1This content is available online at <http://cnx.org/content/m11019/2.7/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

4 CHAPTER 1. WEEKLY LABS

Example Hardware Setup

DSP Evaluation Board

Ch1

Oscilloscope

Ch2
Out

Function Generator

1 1

24 5 6

2 3

Output Input

Figure 1.1

Note that with this con�guration, you will have only one signal going into the DSP board and two signals
coming out. The output on channel 1 is the �ltered input signal, and the output on channel 2 is the un�ltered
input signal. This allows you to view the raw input and �ltered output simultaneously on the oscilloscope.
Turn on the function generator and the oscilloscope.

1.1.1.2.2 Step 2: Log in

Use the network ID and password provided to log into the PC at your laboratory station.
When you log in, two shared networked drives should be mapped to the computer: the W: drive, which

contains your own private network work directory, and the V: drive, where the necessary �les for ECE 420
are stored. Be sure to save any �les that you use for the course to the W: drive. Temporary �les may be
stored in the C:\TEMP directory; however, since �les stored on the C: drive are accessible to any user, are
local to each computer, and may be erased at any time, do not store course �les on the C: drive. On the V:
drive, the directories v:\ece420\54kx\dsplib\ and c:\ece420\54x\dsptools\ contain the �les necessary
to assemble and test code on the TI DSP evaluation boards.

Although you may want to work exclusively in one or the other of lab-partners' network account, you
should be sure that both partners have copies of the lab assignment assembly code.

warning: Not having the assembly code during a quiz because "it's on my partner's account" is
NOT a valid excuse!

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

5

For copying between partners' directory on W: or for working outside the lab, FTP access to your �les is
available at ftp://elalpha.ece.uiuc.edu.

1.1.1.3 The Development Environment

The evaluation board is controlled by the PC through the JTAG interface (XDS510PP) using the application
Code Composer Studio. This development environment allows the user to download, run, and debug code
assembled on the PC. Work through the steps below to familiarize yourself with the debugging environment
and real-time system using the provided FIR �lter code (Steps 3, 4 and 5), then verify the �lter's frequency
response with the subsequent MATLAB exercises (Steps 6 and 7).

1.1.1.3.1 Step 3: Assemble �lter code

Before you can execute and test the provided FIR �lter code, you must assemble the source �le. First,
bring up a DOS prompt window and create a new directory to hold the �les, and then copy them into your
directory:

• w:

• mkdir lab0

• cd lab0

• copy v:\ece420\54x\dsplib\filter.asm .

• copy v:\ece420\54x\dsplib\coef.asm .

Next, assemble the �lter code by typing asm filter at the DOS prompt. The assembling process �rst includes
the FIR �lter coe�cients (stored in coef.asm) into the assembly �le filter.asm, then compiles the result
to produce an output �le containing the executable binary code, filter.out.

1.1.1.3.2 Step 4: Verify �lter execution

With your �lter code assembled, double-click on the Code Composer icon to open the debugging environ-
ment. Before loading your code, you must reset the DSP board and initialize the processor mode status
register (PMST). To reset the board, select the Reset option from the Debug menu in the Code Composer
application.

Once the board is reset, select the CPU Registers option from the View menu, then select CPU Register.
This will open a sub-window at the bottom of the Code Composer application window that displays several
of the DSP registers. Look for the PMST register; it must be set to the hexadecimal value FFE0 to have the
DSP evaluation board work correctly. If it is not set correctly, change the value of the PMST register by
double-clicking on the value and making the appropriate change in the Edit Register window that comes
up.

Now, load your assembled �lter �le onto the DSP by selecting Load Program from the File menu.
Finally, reset the DSP again, and execute the code by selecting Run from the Debug menu.

The program you are running accepts input from input channel 1 and sends output waveforms to output
channels 1 and 2 (the �ltered signal and raw input, respectively). Note that the "raw input" on output channel
2 may di�er from the actual input on input channel 1, because of distortions introduced in converting the
analog input to a digital signal and then back to an analog signal. The A/D and D/A converters on the
six-channel surround board operate at a sample rate of 44.1 kHz and have an anti-aliasing �lter and an
anti-imaging �lter, respectively, that in the ideal case would eliminate frequency content above 22.05 kHz.
The converters on the six-channel board are also AC coupled and cannot pass DC signals. On the basis of
this information, what di�erences do you expect to see between the signals at input channel 1 and at output
channel 2?

Set the amplitude on the function generator to 1.0 V peak-to-peak and the pulse shape to sinusoidal.
Observe the frequency response of the �lter by sweeping the input signal through the relevant frequency
range. What is the relevant frequency range for a DSP system with a sample rate of 44.1 kHz?

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

6 CHAPTER 1. WEEKLY LABS

Based on the frequency response you observe, characterize the �lter in terms of its type (e.g., low-pass,
high-pass, band-pass) and its -6 dB (half-amplitude) cuto� frequency (or frequencies). It may help to set
the trigger on channel 2 of the oscilloscope since the signal on channel 1 may go to zero.

1.1.1.3.3 Step 5: Re-assemble and re-run with new �lter

Once you have determined the type of �lter the DSP is implementing, you are ready to repeat the process
with a di�erent �lter by including di�erent coe�cients during the assembly process. Copy a second set of
FIR coe�cients over to your working directory with the following:

• copy coef.asm coef1.asm

• copy v:\ece420\54x\dsplib\coef2.asm coef.asm

You can now repeat the assembly and testing process with the new �lter using the asm instruction at the
DOS prompt and repeating the steps required to execute the code discussed in Step 4 (Section 1.1.1.3.2: Step
4: Verify �lter execution).

Just as you did in Step 4 (Section 1.1.1.3.2: Step 4: Verify �lter execution), determine the type of �lter
you are running and the �lter's -6 dB point by testing the system at various frequencies.

1.1.1.3.4 Step 6: Check �lter response in MATLAB

In this step, you will use MATLAB to verify the frequency response of your �lter by copying the coe�cients
from the DSP to MATLAB and displaying the magnitude of the frequency response using the MATLAB
command freqz.

The FIR �lter coe�cients included in the �le coef.asm are stored in memory on the DSP starting at
location (in hex) 0x1000, and each �lter you have assembled and run has eight coe�cients. To view the �lter
coe�cients as signed integers, select the Memory option from the View menu to bring up a Memory Window

Options box. In the appropriate �elds, set the starting address to 0x1000 and the format to 16-Bit Signed

Int. Click "OK" to open a memory window displaying the contents of the speci�ed memory locations. The
numbers along the left-hand side indicate the memory locations.

In this example, the �lter coe�cients are placed in memory in decreasing order; that is, the last coe�cient,
h [7], is at location 0x1000 and the �rst coe�cient, h [0], is stored at 0x1007.

Now that you can �nd the coe�cients in memory, you are ready to use the MATLAB command freqz

to view the �lter's response. You must create a vector in MATLAB with the �lter coe�cients to use the
freqz command. For example, if you want to view the response of the three-tap �lter with coe�cients -10,
20, -10 you can use the following commands in MATLAB:

• h = [-10, 20, -10];

• plot(abs(freqz(h)))

Note that you will have to enter eight values, the contents of memory locations 0x1000 through 0x1007,
into the coe�cient vector, h.

Does the MATLAB response compare with your experimental results? What might account for any
di�erences?

1.1.1.3.5 Step 7: Create new �lter in MATLAB and verify

MATLAB scripts will be made available to you to aid in code development. For example, one of these
scripts allows you to save �lter coe�cients created in MATLAB in a form that can be included as part of
the assembly process without having to type them in by hand (a very useful tool for long �lters). These
scripts may already be installed on your computer; otherwise, download the �les from the links as they are
introduced.

First, have MATLAB generate a "random" eight-tap �lter by typing h = gen_filt; at a MATLAB
prompt. Then save this vector of �lter coe�cients by typing save_coef('coef.asm',flipud(h)); Make

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

7

sure you save the �le in your own directory. (The scripts that perform these functions are available as
gen_�lt.m2 and save_coef.m3)

The save_coef MATLAB script will save the coe�cients of the vector h into the named �le, which in
this case is coef.asm. Note that the coe�cient vector is "�ipped" prior to being saved; this is to make the
coe�cients in h �ll DSP memory-locations 0x1000 through 0x1007 in reverse order, as before.

You may now re-assemble and re-run your new �lter code as you did in Step 5 (Section 1.1.1.3.3: Step
5: Re-assemble and re-run with new �lter).

Notice when you load your new �lter that the contents of memory locations 0x1000 through 0x1007

update accordingly.

1.1.1.3.6 Step 8: Modify �lter coe�cients in memory

Not only can you view the contents of memory on the DSP using the debugger, you can change the contents
at any memory location simply by double-clicking on the location and making the desired change in the
pop-up window.

Change the contents of memory locations 0x1000 through 0x1007 such that the coe�cients implement a
scale and delay �lter with impulse response:

h [n] = 8192δ [n− 4] (1.1)

Note that the DSP interprets the integer value of 8192 as a fractional number by dividing the integer by
32,768 (the largest integer possible in a 16-bit two's complement register). The result is an output that
is delayed by four samples and scaled by a factor of 1

4 . More information on the DSP's interpretation of
numbers appears in Two's Complement and Fractional Arithmetic for 16-bit Processors4.

note: A clear and complete understanding of how the DSP interprets numbers is absolutely
necessary to e�ectively write programs for the DSP. Save yourself time later by learning this material
now!

After you have made the changes to all eight coe�cients, run your new �lter and use the oscilloscope to
measure the delay between the raw (input) and �ltered (delayed) waveforms.

What happens to the output if you change either the scaling factor or the delay value? How many seconds
long is a six-sample delay?

1.1.1.3.7 Step 9: Test-vector simulation

As a �nal exercise, you will �nd the output of the DSP for an input speci�ed by a test vector. Then you
will compare that output with the output of a MATLAB simulation of the same �lter processing the same
input; if the DSP implementation is correct, the two outputs should be almost identical. To do this, you will
generate a waveform in MATLAB and save it as a test vector. You will then run your DSP �lter using the
test vector as input and import the results back into MATLAB for comparison with a MATLAB simulation
of the �lter.

The �rst step in using test vectors is to generate an appropriate input signal. One way to do this is to
use the MATLAB function to generate a sinusoid that sweeps across a range of frequencies. The MATLAB
function save_test_vector (available as save_test_vector.m5 can then save the sinusoidal sweep to a �le
you will later include in the DSP code.

Generate a sinusoidal sweep and save it to a DSP test-vector �le using the following MATLAB commands:

2See the �le at <http://cnx.org/content/m11019/latest/gen_�lt.m>
3See the �le at <http://cnx.org/content/m11019/latest/save_coef.m>
4"Two's Complement and Fractional Arithmetic for 16-bit Processors" <http://cnx.org/content/m10808/latest/>
5See the �le at <http://cnx.org/content/m11019/latest/save_test_vector.m>

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

8 CHAPTER 1. WEEKLY LABS

� t=sweep(0.1*pi,0.9*pi,0.25,500); % Generate a frequency sweep

� save_test_vector('testvect.asm',t); % Save the test vector

Next, use the MATLAB conv command to generate a simulated response by �ltering the sweep with the
�lter h you generated using gen_filt above. Note that this operation will yield a vector of length 507
(which is n+m− 1, where n is the length of the �lter and m is the length of the input). You should keep
only the �rst 500 elements of the resulting vector.

� out=conv(h,t) % Filter t with FIR filter h

� out=out(1:500) % Keep first 500 elements of out

Now, modify the �le filter.asm to use the alternative "test vector" core �le, vectcore.asm6. Rather than
accepting input from the A/D converters and sending output to the D/A, this core �le takes its input from,
and saves its output to, memory on the DSP. The test vector is stored in a block of memory on the DSP
evaluation board that will not interfere with your program code or data.

Note: The test vector is stored in the ".etext" section. See Core File: Introduction to Six-Channel
Board for TI EVM320C547 for more information on the DSP memory sections, including a memory
map.

The memory block that holds the test vector is large enough to hold a vector up to 4,000 elements long. The
test vector stores data for both channels of input and from all six channels of output.

To run your program with test vectors, you will need to modify filter.asm. The assembly source is
simply a text �le and can be edited using the editor of your preference, including WordPad, Emacs, and VI.
Replace the �rst line of the �le with two lines. Instead of:

.copy "v:\ece420\54x\dsplib\core.asm"

use:

.copy "testvect.asm"

.copy "v:\ece420\54x\dsplib\vectcore.asm"

Note that, as usual, the whitespace in front of the .copy directive is required.
These changes will copy in the test vector you created and use the alternative core �le. After modifying

your code, assemble it, then load and run the �le using Code Composer as before. After a few seconds,
halt the DSP (using the Halt command under the Debug menu) and verify that the DSP has halted at a
branch statement that branches to itself. In the disassembly window, the following line should be highlighted:
0000:611F F073 B 611fh.

Next, save the test output �le and load it back into MATLAB. This can be done by �rst saving 3,000
memory elements (six channels times 500 samples) starting with location 0x8000 in program memory. Do

6See the �le at <http://cnx.org/content/m11019/latest/vectcore.asm>
7"Core File: Introduction to Six-Channel Board for TI EVM320C54" <http://cnx.org/content/m10513/latest/>

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

9

this by choosing File->Data->Save... in Code Composer Studio, then entering the �lename output.dat
and pressing Enter. Next, enter 0x8000 in the Address �eld of the dialog box that pops up, 3000 in the
Length �eld, and choose Program from the drop-down menu next to Page. Always make sure that you use
the correct length (six times the length of the test vector) when you save your results.

Last, use the read_vector (available as read_vector.m8) function to read the saved result into MATLAB.
Do this using the following MATLAB command:

� [ch1, ch2] = read_vector('output.dat');

Now, the MATLAB vector ch1 corresponds to the �ltered version of the test signal you generated. The
MATLAB vector ch2 should be nearly identical to the test vector you generated, as it was passed from the
DSP system's input to its output unchanged.

Note: Because of quantization error introduced in saving the test vector for the 16-bit memory of
the DSP, the vector ch2 will not be identical to the MATLAB generated test vector. Furthermore,
a bug in our test vector environment sometimes causes blocks of samples to be dropped, so the test
vector output signal may have gaps.

After loading the output of the �lter into MATLAB, compare the expected output (calculated as out

above) and the output of the �lter (in ch1 from above). This can be done graphically by simply plotting the
two curves on the same axes; for example:

� plot(out,'r'); % Plot the expected curve in red

� hold on % Plot the next plot on top of this one

� plot(ch1,'g'); % Plot the expected curve in green

� hold off

You should also ensure that the di�erence between the two outputs is near zero. This can be done by plotting
the di�erence between the two vectors:

� plot(out(1:length(ch1))-ch1); % Plot error signal

You will observe that the two sequences are not exactly the same; this is due to the fact that the DSP com-
putes its response to 16 bits precision, while MATLAB uses 64-bit �oating point numbers for its arithmetic.
Blocks of output samples may also be missing from the test vector output due to a bug in the test vector
core. Nonetheless, the test vector environment allows one to run repeatable experiments using the same
known test input for debugging.

8See the �le at <http://cnx.org/content/m11019/latest/read_vector.m>

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

10 CHAPTER 1. WEEKLY LABS

1.2 Lab 1

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

11

1.2.1 Lab 1: Prelab9

1.2.1.1 Assembly Exercise

Analyze the following lines of code. Refer to Two's Complement and Fractional Arithmetic for 16-bit
Processors10, Addressing Modes for TI TMS320C54x11, and the Mnemonic Instruction Set[?] manual for
help.

1 FIR_len .set 3

2

3 ; Assume:

4 ; BK = FIR_len

5 ; AR0 = 1

6 ; AR2 = 1000h

7 ; AR3 = 1004h

8 ;

9 ; FRCT = 1

10

11 stl A,*AR3+%

12 rptz A,(FIR_len-1)

13 mac *AR2+0%,*AR3+0%,A

Anything following a ";" is considered a comment. In this case, the comments indicate the contents of the
auxiliary registers, the BK register, and the address registers before the execution of the �rst instruction,
stl. The line FIR_len .set 3 de�nes the name FIR_len as equal to 3. The BK register contains the length
of the circular bu�er we want to use. The % modi�es the increment operator + so that it behaves as a
circular bu�er. This means that the address registers will be incremented until the (memory-address mod
value-in-BK) = 0. When the increment operator + is followed by a 0, it increments by the value speci�ed in
register AR0.

Note that any number followed by an "h" or preceded with a 0x represents a hexadecimal value.

Example 1.1
1000h and 0x1000 both refer to the decimal number 4096.

Assume that the data memory is initialized as follows starting at location 1000h.

9This content is available online at <http://cnx.org/content/m10022/2.22/>.
10"Two's Complement and Fractional Arithmetic for 16-bit Processors" <http://cnx.org/content/m10808/latest/>
11"Addressing Modes for TI TMS320C54x" <http://cnx.org/content/m10806/latest/>

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

12 CHAPTER 1. WEEKLY LABS

Figure 1.2: Data Memory Assignment (before execution)

After familiarizing yourself with the stl, rptz, and mac instructions, step through each line of code
and record the values of the accumulator A and auxiliary registers AR2 and AR3 in the spaces provided in
Figure 1.3. Additionally, record the value of the memory contents after all three instructions have been
"executed" in the blank data memory table provided in Figure 1.4.

A AR2 AR3

00 0000 8000h 1000h 1004h at start of code

after stl instruction

after rptz instruction

after �rst mac instruc-
tion

after second mac in-
struction

after third mac instruc-
tion

Figure 1.3: Execution Results

When working through the exercise, take into account that the accumulator A is a 40-bit register, and that
the multiplier is in the fractional arithmetic mode. In this mode, integers on the DSP are interpreted as

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

13

fractions, and the multiplier will treat them accordingly. This is done by shifting the result of the integer
multiplier in the ALU left one bit. (All the arithmetic is fractional in these examples.) Multiplies performed
by the ALU (via the mac instruction) produce a result that is twice what you would expect if you just
multiplied the two integers together. DSP numerical representation and arithmetic are described further in
Two's Complement and Fractional Arithmetic for 16-bit Processors12.

Figure 1.4: Data Memory Assignment (after execution)

12"Two's Complement and Fractional Arithmetic for 16-bit Processors" <http://cnx.org/content/m10808/latest/>

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

14 CHAPTER 1. WEEKLY LABS

1.2.2 Lab 1: Lab13

1.2.2.1 Introduction

In this exercise, you will program in the DSP's assembly language to create FIR �lters. Begin by studying
the assembly code for the basic FIR �lter �lter.asm14 .

13This content is available online at <http://cnx.org/content/m11020/2.6/>.
14http://cnx.rice.edu/content/m10017/latest/�lter.asm

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

15

�lter.asm

1 .copy "core.asm" ; Copy in core file

2 ; This initializes DSP and jumps to "main"

3

4 FIR_len .set 8 ; This is an 8-tap filter.

5

6 .sect ".data" ; Flag following as data declarations

7

8 .align 16 ; Align to a multiple of 16

9 coef ; assign label "coeff"

10 .copy "coef.asm" ; Copy in coefficients

11

12 .align 16

13 firstate

14 .space 16*8 ; Allocate 8 words of storage for

15 ; filter state.

16

17 .sect ".text" ; Flag the following as program code

18 main

19 ; Initialize various pointers

20 stm #FIR_len,BK ; initialize circular buffer length

21 stm #coef,AR2 ; initialize coefficient pointer

22 stm #firstate,AR3 ; initialize state pointer

23 stm #1,AR0 ; initialize AR0 for pointer increment

24

25 loop

26 ; Wait for a new block of 64 samples to come in

27 WAITDATA

28

29 ; BlockLen = the number of samples that come from WAITDATA (64)

30 stm #BlockLen-1, BRC ; Put repeat count into repeat counter

31 rptb endblock-1 ; Repeat between here and 'endblock'

32

33 ld *AR6,16, A ; Receive ch1 into A accumulator

34 mar *+AR6(2) ; Rcv data is in every other channel

35 ld *AR6,16, B ; Receive ch2 into B accumulator

36 mar *+AR6(2) ; Rcv data is in every other channel

37

38 ld A,B ; Transfer A into B for safekeeping

39

40 ; The following code executes a single FIR filter.

41

42 sth A,*AR3+% ; store current input into state buffer

43 rptz A,(FIR_len-1) ; clear A and repeat

44 mac *AR2+0%,*AR3+0%,A ; multiply coef. by state & accumulate

45

46 rnd A ; Round off value in 'A' to 16 bits

47

48 ; end of FIR filter code. Output is in the high part of 'A.'

49

50 sth A, *AR7+ ; Store filter output (from A) into ch1

51 sth B, *AR7+ ; Store saved input (from B) into ch2

52

53 sth B, *AR7+ ; Store saved input to ch3...ch6 also

54 sth B, *AR7+ ; ch4

55 sth B, *AR7+ ; ch5

56 sth B, *AR7+ ; ch6

57

58 endblock:

59 b loop

Figure 1.5

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

16 CHAPTER 1. WEEKLY LABS

filter.asm applies an FIR �lter to the signal from input channel 1 and sends the resulting output to
output channel 1. It also sends the original signal to output channel 2.

First, create a work directory on your network drive for the �les in this exercise, and copy filter.asm

from v:\ece320\54x\dsplib to your work directory (this is thesame �le you worked with in Lab 0). Then,
use MATLAB to generate two 20-tap FIR �lters. The �rst �lter should pass signals from 4 kHz to 8 kHz; the
second �lter should pass from 8 kHz to 12 kHz. For both �lters, allow a 1 kHz transition band on each edge
of the �lter passband. To create these �lters, �rst convert these band edges to digital frequencies based on
the 44.1 kHz sample rate of the system, then use the MATLAB command remez to generate this �lter; you
can type help remez for more information. Use the save_coef command to save each of these �lters into
di�erent �les. (Make sure you reverse the vectors of �lter coe�cients before you save them.) Also save your
�lters as a MATLAB matrix, since you will need them later to generate test vectors. This can be done using
the MATLAB save command. Once this is done, use the freqz command to plot the frequency response of
each �lter.

1.2.2.2 Part 1: Single-Channel FIR Filter

For now, you will implement only the �lter with a 4 kHz to 8 kHz passband. Edit filter.asm to use the
coe�cients for this �lter by making several changes.

First, the length of the FIR �lter for this exercise is 20, not 8. Therefore, you need to change FIR_len

to 20. FIR_len is set using the .set directive, which assigns a number to a symbolic name. You will need
to change this to FIR_len .set 20.

Second, you will need to ensure that the .copy directive brings in the correct coe�cients. Change the
�lename to point to the �le that contains the coe�cients for your �rst �lter.

Third, you will need to modify the .align and .space directives appropriately. The TI TMS320C54x
DSP requires that circular bu�ers, which are used for the FIR �lter coe�cient and state bu�ers, be aligned
so that they begin at an address that is a multiple of a power of two greater than the length of the bu�er.
Since you are using a 20-tap �lter (which uses 20-element state and coe�cient bu�ers), the next greater
power of two is 32. Therefore, you will need to align both the state and coe�cient bu�ers to an address that
is a multiple of 32. (16-element bu�ers would also require alignment to a multiple of 32.) This is done with
the .align command. In addition, memory must be reserved for the state bu�er. This is done using the
.space directive, which takes as its input the number of bits of space to allocate. Therefore, to allocate 20
words of storage, use the directive .space 16*20 as shown below:

1 .align 32 % Align to a multiple of 32

2 coef .copy "filter1.asm" % Copy FIR filter coefficients

3

4 .align 32 % Align to a multiple of 32

5 state .space 16*20 % Allocate 20 words of data space

Assemble your code, set PMST to 0xFFE0, reset the DSP, and run. Ensure that it is has the correct frequency
response. After you have veri�ed that this code works properly, proceed to the next step.

1.2.2.3 Part 2: Dual-Channel FIR Filters

First, make a copy of your modi�ed filter.asm �le from Part 1 (Section 1.2.2.2: Part 1: Single-Channel
FIR Filter). Work from this copy; do not modify your working �lter from the previous part. You will use
that code again later.

Next, modify your code so that in addition to sending the output of your �rst �lter (with a 4 kHz to 8
kHz passband) to output channel 1 and the un�ltered input to output channel 2, it sends the output of your
second �lter (with a 8 kHz to 12 kHz passband) to output channel 3. To do this, you will need to use the

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

17

.align and .copy directives to load the second set of coe�cients into data memory. You will also need to
add instructions to initialize a pointer to the second set of coe�cients and to perform the calculations for
the second �lter.

Exercise 1.2.2.1
Extra Credit Problem
One extra credit point will be awarded to you and your partner if you can implement the dual-
channel system without using the auxiliary registers AR4 and AR5? Why is this more di�cult?
Renaming AR4 and AR5 using the .asg directive does not count!

Using the techniques introduced in DSP Development Environment: Introductory Exercise for TI
TMS320C54x15, generate an appropriate test vector and expected outputs in MATLAB. Then, using
the test-vector core �le also introduced in DSP Development Environment: Introductory Exercise for TI
TMS320C54x16, �nd the system's output given this test vector. In MATLAB, plot the expected and actual
outputs of the both �lters and the di�erence between the expected and actual outputs. Why is the output
from the DSP system not exactly the same as the output from MATLAB?

1.2.2.4 Part 3: Alternative Single-Channel FIR Implementation

An alternative method of implementing symmetric FIR �lters uses the firs instruction. Modify your code
from Part 1 (Section 1.2.2.2: Part 1: Single-Channel FIR Filter) to implement the �lter with a 4 kHz to 8
kHz passband using the firs.

Two di�erences in implementation between your code from Part 1 (Section 1.2.2.2: Part 1: Single-Channel
FIR Filter) and the code you will write for this part are that (1) the firs instruction expects coe�cients
to be located in program memory instead of data memory, and (2) firs requires the states to be broken up
into two separate circular bu�ers. Refer to the firs instruction on page 4-59 in the Mnemonic Instruction
Set[?] manual, as well as a description and example of its use on pages 4-5 through 4-8 of the Applications
Guide[?] for more information (Volumes 2 and 4 respectively of the TMS320C54x DSP Reference Set).

AR0 needs to be set to -1 for this code to work properly. Why?

note: COEFF is a label to the coe�cients now expected to be in program memory. Refer to the
firs description for more information).

1 mvdd *AR2,*AR3+0% ; write x(-N/2) over x(-N)

2 sth A,*AR2 ; write x(0) over x(-N/2)

3 add *AR2+0%,*AR3+0%,A ; add x(0) and x(-(N-1))

4 ; (prepare for first multiply)

5

6 rptz B,#(FIR_len/2-1)

7 firs *AR2+0%,*AR3+0%,COEFF

8 mar ??????? ; Fill in these two instructions

9 mar ??????? ; They modify AR2 and AR3.

10

11 ; note that the result is now in the

12 ; B accumulator

Because states and coe�cients are now treated di�erently than in your previous FIR implementation, you
will need to modify the pointer initializations to

15"DSP Development Environment: Introductory Exercise for TI TMS320C54x" <http://cnx.org/content/m10017/latest/>
16"DSP Development Environment: Introductory Exercise for TI TMS320C54x" <http://cnx.org/content/m10017/latest/>

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

18 CHAPTER 1. WEEKLY LABS

1 stm #(FIR_len/2),BK ; initialize circular buffer length

2 stm #firstate_,AR2 ; initialize location containing first

3 ; half of states

4

5 stm #-1,AR0 ; Initialize AR0 to -1

6

7 stm #firstate2_,AR3 ; initialize location containing last half

Use the test-vector core �le to �nd the output of this system given the same test vector you used to test the
two-�lter system. Compare the output of this code against the output of the same �lter implemented using
the mac instruction. Are the results the same? Why or why not? Ensure that the �ltered output is sent to
output channel 1, and that the unmodi�ed output is still sent to output channel 2.

warning: You will lose credit if the unmodi�ed output is not present or if the channels are reversed!

1.2.2.5 Quiz Information

The quiz for Lab 1 is broken down as follows:

• 1 point: Prelab (must be ready to show the TA the week before the quiz)
• 4 points: Working code: you must demonstrate that your code works using input from function

generator and that it works using input from appropriate test vectors. Have an .asm �le ready to
demonstrate each. Of the 4 points, you get 0.5 points for a single 20-tap �lter, 2 points for the two-�lter
system, and 1.5 points for the system using the firs opcode.

• 5 points: Oral quiz score.
• 1 extra credit point: As described above (p. 16).

The oral quiz may cover signal processing material relating to FIR �lters, including, but not limited to,
the delay through FIR �lters, generalized linear phase, and the di�erences between ideal FIR �lters and
realizable FIR �lters. You may also be asked questions about digital sampling theory, including, but not
limited to, the Nyquist sampling theorem and the relationship between the analog frequency spectrum and
the digital frequency spectrum of a continuous-time signal that has been sampled.

The oral quiz will cover the code that you have written during the lab. You are expected to understand,
in detail, all of the code in the �les you have worked on, even if your partner or a TA wrote it. (You are not
expected to understand the core �le in detail). The TA will ask you to explain various lines of code as part
of the quiz. The TAs may also ask questions about 2's complement fractional arithmetic, circular bu�ers,
alignment, and the mechanics of either of the two FIR �lter implementations. You could be ready to trace
through any of the code on paper and explain what each line of code does.

Use the TI documentation, speci�cally the Mnemonic Instruction Set[?] manual. Hard-copies of this
manual can also be found in the lab. Also, feel free to ask the TAs to help explain the code that you have
been given.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

19

1.3 Lab 2

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

20 CHAPTER 1. WEEKLY LABS

1.3.1 Lab 2: Theory17

1.3.1.1 Introduction

In the exercises that follow, you will explore some of the e�ects of multirate processing using the system
in Figure 1.6. The sample-rate compressor (↓ (D)) in the block-diagram removes D− 1 of every D input
samples, while the sample-rate expander (↑ (U)) inserts U − 1 zeros after every input sample. With the
compression and expansion factors set to the same value (D = U), �lters FIR 1 and FIR 3 operate at the
sample rate Fs, while �lter FIR 2 operates at the lower rate of FsD .

FIR 3UFIR 2DFIR 1

In
x[n] y[n]

Out

Figure 1.6: Net multirate system

Later, you will implement the system and control the compression and expansion factors at runtime with
an interface provided for you. You will be able to disable any or all of the �lters to investigate multirate
e�ects. What purpose do FIR 1 and FIR 3 serve, and what would happen in their absence?

17This content is available online at <http://cnx.org/content/m10024/2.21/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

21

1.3.2 Lab 2: Prelab (Part 1)18

1.3.2.1 Multirate Theory Exercise

Consider a sampled signal with the DTFT X (ω) shown in Figure 1.7.

1
2�9�18

X(�)
�7�18 7�18 ��2�9 ��18

Figure 1.7: DTFT of the input signal.

Assuming U = D = 3, use the relations between the DTFT of a signal before and after sample-rate
compression and expansion ((1.2) and (1.3)) to sketch the DTFT response of the signal as it passes through
the multirate system of Figure 1.8 (without any �ltering). Include both the intermediate response W (ω)
and the �nal response Y (ω). It is important to be aware that the translation from digital frequency ω to
analog frequency depends on the sampling rate. Therefore, the conversion is di�erent for X (ω) and W (ω).

W (ω) =
1
D

D−1∑
k=0

X

(
ω + 2πk

D

)
(1.2)

Y (ω) = W (Uω) (1.3)

UDX(�) Y (�)W (�)
Figure 1.8: Multirate System

18This content is available online at <http://cnx.org/content/m10620/2.14/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

22 CHAPTER 1. WEEKLY LABS

1.3.3 Lab 2: Prelab (Part 2)19

1.3.3.1 Filter-Design Exercise

Using the zero-placement method, design the FIR �lters for the multirate system in Multirate Filtering:
Introduction (Figure 1.6). Recall that the z-transform of a length- N FIR �lter is a polynomial in z−1, and
that this polynomial can be factored into N − 1 roots.

H (z) = h0 + h1z
−1 + h2z

−2 + · · ·
=

(
z1 − z−1

) (
z2 − z−1

) (
z3 − z−1

) · · · (1.4)

Use this relation to design a low-pass �lter (for the anti-aliasing and anti-imaging �lters of the multirate
system) by placing twelve complex zeros on the unit circle at ± (3π

8

)
, ± (π2), ± (5π

8

)
, ± (3π

4

)
, ± (7π

8

)
, and

± (π). This �lter that you have just designed will serve for both FIR 1 and FIR 3. For �lter FIR 2 (operating
at the decimated rate), use four equally-spaced zeros on the unit circle located at ± (π4) and ± (3π

4

)
. Be

sure to adjust the resulting �lter coe�cients to ensure that the gain does not exceed one at any frequency.
Design your �lters by writing a MATLAB script to compute the �lter coe�cients from the given zero

locations. The MATLAB function poly is very useful for this; type help poly in MATLAB for details.
Once you have determined the coe�cients of the �lters, use MATLAB function freqz to plot the frequency

responses. You will �nd that the frequency response of these �lters has a large gain. Adjust the resulting �lter
coe�cients to ensure that the largest frequency gain is less than or equal to one by dividing the coe�cients
by an appropriate value. Do the frequency responses match your expectations based on the locations of the
zeros in the z-plane?

19This content is available online at <http://cnx.org/content/m10815/2.6/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

23

1.3.4 Lab 2: Lab20

1.3.4.1 Implementation

Before implementing the entire system shown in Multirate Processing: Introduction (Figure 1.6), we rec-
ommend you design a system that consists of a cascade of �lters FIR 1 and FIR 2 without the sample-rate
compressor or expander. After verifying that the response of your two-�lter system is correct, proceed to
implement the complete multirate system and verify its total response. At �rst, use �xed compression and
expansion factors of D = U = 4. After you have veri�ed that the multirate system works at a �xed rate,
you should modify your code so that the rate can be changed easily. Later, you have the option of con-
trolling this factor in real-time using a MATLAB interface. Regardless of whether you choose to use
the MATLAB interface, you must be able to quickly change the compression and expansion
factors when you demo your code.

1.3.4.1.1 Compressed-rate processing

In order to perform the processing at the lower sample rate, implement a counter in your code. Your counter
will determine when the compressed-rate processing is to occur, and it can also be used to determine when
to insert zeros into FIR 3 to implement the sample-rate expander.

Some instructions that may be useful for implementing your multirate structure are the addm (add to
memory) and bc (branch conditional) instructions. You may also �nd the banz (branch on auxiliary register
not zero) and the b (branch) instruction useful.

1.3.4.1.2 Real-time rate change and MATLAB interface (Optional)

A simple graphical user interface (GUI) is available (as mrategui.m21 , which requires ser_snd.m22) that
sends a number between 1 and 10 to the DSP via the serial port. This can be used to change the compression
and expansion factor in real time.

Run the GUI by typing mrategui at the MATLAB prompt. A �gure should automatically open up with
a slider on it; adjusting the slider changes the compression and expansion factor sent to the DSP.

The assembly code for interacting with the serial port, provided in the handout Core File: Serial Port
Communication Between MATLAB and TI TMS320C54x23, stores the last number that the DSP has received
from the computer in the memory location labeled hold. Therefore, unless you have changed the serial
portion of the given code, you can �nd the last compression and expansion factor set by the GUI in this
location. You need to modify your code so that each time a new number is received on the serial port,
the compression and expansion factor is changed. If a "1" is received on the serial port, the entire system
should run at the full rate; if a "10" is received, the system should discard nine samples between each sample
processed at the lower rate.

Note that the READSER and WRITSER macros, which are used to read data from and send data to the serial
port, overwrite AR0, AR1, AR2, and AR3 registers, as well as BK and the condition �ag TC. You must therefore
ensure that these registers are not used by your code, or that you save and restore their values in memory
before you call the READSER and WRITSER macros. This can be done using the mvdm and mvmd instructions.
The serial macros set up the AR1 and AR3 each time they are called, so there is no need to change these
registers before the macros are called.

More detail about the READSER and WRITSERmacros can be found in Core File: Serial Port Communication
Between MATLAB and TI TMS320C54x24.

20This content is available online at <http://cnx.org/content/m11810/1.3/>.
21http://cnx.org/content/m11810/latest/mrategui.m
22http://cnx.org/content/m11810/latest/ser_snd.m
23"Core File: Serial Port Communication Between MATLAB and TI TMS320C54x"

<http://cnx.org/content/m10821/latest/>
24"Core File: Serial Port Communication Between MATLAB and TI TMS320C54x"

<http://cnx.org/content/m10821/latest/>

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

24 CHAPTER 1. WEEKLY LABS

1.4 Lab 3

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

25

1.4.1 Lab 3: Theory25

1.4.1.1 Introduction

Like �nite impulse-response (FIR) �lters, in�nite impulse-response (IIR) �lters are linear time-
invariant (LTI) systems that can recreate a large range of di�erent frequency responses. Compared to
FIR �lters, IIR �lters have both advantages and disadvantages. On one hand, implementing an IIR �lter
with certain stopband-attenuation and transition-band requirements typically requires far fewer �lter taps
than an FIR �lter meeting the same speci�cations. This leads to a signi�cant reduction in the computational
complexity required to achieve a given frequency response. However, the poles in the transfer function require
feedback to implement an IIR system. In addition to inducing nonlinear phase in the �lter (delaying di�erent
frequency input signals by di�erent amounts), the feedback introduces complications in implementing IIR
�lters on a �xed-point processor. Some of these complications are explored in IIR Filtering: Filter-Coe�cient
Quanitization Exercise in MATLAB (Section 1.4.3).

Later, in the processor exercise, you will explore the advantages and disadvantages of IIR �lters by
implementing and examining a fourth-order IIR system on a �xed-point DSP. The IIR �lter should be
implemented as a cascade of two second-order, Direct Form II sections. The data �ow for a second-order,
Direct-Form II section, or bi-quad, is shown in Figure 1.9. Note that in Direct Form II, the states (delayed
samples) are neither the input nor the output samples, but are instead the intermediate values w [n].

z−1

z−1

b2

b1

G

−a1

−a2

x[n] w[n] y[n]
+

+

+

+

Figure 1.9: Second-order, Direct Form II section

25This content is available online at <http://cnx.org/content/m10025/2.22/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

26 CHAPTER 1. WEEKLY LABS

1.4.2 Lab 3: Prelab (Part 1)26

1.4.2.1

The transfer function for the second-order section shown in IIR Filtering: Introduction (Figure 1.9) is

H (z) = G
1 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(1.5)

1.4.2.1.1 Exercise

First, derive the above transfer function. Begin by writing the di�erence equations for w [n] in terms
of the input and past values (w [n− 1] and w [n− 2]). Then write the di�erence equation for y [n] also in
terms of the past samples of w [n]. After �nding the two di�erence equations, compute the corresponding

Z-transforms and use the relation H (z) = Y (z)
X(z) = Y (z)W (z)

W (z)X(z) to verify the IIR transfer function in (1.5).

Next, design the coe�cients for a fourth-order �lter implemented as the cascade of two bi-quad sections.
Write a MATLAB script to compute the coe�cients. Begin by designing the fourth-order �lter and checking
the response using the MATLAB commands

[B,A] = ellip(4,.25,10,.25)

freqz(B,A)

note: MATLAB's freqz command displays the frequency responses of IIR �lters and FIR �lters.
For more information about this, type help freqz. Be sure to look at MATLAB's de�nition of the
transfer function.

note: If you use the freqz command as shown above, without passing its returned data to another
function, both the magnitude (in decibels) and the phase of the response will be shown.

Next you must �nd the roots of the numerator, zeros, and roots of the denominator, poles, so that
you can group them to create two second-order sections. The MATLAB commands roots and poly will be
useful for this task. Save the scripts you use to decompose your �lter into second-order sections; they will
probably be useful later.

Once you have obtained the coe�cients for each of your two second-order sections, you are ready to
choose a gain factor, G, for each section. As part of your MATLAB script, use freqz to compute the

response W (z)
X(z) with G = 1 for each of the sets of second-order coe�cients. Recall that on the DSP we cannot

represent numbers greater than or equal to 1.0. If the maximum value of |W (z)
X(z) | is or exceeds 1.0, an input

with magnitude less than one could produce w [n] terms with magnitude greater than or equal to one; this
is over�ow. You must therefore select a gain values for each second-order section such that the response

from the input to the states, W (z)
X(z) , is always less than one in magnitude. In other words, set the value of G

to ensure that |W (z)
X(z) | < 1.

1.4.2.1.2 Preparing for processor implementation

As the processor exercises become more complex, it will become increasingly important to observe good
programming practices. Of these, perhaps the most important is careful planning of your program �ow,

26This content is available online at <http://cnx.org/content/m10623/2.11/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

27

memory and register use, and testing procedure. Write out pseudo-code for the processor implementation
of a bi-quad. Make sure you consider the way you will store coe�cients and states in memory. Then, to
prepare for testing, compute the values of w [n] and y [n] for both second-order sections at n = {0, 1, 2} using
the �lter coe�cients you calculated in MATLAB. Assume x [n] = δ [n] and all states are initialized to zero.
You may also want to create a frequency sweep test-vector like the one in DSP Development Environment:
Introductory Exercise for TI TMS320C54x27 and use the �lter command to �nd the outputs for that input.
Later, you can recreate these input signals on the DSP and compare the output values it calculates with those
you �nd now. If your program is working, the values will be almost identical, di�ering only slightly because
of quantization e�ects, which are considered in IIR Filtering: Filter-Coe�cient Quantization Exercise in
MATLAB (Section 1.4.3).

27"DSP Development Environment: Introductory Exercise for TI TMS320C54x" <http://cnx.org/content/m10017/latest/>

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

28 CHAPTER 1. WEEKLY LABS

1.4.3 Lab 3: Prelab (Part 2)28

1.4.3.1 Filter-Coe�cient Quantization

One important issue that must be considered when IIR �lters are implemented on a �xed-point processor
is that the �lter coe�cients that are actually used are quantized from the "exact" (high-precision �oating
point) values computed by MATLAB. Although quantization was not a concern when we worked with FIR
�lters, it can cause signi�cant deviations from the expected response of an IIR �lter.

By default, MATLAB uses 64-bit �oating point numbers in all of its computation. These �oating point
numbers can typically represent 15-16 digits of precision, far more than the DSP can represent internally. For
this reason, when creating �lters in MATLAB, we can generally regard the precision as "in�nite," because
it is high enough for any reasonable task.

note: Not all IIR �lters are necessarily "reasonable"!

The DSP, on the other hand, operates using 16-bit �xed-point numbers in the range of -1.0 to 1.0 − 2−15.
This gives the DSP only 4-5 digits of precision and only if the input is properly scaled to occupy the full
range from -1 to 1.

For this section exercise, you will examine how this di�erence in precision a�ects a notch �lter generated
using the butter command: [B,A] = butter(2,[0.07 0.10],'stop').

1.4.3.1.1 Quantizing coe�cients in MATLAB

It is not di�cult to use MATLAB to quantize the �lter coe�cients to the 16-bit precision used on the DSP.
To do this, �rst take each vector of �lter coe�cients (that is, the A and B vectors) and divide by the smallest
power of two such that the resulting absolute value of the largest �lter coe�cient is less than or equal to
one. This is an easy but fairly reasonable approximation of how numbers outside the range of -1 to 1 are
actually handled on the DSP.

Next, quantize the resulting vectors to 16 bits of precision by �rst multiplying them by 215 = 32768,
rounding to the nearest integer (use round), and then dividing the resulting vectors by 32768. Then multiply
the resulting numbers, which will be in the range of -1 to 1, back by the power of two that you divided out.

1.4.3.1.2 E�ects of quantization

Explore the e�ects of quantization by quantizing the �lter coe�cients for the notch �lter. Use the freqz

command to compare the response of the unquantized �lter with two quantized versions: �rst, quantize the
entire fourth-order �lter at once, and second, quantize the second-order ("bi-quad") sections separately and
recombine the resulting quantized sections using the conv function. Compare the response of the unquantized
�lter and the two quantized versions. Which one is "better?" Why do we always implement IIR �lters using
second-order sections instead of implementing fourth (or higher) order �lters directly?

Be sure to create graphs showing the di�erence between the �lter responses of the unquantized notch
�lter, the notch �lter quantized as a single fourth-order section, and the notch �lter quantized as two second-
order sections. Save the MATLAB code you use to generate these graphs, and be prepared to reproduce
and explain the graphs as part of your quiz. Make sure that in your comparisons, you rescale the resulting
�lters to ensure that the response is unity (one) at frequencies far outside the notch.

28This content is available online at <http://cnx.org/content/m10813/2.5/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

29

1.4.4 Lab 3: Lab29

1.4.4.1 Implementation

On the DSP, you will implement the elliptic low-pass �lter designed using the ellip command from IIR
Filters: Filter-Design Exercise in MATLAB (Section 1.4.2). You should not try to implement the notch �lter
designed in IIR Filtering: Filter-Coe�cient Quantization Exercise in MATLAB (Section 1.4.3), because it
will not work correctly when implemented using Direct Form II. (Why not?)

To implement the fourth-order �lter, start with a single set of second-order coe�cients and implement a
single second-order section. Make sure you write and review pseudo-code before you begin programming.
Once your single second-order IIR is working properly you can then proceed to code the entire fourth-order
�lter.

1.4.4.1.1 Large coe�cients

You may have noticed that some of the coe�cients you have computed for the second-order sections are
larger than 1.0 in magnitude. For any stable second-order IIR section, the magnitude of the "0" and "2"
coe�cients (a0 and a2, for example) will always be less than or equal to 1.0. However, the magnitude of
the "1" coe�cient can be as large as 2.0. To overcome this problem, you will have to divide the a1 and b1
coe�cients by two prior to saving them for your DSP code. Then, in your implementation, you will have to
compensate somehow for using half the coe�cient value.

1.4.4.1.2 Repeating code

Rather than write separate code for each second-order section, you are encouraged �rst to write one section,
then write code that cycles through the second-order section code twice using the repeat structure below.
Because the IIR code will have to run inside the block I/O loop and this loop uses the block repeat counter
(BRC), you must use another looping structure to avoid corrupting the BRC.

note: You will have to make sure that your code uses di�erent coe�cients and states during the
second cycle of the repeat loop.

stm (num_stages-1),AR1

start_stage

; IIR code goes here

banz start_stage,*AR1-

1.4.4.1.3 Gain

It may be necessary to add gain to the output of the system. To do this, simply shift the output left (which
can be done using the ld opcode with its optional shift parameter) before saving the output to memory.

1.4.4.2 Grading

Your grade on this lab will be split into three parts:

• 1 point: Prelab

29This content is available online at <http://cnx.org/content/m11021/2.4/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

30 CHAPTER 1. WEEKLY LABS

• 4 points: Code. Your DSP code implementing the fourth-order IIR �lter is worth 3 points and the
MATLAB exercise is worth 1 point.

• 5 points: Oral quiz. The quiz may cover di�erences between FIR and IIR �lters, the prelab material,
and the MATLAB exercise.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

31

1.5 Lab 4

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

32 CHAPTER 1. WEEKLY LABS

1.5.1 Lab 4: Theory30

1.5.1.1 Introduction

In this lab you are going to apply the Fast Fourier Transform (FFT) to analyze the spectral content
of an input signal in real time. After computing the FFT of a 1024-sample block of input data, you will
then compute the squared magnitude of the sampled spectrum and send it to the output for display on the
oscilloscope. In contrast to the systems you have implemented in the previous labs, the FFT is an algorithm
that operates on blocks of samples at a time. In order to operate on blocks of samples, you will need to use
interrupts to halt processing so that samples can be transferred.

A second objective of this lab exercise is to introduce the TI-C549 C environment in a practical DSP
application. In future labs, the bene�ts of using the C environment will become clear as larger systems are
developed. The C environment provides a fast and convenient way to implement a DSP system using C and
assembly modules.

The FFT can be used to analyze the spectral content of a signal. Recall that the FFT is an e�cient
algorithm for computing the Discrete Fourier Transform (DFT), a frequency-sampled version of the
DTFT.

DFT:

X [k] =
N−1∑
n=0

x [n] e−(i 2πN nk) (1.6)

where n ∧ k ∈ {0, 1, . . . , N − 1}
Your implementation will include windowing of the input data prior to the FFT computation. This is

simple a point-by-point multiplication of the input with an analysis window. As you will explore in the
prelab exercises, the choice of window a�ects the shape of the resulting window.

A block diagram representation of the spectrum analyzer you will implement in the lab, including the
required input and ouput locations, can be found depicted in Figure 1.10.

Figure 1.10: FFT-based spectrum analyzer

30This content is available online at <http://cnx.org/content/m11828/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

33

1.5.2 Lab 4: Prelab31

1.5.2.1 MATLAB Exercise

Since the DFT is a sampled version of the spectrum of a digital signal, it has certain sampling e�ects.
To explore these sampling e�ects more thoroughly, we consider the e�ect of multiplying the time signal by
di�erent window functions and the e�ect of using zero-padding to increase the length (and thus the number of
sample points) of the DFT. Using the following MATLAB script as an example, plot the squared-magnitude
response of the following test cases over the digital frequencies ωc =

[
π
8 ,

3π
8

]
.

1. rectangular window with no zero-padding
2. hamming window with no zero-padding
3. rectangular window with zero-padding by factor of four (i.e., 1024-point FFT)
4. hamming window window with zero-padding by factor of four

Window sequences can be generated in MATLAB by using the boxcar and hamming functions.

1 N = 256; % length of test signals

2 num_freqs = 100; % number of frequencies to test

3

4 % Generate vector of frequencies to test

5

6 omega = pi/8 + [0:num_freqs-1]'/num_freqs*pi/4;

7

8 S = zeros(N,num_freqs); % matrix to hold FFT results

9

10

11 for i=1:length(omega) % loop through freq. vector

12 s = sin(omega(i)*[0:N-1]'); % generate test sine wave

13 win = boxcar(N); % use rectangular window

14 s = s.*win; % multiply input by window

15 S(:,i) = (abs(fft(s))).^2; % generate magnitude of FFT

16 % and store as a column of S

17 end

18

19 clf;

20 plot(S); % plot all spectra on same graph

21

Make sure you understand what every line in the script does. What signals are plotted?
You should be able to describe the tradeo� between mainlobe width and sidelobe behavior for the various

window functions. Does zero-padding increase frequency resolution? Are we getting something for free?
What is the relationship between the DFT, X [k], and the DTFT, X (ω), of a sequence x [n]?

31This content is available online at <http://cnx.org/content/m10625/2.8/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

34 CHAPTER 1. WEEKLY LABS

1.5.3 Lab 4: Lab32

1.5.3.1 Implementation

As this is your �rst experience with the C environment, you will have the option to add most of the required
code in C or assembly. A C skeleton will provide access to input samples, output samples, and interrupt
handling code. You will add code to transfer the inputs and outputs (in blocks at a time), apply a hamming
window, compute the magnitude-squared spectrum, and include a trigger pulse. After the hamming window
is created, either an assembly or C module that bit reverses the input and performs an FFT calculation is
called.

As your spectrum analyzer works on a block of samples at a time, you will need to use interrupts to
pause your processing while samples are transferred from/to the CODEC (A/D and D/A) bu�er. For-
tunately, the interrupt handling routines have been written for you in a C shell program available at
v:\ece420\54x\dspclib\lab4main.c and the core code.

1.5.3.1.1 Interrupt Basics

Interrupts are an essential part of the operation of any microprocessor. They are particularly important
in embedded applications where DSPs are often used. Hardware interrupts provide a way for interacting
with external devices while the processor executes code. For example, in a key entry system, a key press
would generate a hardware interrupt. The system code would then jump to a speci�ed location in program
memory where a routine could process the key input. Interrupts provide an alternative to polling. Instead
of checking for key presses at a predetermined rate (requires a clock), the system could be busy executing
other code. On the TI-C54x DSP, interrupts provide a convenient way to transfer blocks of data to/from
the CODEC in a timely fashion.

1.5.3.1.2 Interrupt Handling

The lab4main.c code and the core code are intended to make your interaction with the hardware much
simpler. As there was a core �le for working in the assembly environment (Labs 0-3), there is a core �le for
the C environment (V:\ece420\54x\dspclib\core.asm) which handles the interrupts from the CODEC (A/D
and D/A) and the serial port. Here, we will describe the important aspects of the core code necessary to
complete the assignment.

At the heart of the hardware interaction is the auto-bu�ering serial port. In the auto-bu�ering serial
mode, the TI-C54x processor is able to do processing uninterrupted while samples are transferred to/from
a bu�er of length BlockLen = 64 samples. However, the spectrum analyzer to be implemented in this lab
works over a block of N = 1024 samples. If it were possible to compute a 1024-point FFT in the sample
time of one BlockLen, then no additional interrupt handling routines would be necessary. Samples could
be collected in a 1024-length bu�er and a 1024-point FFT could be computed uninterrupted while the
auto-bu�ering bu�er �lls. Unfortunately, the DSP is not fast enough to accomplish this task.

We now provide an explanation of the shell C program lab4main.c listed in Appendix A (Section 1.5.3.3:
Appendix A:). The lab4main.c �le contains the function interrupt void irq and a main program. The
main program is an in�nite loop over blocks of N = 1024 samples. Note that while the DSP is executing
instructions in this loop, interrupts occur every BlockLen samples. Inside the in�nite loop, you will insert
code to do the operations which follow. Although each of these operations may be performed in C or
assembly, we suggest you follow the guidelines suggested.

1. Transfer inputs and outputs (C)
2. Apply a Hamming Window (C/assembly)
3. Bit-reverse the input (C and assembly)
4. Apply an N -point FFT (C and assembly)
5. Compute the magnitude-squared spectrum (C/assembly)

32This content is available online at <http://cnx.org/content/m11827/1.5/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

35

6. Include a trigger pulse (C/assembly)

The function WaitAudio is an assembly function in the core code which handles the CODEC interrupts.
An interrupt from the CODEC occurs every BlockLen samples. The SetAudioInterrupt(irq) call in the
main program tells the core code to jump to the irq function when an interrupt occurs. In the irq function,
BlockLen samples of the A/D input in Rcvptr (channel 1) are written to a length N inputs bu�er, and
BlockLen of the output samples in the outputs bu�er are written to the D/A output via Xmitptr on channel
2. In C, pointers may be used as array names so that Xmitptr[0] is the �rst word pointed to by Xmitptr.
As in the assembly core, the input samples are not in consecutive order. The right and left inputs are o�set
from Rcvptr respectively by 4i and 4i + 2, i = 0, . . ., BlockLen − 1. The six output channels are accessed
consecutively as o�sets from Xmitptr. On channel 1 of the output, the input is echoed out. You are to
�ll the bu�er outputs with the windowed magnitude-squared FFT values by performing the
operations listed above.

In the main code, the while(!input_full); loop waits for N samples to collect in the inputs bu�er.
Next, the N inputs and outputs must be transferred. You are to write this portion of code. This portion
of code is to be done �rst, within BlockLen sample times; otherwise the �rst BlockLen of samples of
output would not be available on time. Once this loop is �nished, the lengthy processing of the FFT can
continue. During this processing, the DSP is interrupted every BlockLen samples to transfer samples. Once
this processing is over, the in�nite loop returns to while(!input_full); to wait for N samples to �nish
collecting.

The �ow diagram in Figure 1.11 summarizes the operation of the interrupt handling routine

(a) (b)

Figure 1.11: Overall program �ow of the main function and the interrupt handling function. (a) main
(b) interrupt handler

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

36 CHAPTER 1. WEEKLY LABS

1.5.3.1.3 Assembly FFT Routine

As the list of operations indicates, bit-reversal and FFT computation are to be done in both C and assembly.
For the assembly version, make sure that the line de�ning C_FFT is commented in lab4main.c. We are
providing you with a shell assembly �le, available at v:\ece420\54x\dspclib\c_fft_given.asm and shown
in Appendix B (Section 1.5.3.4: Appendix B:), containing many useful declarations and some code. The
code for performing bit-reversal and other declarations needed for the FFT routine are also provided in this
section. However, we would like you to enter this code manually, as you will be expected to
understand its operation.

The assembly �le c_fft_given.asm contains two main parts, the data section starting with .sect

".data" and the program section starting with .sect ".text". Every function and variable accessed in C
must be preceded by a single underscore _ in assembly and a .global _name must be placed in the assembly
�le for linking. In this example, bit_rev_fft is an assembly function called from the C program with a
label _bit_rev_fft in the text portion of the assembly �le and a .global _bit_rev_fft declaration. In
each assembly function, the macro ENTER_ASM is called upon entering and LEAVE_ASM is called upon exiting.
These macros are de�ned in v:\ece420\54x\dspclib\core.inc. The ENTER_ASM macro saves the status
registers and AR1, AR6, and AR7 when entering a function as required by the register use conventions. The
ENTER_ASM macro also sets the status registers to the assembly conventions we have been using (i.e, FRCT=1
for fractional arithmetic and CPL=0 for DP referenced addressing). The LEAVE_ASM macro just restores the
saved registers.

1.5.3.1.3.1 Parameter Passing

The parameter passing convention between assembly and C is simple for single input, single output assembly
functions. From a C program, the input to an assembly program is in the low part of accumulator A with
the output returned in the same place. When more than one parameter is passed to an assembly function,
the parameters are passed on the stack (see the core �le description for more information). We suggest that
you avoid passing or returning more than one parameter. Instead, use global memory addresses to pass in
or return more than one parameter. Another alternative is to pass a pointer to the start of a bu�er intended
for passing and returning parameters.

1.5.3.1.3.2 Registers Modi�ed

When entering and leaving an assembly function, the ENTER_ASM and LEAVE_ASM macros ensure that certain
registers are saved and restored. Since the C program may use any and all registers, the state of a register
cannot be expected to remain the same between calls to assembly function(s). Therefore, any information
that needs to be preserved across calls to an assembly function must be saved to memory!

Now, we explain how to use the FFT routine provided by TI for the C54x. The FFT routine fft.asm

located in v:\ece420\54x\dsplib\ computes an in-place, complex FFT. The length of the FFT is de�ned
as a label K_FFT_SIZE and the algorithm assumes that the input starts at data memory location _fft_data.
To have your code assemble for an N -point FFT, you will have to include the following label de�nitions in
your assembly code.

N .set 1024

K_FFT_SIZE .set N ; size of FFT

K_LOGN .set 10 ; number of stages (log_2(N))

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

37

In addition to de�ning these constants, you will have to include twiddle-factor tables for the FFT. These
tables (twiddle133 and twiddle234) are available in the shared directory v:\ece420\54x\dsplib\. Note that
the tables are each N points long representing values from 0 to just shy of 180 degrees and must be accessed
using a circular pointer. To include these tables at the proper location in memory with the appropriate
labels referenced by the FFT, use the following

.sect ".data"

.align 1024

sine .copy "v:\ece420\54x\dsplib\twiddle1"
.align 1024

cosine .copy "v:\ece420\54x\dsplib\twiddle2"

The FFT provided requires that the input be in bit-reversed order, with alternating real and imaginary
components. Bit-reversed addressing is a convenient way to order input x [n] into a FFT so that the output
X (k) is in sequential order (i.e. X (0), X (1), . . ., X (N − 1) for an N -point FFT). The following table
illustrates the bit-reversed order for an eight-point sequence.

Input Order Binary Representation Bit-Reversed Representation Output Order

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

Table 1.1

The following routine performs the bit-reversed reordering of the input data. The routine assumes that
the input is stored in data memory starting at the location labeled _bit_rev_data, which must be aligned
to the least power of two greater than the input bu�er length, and consists of alternating real and imaginary
parts. Because our input data is going to be purely real in this lab, you will have to make sure that you set
the imaginary parts to zero by zeroing out every other memory location.

1 bit_rev:

2 STM #_bit_rev_data,AR3 ; AR3 -> original input

3 STM #_fft_data,AR7 ; AR7 -> data processing buffer

4 MVMM AR7,AR2 ; AR2 -> bit-reversed data

33http://cnx.org/content/m11827/latest/TWIDDLE1
34http://cnx.org/content/m11827/latest/TWIDDLE2

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

38 CHAPTER 1. WEEKLY LABS

5 STM #K_FFT_SIZE-1,BRC

6 RPTBD bit_rev_end-1

7 STM #K_FFT_SIZE,AR0 ; AR0 = 1/2 size of circ buffer

8 MVDD *AR3+,*AR2+

9 MVDD *AR3-,*AR2+

10 MAR *AR3+0B

11 bit_rev_end:

12 NOP

13 RET

As mentioned, in the above code _bit_rev_data is a label indicating the start of the input data and
_fft_data is a label indicating the start of a circular bu�er where the bit-reversed data will be written.
Note that although AR7 is not used by the bit-reversed routine directly, it is used extensively in the FFT
routine to keep track of the start of the FFT data space.

In general, to have a pointer index memory in bit-reversed order, the AR0 register needs to be set to
one-half the length of the circular bu�er; a statement such as ARx+0B is used to move the ARx pointer to
the next location. For more information regarding the bit-reversed addressing mode, refer to page 5-18 in
the TI-54x CPU and Peripherals manual[?]. Is it possible to bit-reverse a bu�er in place? For a diagram of
the ordering of the data expected by the FFT routine, see Figure 4-10 in the TI-54x Applications Guide[?].
Note that the FFT code uses all the pointers available and does not restore the pointers to their original
values.

1.5.3.1.4 C FFT Routine

A bit-reversing and FFT routine have also been provided in lab4fft.c, listed in Appendix C (Section 1.5.3.5:
Appendix C:). Again, make sure you understand how the bit reversal is taking place. In
lab4main.c, the line de�ning C_FFT must not be commented for use of the C FFT routine. The sine
tables (twiddle factors) are located in sinetables.h35 . This �t requires its inputs in two bu�ers, the real
bu�er real and the imaginary bu�er imag, and the output is placed in the same bu�ers. The length of the
FFT, N, and logN are de�ned in lab4.h, which is also listed in Appendix C (Section 1.5.3.5: Appendix C:).
When experimenting with the C FFT make sure you modify these length values instead of the
ones in the assembly code and lab4main.c!

1.5.3.1.5 Creating the Window

As mentioned, you will be using the FFT to compute the spectrum of a windowed input. For your im-
plementation you will need to create a 1024-point Hamming window. First, create a Hamming window in
matlab using the function hamming. For the assembly FFT, use save_coef to save the window to a �le
that can then be included in your code with the .copy directive. For the C FFT, use the matlab function
write_intvector_headerfile36 with name set to 'window' and elemperline set to 8 to create the header
�le that is included in lab4main.c.

1.5.3.1.6 Displaying the Spectrum

Once the DFT has been computed, you must calculate the squared magnitude of the spectrum for display.

(|X (k) |)2 = (< (X (k)))2 + (= (X (k)))2 (1.7)

You may �nd the assembly instructions squr and squra useful in implementing (1.7).

35http://cnx.org/content/m11827/latest/sinetables.h
36http://cnx.org/content/m11827/latest/write_intvector_header�le.m

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

39

Because the squared magnitude is always nonnegative, you can replace one of the magnitude values with
a -1.0 as a trigger pulse for display on the oscilloscope. This is easily performed by replacing the DC term (
k = 0) with a -1.0 when copying the magnitude values to the output bu�er. The trigger pulse is necessary
for the oscilloscope to lock to a speci�c point in the spectrum and keep the spectrum �xed on the scope.

1.5.3.1.7 Intrinsics

If you are planning on writing some of the code in C, then you may be forced to use intrinsics. Intrinsic
instructions provide a way to use assembly instructions directly in C. An example of an intrinsic instruction
is bit_rev_data[0]=_smpyr(bit_rev_data[0],window[0]) which performs the assembly signed multiply
round instruction. You may also �nd the _lsmpy instruction useful. For more information on intrinsics, see
page 6-22 of the TI-C54x Optimizing C/C++ Compiler User's Guide[?].

The following lines of code were borrowed from the C FFT to serve as an example of arithmetic operations
in C. Save this code in a �le called mathex.c and compile this �le. Look at the resulting assembly �le and
investigate the di�erences between each block. Be sure to reference the compiler user's guide to �nd out
what the state of the FRCT and OVM bits are. Does each block work properly for all possible values?

void main(void)

{

int s1, s2;

int t1, t2;

int i1, i2;

int n1 = 16383, n2 = 16382, n3 = 16381, n4 = 16380;

/* Code for standard 32-bit hardware, */

/* with x,y limited to 16 bits */

s1 = (n1*n2 + n3*n4) � 15;

s2 = (n1 + n2) � 1;

/* Code for TI TMSC5000 series */

t1 = ((long int)(n1*n2) + (long int)(n3*n4)) � 15;

t2 = ((long int)n1 + (long int)n2) � 1;

/* Intrinsic code for TMS320C54X series */

i1 = _sadd(_smpy(n1,n2), _smpy(n3,n4));

i2 = _sshl(_sadd(n1, n2),-1);

}

1.5.3.1.8 Compiling and Linking

A working program can be produced by compiling the C code and linking assembly modules and the core
module. The compiler translates C code to a relocatable assembly form. The linker assigns physical addresses
on the DSP to the relocatable data and code segments, resolves .global references and links runtime libraries.

The procedure for compiling C code and linking assembly modules has been automated for you in
the batch �le v:\ece420\54x\dsptools\c_asm.bat. The name of the �rst �le becomes the name of
the executable. Once you have completed lab4main.c and c_fft_given.asm, type c_asm lab4main.c

c_fft_given.asm to produce a lab4main.out �le to be loaded onto the DSP. For the C FFT type c_asm

lab4main.c lab4fft.c to produce lab4main.out. Load the output �le onto the DSP as usual and con�rm

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

40 CHAPTER 1. WEEKLY LABS

that valid FFTs are calculated. Once valid output is obtained, measure how many clock cycles it takes to
compute both the assembly and C FFT.

1.5.3.2 Quiz Information

From your prelab experiments, you should be able to describe the e�ect of windowing and zero-padding on
FFT spectral analysis. In your DSP system, experiment with di�erent inputs, changing N and the type of
window. Can you explain what happens as the input frequency is increased beyond the Nyquist rate? Does
the (|X (k) |)2 coincide with what you expect from Matlab? What is the relationship between the observed
spectrum and the DTFT? What would happen if the FFT calculation takes longer than it takes to �ll inputs
with N samples? How long does it take to compute each FFT? What are the tradeo�s between writing code
in C versus assembly?

1.5.3.3 Appendix A:

lab4main.c37

1 /* v:/ece420/54x/dspclib/lab4main.c */

2 /* dgs - 9/14/2001 */

3 /* mdk - 2/10/2004 C FFT update */

4

5 #include "v:/ece420/54x/dspclib/core.h"

6

7 /* comment the next line to use assembly fft */

8 #define C_FFT

9

10 #ifdef C_FFT /* Use C FFT */

11

12 #include "window.h"

13 #include "lab4.h" /* Number of C FFT points defined here */

14

15 /* function defined in lab4fft.c */

16 void fft(void);

17

18 /* FFT data buffers */

19 int real[N]; /* Real part of data */

20 int imag[N]; /* Imaginary part of data */

21

22 #else /* Use assembly FFT */

23

24 #define N 1024 /* Number of assembly FFT points */

25

26 /* Function defined by c_fft_given.asm */

27 void bit_rev_fft(void);

28

29 /* FFT data buffers (declared in c_fft_given.asm) */

30 extern int bit_rev_data[N*2]; /* Data input for bit-reverse function */

31 extern int fft_data[N*2]; /* In-place FFT & Output array */

32 extern int window[N]; /* The Hamming window */

37http://cnx.org/content/m11827/latest/lab4main.c

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

41

33

34 #endif /* C_FFT */

35

36

37 /* Our input/output buffers */

38 int inputs[N];

39 int outputs[N];

40

41 volatile int input_full = 0; /* volatile means interrupt changes it */

42 int count = 0;

43

44

45 interrupt void irq(void)

46 {

47 int *Xmitptr,*Rcvptr; /* pointers to Xmit & Rcv Bufs */

48 int i;

49

50 static int in_irq = 0; /* Flag to prevent reentrance */

51

52 /* Make sure we're not in the interrupt (should never happen) */

53 if(in_irq)

54 return;

55

56 /* Mark we're processing, and enable interrupts */

57 in_irq = 1;

58 enable_irq();

59

60 /* The following waitaudio call is guaranteed not to

61 actually wait; it will simply return the pointers. */

62 WaitAudio(&Rcvptr,&Xmitptr);

63

64 /* input_full should never be true... */

65 if(!input_full)

66 {

67 for (i=0; i<BlockLen; i++)

68 {

69 /* Save input, and echo to channel 1 */

70 inputs[count] = Xmitptr[6*i] = Rcvptr[4*i];

71

72 /* Send FFT output to channel 2 */

73 Xmitptr[6*i+1] = outputs[count];

74

75 count++;

76 }

77 }

78

79 /* Have we collected enough data yet? */

80 if(count >= N)

81 input_full = 1;

82

83 /* We're not in the interrupt anymore... */

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

42 CHAPTER 1. WEEKLY LABS

84 disable_irq();

85 in_irq = 0;

86 }

87

88

89 main()

90 {

91 /* Initialize IRQ stuff */

92 count = 0;

93 input_full = 0;

94 SetAudioInterrupt(irq); /* Set up interrupts */

95

96 while (1)

97 {

98 while(!input_full); /* Wait for a data buffer to collect */

99

100 /* From here until we clear input_full can only take *

101 * BlockLen sample times, so don't do too much here. */

102

103 /* First, transfer inputs and outputs */

104

105 #ifdef C_FFT /* Use C FFT */

106 /* I n s e r t c o d e t o f i l l */

107 /* C F F T b u f f e r s */

108

109 #else /* Use assembly FFT */

110 /* I n s e r t c o d e t o f i l l */

111 /* a s s e m b l y F F T b u f f e r s */

112

113 #endif /* C_FFT */

114

115 /* Done with that... ready for new data collection */

116 count = 0; /* Need to reset the count */

117 input_full = 0; /* Mark we're ready to collect more data */

118

119 /**/

120 /* Now that we've gotten the data moved, we can do the */

121 /* more lengthy processing. */

122

123 #ifdef C_FFT /* Use C FFT */

124

125 /* Multiply the input signal by the Hamming window. */

126 /* . . . i n s e r t C / a s m code . . . */

127

128 /* Bit-reverse and compute FFT in C */

129 fft();

130

131 /* Now, take absolute value squared of FFT */

132 /* . . . i n s e r t C / a s m code . . . */

133

134 /* Last, set the DC coefficient to -1 for a trigger pulse */

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

43

135 /* . . . i n s e r t C / a s m code . . . */

136

137 /* done, wait for next time around! */

138

139

140 #else /* Use assembly FFT */

141

142 /* Multiply the input signal by the Hamming window. */

143 /* . . . i n s e r t C / a s m code . . . */

144

145 /* Bit-reverse and compute FFT in assembly */

146 bit_rev_fft();

147

148 /* Now, take absolute value squared of FFT */

149 /* . . . i n s e r t C / a s m code . . . */

150

151 /* Last, set the DC coefficient to -1 for a trigger pulse */

152 /* . . . i n s e r t C / a s m code . . . */

153

154 /* done, wait for next time around! */

155

156

157 #endif /* C_FFT */

158

159 }

160 }

1.5.3.4 Appendix B:

c_�t_given.asm38

1 ; v:\ece420\54x\dspclib\c_fft_given.asm
2 ; dgs - 9/14/2001

3 .copy "v:\ece420\54x\dspclib\core.inc"
4

5 .global _bit_rev_data

6 .global _fft_data

7 .global _window

8

9 .global _bit_rev_fft

10

11 .sect ".data"

12

13 .align 4*N

14 _bit_rev_data .space 16*2*N ; Input to _bit_rev_fft

15

38http://cnx.org/content/m11827/latest/c_�t_given.asm

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

44 CHAPTER 1. WEEKLY LABS

16 .align 4*N

17 _fft_data .space 16*2*N ; FFT output buffer

18

19

20 ; Copy in the Hamming window

21 _window ; The Hamming window

22 .copy "window.asm"

23

24 .sect ".text"

25

26 _bit_rev_fft

27 ENTER_ASM

28

29 call bit_rev ; Do the bit-reversal.

30

31 call fft ; Do the FFT

32

33 LEAVE_ASM

34 RET

35

36 bit_rev:

37 STM #_bit_rev_data,AR3 ; AR3 -> original input

38 STM #_fft_data,AR7 ; AR7 -> data processing buffer

39 MVMM AR7,AR2 ; AR2 -> bit-reversed data

40 STM #K_FFT_SIZE-1,BRC

41 RPTBD bit_rev_end-1

42 STM #K_FFT_SIZE,AR0 ; AR0 = 1/2 size of circ buffer

43 MVDD *AR3+,*AR2+

44 MVDD *AR3-,*AR2+

45 MAR *AR3+0B

46 bit_rev_end:

47 NOP

48 RET

49

50 ; Copy the actual FFT subroutine.

51 fft_data .set _fft_data ; FFT code needs this.

52 .copy "v:\ece420\54x\dsplib\fft.asm"
53

54

55 ; If you need any more assembly subroutines, make sure you name them

56 ; _name, and include a ".global _name" directive at the top. Also,

57 ; don't forget to use ENTER_ASM at the beginning, and LEAVE_ASM

58 ; and RET at the end!

1.5.3.5 Appendix C:

lab4.h39

39http://cnx.org/content/m11827/latest/lab4.h

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

45

1 #define N 1024 /* Number of FFT points */

2 #define logN 10

lab4�t.c40

1 /***/

2 /* lab4fft.c */

3 /* Douglas L. Jones */

4 /* University of Illinois at Urbana-Champaign */

5 /* January 19, 1992 */

6 /* Changed for use w/ short integers and lookup table for ECE420 */

7 /* Matt Kleffner */

8 /* February 10, 2004 */

9 /* */

10 /* fft: in-place radix-2 DIT DFT of a complex input */

11 /* */

12 /* Permission to copy and use this program is granted */

13 /* as long as this header is included. */

14 /* */

15 /* WARNING: */

16 /* This file is intended for educational use only, since most */

17 /* manufacturers provide hand-tuned libraries which typically */

18 /* include the fastest fft routine for their DSP/processor */

19 /* architectures. High-quality, open-source fft routines */

20 /* written in C (and included in MATLAB) can be found at */

21 /* http://www.fftw.org */

22 /* */

23 /* #defines expected in lab4.h */

24 /* N: length of FFT: must be a power of two */

25 /* logN: N = 2**logN */

26 /* */

27 /* 16-bit-limited input/output (must be defined elsewhere) */

28 /* real: integer array of length N with real part of data */

29 /* imag: integer array of length N with imag part of data */

30 /* */

31 /* sinetables.h must */

32 /* 1) #define Nt to an equal or greater power of two than N */

33 /* 2) contain the following integer arrays with */

34 /* element magnitudes bounded by M = 2**15-1: */

35 /* costable: M*cos(-2*pi*n/Nt), n=0,1,...,Nt/2-1 */

36 /* sintable: M*sin(-2*pi*n/Nt), n=0,1,...,Nt/2-1 */

37 /* */

38 /***/

39

40 #include "lab4.h"

40http://cnx.org/content/m11827/latest/lab4�t.c

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

46 CHAPTER 1. WEEKLY LABS

41 #include "sinetables.h"

42

43 extern int real[N];

44 extern int imag[N];

45

46 void fft(void)

47 {

48 int i,j,k,n1,n2,n3;

49 int c,s,a,t,Wr,Wi;

50

51 j = 0; /* bit-reverse */

52 n2 = N � 1;

53 for (i=1; i < N - 1; i++)

54 {

55 n1 = n2;

56 while (j >= n1)

57 {

58 j = j - n1;

59 n1 = n1 � 1;

60 }

61 j = j + n1;

62

63 if (i < j)

64 {

65 t = real[i];

66 real[i] = real[j];

67 real[j] = t;

68 t = imag[i];

69 imag[i] = imag[j];

70 imag[j] = t;

71 }

72 }

73

74 /* FFT */

75 n2 = 1; n3 = Nt;

76

77 for (i=0; i < logN; i++)

78 {

79 n1 = n2; /* n1 = 2**i */

80 n2 = n2 + n2; /* n2 = 2**(i+1) */

81 n3 = n3 � 1; /* cos/sin arg of -6.283185307179586/n2 */

82 a = 0;

83

84 for (j=0; j < n1; j++)

85 {

86 c = costable[a];

87 s = sintable[a];

88 a = a + n3;

89

90 for (k=j; k < N; k=k+n2)

91 {

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

47

92 /* Code for standard 32-bit hardware, */

93 /* with real,imag limited to 16 bits */

94 /*

95 Wr = (c*real[k+n1] - s*imag[k+n1]) � 15;

96 Wi = (s*real[k+n1] + c*imag[k+n1]) � 15;

97 real[k+n1] = (real[k] - Wr) � 1;

98 imag[k+n1] = (imag[k] - Wi) � 1;

99 real[k] = (real[k] + Wr) � 1;

100 imag[k] = (imag[k] + Wi) � 1;

101 */

102 /* End standard 32-bit code */

103

104 /* Code for TI TMS320C54X series */

105

106 Wr = ((long int)(c*real[k+n1]) - (long int)(s*imag[k+n1])) � 15;

107 Wi = ((long int)(s*real[k+n1]) + (long int)(c*imag[k+n1])) � 15;

108 real[k+n1] = ((long int)real[k] - (long int)Wr) � 1;

109 imag[k+n1] = ((long int)imag[k] - (long int)Wi) � 1;

110 real[k] = ((long int)real[k] + (long int)Wr) � 1;

111 imag[k] = ((long int)imag[k] + (long int)Wi) � 1;

112

113 /* End code for TMS320C54X series */

114

115 /* Intrinsic code for TMS320C54X series */

116 /*

117 Wr = _ssub(_smpy(c, real[k+n1]), _smpy(s, imag[k+n1]));

118 Wi = _sadd(_smpy(s, real[k+n1]), _smpy(c, imag[k+n1]));

119 real[k+n1] = _sshl(_ssub(real[k], Wr),-1);

120 imag[k+n1] = _sshl(_ssub(imag[k], Wi),-1);

121 real[k] = _sshl(_sadd(real[k], Wr),-1);

122 imag[k] = _sshl(_sadd(imag[k], Wi),-1);

123 */

124 /* End intrinsic code for TMS320C54X series */

125 }

126 }

127 }

128 return;

129 }

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

48 CHAPTER 1. WEEKLY LABS

1.6 Lab 5

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

49

1.6.1 Lab 5: Prelab41

1.6.1.1 Prelab: Matlab Preparation

We have made considerable use of Matlab in previous labs to design �lters and determine frequency responses
of systems. Matlab is also very useful as a simulation tool.

Use the following Matlab code skeleton to simulate your system and �ll in the incomplete portions. Note
that the code is not complete and will not execute properly as written. How does the spectrum of the
transmitted signal change with Tsymb?

lab_5_prelab.m42

1 %%

2 % Matlab code skeleton for Digital Transmitter

3

4 close all;clear;

5

6 % Generate random bits

7 bits_per_symbol=2;

8 num_symbols=64;

9 numbits=bits_per_symbol*num_symbols;

10 bits=rand(1,numbits)>0.5;
11

12 Tsymb=32; % samples per symbol

13

14

15 % These are the 4 frequencies to choose from

16 % Note that 32 samples per symbol does not correspond to

17 % an integer number of periods at these frequencies

18 omega1 = 9*pi/32;

19 omega2 = 13*pi/32;

20 omega3 = 17*pi/32;

21 omega4 = 21*pi/32;

22

23

24 %%%

25 % Transmitter section

26

27 % Initialize transmit sequence

28 index=1; % Initialize bit index

29 n=1; % Initialize sample index

30 phi=0; % Initialize phase offset

31

32 % Generate 64 32-sample symbols

33 while (n<=num_symbols*Tsymb)
34

35 if (bits(index:index+1) == [0 0])

36 sig(n:n+Tsymb-1) = sin(omega1*[0:Tsymb-1]+phi);

37 phi = omega1*Tsymb+phi; % Calculate phase offset for next symbol

38 phi = mod(phi, 2*pi); % Restrict phi to [0,2*pi)

41This content is available online at <http://cnx.org/content/m10661/2.5/>.
42http://cnx.rice.edu/modules/m10661/latest/lab_5_prelab.m

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

50 CHAPTER 1. WEEKLY LABS

39

40 % -----------> Insert code here <-------------%
41

42 end % end if-else statements

43

44 index=index+2; % increment bit counter so we look at next 2 bits

45

46 n=n+Tsymb;

47 end % end while

48

49

50 % Show transmitted signal and its spectrum

51 % ---------------> Insert code here <-----------------%

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

51

1.6.2 Lab 5: Theory43

1.6.2.1 Frequency Shift Keying

Frequency Shift Keying (FSK) is a scheme to transmit digital information across an analog channel.
Binary data bits are grouped into blocks of a �xed size, and each block is represented by a unique carrier
frequency, called a symbol, to be sent across the channel. 44 This requires having a unique symbol for each
possible combination of data bits in a block. In this laboratory exercise each symbol represents a two-bit
block; therefore, there will be four di�erent symbols.

The carrier frequency is kept constant over some number of samples known as the symbol period (Tsymb).
The symbol rate, de�ned as Fsymb, is a fraction of the board's sampling rate, Fs. For our sampling rate of
44.1 kHz and a symbol period of 32, the symbol rate is 44.1k/32 symbols per second.

Figure 1.12: Pseudo-noise sequence generator and FSK transmitter.

1.6.2.2 Pseudo-Noise Sequence Generator

The input bits to the transmitter are provided by the special shift-register, called a pseudo-noise sequence
generator (PN generator), on the left side of Figure 1.12. A PN generator produces a sequence of bits
that appears random. The PN sequence will repeat with period 2B − 1, where B is the width in bits of the
shift register. A more detailed diagram of the PN generator alone appears in Figure 1.13.

43This content is available online at <http://cnx.org/content/m11849/1.3/>.
44The receiver then looks at the recovered symbol frequency to determine which block of bits was sent and converts it back

to the appropriate binary data.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

52 CHAPTER 1. WEEKLY LABS

Figure 1.13: PN generator.

As shown in Figure 1.13, the PN generator is simply a shift-register and XOR gate. Bits 14 and 15 of
the shift-register are XORed together and the result is shifted into the lowest bit of the register. This lowest
bit is the output of the PN generator.

The PN generator is a useful source of random data bits for system testing. We can simulate the bit
sequence that would be transmitted by a user as the random bits generated by the PN generator. Since
communication systems tend to randomize the bits seen by the transmission scheme so that bandwidth can
be e�ciently utilized, the PN generator is a good data model.45

1.6.2.3 Series-to-Parallel Conversion

The shift-register produces one output bit at a time. Because each symbol the system transmits will encode
two bits, we require the series-to-parallel conversion to group the output bits from the shift-register into
blocks of two bits so that they can be mapped to a symbol.

1.6.2.4 Frequency Look-up Table

This is responsible for mapping blocks of bits to one of four frequencies as shown in Figure 1.12. Each possible
two-bit block of data from the series-to-parallel conversion is mapped to a di�erent carrier frequency ωi

note: Note that the subscript i denotes a symbol's index in the transmitted signal; i.e., the �rst
symbol sent has index i = 1, the second symbol sent has index i = 2, and so on. Therefore, ωi
denotes the frequency and φi denotes the phase o�set of the i

th transmitted symbol.

These frequencies are then used to generate the waveforms. The mappings for this assignment are given in
Table 1.2.

Data Chunk Carrier Frequency ωi

00 9π
32

01 13π
32

11 17π
32

10 21π
32

45PN generators have other applications in communications, notably in the Code Division Multiple Access schemes used by
cellular telephones.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

53

Table 1.2

One way to implement this mapping is by using a look-up table. The two-bit data block can be interpreted
as an o�set into a frequency table where we have stored the possible transmission frequencies. Note that
since each frequency mapping de�nes a symbol, this mapping is done at the symbol rate Fsymb, or once for
every Tsymb DSP samples.

The symbol bit assignments are such that any two adjacent frequencies map to data blocks that di�er
by only one bit. This assignment is called Gray coding and helps reduce the number of bit errors made in
the event of a received symbol error.

1.6.2.5 Phase Continuity

In order to minimize the bandwidth used by the transmitted signal, you should ensure that the phase of
your transmitted waveform is continuous between symbols; i.e., the beginning phase of any symbol must be
equal to the ending phase of the previous symbol. For instance, if a symbol of frequency 9π

32 begins at phase
0, the symbol will end 31 output samples later at phase 31 9π

32 . To preserve phase continuity, the next output
sample must be at phase 32 9π

32 , which is equivalent to phase π. Therefore, the next symbol, whatever its
frequency, must begin at phase π. For each symbol, you must choose φi in the expression sin (ωin+ φi) to
create this continuity.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

54 CHAPTER 1. WEEKLY LABS

1.6.3 Lab 5: Lab46

In this lab you are to implement and optimize the frequency shift keying (FSK) digital transmitter and
pseudo-noise (PN) sequence generator shown in this �gure. For the lab grade, you will be judged on the
execution time of your system (memory usage need not be minimized).

1.6.3.1 Implementation

You will implement and optimize the complete system shown in this �gure. over the next two weeks. You
may write in C, assembly, or any combination of the two; choose whatever will allow you to write the fastest
code. The optimization process will probably be much easier if you plan for optimization before you begin
any programming.

1.6.3.1.1 Reference Implementation

We provide for you in Appendix A a complete C implementation of this lab. It consists of the main C �le
fsk.c and a C-callable SINE function in SINE.asm. Compile and link this using the batch �le C_ASM.bat
by typing "C_ASM fsk SINE" on the command prompt. Load FSK.out onto the DSP, and run the code.
Observe the output (Channel 1) on the scope.

After taking a look at the source code of this implementation, you'll realize that this is a rather ine�cient
implementation. It's there to show you what output is expected of your code, and the computational e�ciency
of your code will be judged against it. While the given code might serve as a starting point, you should do
whatever you need to do to make your code as e�cient as possible, while producing the same output as the
given code.

1.6.3.1.2 PN Generator

Once you have planned your program strategy, implement the PN generator from Figure 2 (Section 1.6.2.2:
Pseudo-Noise Sequence Generator) and verify that it is working. If you are programming in assembly, you
may wish to refer to the description of assembly instructions for logical operations in Section 2-2 of the C54x
Mnemonic Instruction Set reference. Initialize the shift register to one.

In testing the PN generator, you may �nd the �le v: \ece320\54x\dspclib\pn_output.mat47 helpful.
To use it, type load v:\ece320\54x\dspclib\pn_output at the Matlab command prompt. This will load
a vector pn_output into memory. The vector contains 500 elements, which are the �rst 500 output bits of
the PN generator. Be prepared to prove to a TA that your PN generator works properly as part of your
quiz.

1.6.3.1.3 Transmitter

For your transmitter implementation you are to use the data-block-to-carrier-frequency mapping in this table
(Table 1.2) and a digital symbol period of Tsymb = 32 samples.

Viewing the transmitted signal on the oscilloscope may help you determine whether your code works
properly, but you should check it more carefully by setting breakpoints in Code Composer and using the
Memory option from the View menu to view the contents of memory. The vector signal analyzer (VSA)
provides another method of testing.

1.6.3.1.4 Testing with the VSA

The VSA is an instrument capable of demodulating digital signals. You may use the VSA to demodulate
your FSK signal and display the symbols received.

46This content is available online at <http://cnx.org/content/m11848/1.3/>.
47http://cnx.rice.edu/modules/m11848/latest/pn_output.mat

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

55

1.6.3.1.4.1 Con�guring the VSA

The VSA is the big HP unit on a cart in the front of the classroom. Plug the output from the DSP board
into the "Channel 1" jack on the front of the vector signal analyzer, and then turn on the analyzer and follow
these instructions to display your output:

After powering the signal analyzer up, the display will not be in the correct mode. Use the following
sequence of keypresses to set it up properly:

note: If this doesn't work, hit "Save/Recall," F7 (Catalog), point at ECE320.STA with the wheel,
and hit F5 (Recall State) and F1 (Enter).

• "Freq" button, followed by F1 (center), 11.025 (on the keypad), and F3 (KHz)
• F2 (span), 22, and F3 (KHz)
• "Range," then F5 (ch1 autorange up/down)
• "Instrument Mode," then F3 (demodulation)

1.6.3.1.4.2 Viewing the signal spectrum on the VSA

The VSA is also capable of displaying the spectrum of a signal. Hook up the output of your PN generator
to the VSA and set it up properly to view the spectrum of the random sequence. Hit "Instrument Mode"
and then F1 (Scalar) to see the spectrum. Note that you can also use your Lab 4 code for this purpose.

Does what you see match the Matlab simulations?

1.6.3.1.5 Optimization

One purpose of this lab is to teach optimization and e�cient code techniques. For this reason, for your
lab grade you will be judged primarily on the total execution time of your system. You are not
required to optimize memory use. Note that by execution time we mean cycle count, not the number of
instructions in your program. Remember that several of the TMS320C54xx instructions take more than one
cycle. The multicycle instructions are primarily the multi-word instructions, including instructions that take
immediates, like stm, and instructions using direct addressing of memory (such as ld *(temp),A). Branch
and repeat statements also require several cycles to execute. Most C instructions take more than one cycle.
The debugger can be used to determine the exact number of cycles used by your code; ask your TA to
demonstrate. However, since the number of execution cycles used by an instruction is usually determined
by the number of words in its encoding, the easiest way to estimate the number of cycles used by your code
is to count the number of instruction words in the .lst �le or the disassembly window in the debugger.

We will grade you based on the number of cycles used between the return from the WAITDATA call and the
arrival at the next WAITDATA call in assembly, or the return from one WaitAudio call and the arrival at the
next WaitAudio call in C. If the number of cycles between the two points is variable, the maximum possible
number of cycles will be counted. You must use the core.asm �le in v:\ece320\54x\dsplib\core.asm or
the C core �le in v:\ece320\54x\dspclib\core.asm as provided by the TAs; these �les may not be
modi�ed. You explicitly may not change the number of samples read and written by each WAITDATA or
WaitAudio call! We reserve the right to test your code by substituting the test vector core �le.

1.6.3.2 Grading

This is a two-week lab. Your prelab is due a week after the quiz for Lab 4, and the quizzing occurs two
weeks after the quiz for Lab 4.

Grading for this lab will be a bit di�erent from past labs:

• 1 point: Prelab
• 2 points: Working code, implemented from scratch in assembly language or C.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

56 CHAPTER 1. WEEKLY LABS

• 5 points: Optimization. These points will be assigned based on your cycle counts and the optimizations
you have made.

• 2 points: Oral quiz.

1.6.3.3 Appendix A:

fsk.c48

SINE.asm49

C_ASM.bat50

1 /* ECE320, Lab 5, Reference Implementation (Non-Optimized) */

2 /* Michael Frutiger 2/24/04 */

3

4 #include "v:/ece320/54x/dspclib/core.h" /* Declarations for core file */

5

6 main()

7 {

8 int *Rcvptr,*Xmitptr; /* pointers to Xmit & Rcv Bufs */

9 int r1,r2; // temp random bit storage

10 int symbol; // 0 for [00], 1 for [01], 2 for [10], 3 for [11]

11 int n; // dummy variable

12

13 int freqs[4] = {9, 13, 21, 17}; // 32*freqs

14 int phase[32];

15 int output[64]; // temp output storage

16

17

18 // Initial PN generator register contents

19 int seed = 1;

20

21 // Initial phase

22 int prev_phase = 0;

23

24

25 while(1)

26 {

27 /* Wait for a new block of samples */

28 WaitAudio(&Rcvptr,&Xmitptr);

29

30 // Get next two random bits

31 r1 = randbit(&seed);

32 r2 = randbit(&seed);

33 // Convert 2 bit binary number to decimal

34 symbol = series2parallel(r1,r2);

35

36 for (n=0; n<32; n++)

37 {

48http://cnx.org/content/m11848/latest/fsk.c
49http://cnx.org/content/m11848/latest/SINE.asm
50http://cnx.org/content/m11848/latest/C_ASM.bat

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

57

38 phase[n] = (freqs[symbol]*n + prev_phase) % 64; // get into 0 to 64 range

39 if (phase[n] > 32) phase[n]=phase[n]-64; // get into -32 to 32 range

40 phase[n] = phase[n] * 1024; // 1024=2^15*1/32

41 // [-2^15 2^15] range for use with

42 // SINE.asm

43 }

44 sine(&phase[0], &output[0], 32); // compute SINE, put result in output[0 -

31]

45 prev_phase = (freqs[symbol]*32 + prev_phase) % 64; // save current phase offset

46

47 // Get next two random bits

48 r1 = randbit(&seed);

49 r2 = randbit(&seed);

50 // Convert 2 bit binary number to decimal

51 symbol = series2parallel(r1,r2);

52

53 for (n=0; n<32; n++)

54 {

55 phase[n] = (freqs[symbol]*n + prev_phase) % 64;

56 if (phase[n] > 32) phase[n]=phase[n]-64;

57 phase[n] = phase[n] * 1024;

58 }

59 sine(&phase[0], &output[32], 32);

60 prev_phase = (freqs[symbol]*32 + prev_phase) % 64;

61

62

63 // Transfer the two symbols to transmit buffer

64 for (n=0; n<64; n++)

65 {

66 Xmitptr[6*n] = output[n];

67 }

68

69 }

70 }

71

72

73 // Converts 2 bit binary number (r2r1) to decimal

74 int series2parallel(int r2, int r1)

75 {

76 if ((r2==0)&&(r1==0)) return 0;

77 else if ((r2==0)&&(r1==1)) return 1;

78 else if ((r2==1)&&(r1==0)) return 2;

79 else return 3;

80 }

81

82 //Returns as an integer a random bit, based on the 15 low-significance bits in iseed (which is

83 //modified for the next call).

84 int randbit(unsigned int *iseed)

85 {

86 unsigned int newbit; // The accumulated XORs.

87 newbit = (*iseed � 14) & 1 ^ (*iseed � 13) & 1; // XOR bit 15 and bit 14

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

58 CHAPTER 1. WEEKLY LABS

88 // Leftshift the seed and put the result of the XORs in its bit 1.

89 *iseed=(*iseed � 1) | newbit;

90 return (int) newbit;

91 }

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

Chapter 2

Project Labs

2.1 Adaptive Filtering

2.1.1 Adaptive Filtering: LMS Algorithm1

2.1.1.1 Introduction

Figure 2.1 is a block diagram of system identi�cation using adaptive �ltering. The objective is to change
(adapt) the coe�cients of an FIR �lter, W , to match as closely as possible the response of an unknown
system, H. The unknown system and the adapting �lter process the same input signal x [n] and have
outputs d [n](also referred to as the desired signal) and y [n].

W

H
e[n]

y[n]

x[n] d[n]

Figure 2.1: System identi�cation block diagram.

2.1.1.1.1 Gradient-descent adaptation

The adaptive �lter, W , is adapted using the least mean-square algorithm, which is the most widely used
adaptive �ltering algorithm. First the error signal, e [n], is computed as e [n] = d [n]− y [n], which measures
the di�erence between the output of the adaptive �lter and the output of the unknown system. On the

1This content is available online at <http://cnx.org/content/m10481/2.14/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

59

60 CHAPTER 2. PROJECT LABS

basis of this measure, the adaptive �lter will change its coe�cients in an attempt to reduce the error. The
coe�cient update relation is a function of the error signal squared and is given by

hn+1 [i] = hn [i] +
µ

2

(
−∂(|e|)2
∂hn [i]

)
(2.1)

The term inside the parentheses represents the gradient of the squared-error with respect to the ith

coe�cient. The gradient is a vector pointing in the direction of the change in �lter coe�cients that will
cause the greatest increase in the error signal. Because the goal is to minimize the error, however, (2.1)
updates the �lter coe�cients in the direction opposite the gradient; that is why the gradient term is negated.
The constant µ is a step-size, which controls the amount of gradient information used to update each
coe�cient. After repeatedly adjusting each coe�cient in the direction opposite to the gradient of the error,
the adaptive �lter should converge; that is, the di�erence between the unknown and adaptive systems should
get smaller and smaller.

To express the gradient decent coe�cient update equation in a more usable manner, we can rewrite the
derivative of the squared-error term as

∂(|e|)2
∂h[i] = 2 ∂e

∂h[i] e

= 2∂(d−y)
∂h[i] e

=
(

2
∂(d−PN−1

i=0 h[i]x[n−i])
∂h[i]

)
(e)

(2.2)

∂(|e|)2
∂h [i]

= 2 (−x [n− i]) e (2.3)

which in turn gives us the �nal LMS coe�cient update,

hn+1 [i] = hn [i] + µex [n− i] (2.4)

The step-size µ directly a�ects how quickly the adaptive �lter will converge toward the unknown system. If µ
is very small, then the coe�cients change only a small amount at each update, and the �lter converges slowly.
With a larger step-size, more gradient information is included in each update, and the �lter converges more
quickly; however, when the step-size is too large, the coe�cients may change too quickly and the �lter will
diverge. (It is possible in some cases to determine analytically the largest value of µ ensuring convergence.)

2.1.1.2 MATLAB Simulation

Simulate the system identi�cation block diagram shown in Figure 2.1.
Previously in MATLAB, you used the filter command or the conv command to implement shift-

invariant �lters. Those commands will not work here because adaptive �lters are shift-varying, since the
coe�cient update equation changes the �lter's impulse response at every sample time. Therefore, implement
the system identi�cation block on a sample-by-sample basis with a do loop, similar to the way you might
implement a time-domain FIR �lter on a DSP. For the "unknown" system, use the fourth-order, low-pass,
elliptical, IIR �lter designed for the IIR Filtering: Filter-Design Exercise in MATLAB (Section 1.4.2).

Use Gaussian random noise as your input, which can be generated in MATLAB using the command
randn. Random white noise provides signal at all digital frequencies to train the adaptive �lter. Simulate
the system with an adaptive �lter of length 32 and a step-size of 0.02. Initialize all of the adaptive �lter
coe�cients to zero. From your simulation, plot the error (or squared-error) as it evolves over time and plot
the frequency response of the adaptive �lter coe�cients at the end of the simulation. How well does your
adaptive �lter match the "unknown" �lter? How long does it take to converge?

Once your simulation is working, experiment with di�erent step-sizes and adaptive �lter lengths.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

61

2.1.1.3 Processor Implementation

Use the same "unknown" �lter as you used in the MATLAB simulation.
Although the coe�cient update equation is relatively straightforward, consider using the lms instruction

available on the TI processor, which is designed for this application and yields a very e�cient implementation
of the coe�cient update equation.

To generate noise on the DSP, you can use the PN generator from the Digital Transmitter: Introduction
to Quadrature Phase-Shift Keying2, but shift the PN register contents up to make the sign bit random. (If
the sign bit is always zero, then the noise will not be zero-mean and this will a�ect convergence.) Send
the desired signal, d [n], the output of the adaptive �lter, y [n], and the error to the D/A for display on the
oscilloscope.

When using the step-size suggested in the MATLAB simulation section, you should notice that the error
converges very quickly. Try an extremely small µ so that you can actually watch the amplitude of the error
signal decrease towards zero.

2.1.1.4 Extensions

If your project requires some modi�cations to the implementation here, refer to Haykin [6] and consider
some of the following questions regarding such modi�cations:

• How would the system in Figure 2.1 change for di�erent applications? (noise cancellation, equalization,
etc.)

• What happens to the error when the step-size is too large or too small?
• How does the length of an adaptive FIR �lters a�ect convergence?
• What types of coe�cient update relations are possible besides the described LMS algorithm?

2.2 Audio E�ects

2.2.1 Audio E�ects: Real-Time Control with the Serial Port3

2.2.1.1 Implementation

For this exercise, you will extend the system from Audio E�ects: Using External Memory (Section 2.2.2)
to generate a feedback-echo e�ect. You will then extend this echo e�ect to use the serial port on the DSP
EVM. The serial interface will receive data from a MATLAB GUI that allows the two system gains and the
echo delay to be changed using on-screen sliders.

2"Digital Transmitter: Introduction to Quadrature Phase-Shift Keying" <http://cnx.org/content/m10042/latest/>
3This content is available online at <http://cnx.org/content/m10483/2.24/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

62 CHAPTER 2. PROJECT LABS

2.2.1.1.1 Feedback system implementation

input ch 1

G1

G2

output ch 1

output ch 2

output ch 3

output ch 4

input ch 2

z−n

Figure 2.2: Feedback System with Test Points

First, modify code from Audio E�ects: Using External Memory (Section 2.2.2) to create the feedback-echo
system shown in Figure 2.2. A one-tap feedback-echo is a simple audio e�ect that sounds remarkably good.
You will use both channels of input by summing the two inputs so that either or both may be used as an
input to the system. Also, send several test signals to the six-channel board's D/A converters:

• The summed input signal
• The input signal after gain stage G1

• The data going into the long delay
• The data coming out of the delay

You will also need to set both the input gain G0 and the feedback gain G1 to prevent over�ow.
As you implement this code, ensure that the delay n and the gain values G1 and G2 are stored in memory

and can be easily changed using the debugger. If you do this, it will be easier to extend your code to accept
its parameters from MATLAB in MATLAB Interface Implementation (Section 2.2.1.1.2: MATLAB interface
implementation).

To test your echo, connect a CD player or microphone to the input of the DSP EVM, and connect the
output of the DSP EVM to a loudspeaker. Verify that an input signal echoes multiple times in the output
and that the spacing between echoes matches the delay length you have chosen.

2.2.1.1.2 MATLAB interface implementation

After studying the MATLAB interface outlined at the end of Using the Serial Port with a MATLAB GUI4,
write MATLAB code to send commands to the serial interface based on three sliders: two gain sliders (for
G1 and G2) and one delay slider (for n). Then modify your code to accept those commands and change
the values for G1, G2 and n. Make sure that n can be set to values spanning the full range of 0 to 131,072,
although it is not necessary that every number in that range be represented.

4"Using the Serial Port with a MATLAB GUI" <http://cnx.org/content/m12062/latest/>

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

63

2.2.2 Audio E�ects: Using External Memory5

2.2.2.1 Introduction

Many audio e�ects require storing thousands of samples in memory on the DSP. Because there is not enough
memory on the DSP microprocessor itself to store so many samples, external memory must be used.

In this exercise, you will use external memory to implement a long audio delay and an audio echo. Refer
to Core File: Accessing External Memory on TI TMS320C54x6 for a description and examples of accessing
external memory.

2.2.2.2 Delay and Echo Implementation

You will implement three audio e�ects: a long, �xed-length delay, a variable-length delay, and a feedback-
echo.

2.2.2.2.1 Fixed-length delay implementation

First, implement the 131,072-sample delay shown in Figure 2.3 using the READPROG and WRITPROG macros.
Use memory locations 010000h-02ffffh in external Program RAM to do this; you may also want to use the
dld and dst opcodes to store and retrieve the 32-bit addresses for the accumulators. Note that these two
operations store the words in memory in big-endian order, with the high-order word �rst.

input ch 1 output ch 1z−131072

Figure 2.3: Fixed-Length Delay

Remember that arithmetic operations that act on the accumulators, such as the add instruction, operate
on the complete 32- or 40-bit value. Also keep in mind that since 131,072 is a power of two, you can use
masking (via the and instruction) to implement the circular bu�er easily. This delay will be easy to verify
on the oscilloscope. (How long, in seconds, do you expect this delay to be?)

2.2.2.2.2 Variable-delay implementation

Once you have your �xed-length delay working, make a copy and modify it so that the delay can be changed
to any length between zero (or one) and 131,072 samples by changing the value stored in one double-word
pair in memory. You should keep the bu�er length equal to 131,072 and change only your addressing of the
sample being read back; it is more di�cult to change the bu�er size to a length that is not a power of two.

Verify that your code works as expected by timing the delay from input to output and ensuring that it
is approximately the correct length.

2.2.2.2.3 Feedback-echo implementation

Last, copy and modify your code so that the value taken from the end of the variable delay from Variable-
delay implementation (Section 2.2.2.2.2: Variable-delay implementation) is multiplied by a gain factor and
then added back into the input, and the result is both saved into the delay line and sent out to the digital-
to-analog converters. Figure 2.4 shows the block diagram. (It may be necessary to multiply the input by

5This content is available online at <http://cnx.org/content/m10480/2.17/>.
6"Core File: Accessing External Memory on TI TMS320C54x" <http://cnx.org/content/m10823/latest/>

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

64 CHAPTER 2. PROJECT LABS

a gain as well to prevent over�ow.) This will make a one-tap feedback echo, an simple audio e�ect that
sounds remarkably good. To test the e�ect, connect the DSP EVM input to a CD player or microphone and
connect the output to a loudspeaker. Verify that the echo can be heard multiple times, and that the spacing
between echoes matches the delay length you have chosen.

G1

G2

input ch 1 output ch 1z−n

Figure 2.4: Feedback Echo

2.3 Communications

2.3.1 Communications: Using Direct Digital Synthesis7

2.3.1.1 Introduction

Direct Digital Synthesis (DDS) is a method for generating a desired waveform (such as a sine wave) by
using the technique described in Figure 2.5 below.

Figure 2.5: Direct digital synthesis (DDS) (Couch[7])

Quantized samples of a desired waveform are stored in the memory of the microprocessor system. This
desired waveform can then be generated by "playing out" the stored words into the digital-to-analog con-
verter. The frequency of this waveform is determined simply by how fast the stored words are read from
memory, and is thus programmable. Likewise, the phase and amplitude of the generated waveform are
programmable.

7This content is available online at <http://cnx.org/content/m10657/2.5/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

65

The DDS technique is replacing analog circuits in many applications. For example, it is used in higher-
priced communication receivers to generate local oscillator signals. It can also be used to generate sounds in
electronic pipe organs and music synthesizers. Another application is its use by lab instrument manufacturers
to generate output waveforms in function generators and arbitrary waveform generators (Couch[7]).

In this lab you will familiarize yourself with the capabilities of the Analog Devices AD9854 DDS. The
DDS board is installed between the 6-channel card and the DSP card at some (not all) lab stations. You
can tell which boxes have them by the way the 6-channel card sits higher inside the metal box.

2.3.1.2 Frequency Modulation (FM) Radio Exercise

To get your feet wet and see a demonstration of the DDS, perform the following exercise. Copy the �les
FM.asm (downloadable here (p. 67)) and mod.asm from the v:\ece320\54x\dds\ directory. Assemble and
run the frequency modulation (FM) program FM.asm. Next, plug an audio source into one of the two DSP
input channels that you've been using all semester. If you have a CD on you, pop it into the computer and
use that. If not, use a music web site on the Internet as your audio source. Connect the computer to the
DSP by using a male-male audio cable and an audio-to-BNC converter box (little blue box), both of which
are in the lab. The computer has three audio outputs on the back; use the middle jack. Ask your TA if you
can't �nd the cable and/or box or don't see how to make the connection. Next, connect a dipole antenna to
the output of the DDS (port \#1 on the back of the DDS board). A crude but e�ective dipole antenna can
be formed by connecting together a few BNC and banana cables in the shape of a T. There should be one or
two of these concoctions in the lab. Once the connections are made, turn on the black receiver in the lab,
and tune it to 104.9 MHz (wide band FM). You should be able to hear your audio source!

note: If your audio sounds distorted, it's most likely due to the volume of your audio source being
too loud and getting clipped by the DSP analog-to-digital converter.

2.3.1.2.1 Spectral Copies

Spectral Copies: The digital-to-analog converter on the DDS is un�ltered, which means that there is no
anti-imaging �lter to remove the spectral replicas. To see this, plug the output of the DDS board directly
into the vector signal analyzer (VSA), and observe the spectrum. Use 104.9 MHz as the center frequency,
and set the span wide enough so that you can see the spectra of the replicas to the left and right of the
104.9 MHz signal. Use the marker to �nd the peaks of the other replicas, and record their frequencies. Once
you've done that, reattach the antenna to the DDS output, and tune the receiver to the frequencies you just
recorded. You should be able to hear your audio on each of the other frequencies.

note: The clock rate of the DDS is 60MHz, which corresponds to 2π in digital frequency.

Therefore, the 104.9 MHz signal you just listened to is roughly equivalent to 7π
2 in digital frequency. What

are the digital frequencies of the other copies you saw on the VSA?

2.3.1.3 How to use the DDS

The DDS has several di�erent modes of operation: single-tone, unramped Frequency Shift Keying (FSK),
ramped FSK, chirp, and Binary Phase Shift Keying (BPSK). In this lab we will use the DDS in single-
tone mode. Single-tone mode is easy to use, and is powerful enough to create many di�erent kinds of
waveforms, including FM and FSK.

2.3.1.3.1 FM code

The FM code you just ran (also listed here) is fairly straightforward. The program �rst calls the radioinit
subroutine. This routine sets the DDS to single-tone mode and turns o� an inverse-sinc �lter to conserve
power. Following radioinit, the setcarrier subroutine is called. This routine sets the frequency of the

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

66 CHAPTER 2. PROJECT LABS

DDS output by writing to the two most signi�cant 8-bit frequency registers of the 48-bit frequency-tuning
word on the DDS8. Although the frequency-tuning word on the DDS has 48 bits of resolution, the upper 16
bits provide us with enough resolution for the purposes of this lab, and so we will only be writing to the two
most signi�cant registers. See page 26 in the DDS data sheet for a layout of the frequency-tuning word.

To set the carrier frequency, we �rst need to determine what frequency word has to be written to the
frequency registers on the DDS. This can be done using (2.5):

Frequency word =
baseband frequency

60 MHz
248 (2.5)

where baseband frequency corresponds to the desired frequency that lies in the range of 0-30 MHz. For
example, to get the DDS to transmit at 104.9 MHz, you would choose the baseband frequency to be 15.1
MHz since 104.9 MHz is one of the un�ltered spectral replicas of 15.1 MHz. Then, using (2.5), the frequency
word for 15.1 MHz (and 104.9 MHz) would be equal to 406D 3A06 D3D4h. But since we only write to the
two most signi�cant registers of the frequency-tuning word, we only need the �rst 4 hexadecimal numbers of
this result, i.e. 406Dh. The �rst two of those, 40h, need to get written to the most signi�cant 8-bit frequency
register, while the second two hex numbers, 6Dh, need to get written to the second-most signi�cant 8-bit
frequency register. This is where the 40h and 6Dh in the setcarrier subroutine of the FM code come from.

Writing to the frequency registers is accomplished using the portw instruction. To write to the frequency
or phase registers on the DDS, the second operand of the portw instruction must be 10xxxxxx, where the
lower six bits are the address of the speci�c register to be written to. The address of the most signi�cant
frequency register on the DDS is 04h, and the address of the second most signi�cant frequency register on
the DDS is 05h (see page 26 in the data sheet). It is important to note that the way our DDS boards were
built, you will not be allowed to make two consecutive writes. To solve this problem, a subroutine called
nullop is called to waste some CPU time between writes. nullop does this by simply repeating the nop

instruction 128 times.
After the program returns from the setcarrier subroutine, it enters an in�nite loop in which it waits

for a serial interrupt to occur. The serial interrupt occurs every time a new sample is acquired from one
of the two input channels and is transmitted to the DSP via the serial port. When the interrupt occurs,
an interrupt service routine called ANALOG_IFC (see core_mod.asm executes and calls the handle_sample

subroutine. The handle_sample subroutine reads in the acquired sample from the serial port and scales that
sample so that it can be "mapped" to a frequency in the range of ±75 kHz9. The scaled sample therefore
determines the frequency deviation and is added to 6Dh. The last step is to write the result to the second
most signi�cant frequency register so that the frequency of the DDS output can be updated.

2.3.1.3.2 Programming the Phase

The process for changing the phase of the DDS output is the same as it was for changing the frequency of
the DDS output. To change the phase, you need to write a phase word to a phase-adjust register on the
DDS. The phase-adjust register is 14 bits wide and is split up into two smaller registers that you can write
to (see page 26 in the data sheet). The upper 6 bits have address 00h, and the lower 8 bits have address
01h. The phase word can be calculated using (2.6):

Phase word =
Carrier phase

2π
214 (2.6)

Once you've calculated the phase word, you can write it to the DDS using the portw instruction as before.
Just make sure you use the correct address for the phase register.

8Communication between the DSP and the DDS is done through a parallel bus.
9In FM radio, the amplitude of the message signal being transmitted determines the amount of frequency deviation from

the carrier frequency of the passband signal. ±75 kHz is the largest frequency deviation allowed.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

67

2.3.1.3.3 Programming the Amplitude

The DDS also allows you to program the amplitude, but this functionality is not addressed in this lab.
You will be able to implement a digital communication system in ECE320 without having to program the
amplitude. Interested readers are referred to the data sheet.

2.3.1.4 FSK exercise

Now that you know how to use the DDS in single-tone mode, implement a simple FSK system that uses 2
frequencies: 120.005 MHz, and 120.011 MHz. You don't need to encode any data for this exercise. In other
words, your DDS output should just continuously alternate between the two frequency symbols. Also, the
DDS automatically ensures continuous phase, so you won't have to keep track of it. Use a symbol length
of approximately 725µs (the same length as your lab 5 symbols). Timer interrupts are an elegant way to
control the symbol lengths, but in this lab we will keep things simple and control the symbol lengths by
creating a second (longer) nullop subroutine and calling it between writes to the DDS. The second nullop

subroutine should waste approximately 725µs worth of time.

note: Since we're not using input or output from the DSP, you don't need to use the WaitData
or WaitAudio macros.

2.3.1.4.1 Testing

Note that the corresponding baseband frequencies for 120.005 MHz and 120.011 MHz are 5 kHz, and 11
kHz, respectively. Since these baseband frequencies lie within the 22.05 kHz bandwidth of the DSP, you will
be able to view your FSK signal in real time on the oscilloscope without the contribution from the spectral
replicas. Just feed the output of the DDS into a second DSP (the anti-aliasing �lter on the DSP will get rid
of the spectral replicas), and pass it through to the output and the scope. You should be able to verify that
there is continuous phase between frequency symbols, and that your symbol length is approximately 725µs.
You should also view the spectrum of your DDS output on the VSA to verify that your symbols have the
correct frequencies.

2.3.1.5 Appendix

FM.asm10

2.3.2 Digital Receiver: Carrier Recovery11

2.3.2.1 Introduction

After gaining a theoretical understanding of the carrier recovery sub-system of a digital receiver, you will
simulate the sub-system in MATLAB and implement it on the DSP. The sub-system described is speci�cally
tailored to a non-modulated carrier. A complete implementation will require modi�cations to the design
presented.

The phase-locked loop (PLL) is a critical component in coherent communications receivers that is
responsible for locking on to the carrier of a received modulated signal. Ideally, the transmitted carrier
frequency is known exactly and we need only to know its phase to demodulate correctly. However, due to
imperfections at the transmitter, the actual carrier frequency may be slightly di�erent from the expected
frequency. For example, in the QPSK transmitter of Digital Transmitter: Introduction to Quadrature
Phase-Shift Keying12, if the digital carrier frequency is π

2 and the D/A is operating at 44.1 kHz, then the

expected analog carrier frequency is fc =
π
2

2π44.1 = 11.25kHz. If there is a slight change to the D/A sample

10http://cnx.rice.edu/modules/m10657/latest/FM.asm
11This content is available online at <http://cnx.org/content/m10478/2.16/>.
12"Digital Transmitter: Introduction to Quadrature Phase-Shift Keying" <http://cnx.org/content/m10042/latest/>

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

68 CHAPTER 2. PROJECT LABS

rate (say fc = 44.05kHz), then there will be a corresponding change in the actual analog carrier frequency
(fc = 11.0125kHz).

This di�erence between the expected and actual carrier frequencies can be modeled as a time-varying
phase. Provided that the frequency mismatch is small relative to the carrier frequency, the feedback control
of an appropriately calibrated PLL can track this time-varying phase, thereby locking on to both the correct
frequency and the correct phase.

Phase
Detector

NCO K Filter
Loop

Filter
Low-pass

Filter
Low-passzI [n]

zQ[n] yQ[n]

yI [n]

sin(ω̂cn)

cos(ω̂cn)

x[n] = cos(ω̃cn)

Figure 2.6: PLL Block Diagram

2.3.2.1.1 Numerically controlled oscillator

In a complete coherent receiver implementation, carrier recovery is required since the receiver typically does
not know the exact phase and frequency of the transmitted carrier. In an analog system this recovery is
often implemented with a voltage-controlled oscillator (VCO) that allows for precise adjustment of the
carrier frequency based on the output of a phase-detecting circuit.

In our digital application, this adjustment is performed with a numerically-controlled oscillator
(NCO) (see Figure 2.6). A simple scheme for implementing an NCO is based on the following re-expression
of the carrier sinusoid:

sin (ωcn+ θc) = sin (θ [n]) (2.7)

where θ [n] = ωcn+θc (ωc and θc represent the carrier frequency and phase, respectively). Convince yourself
that this time-varying phase term can be expressed as θ [n] =

∑n
m=0 ωc + θc and then recursively as

θ [n] = θ [n− 1] + ωc (2.8)

The NCO can keep track of the phase, θ [n], and force a phase o�set in the demodulating carrier by
incorporating an extra term in this recursive update:

θ [n] = θ [n− 1] + ωc + dpd [n] (2.9)

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

69

where dpd [n] is the amount of desired phase o�set at time n. (What would dpd [n] look like to generate a
frequency o�set?)

2.3.2.1.2 Phase detector

The goal of the PLL is to maintain a demodulating sine and cosine that match the incoming carrier. Suppose
ωc is the believed digital carrier frequency. We can then represent the actual received carrier frequency as
the expected carrier frequency with some o�set, ω̃c = ωc + θ̃ [n]. The NCO generates the demodulating sine
and cosine with the expected digital frequency ωc and o�sets this frequency with the output of the loop

�lter. The NCO frequency can then be modeled as
^
ωc= ωc+

^
θ [n]. Using the appropriate trigonometric

identities 13, the in-phase and quadrature signals can be expressed as

z0 [n] = 1/2

(
cos

(
θ̃ [n]− ^

θ [n]

)
+ cos

(
2ωc + θ̃ [n] +

^
θ [n]

))
(2.10)

zQ [n] = 1/2

(
sin

(
θ̃ [n]− ^

θ [n]

)
+ sin

(
2ωc + θ̃ [n] +

^
θ [n]

))
(2.11)

After applying a low-pass �lter to remove the double frequency terms, we have

y1 [n] = 1/2cos

(
θ̃ [n]− ^

θ [n]

)
(2.12)

yQ [n] = 1/2sin

(
θ̃ [n]− ^

θ [n]

)
(2.13)

Note that the quadrature signal, zQ [n], is zero when the received carrier and internally generated waves
are exactly matched in frequency and phase. When the phases are only slightly mismatched we can use the
relation

∀θ, small : (sin (θ) ' θ) (2.14)

and let the current value of the quadrature channel approximate the phase di�erence: zQ [n] ' θ̃ [n]− ^
θ [n].

With the exception of the sign error, this di�erence is essentially how much we need to o�set our NCO
frequency14. To make sure that the sign of the phase estimate is right, in this example the phase detector
is simply negative one times the value of the quadrature signal. In a more advanced receiver, information
from both the in-phase and quadrature branches is used to generate an estimate of the phase error.15

2.3.2.1.3 Loop �lter

The estimated phase mismatch estimate is fed to the NCO via a loop �lter, often a simple low-pass �lter.
For this exercise you can use a one-tap IIR �lter,

y [n] = βx [n] + αy [n− 1] (2.15)

To ensure unity gain at DC, we select β = 1− α
It is suggested that you start by choosing α = 0.6 and K = 0.15 for the loop gain. Once you have a

working system, investigate the e�ects of modifying these values.

13cos (A) cos (B) = 1/2 (cos (A−B) + cos (A+B)) and cos (A) sin (B) = 1/2 (sin (B −A) + sin (A+B)).

14If θ̃ [n]− ^
θ [n] > 0 then

^
θ [n] is too large and we want to decrease our NCO phase.

15What should the relationship between the I and Q branches be for a digital QPSK signal?

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

70 CHAPTER 2. PROJECT LABS

2.3.2.2 MATLAB Simulation

Simulate the PLL system shown in Figure 2.6 using MATLAB. As with the DLL simulation, you will have
to simulate the PLL on a sample-by-sample basis.

Use (2.9) to implement your NCO in MATLAB. However, to ensure that the phase term does not grow
to in�nity, you should use addition modulo 2π in the phase update relation. This can be done by setting
θ [n] = θ [n]− 2π whenever θ [n] > 2π.

Figure 2.7 illustrates how the proposed PLL will behave when given a modulated BPSK waveform. In
this case the transmitted carrier frequency was set to ω̃c = π

2 + π
1024 to simulate a frequency o�set.

100 200 300 400 500 600 700 800
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
In−phase
Quadrature

Figure 2.7: Output of PLL sub-system for BPSK modulated carrier.

Note that an amplitude transition in the BPSK waveform is equivalent to a phase shift of the carrier by
π
2 . Immediately after this phase change occurs, the PLL begins to adjust the phase to force the quadrature
component to zero (and the in-phase component to 1/2). Why would this phase detector not work in a real
BPSK environment? How could it be changed to work?

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

71

2.3.2.3 DSP Implementation

As you begin to implement your PLL on the DSP, it is highly recommended that you implement and test
your NCO block �rst before completing the rest of your phase-locked loop.

2.3.2.3.1 Sine-table interpolation

Your NCO must be able to produce a sinusoid with continuously variable frequency. Computing values of
sin (θ [n]) on the �y would require a prohibitive amount of computation and program complexity; a look-up
table is a better alternative.

Suppose a sine table stores N samples from one cycle of the waveform: ∀k, k = {0, . . . , N − 1} :(
sin
(

2πk
N

))
. Sine waves with discrete frequencies ω = 2π

N p are easily obtained by outputting every pth

value in the table (and using circular addressing). The continuously variable frequency of your NCO will
require non-integer increments, however. This raises two issues: First, what sort of interpolation should
be used to get the in-between sine samples, and second, how to maintain a non-integer pointer into the sine
table.

You may simplify the interpolation problem by using "lower-neighbor" interpolation, i.e., by using the
integer part of your pointer. Note that the full-precision, non-integer pointer must be maintained in memory
so that the fractional part is allowed to accumulate and carry over into the integer part; otherwise, your
phase will not be accurate over long periods. For a long enough sine table, this approximation will adjust
the NCO frequency with su�cient precision.16

Maintaining a non-integer pointer is more di�cult. In earlier exercises, you have used the auxiliary
registers (ARx) to manage pointers with integer increments. The auxiliary registers are not suited for the
non-integer pointers needed in this exercise, however, so another method is required. One possibility is to
perform addition in the accumulator with a modi�ed decimal point. For example, with N = 256, you need
eight bits to represent the integer portion of your pointer. Interpret the low 16 bits of the accumulator to
have a decimal point seven bits up from the bottom; this leaves nine bits to store the integer part above the
decimal point. To increment the pointer by one step, add a 15-bit value to the low part of the accumulator,
then zero the top bit to ensure that the value in the accumulator is greater than or equal to zero and less
than 256.17 To use the integer part of this pointer, shift the accumulator contents seven bits to the right,
add the starting address of the sine table, and store the low part into an ARx register. The auxiliary register
now points to the correct sample in the sine table.

As an example, for a nominal carrier frequency ω = π
8 and sine table length N = 256, the nominal step

size is an integer p = π
8N

1
2π = 16. Interpret the 16-bit pointer as having nine bits for the integer part,

followed by a decimal point and seven bits for the fractional part. The corresponding literal (integer) value
added to the accumulator would be 16× 27 = 2048.18

2.3.2.3.2 Extensions

You may want to refer to Proakis [10] and Blahut [1]. These references may help you think about the
following questions:

• How does the noise a�ect the described carrier recovery method?
• What should the phase-detector look like for a BPSK modulated carrier? (Hint: You would need to

consider both the in-phase and quadrature channels.)
• How does α a�ect the bandwidth of the loop �lter?
• How do the loop gain and the bandwidth of the loop �lter a�ect the PLL's ability to lock on to a

carrier frequency mismatch?

16Of course, nearest-neighbor interpolation could be implemented with a small amount of extra code.
17How is this similar to the addition modulo 2π discussed in the MATLAB Simulation (Section 2.3.2.2: MATLAB Simulation)?
18If this value were 2049, what would be the output frequency of the NCO?

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

72 CHAPTER 2. PROJECT LABS

2.3.3 Digital Receivers: Symbol-Timing Recovery for QPSK19

2.3.3.1 Introduction

This receiver exercise introduces the primary components of a QPSK receiver with speci�c focus on symbol-
timing recovery. In a receiver, the received signal is �rst coherently demodulated and low-pass �ltered (see
Digital Receivers: Carrier Recovery for QPSK (Section 2.3.2)) to recover the message signals (in-phase and
quadrature channels). The next step for the receiver is to sample the message signals at the symbol rate and
decide which symbols were sent. Although the symbol rate is typically known to the receiver, the receiver
does not know when to sample the signal for the best noise performance. The objective of the symbol-timing
recovery loop is to �nd the best time to sample the received signal.

Figure 2.8 illustrates the digital receiver system. The transmitted signal coherently demodulated with
both a sine and cosine, then low-pass �ltered to remove the double-frequency terms, yielding the recovered

in-phase and quadrature signals,
^
sI [n] and

^
sQ [n]. These operations are explained in Digital Receivers:

Carrier Recovery for QPSK (Section 2.3.2). The remaining operations are explained in this module. Both
branches are fed through a matched �lter and re-sampled at the symbol rate. The matched �lter is simply
an FIR �lter with an impulse response matched to the transmitted pulse. It aids in timing recovery and
helps suppress the e�ects of noise.

Figure 2.8: Digital receiver system

If we consider the square wave shown in Figure 2.9 as a potential recovered in-phase (or quadrature) signal
(i.e., we sent the data [+1,−1,+1,−1, . . .]) then sampling at any point other than the symbol transitions
will result in the correct data.

19This content is available online at <http://cnx.org/content/m10485/2.14/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

73

Figure 2.9: Clean BPSK waveform.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

74 CHAPTER 2. PROJECT LABS

Figure 2.10: Noisy BPSK waveform.

However, in the presence of noise, the received waveform may look like that shown in Figure 2.10. In this
case, sampling at any point other than the symbol transitions does not guarantee a correct data decision.
By averaging over the symbol duration we can obtain a better estimate of the true data bit being sent (+1
or −1). The best averaging �lter is the matched �lter, which has the impulse response u [n]− u [n− Tsymb],
where u [n] is the unit step function, for the simple rectangular pulse shape used in Digital Transmitter:
Introduction to Quadrature Phase-Shift Keying20. 21Figure 2.11 and Figure 2.12 show the result of passing
both the clean and noisy signal through the matched �lter.

20"Digital Transmitter: Introduction to Quadrature Phase-Shift Keying" <http://cnx.org/content/m10042/latest/>
21For digital communications schemes involving di�erent pulse shapes, the form of the matched �lter will be di�erent. Refer

to the listed references for more information on symbol timing and matched �lters for di�erent symbol waveforms.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

75

Figure 2.11: Averaging �lter output for clean input.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

76 CHAPTER 2. PROJECT LABS

Figure 2.12: Averaging �lter output for noisy input.

Note that in both cases the output of the matched �lter has peaks where the matched �lter exactly lines
up with the symbol, and a positive peak indicates a +1 was sent; likewise, a negative peak indicates a −1
was sent. Although there is still some noise in second �gure, the peaks are relatively easy to distinguish
and yield considerably more accurate estimation of the data (+1 or −1) than we could get by sampling the
original noisy signal in Figure 2.10.

The remainder of this handout describes a symbol-timing recovery loop for a BPSK signal (equivalent
to a QPSK signal where only the in-phase signal is used). As with the above examples, a symbol period of
Ts = 16 samples is assumed.

2.3.3.1.1 Early/late sampling

One simple method for recovering symbol timing is performed using a delay-locked loop (DLL). Figure 2.13
is a block diagram of the necessary components.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

77

Figure 2.13: DLL block diagram.

Consider the sawtooth waveform shown in Figure 2.11, the output of the matched �lter with a square
wave as input. The goal of the DLL is to sample this waveform at the peaks in order to obtain the best
performance in the presence of noise. If it is not sampling at the peaks, we say it is sampling too early or
too late.

The DLL will �nd peaks without assistance from the user. When it begins running, it arbitrarily selects
a sample, called the on-time sample, from the matched �lter output. The sample from the time-index one
greater than that of the on-time sample is the late sample, and the sample from the time-index one less
than that of the on-time sample is the early sample. Figure 2.14 shows an example of the on-time, late,
and early samples. Note in this case that the on-time sample happens to be at a peak in the waveform.
Figure 2.15 and Figure 2.16 show examples in which the on-time sample comes before a peak and after the
peak.

The on-time sample is the output of the DLL and will be used to decide the data bit sent. To achieve the
best performance in the presence of noise, the DLL must adjust the timing of on-time samples to coincide
with peaks in the waveform. It does this by changing the number of time-indices between on-time samples.
There are three cases:

1. In Figure 2.14, the on-time sample is already at the peak, and the receiver knows that peaks are spaced
by Tsymb samples. If it then takes the next on-time sample Tsymb samples after this on-time sample, it
will be at another peak.

2. In Figure 2.15, the on-time sample is too early. Taking an on-time sample Tsymb samples later will
be too early for the next peak. To move closer to the next peak, the next on-time sample is taken
Tsymb + 1 samples after the current on-time sample.

3. In Figure 2.16, the on-time sample is too late. Taking an on-time sample Tsymb samples later will be
too late for the next peak. To move closer to the next peak, the next on-time sample is taken Tsymb−1
samples after the current on-time sample.

The o�set decision block uses the on-time, early, and late samples to determine whether sampling is at a
peak, too early, or too late. It then sets the time at which the next on-time sample is taken.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

78 CHAPTER 2. PROJECT LABS

Figure 2.14: Sampling at a peak.

Figure 2.15: Sampling too early.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

79

Figure 2.16: Sampling too late.

The input to the o�set decision block is on− time (late− early), called the decision statistic. Convince
yourself that when the decision statistic is positive, the on-time sample is too early, when it is zero, the
on-time sample is at a peak, and when it is negative, the on-time sample is too late. It may help to refer
to Figure 2.14, Figure 2.15, and Figure 2.16. Can you see why it is necessary to multiply by the on-time
sample?

The o�set decision block could adjust the time at which the next on-time sample is taken based only
on the decision statistic. However, in the presence of noise, the decision statistic becomes a less reliable
indicator. For that reason, the DLL adds many successive decision statistics and corrects timing only if the
sum exceeds a threshold; otherwise, the next on-time sample is taken Tsymb samples after the current on-
time sample. The assumption is that errors in the decision statistic caused by noise, some positive and some
negative, will tend to cancel each other out in the sum, and the sum will not exceed the threshold because of
noise alone. On the other hand, if the on-time sample is consistently too early or too late, the magnitude of
the added decision statistics will continue to grow and exceed the threshold. When that happens, the o�set
decision block will correct the timing and reset the sum to zero.

2.3.3.1.2 Sampling counter

The symbol sampler maintains a counter that decrements every time a new sample arrives at the output of
the matched �lter. When the counter reaches three, the matched-�lter output is saved as the late sample,
when the counter reaches two, the matched-�lter output is saved as the on-time sample, and when the
counter reaches one, the matched-�lter output is saved as the early sample. After saving the early sample,
the counter is reset to either Tsymb − 1, Tsymb, or Tsymb + 1, according to the o�set decision block.

2.3.3.2 MATLAB Simulation

Because the DLL requires a feedback loop, you will have to simulate it on a sample-by-sample basis in
MATLAB.

Using a square wave of period 32 samples as input, simulate the DLL system shown in Figure 2.13. Your
input should be several hundred periods long. What does it model? Set the decision-statistic sum-threshold

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

80 CHAPTER 2. PROJECT LABS

to 1.0; later, you can experiment with di�erent values. How do you expect di�erent thresholds to a�ect the
DLL?

Figure 2.17 and Figure 2.18 show the matched �lter output and the on-time sampling times (indicated
by the impulses) for the beginning of the input, before the DLL has locked on, as well as after 1000 samples
(about 63 symbols' worth), when symbol-timing lock has been achieved. For each case, note the distance
between the on-time sampling times and the peaks of the matched �lter output.

Figure 2.17: Symbol sampling before DLL lock.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

81

Figure 2.18: Symbol sampling after DLL lock.

2.3.3.3 DSP Implementation

Once your MATLAB simulation works, DSP implementation is relatively straightforward. To test your
implementation, you can use the function generator to simulate a BPSK waveform by setting it to a square
wave of the correct frequency for your symbol period. You should send the on-time sample and the matched-
�lter output to the D/A to verify that your system is working.

2.3.3.4 Extensions

As your �nal project will require some modi�cation to the discussed BPSK signaling, you will want to refer to
the listed references, (see Proakis[11] and Blahut[2], and consider some of the following questions regarding
such modi�cations:

• How much noise is necessary to disrupt the DLL?
• What happens when the symbol sequence is random (not simply [+1,−1,+1,−1, . . .])?
• What would the matched �lter look like for di�erent symbol shapes?

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

82 CHAPTER 2. PROJECT LABS

• What other methods of symbol-timing recovery are available for your application?
• How does adding decision statistics help suppress the e�ects of noise?

2.4 Video Processing

2.4.1 Video Processing Manuals22

2.4.1.1 Essential documentation for the 6000 series TI DSP

The following documentation will certainly prove useful:

• The IDK Programmer's Guide23

• The IDK User's Guide24

• The IDK Video Device Drivers User's Guide25

note: Other manuals may be found on TI's website26 by searching for TMS320C6000 IDK

2.4.2 Video Processing Part 1: Introductory Exercise27

2.4.2.1 Introduction

The purpose of this lab is to acquaint you with the TI Image Developers Kit (IDK). The IDK contains a
�oating point C6711 DSP, and other hardware that enables real time video/image processing. In addition to
the IDK, the video processing lab bench is equipped with an NTSC camera and a standard color computer
monitor.

You will complete an introductory exercise to gain familiarity with the IDK programming environment.
In the exercise, you will modify a C skeleton to horizontally �ip and invert video input (black and white)
from the camera. The output of your video processing algorithm will appear in the top right quadrant of
the monitor.

In addition, you will analyze existing C code that implements �ltering and edge detection algorithms
to gain insight into IDK programming methods. The output of these "canned" algorithms, along with the
unprocessed input, appears in the other quadrants of the monitor.

Finally, you will create an auto contrast function. And will also work with a color video feed and create
a basic user interface, which uses the input to control some aspect of the display.

An additional goal of this lab is to give you the opportunity to discover tools for developing an original
project using the IDK.

2.4.2.1.1 Important Documentation

The following documentation will certainly prove useful:

• The IDK User's Guide28 . Section 2 is the most important.
• The IDK Video Device Drivers User's Guide29 . The sections on timing are not too important, but

pay attention to the Display and Capture systems and have a good idea of how they work.

22This content is available online at <http://cnx.org/content/m10889/2.5/>.
23http://www-s.ti.com/sc/psheets/spru495a/spru495a.pdf
24http://www-s.ti.com/sc/psheets/spru494a/spru494a.pdf
25http://www-s.ti.com/sc/psheets/spru499/spru499.pdf
26http://www.ti.com
27This content is available online at <http://cnx.org/content/m11987/1.2/>.
28http://www-s.ti.com/sc/psheets/spru494a/spru494a.pdf
29http://www-s.ti.com/sc/psheets/spru499/spru499.pdf

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

83

• The IDK Programmer's Guide30 . Sections 2 and 5 are the ones needed. Section 2 is very, very
important in Project Lab 2. It is also useful in understanding �streams� in project lab 1.

note: Other manuals may be found on TI's website31 by searching for TMS320C6000 IDK

2.4.2.2 Video Processing - The Basics

The camera on the video processing lab bench generates a video signal in NTSC format. NTSC is a standard
for transmitting and displaying video that is used in television. The signal from the camera is connected to
the "composite input" on the IDK board (the yellow plug). This is illustrated in Figure 2-1 on page 2-3 of
the IDK User's Guide. Notice that the IDK board is actually two boards stacked on top of each other. The
bottom board contains the C6711 DSP, where your image processing algorithms will run. The daughterboard
is on top, it contains the hardware for interfacing with the camera input and monitor output. For future
video processing projects, you may connect a video input other than the camera, such as the output from a
DVD player. The output signal from the IDK is in RGB format, so that it may be displayed on a computer
monitor.

At this point, a description of the essential terminology of the IDK environment is in order. The video
input is �rst decoded and then sent to the FPGA, which resides on the daughterboard. The FPGA is
responsible for video capture and for the �lling of the input frame bu�er (whose contents we will read). For
a detailed description of the FPGA and its functionality, we advise you to read Chapter 2 of the IDK User's
Guide.

The Chip Support Library (CSL) is an abstraction layer that allows the IDK daughterboard to be used
with the entire family of TI C6000 DSPs (not just the C6711 that we're using); it takes care of what is
di�erent from chip to chip.

The Image Data Manager (IDM) is a set of routines responsible for moving data between on-chip internal
memory, and external memory on the board, during processing. The IDM helps the programmer by taking
care of the pointer updates and bu�er management involved in transferring data. Your DSP algorithms
will read and write to internal memory, and the IDM will transfer this data to and from external memory.
Examples of external memory include temporary "scratch pad" bu�ers, the input bu�er containing data
from the camera, and the output bu�er with data destined for the RGB output.

The two di�erent memory units exist to provide rapid access to a larger memory capacity. The external
memory is very large in size � around 16 MB, but is slow to access. But the internal is only about 25 KB or
so and o�ers very fast access times. Thus we often store large pieces of data, such as the entire input frame,
in the external memory. We then bring it in to internal memory, one small portion at a time, as needed.
A portion could be a line or part of a line of the frame. We then process the data in internal memory and
then repeat in reverse, by outputting the results line by line (or part of) to external memory. This is full
explained in Project Lab 2, and this manipulation of memory is important in designing e�cient systems.

The TI C6711 DSP uses a di�erent instruction set than the 5400 DSP's you are familiar with in lab.
The IDK environment was designed with high level programming in mind, so that programmers would be
isolated from the intricacies of assembly programming. Therefore, we strongly suggest that you do all your
programming in C. Programs on the IDK typically consist of a main program that calls an image processing
routine.

The main program serves to setup the memory spaces needed and store the pointers to these in objects
for easy access. It also sets up the input and output channels and the hardware modes (color/grayscale ...).
In short it prepares the system for our image processing algorithm.

The image processing routine may make several calls to specialized functions. These specialized functions
consist of an outer wrapper and an inner component. The wrapper oversees the processing of the entire image,
while the component function works on parts of an image at a time. And the IDM moves data back and
forth between internal and external memory.

30http://www-s.ti.com/sc/psheets/spru495a/spru495a.pdf
31http://www.ti.com

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

84 CHAPTER 2. PROJECT LABS

As it brings in one line in from external memory, the component function performs the processing on
this one line. Results are sent back to the wrapper. And �nally the wrapper contains the IDM instructions
to pass the output to external memory or wherever else it may be needed.

Please note that this is a good methodology used in programming for the IDK. However it is very �exible
too, the "wrapper" and "component functions" are C functions and return values, take in parameters and
so on too. And it is possible to extract/output multiple lines or block etc. as later shown.

In this lab, you will modify a component to implement the �ipping and inverting algorithm. And you
will perform some simple auto-contrasting as well as work with color.

In addition, the version of Code Composer that the IDK uses is di�erent from the one you have used
previously. The IDK uses Code Composer Studio v2.1. It is similar to the other version, but the process of
loading code is slightly di�erent.

2.4.2.3 Code Description

2.4.2.3.1 Overview and I/O

The next few sections describe the code used. First please copy the �les needed by following the instructions
in the "Part 1" section of this document. This will help you easily follow the next few parts.

The program �ow for image processing applications may be a bit di�erent from your previous experiences
in C programming. In most C programs, the main function is where program execution starts and ends. In
this real-time application, the main function serves only to setup initializations for the cache, the CSL, and
the DMA (memory access) channel. When it exits, the main task, tskMainFunc(), will execute automatically,
starting the DSP/BIOS. It will loop continuously calling functions to operate on new frames and this is where
our image processing application begins.

The tskMainFunc(), in main.c, opens the handles to the board for image capture (VCAP_open()) and to
the display (VCAP_open()) and calls the grayscale function. Here, several data structures are instantiated
that are de�ned in the �le img_proc.h. The IMAGE structures will point to the data that is captured by
the FPGA and the data that will be output to the display. The SCRATCH_PAD structure points to our
internal and external memory bu�ers used for temporary storage during processing. LPF_PARAMS is used
to store �lter coe�cients for the low pass �lter.

The call to img_proc() takes us to the �le img_proc.c. First, several variables are declared and de�ned.
The variable quadrant will denote on which quadrant of the screen we currently want output; out_ptr will
point to the current output spot in the output image; and pitch refers to the byte o�set (distance) between
two lines. This function is the high level control for our image-processing algorithm. See algorithm �ow.

Figure 2.19: Algorithm Flow

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

85

The �rst function called is the pre_scale_image function in the �le pre_scale_image.c. The purpose of
this function is to take the 640x480 image and scale it down to a quarter of its size by �rst downsampling
the input rows by two and then averaging every two pixels horizontally. The internal and external memory
spaces, pointers to which are in the scratch pad, are used for this task. The vertical downsampling occurs
when every other line is read into the internal memory from the input image. Within internal memory,
we will operate on two lines of data (640 columns/line) at a time, averaging every two pixels (horizontal
neighbors) and producing two lines of output (320 columns/line) that are stored in the external memory.

To accomplish this, we will need to take advantage of the IDM by initializing the input and output
streams. At the start of the function, two instantiations of a new structure dstr_t are declared. You can
view the structure contents of dstr_t on p. 2-11 of the IDK Programmer's Guide. These structures are
stream "objects". They give us access to the data when using the dstr_open() command. In this case
dstr_i is an input stream as speci�ed in the really long command dstr_open(). Thus after opening this
stream we can use the get_data command to get data one line at a time. Streams and memory usage are
described in greater detail in the second project lab. This data �ow for the pre-scale is shown in data �ow.

Figure 2.20: Data �ow of input and output streams.

To give you a better understanding of how these streams are created, let's analyze the parameters passed
in the �rst call to dstr_open() which opens an input stream.

External address: in_image->data This is a pointer to the place in external memory serving as the source
of our input data (it's the source because the last function parameter is set to DSTR_INPUT). We're going
to bring in data from external to internal memory so that we can work on it. This external data represents
a frame of camera input. It was captured in the main function using the VCAP_getframe() command.

External size: (rows + num_lines) * cols = (240 + 2) * 640 This is the total size of the input data which
we will bring in. We will only be taking two lines at a time from in_image->data, so only 240 rows. The
"plus 2" represents two extra rows of input data which represent a bu�er of two lines - used when �ltering,
which is explained later.

Internal address: int_mem This is a pointer to an 8x640 array, pointed to by scratchpad->int_data.
This is where we will be putting the data on each call to dstr_get(). We only need part of it, as seen in the
next parameter, as space to bring in data.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

86 CHAPTER 2. PROJECT LABS

Internal size: 2 * num_lines * cols = 2 * 2 * 640 The size of space available for data to be input into
int_mem from in_image->data. We pull in two lines of the input frame so it num_lines * cols. We have
the multiply by 2 as we are using double bu�ering for bringing in the data. We need double the space in
internal memory than the minimum needed, the reason is fully explained in IDK Programmer's Guide.

Number of bytes/line: cols = 640, Number of lines: num_lines = 2 Each time dstr_get_2D() is called,
it will return a pointer to 2 new lines of data, 640 bytes in length. We use the function dstr_get_2D(), since
we are pulling in two lines of data. If instead we were only bringing in one line, we would use dstr_get()
statements.

External memory increment/line: stride*cols = 1*640 The IDM increments the pointer to the external
memory by this amount after each dstr_get() call.

Window size: 1 for double bu�ered single line of data (Look at the three documentation pdfs for a full
explanation of double bu�ering) The need for the window size is not really apparent here. It will become
apparent when we do the 3x3 block convolution. Then, the window size will be set to 3 (indicating three
lines of bu�ered data). This tells the IDM to send a pointer to extract 3 lines of data when dstr_get() is
called, but only increment the stream's internal pointer by 1 (instead of 3) the next time dstr_get() is called.
Thus you will get overlapping sets of 3 lines on each dstr_get() call. This is not a useful parameter when
setting up an output stream.

Direction of input: DSTR_INPUT Sets the direction of data �ow. If it had been set to DSTR_OUTPUT
(as done in the next call to dstr_open()), we would be setting the data to �ow from the Internal Address to
the External Address.

We then setup our output stream to write data to a location in external memory which we had previously
created.

Once our data streams are setup, we can begin processing by �rst extracting a portion of input data
using dstr_get_2D(). This command pulls the data in and we setup a pointer (in_data) to point to this
internal memory spot. We also get a pointer to a space where we can write the output data (out_data)
when using dstr_put(). Then we call the component function pre_scale() (in pre_scale.c) to operate on the
input data and write to the output data space, using these pointers.

The prescaling function will perform the horizontal scaling by averaging every two pixels. This algorithm
operates on four pixels at a time. The entire function is iterated within pre_scale_image() 240 times, which
results in 240 * 2 rows of data being processed � but only half of that is output.

Upon returning to the wrapper function, pre_scale_image, a new line is extracted; the pointers are
updated to show the location of the new lines and the output we had placed in internal memory is then
transferred out. This actually happens in the dstr_put() function � thus is serves a dual purpose; to give us
a pointer to internal memory which we can write to, and the transferring of its contents to external memory.

Before pre_scale_image() exits, the data streams are closed, and one line is added to the top and bottom
of the image to provide context necessary for the next processing steps (The extra two lines - remember?).
Also note, it is VERY important to close streams after they have been used. If not done, unusual things
such as random crashing and so may occur which are very hard to track down.

Now that the input image has been scaled to a quarter of its initial size, we will proceed with the four
image processing algorithms. In img_proc.c, the set_ptr() function is called to set the variable out_ptr to
point to the correct quadrant on the 640x480 output image. Then copy_image(), copy_image.c, is called,
performing a direct copy of the scaled input image into the lower right quadrant of the output.

Next we will set the out_ptr to point to the upper right quadrant of the output image and call
conv3x3_image() in conv3x3_image.c. As with pre_scale_image(), the _image indicates this is only the
wrapper function for the ImageLIB (library functions) component, conv3x3(). As before, we must setup
our input and output streams. This time, however, data will be read from the external memory (where
we have the pre-scaled image) and into internal memory for processing, and then be written to the output
image. Iterating over each row, we compute one line of data by calling the component function conv3x3()
in conv3x3.c.

In conv3x3(), you will see that we perform a 3x3 block convolution, computing one line of data with the
low pass �lter mask. Note here that the variables IN1[i], IN2[i], and IN3[i] all grab only one pixel at a time.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

87

This is in contrast to the operation of pre_scale() where the variable in_ptr[i] grabbed 4 pixels at a time.
This is because in_ptr was of type unsigned int, which implies that it points to four bytes (the size of an
unsigned int is 4 bytes) of data at a time. IN1, IN2, and IN3 are all of type unsigned char, which implies
they point to a single byte of data. In block convolution, we are computing the value of one pixel by placing
weights on a 3x3 block of pixels in the input image and computing the sum. What happens when we are
trying to compute the rightmost pixel in a row? The computation is now bogus. That is why the wrapper
function copies the last good column of data into the two rightmost columns. You should also note that the
component function ensures output pixels will lie between 0 and 255. For the same reason we provided the
two extra "copied" lines when performing the prescale.

Back in img_proc.c, we can begin the edge detection algorithm, sobel_image(), for the lower left quadrant
of the output image. This wrapper function, located in sobel_image.c, performs edge detection by utilizing
the assembly written component function sobel() in sobel.asm. The wrapper function is very similar to
the others you have seen and should be straightforward to understand. Understanding the assembly �le is
considerably more di�cult since you are not familiar with the assembly language for the c6711 DSP. As
you'll see in the assembly �le, the comments are very helpful since an "equivalent" C program is given there.

The Sobel algorithm convolves two masks with a 3x3 block of data and sums the results to produce a
single pixel of output. One mask has a preference for vertical edges while the other mask for horizontal ones.
This algorithm approximates a 3x3 nonlinear edge enhancement operator. The brightest edges in the result
represent a rapid transition (well-de�ned features), and darker edges represent smoother transitions (blurred
or blended features).

2.4.2.4 Part One

This section provides a hands-on introduction to the IDK environment that will prepare you for the lab
exercise. First, connect the power supply to the IDK module. Two green lights on the IDK board should be
illuminated when the power is connected properly.

You will need to create a directory img_proc for this project in your home directory. Enter this new
directory, and then copy the following �les as follows (again, be sure you're in the directory img_proc when
you do this):

• copy V:\ece320\idk\c6000\IDK\Examples\NTSC\img_proc
• copy V:\ece320\idk\c6000\IDK\Drivers\include
• copy V:\ece320\idk\c6000\IDK\Drivers\lib

After the IDK is powered on, open Code Composer 2 by clicking on the "CCS 2" icon on the desktop.
From the "Project" menu, select "Open," and then open img_proc.pjt. You should see a new icon appear
at the menu on the left side of the Code Composer window with the label img_proc.pjt. Double click on
this icon to see a list of folders. There should be a folder labeled "Source." Open this folder to see a list of
program �les.

The main.c program calls the img_proc.c function that displays the output of four image processing
routines in four quadrants on the monitor. The other �les are associated with the four image processing
routines. If you open the "Include" folder, you will see a list of header �les. To inspect the main program,
double click on the main.c icon. A window with the C code will appear to the right.

Scroll down to the tskMainFunc() in the main.c code. A few lines into this function, you will see the
line LOG_printf(&trace,"Hello\n"). This line prints a message to the message log, which can be useful for
debugging. Change the message "Hello\n" to "Your Name\n" (the "\n" is a carriage return). Save the �le
by clicking the little �oppy disk icon at the top left corner of the Code Composer window.

To compile all of the �les when the ".out" �le has not yet been generated, you need to use the "Rebuild
All" command. The rebuild all command is accomplished by clicking the button displaying three little red
arrows pointing down on a rectangular box. This will compile every �le the main.c program uses. If you've
only changed one �le, you only need to do a "Incremental Build," which is accomplished by clicking on the
button with two little blue arrows pointing into a box (immediately to the left of the "Rebuild All" button).

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

88 CHAPTER 2. PROJECT LABS

Click the "Rebuild All" button to compile all of the code. A window at the bottom of Code Composer will
tell you the status of the compiling (i.e., whether there were any errors or warnings). You might notice some
warnings after compilation - don't worry about these.

Click on the "DSP/BIOS" menu, and select "Message Log." A new window should appear at the bottom
of Code Composer. Assuming the code has compiled correctly, select "File" -> "Load Program" and load
img_proc.out (the same procedure as on the other version of Code Composer). Now select "Debug" ->
"Run" to run the program (if you have problems, you may need to select "Debug" -> "Go Main" before
running). You should see image processing routines running on the four quadrants of the monitor. The upper
left quadrant (quadrant 0) displays a low pass �ltered version of the input. The low pass �lter "passes" the
detail in the image, and attenuates the smooth features, resulting in a "grainy" image. The operation of
the low pass �lter code, and how data is moved to and from the �ltering routine, was described in detail
in the previous section. The lower left quadrant (quadrant 2) displays the output of an edge detection
algorithm. The top right and bottom right quadrants (quadrants 1 and 3, respectively), show the original
input displayed unprocessed. At this point, you should notice your name displayed in the message log.

2.4.2.4.1 Implementation

You will create the component code �ip_invert.c to implement an algorithm that horizontally �ips and
inverts the input image. The code in �ip_invert.c will operate on one line of the image at a time. The
copyim.c wrapper will call �ip_invert.c once for each row of the prescaled input image. The �ip_invert
function call should appear as follows:

�ip_invert(in_data, out_data, cols);
where in_data and out_data are pointers to the input and output bu�ers in internal memory, and cols

is the length of each column of the prescaled image.
The img_proc.c function should call the copyim.c wrapper so that the �ipped and inverted image appears

in the top right (�rst) quadrant. The call to copyim is as follows: copyim(scratch_pad, out_img, out_ptr,
pitch);

This call is commented out in the im_proc.c code. The algorithm that copies the image (unprocessed)
to the screen is currently displayed in quadrant 1, so you will need to comment out its call and replace it
with the call to copyim.

Your algorithm should �ip the input picture horizontally, such that someone on the left side of the screen
looking left in quadrant 3 will appear on the right side of the screen looking right. This is similar to putting
a slide in a slide projector backwards. The algorithm should also invert the picture, so that something white
appears black and vice versa. The inversion portion of the algorithm is like looking at the negative for a
black and white picture. Thus, the total e�ect of your algorithm will be that of looking at the wrong side of
the negative of a picture.

note: Pixel values are represented as integers between 0 and 255.

To create a new component �le, write your code in a �le called "�ip_invert.c". You may �nd the
component code for the low pass �lter in "conv3x3_c.c" helpful in giving you an idea of how to get started.
To compile this code, you must include it in the "img_proc" project, so that it appears as an icon in Code
Composer. To include your new �le, right click on the "img_proc.pjt" icon in the left window of Code
Composer, and select "Add Files." Compile and run!

2.4.3 Video Processing Part 2: Grayscale and Color32

2.4.3.1 Introduction

The purpose of this project lab is to introduce how to further manipulate data acquired in grayscale mode
and then expand this to the realm of color. This lab is meant as a follow-up to �Video Processing Part 1:
Introductory Exercise,�. This lab will implement a grayscale auto-contrast and color image manipulation.

32This content is available online at <http://cnx.org/content/m11988/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

89

You will complete an introductory exercise to demonstrate your familiarity with the IDK programming
environment. You will then complete an introductory exercise in how to use color; and modify a C skeleton
to apply simple color masks to video input from the camera.

After this lab, you should be able to e�ectively and e�ciently manipulate grayscale images, as well as
modify color images.

You may want to refer to the following TI manuals:

• IDK User's Guide33

• IDK Video Device Drivers User's Guide34

• IDK Programmer's Guide35 . Section 2 is very, very important in this lab.

2.4.3.2 Prelab

Having familiarized yourself with grayscale images in the previous project lab, the �rst part of the prelab
will require you to code a function similar to the �ip_invert function you have already designed, while the
second part of the prelab will introduce how to use and access color images.

2.4.3.2.1 Grayscale

In this part of the prelab exercise, you will develop an algorithm to �nd the maximum and minimum values
of a grayscale input image. Create a function that will process one row of the image at a time and �nd the
overall minimum and maximum intensities in the image.

auto_contrast_�nd_extrema(in_data, min, max, col)

2.4.3.2.2 Color

The NTSC camera acquires images in the color format YCbCr, where Y represents luminosity, Cb the
blue component, and Cr the red component. Each image must be converted to 16-bit RGB for output on a
standard color computer monitor. The function �ycbcr422pl_to_rgb565� performs this conversion. Knowing
how this function converts each pixel to RGB is relatively unimportant, however, knowing the packed (5:6:5)
RBG format is essential.

Before we ignore the ycbcr422pl_to_rgb565 function completely, it is useful to look at how it operates.
Find the run time of the function by examining the �le �ycbcr422pl_to_rgb565.c� and note that it must
convert an even number of pixels at a time. If it were possible to have this function process the whole color
image at in one function call, how many clock cycles would the function take? Since we are limited in the
number of rows we can modify at a time, how many clock cycles should it take to process the whole image
one row at a time? To demonstrate the overhead needed for this function, note how many clock cycles the
function would take if it converted the whole image two pixels at a time.

33http://www-s.ti.com/sc/psheets/spru494a/spru494a.pdf
34http://www-s.ti.com/sc/psheets/spru499/spru499.pdf
35http://www-s.ti.com/sc/psheets/spru495a/spru495a.pdf

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

90 CHAPTER 2. PROJECT LABS

Figure 2.21: RGB (5:6:5). A packed RGB pixel holds 5 bits for red, 6 bits for green, and 5 bits for
blue.

Since each color is not individually addressable in the packed RGB format (e.g. bits representing red
and blue are stored in the same byte), being able to modify di�erent bits of each byte is necessary. To help
clarify what bits are being set/cleared/toggled, numbers can be represented in hex format. For example, the
integer 58 can be represented by �00111010� in binary or by �3A� in hex. In C, hex numbers are indicated
with the pre�x �0x.�

Example:

• int black = 0x00; // black = 0
• int foo_h = 0xF0; // foo_h = 240
• int foo_l = 0x0D; // foo_l = 13

Another thing to note is that each pixel requires two bytes of memory, requiring two memory access
operations to alter each pixel. Also NOTE that in a row of input color data, the indexing starts at 1. Thus
RGB[1] contains red/green data and then RGB[2] contains the green/blue data � both for the �rst pixel.

What is the packed RGB value for the highest intensity green? What is the value of the �rst addressable
byte of this `hi-green' pixel? What is the value of the second byte?

Now, say you are given the declaration of a pixel as follows:
int pixel;
Write a simple (one line is su�cient) section of code to add a blue tint to a pixel. Do the same for adding

a red tint, and for a green tint (may require more than one line). Use the and (represented by an ampersand)
operator to apply a mask.

2.4.3.3 Implementation

The �rst part of this lab will require you to write a function to perform auto-contrasting. You should use
your function from prelab 2.1 to obtain the maximum and minimum values of the image, and then create
another function to do the appropriate scaling.

The second part of this lab will involve implementing some simple, and hopefully cool, color e�ects.

2.4.3.3.1 Grayscale

Use the function you designed in prelab 2.1 to create an algorithm to auto-contrast the image. Auto-contrast
is accomplished by scaling the pixel value from the min-to-max range to the full range. This e�ect is seen
below:

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

91

Figure 2.22: (left) Frequency of a grayscale image with pixel intensities ranging in value from 32 to
128, and (right) Frequency of the same grayscale image after performing an auto-contrast.

Recall from �Introduction to the IDK� that the DSP has a �oating point unit; the DSP will perform
�oating point instructions much faster than integer division, quare-root, etc.

Example:

• int opposite, adjacent;
• �oat tan;
• tan = ((�oat) opposite) / ((�oat) adjacent);

This function should be called similarly to the �ip_invert function in the previous lab. Once you have
implemented your function, look for ways to optimize it. Notice that you must loop through the image twice:
once to �nd the minimum and maximum values, and then again to apply the scaling. (Hint: the function
dstr_rewind rewinds the image bu�er).

Use the same core �les for this part of the lab as were used in the previous lab. You may simply make a
copy of the previous lab's folder and develop the necessary code from there.

2.4.3.3.2 Color

In this part of the lab, you will use the concepts from the prelab to implement certain e�ects.
Copy the directory �V:\ece320\projects\colorcool� to your W: drive.
We want to use a certain area of the screen as a "control surface". For example, the �ngers held up on

a hand placed within that area can be used as a parameter, to control the image on the screen. Speci�cally,
we will use the total brightness of this control surface to control the color tint of the screen.

You are given a shell program which takes in a color input frame in YcbCr format and converts it to
RGB. You will modify this shell to

• 1. Calculate the total brightness
• 2. Calculate the tint for each color component R, G and B.
• 3. Apply the tint to the image

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

92 CHAPTER 2. PROJECT LABS

2.4.3.3.2.1 Code Brie�ng

The code provided merely performs a color conversion required to go from the input NTSC image to the
output RGB image. The relevant streams of data are brought in using the in_luma, in_cr, in_cb odd and
even streams

The odd, even is done because the input YcbCr data is interlaced and the di�erent "color" components
Y(luminance), Cr, and Cb are stored in di�erent arrays, unlike RGB where the data is packed together for
each pixel. Thus the streams are accessed inside the color_conv_image wrapper function. We then pass a
line at a time to the color_conv component function which converts and �ips one line at a time.

We will need to modify the code here, in color_conv to achieve your goals. The control surface will be
a square block 100 by 100 pixels in the bottom left corner of the screen. The brightness will be calculated
by summing all the R, G and B values of all the pixels in this portion of the screen. We then apply the tint
e�ect as such:

• if the total brightness is below a certain level 'X': use a red tint,
• if the total brightness is above 'X' and below 'Y' : use a green tint,
• if above 'Y' : use a blue tint

The tint has to be scaled too. For example, if brightness is less than X but close to it we need a high
blue. But if it's closer to zero we need a darker blue and so on. The scaling need not be linear. In fact if
you did the auto-contrast function you will have noticed that the �oating point operations are expensive,
they tend to slow the system. This is more so in the color case, as we have more data to scale. So try to use
simple bit shifts to achieve the needed e�ect.

• Right Shift : �
• Left Shift : �
• Masking : Use a single ampersand, so to extract the �rst red component: RGB[1] & 0xF8

2.4.3.3.2.2 Tips and Tricks

You're on your own now! But some things to remember and to watch out for are presented here, as well as
ideas for improvement. Remember:

• The input is two bytes per pixel. Keep the packed RGB format in mind.
• Also we process one line at a time from top to bottom. We cannot go back to previous lines to change

them. So we can only modify the tint of the screen below the control surface. What you could do
however is keep global variables for the di�erent scalings in main. Then pass these to color_conv by
reference, and update it when converting colors. But perform the update after using the existing scale
values to scale the screen region above the control surface. This will introduce a delay from scaling
change to screen update. This can be solved by copying the entire input to memory before outputting
it but this is quite expensive, and we'll deal with memory in the next section.

• Be careful when performing masking, shifting and separting. Bring things down to least signi�cant
set of bits (within a byte) to simplify thinking of the scaling. Also be careful not to overlap masks,
especially during shifting and adding

Here are a few recommendations:

• Try to use the Y data passed to the color_con funtion to compute the brightness � much faster.
• Also poke around and �nd out how to use the Cr, Cb data and scale those. It's far less expensive and

may produce neater results.
• If something doesn't work, think things through again. Or better still take a break and then come

back to the problem.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

93

2.4.4 Video Processing Part 3: Memory Management36

2.4.4.1 Introduction

In this project, you will learn how to combine the use of the external and internal memory systems of the
IDK, as well as how to use the TI-supplied library functions. It may seem daunting, but fear not, there are
only a few commands to learn. The key is to know how to use them well.

The project assignment will involve copying a portion of the input image and displaying it in a di�erent
area of the screen. The area copied to should be quickly and easily adjustable in the code. In addition to
this, we will �lter this copied portion and display it as well.

And you must refer to the following TI manuals available on the class website under the Projects section.
The sections mentioned in Video Processing Lab 1 are also important.

• IDK Video Device Drivers User's Guide37 The Display and Capture systems are important � the �gures
on pages 2-7 and 3-8 are useful too.

• IDK Programmer's Guide38 . Sections 2 and 5 are the ones needed. Section 2 is very important here.
Keep a printout if necessary, it is useful as a reference.

2.4.4.2 Memory - The Basics

As explained in the previous lab, there are two sections of memory, internal and external. The internal is
small but fast, whereas the external is large but slow. An estimate of the sizes: 25K for the internal, 16M
for the external, in bytes.

As seen earlier, this necessitates a system of transferring memory contents between the two memory
systems. For example, an input color screen is in YCbCr format. This consists of 640 X 480 pixels with 8
bits per pixel. This results in 300 Kbytes, which cannot be stored in internal memory. This same problem
applies for the output bu�er.

Thus it is best to use the external memory for storage of large chunks of data, and the internal memory
for processing of smaller chunks. An example of this, as seen in the previous lab, was color conversion. In
that system, we brought in the input frame line-by-line into internal memory. We then converted the color
space and stored the results in internal memory as well. Following this, we transferred the results to external
memory.

This is the basic overview of the need for the two memory systems. Next we will discuss the setup and
use of memory spaces, explaining the workings of the color conversion program

2.4.4.3 Memory - Setup

Firstly, please copy the directory below to your account so you can follow the code as we go along.
V:\ece320\projects\colorcool
The program in this directory is a basic color conversion program which outputs the input frame to the

display.

2.4.4.3.1 Allocating Memory Space

The �rst step in using memory is to declare it, i.e. tell the compiler to setup some space for it. This is done
at the very beginning of the `main.c' �le.

• 1. Declare the type of memory space and it's name. Use the #pragma DATA_SECTION command. There
are two parameters :

· a) the name of the memory spaces

36This content is available online at <http://cnx.org/content/m11989/1.2/>.
37http://www-s.ti.com/sc/psheets/spru499/spru499.pdf
38http://www-s.ti.com/sc/psheets/spru495a/spru495a.pdf

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

94 CHAPTER 2. PROJECT LABS

· b) and the type � internal or external

• 2. Then specify the byte alignment using the #pragma DATA_ALIGN command. This is similar to
the byte alignment in the C54x. So, to store black and white images, you would use 8 bits. But for
RGB, you would use 16 bits.

// specifies name of mem space -- ext_mem

// and type as internal memory -- ".image:ext_sect"

// the data_align specification is the byte alignment -- ours is

// 8 bits

#pragma DATA_SECTION(ext_mem,".image:ext_sect");

#pragma DATA_ALIGN(ext_mem,8);

// specifies name of mem space -- int_mem

// and type as internal memory -- ".image:int_sect"

// the data_align specification is the byte alignment -- ours is

// 8 bits

#pragma DATA_SECTION(int_mem,".chip_image:int_sect");

#pragma DATA_ALIGN(int_mem, 16);

• We then specify the size of the memory space. We use a variable for the basic unit size (e.g. unsigned
char for 1 byte) and a length for the number of basic units needed. Please note, the memory space is
not delineated by `image' rows or columns, The system thinks it is one long array of data, it is up to
us to process this as separate lines of `image' data.

// specify size as width 640

// height 480

// and 8 bytes per pixel

// which could represent an RGB screen of 640 X 480 with

// 2 bytes per pixel. Unsigned char = 8 bytes

unsigned char ext_mem[640 * 480 * 2];

// here we create 6 lines of RGB data of 640 columns each,

// 2 bytes per pixel

unsigned char int_mem[6 * 2 * 640];

Now have a look at the main.c �le and take note of the memory spaces used. The internal memory
is of size 12 * 640. This single memory space is going to be used to store both the input lines from the
camera image and also the results of the color conversion, thus explaining its large size. Basically the internal
memory is partitioned by us for di�erent bu�ers. The output data bu�er needs only 4*640 bytes thus it's
space starts at

int_mem + (8 * cols); //cols = 640

and ends at 12*cols � which gives us 4*cols of space. Though it is useful to partition internal memory
in such a way, it is recommended not to. It is very easy to mess up the other data too, so simple, so our
solution would have been to create a separate memory space of size 4*cols.

The external memory, though declared here, will not be used in the program, however you may need to
allocate some external memory for this project lab assignment.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

95

2.4.4.3.2 The INPUT and OUTPUT bu�ers and Main.c Details

Good examples of the external memory use are the input bu�er (captured image) and output bu�er (to be
placed onto the screen). There are a few steps in obtaining these bu�ers:

• 1. First, we open the capture and display devices in tskMainFunc() using

VDIS_open();

VCAP_open();

• 2. If the open calls are successful, we then call the color function to process the video feed using

color(VCAP_NTSC, VDIS_640X480X16, numFrames);

This speci�es:

· the capture image format � NTSC
· display image format and size
· numFrames to run the system for � in our case one day to be passed on to the color function.

Please note, we merely specify the formats but do not con�gure the system to use these formats,
yet.

We then move on to the color(. . .) function within main.c
• 3. First we declare some useful pointers which we will use for the various images and their com-

ponents and so forth. The IMAGE structure holds a pointer to the image array (img_data). In
addition, it holds integers for the number of image rows (img_rows) and number of image columns
(img_cols).(Implementation Details in img_proc.h) Declare more of these structures as needed for any
memory spaces you create yourself. Furthermore, �scratch_pad� structures hold information about the
location and size of internal and external memories. This is another use of pointers being used to hold
the locations of the di�erent memory spaces. (Implementation Details in img_proc.h) We also con�g-
ure the display and capture formats using

VDIS_config(displayMode);

VCAP_config(captureMode);

• Following this we enter the loop :

for (frameCnt=0; frameCnt<numFrames; frameCnt++)

This loop iterates for a set number of frames and processes them one at a time. And the lines following
this :

input = VCAP_getFrame(SYS_FOREVER);

output = (Uint16*)VDIS_toggleBuffs(0);

are used to obtain the capture and output frames. After this statement, `input' will hold a pointer
to external memory where the captured frame is stored. The `input' pointer holds pointers `y1', `c1'
etc to the di�erent color component of the image. These color components are in external memory as
well. And `output' will hold a pointer to a bu�er in external memory, to which we will write whatever
we need to output to the screen. Basically the bu�er is the size of the output frame (640 X 480
X 2 bytes/pixel), and we can write what we wish to it. And, the next time togglebufs(0) is called,
everything we placed in that bu�er will be put on the screen. And a new bu�er will be allocated, the
pointer `output' will be updated and we can now write to the next frame. The next line

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

96 CHAPTER 2. PROJECT LABS

out_image.img_data = (unsigned char *) output;

updates the pointers we had setup. We then move on to the color_convert(..) routine. We pass
the memory pointers we had created so that our color_conv program can process the input frame we
obtained. In color_conv, we begin by setting up streams to bring in data and streams to send out
data. After that we begin the color-space conversion.

2.4.4.4 Memory Streams

Memory streams are structures used to facilitate the transfer of data between internal and external memory.
But why do we need a structure? Can't we just do it manually?

You could, but you'd spend two months to do the same work as a single stream, which only takes a few
minutes (hopefully). So to cut a long story short, streams are your friends. They help remove much of the
complexity associated with internal/external memory transfers.

First, please make sure you've read the manual sections mentioned on page 1. There are two basic types
of streams : input and output. Input is a transfer from external to internal. Output is the opposite. Think
of bringing in and putting out.

For each type we need to specify various parameters, such source and destination addresses, increments,
size of transfer chunks and so forth. This speci�cation is done once for each transfer session (say, once for
each image transfer), using the dstr_open command. We then use dstr_get and dstr_put commands to tell
the stream to bring in or put out data one chunk at a time.

2.4.4.4.1 Creating and Destroying Streams

Streams are dstr_t objects. You can create a dstr_t object and then initialize it using the dstr_open()
command. Basically, start with,

dstr_t o_dstr;

Then use the

dstr_open (. . .);

The dstr_open () speci�cation is given in the manual. Some clari�cations are made here. As an example we
will consider the output stream o_dstr in color_convert(). This stream is an output stream. This stream
is used to transfer data from internal memory to the screen output data bu�er. (we captured the bu�er's
memory location in the previous section using togglebufs(), it's memory address is stored in the pointer
out_image->img_data)

Arguments (note : out_rows = 480, out_cols = 640):

•

dstr_t *dstr

needs a pointer to the data stream object we wish to use. In our case this would be o_dstr.
•

void *x_data

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

97

takes a pointer to the location in external memory which we are using. In our program this is speci�ed
in out_image->img_data. And since we are using an output stream, this argument speci�es the
Destination of the stream. (This argument is the Source for an input stream)

•

int x_size

takes in the size of the external data bu�er to which we are writing to. This speci�es the actual number
of bytes of external memory we will be traversing. So this is NOT necessarily the full size of the output
bu�er (i.e. NOT always 640 X 480 X 2) For our example we are writing to the full screen hence we use

(2 * out_rows * out_cols)

which results in 640 X 480 X 2 bytes of data. An example of the exception is when we write to only,
say, the �rst 10 rows of the screen. In this case we would only traverse: 10 X 640 X 2 bytes. One more
thing to note is that if you need to only write to the �rst 40 columns of the �rst 10 rows, you would
still need to traverse the same amount of space and you would use 10 X 640 X 2 bytes again for this
argument. In this case however, you will be skipping some of the data, as shown later.

•

void *i_data

takes a pointer to the location in internal memory we are using. In our program this is speci�ed as
out_data. And since we are using an output stream, this argument speci�es the Source of our stream.
(This argument is the Destination for an input stream).

•

unsigned short i_size

is used to specify the total size of the internal memory we will be using. In our case we will be writing
one line of the output screen - (4 * out_cols) This is the amount we allocated earlier. This evaluates
to 640 * 2 * 2 bytes. The extra `2' is needed for double-bu�ering, which is a system used by the IDK
for transferring data into internal memory. Basically, the IDM (image data manger) needs twice the
amount of internal memory as data transferred. i.e. one line is worth only 640 * 2 bytes, but because
of double bu�ering we allocate twice that for the IDM's use. Remember this when allocating memory
space for internal memory.

•

unsigned short quantum

speci�es the amount of data transferred in a single dstr_get or dstr_put statement. In our case it
would be (2 * out_cols). This evaluates to 640 * 2 bytes � one line of the output screen each time
we use dstr_put Now, if we were transferring only part of a line, let's take the �rst 40 columns of
the �rst 10 rows example. With each dstr_put, we will output only the �rst forty columns of each
row. Thus we are transferring 40 * 2 bytes in each call. But this can be extended further. By use
of the `dstr_get_2D' we can transfer multiple lines of data. So we can, say, transfer two full rows of
the output screen (4 * cols) or in our mini-example this would mean 2 * 40 * 2 bytes. Transferring of
multiple lines is very useful, especially when using �lters which work on 2-D `regions' of data.

•

unsigned short multiple

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

98 CHAPTER 2. PROJECT LABS

speci�es the number of lines we are transferring with each call. Now this is not the conceptual number
of lines. It is the physical multiple of argument 6 that we are transferring. It is best to leave this at
one and modify argument 6 above.

•

unsigned short stride

needs the amount by which to move the external memory pointer. This gives us control over how the
lines are extracted. In our case, it being the simplest, we move one line at a time : 2*out_cols The
stride pointer is especially useful when creating input streams. For example you can pull in overlapping
lines of input. So you can pull in lines 1 and 2 in the �rst dstr_get(). The next dstr_get() can pull in
lines 2 and 3 or you can setup it up to pull lines 3 and 4 or 4 and 5 or depending on the stride. In
particular, this is useful in Sobel (edge-detect) �ltering, where you need data above and below a pixel
to evaluate the output.

•

unsigned short w_size

is the window size. For transferring a single line at a time we would use '1' here, and the system will
recognize this is as one line double-bu�ered. But if we needed to transfer two lines we would merely
submit '2' as the argument.

•

dstr_t dir

speci�es the type of stream. Use DSTR_OUTPUT for output stream and DSTR_INPUT for input
stream.

Once a stream is created, you can use the get and put commands in a loop, to bring in or put out line/s
of data. Calling dstr_get on an input stream will give you a bu�er where data is present to be read o�. And
calling an output stream will give you a bu�er to which you can write data (which will be transported out
on the next dstr_put call).

Remember, you have to be careful how many times you call these functions as you so not want to over�ow.
For example in our output example, we could call the dstr_put() upto 480 times � the number of single row
transfers. Anymore, and the system may crash.

Also please remember to close the stream once you are done with it, i.e after all iterations. See the
color_convert function to see when we close the streams using dstr_close(. . .). This is VERY important,
since not closing a stream will cause random crashing of your system. The system may seem to run as you
expected, but it will crash, if not after 1 second, then after 1 minute or 1 hour. This problem is one of the
�rst you should look for when debugging such symptoms.

Also take a look at the streams for the input color components YCbCr to see how they are setup. You
will �nd the �gure on Device Driver Paper page 3-8 very useful in deciphering these streams. Understand
them and you are set!

Quick-Test: Write a stream to obtain one-line bu�ers for columns 31 through 50 (20 columns) of the
output bu�er, with 50 rows. This rectangular region should start at pixel (100, 200). So each transfer should
give a bu�er of 20 * 2 bytes worth of information. Think of how you'd setup the stream.

2.4.4.4.2 Memory Tricks and Tips

Some simple memory tips are given here, you can come up with your own too.

• Know how data �ows in your system, this will help you increse e�ciency and possibly eliminate complex
stream use as well.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

99

• The dstr_get_2D and dstr_put_2D are used for multiple line transfers. Use these to your advantage.
• You can use a simple memory ping-pong system to lessen memory use. If you need to use, say 200

X 300 rectangular region and �lter it repeatedly. Then keep two memory 200 X 300 memory spaces.
Write to the �rst, �lter out to the second. Then �lter the second out to the �rst, and so on until you're
done.

2.4.4.4.3 Limitations

• Space is a always a factor, especially with internal memory.
• It's harder to extract columns of data as opposed to rows. To transfer a column, you need to setup a

di�erent stream, one that skips a whole `row-1' of data with each dstr_get statement. Then you will
need to iterate this to get the pixel on each row of that column. Multiple get's are necessary because
the data is not contiguous in memory.

2.4.4.5 IDK Libraries

To make your life easier, the IDK has some libraries which you can use for common image processing tasks.
One such function is the Sobel (edge-detect) �lter. These functions are usually hand coded in assembly and
are extremely e�cient, so it's best not to try to beat them.

The Sobel �lter is contained in the �le 'sobel_h.asm' and the header �le needed is 'sobel_h.h'. You must
add the program �le and it's header in the project to use them. Next you will need to create a wrapper
function and use the

#include "sobel_h.h"

directive in the wrapper function at the top. Don't forget to create a header function for your wrapper as
well and add it to your project.

Next you will need to setup the streams and provide the assembly function the needed parameters.
Namely, it needs a pointer to 3 lines worth of input data to be processed, one line of output data, the
number of columns and number of rows. The library Sobel �lter works on 3 lines of input and produces 1
line of output with each call. Look at the 'sobel_h.asm' to get a better understanding of the parameters

This material should be familiar from the previous lab where we explored wrapper and component
functions. Now time for the assignment!

2.4.4.6 The Assignment

Your assignment, should you choose to accept it is to build a simple �lter system. You will start with the
basic color conversion program given to you in:

V:\ece320\projects\colorcool
The system will copy the red-component of a 100 by 100 area of the screen (let's call this area M). It will place
this in a di�erent area of the screen. Also you will need to place a Sobel �ltered version of this red-area to
the screen as well. The locations where the copied and �ltered images are placed must be quickly modi�able
on request (use variable position as parameters to wrapper functions rather than �xed coordinates)

2.4.4.6.1 Tips, Tricks and Treats

• Plan the system before hand to make e�cient use of modular functions and memory
• For example, you only need just one �output area if size M� function to screen.
• Keep handy pointers to the di�erent memory spaces.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

100 CHAPTER 2. PROJECT LABS

• Use wrapper functions for the �lter and copy_to_screen operations.
• Write the modules so that they can be tested independently.
• Be careful with color conversion. For example when copying the red-component of M, you need only

8 bits per pixel.
• Keep the previous lab in mind when deciding when/where to extract the area M.

2.5 Surround Sound

2.5.1 Surround Sound: Passive Encoding and Decoding39

2.5.1.1 Introduction

To begin understanding how to decode the Dolby Pro Logic Surround Sound standard, you will implement
a Pro Logic encoder and a passive surround sound decoder. This decoder operates on many of the same
principles as the more sophisticated commercial systems. Signi�cantly more technical information regarding
Dolby Pro Logic can be found at Gundry [5].

2.5.1.2 Encoder

You will create a MATLAB implementation of the passive encoder given by the block diagram in Figure 2.23.

Hilbert
TransformCenter Encoder

Right

Left Lt

Rt

Surround
Dolby NR1

2

−

100Hz − 7kHz

BPF1
2

Figure 2.23: Dolby Pro Logic Encoder

The encoder block diagram shows four input signals: Left, Center, Right, and Surround. These are audio
signals created by a sound designer during movie production that are intended to play back from speakers
positioned at the left side, at the front-center, at the right side, and at the rear of a home theater. The
system in the block diagram encodes these four channels of audio on two output channels, Lt and Rt, in
such a way that an appropriately designed decoder can approximately recover the original four channels.
Additionally, to accommodate those who do not use a surround sound receiver, the encoder outputs are
listenable when played back on a stereo (two-channel) system, even retaining the correct left-right balance.

The basic components of the encoder are multipliers, adders, a Hilbert transform, a band-pass �lter, and
a Dolby Noise Reduction encoder. If you wish to implement Dolby Noise Reduction, refer to Dressler [4].
The other components are discussed below.

The transfer function of the Hilbert Transform is shown in Figure 2.24. The Hilbert Transform is
an ideal (unrealizable) all-pass �lter with a phase shift of −90

◦
. Observe that a cosine input becomes a

sine and a sine input becomes a negative cosine. In MATLAB, generate a cosine and sine signal of some
frequency and use the hilbert function to perform on each signal an approximation to the Hilbert Transform.
(Why is the Hilbert Transform unrealizable?) The imaginary part of the Hilbert Transform output (i.e.,

39This content is available online at <http://cnx.org/content/m10484/2.13/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

101

imag(hilbert(signal))) will be the −90
◦
phase-shifted version of the original signal. Plot each signal to

con�rm your expectations.

j

−j
π

−π ω

H(ω)

Figure 2.24: Hilbert transform transfer function

For the band-pass �lter, design a second-order Butterworth �lter using the butter function in MATLAB.

2.5.1.2.1 Generating a surround signal

Create four channels of audio to encode as a Pro Logic Surround Signal. Use simple mixing techniques to
generate the four channels. For example, use a voice signal for the center channel and fade a roaming sound
such as a helicopter from left to right and front to back. In MATLAB, use the wavread and auread functions
to read .wav and .au audio �les which can be found on the Internet.

2.5.1.3 Decoder

Implement the passive decoder shown in Figure 2.25 on the DSP. Use an appropriate time delay based on
the distance between the front and back speakers and the speed of sound.

time
delay Surround

Left

Right

Center

LPF

Rt

Lt 7kHz−

Figure 2.25: Dolby Pro Logic Passive Decoder

Is there signi�cant crosstalk between the front and surround speakers? Do you get good separation
between left and right speakers? Can you explain how the decoder recovers approximations to the original
four channels?

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

102 CHAPTER 2. PROJECT LABS

2.5.1.4 Extensions

Di�erences in power levels between channels are used to enhance the directional e�ect in what is called
"active decoding." One way to �nd the power level in a signal is to square it and pass the squared signal
through a very narrow-band low-pass �lter (f ≤ 80Hz). How is the low-frequency content of the squared
signal related to the power of the original signal? Remember that squaring a signal in the time domain is
equivalent to convolving the signal with itself in the frequency domain.

To implement a very narrow-band low-pass �lter, you may consider using the Chamberlin �lter topology,
described in Surround Sound: Chamberlin Filters (Section 2.5.2).

2.5.2 Surround Sound: Chamberlin Filters40

2.5.2.1 Introduction

Chamberlin �lter topology is frequently used in music applications where very narrow-band, low-pass �lters
are necessary. Chamberlin implementations do not su�er from some stability problems that arise in direct-
form implementations of very narrow-band responses. For more information about IIR/FIR �lter design for
DSPs, refer to the Motorola Application Note [8].

2.5.2.2 Filter Topology

A Chamberlin �lter is a simple two-pole IIR �lter with the transfer function given in (2.16):

H (z) =
Fz

2z−1

1− (2− (FcQc − Fc2)) z−1 − 1z−2
(2.16)

where F (c) determines the frequency where the �lter peaks, and Qc

(
1
Q

)
determines the rollo�. Q is de�ned

as the positive ratio of the center frequency to the bandwidth. A derivation and more detailed explanation
is given in Dattorro [3]. The topology of the �lter is shown in Figure 2.26. Note that the �nal feedback stage
puts a pole just inside the unit circle on the real axis. For a response with smaller bandwidth, move the pole
closer to the unit circle, but do not move it so far that the �lter becomes unstable. Multiple second-order
sections can be cascaded to yield a sharper rollo�.

-
z−1

0.9 z−1Qc

Fc
x[n] y[n]

Fc

Figure 2.26: Chamberlin Filter Topology

40This content is available online at <http://cnx.org/content/m10479/2.15/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

103

Figure 2.27 and Figure 2.28 show how the response of the �lter varies with Qc and Fc.

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

frequency

m
ag

ni
tu

de

Q
c
 = 0.5

Q
c
 = 1.0

Figure 2.27: Chamberlin �lter responses for various Qc (Fc = .3)

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

104 CHAPTER 2. PROJECT LABS

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

frequency

m
ag

ni
tu

de

F
c
 = 0.2

F
c
 = 0.3

Figure 2.28: Chamberlin �lter responses for various Fc (Qc = .8333)

2.5.2.3 Exercise

First, create a MATLAB script that takes two parameters, Qc and Fc, and plots the frequency response of a
�lter with a transfer function given in (2.16). Then implement a Chamberlin �lter on the DSP and compare
its performance with that of your MATLAB simulation for the same values of Qc and Fc. What do you
observe?

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

105

2.6 Speech

2.6.1 Speech Processing: LPC Exercise in MATLAB41

2.6.1.1 MATLAB Exercises

First, take a simple signal (e.g., one period of a sinusoid at some frequency) and plot its autocorrelation
sequence for appropriate values of l. You may wish to use the xcorr MATLAB function to compare with
your own version of this function. At what time shift l is rss [l] maximized and why? Is there any symmetry
in rss [l]? What does rss [l] look like for periodic signals?

Next, write your own version of the Levinson-Durbin algorithm in MATLAB. Note that MATLAB uses
indexing from 1 rather than 0. One way to resolve this problem is to start the loop with i = 2, then shift
the variables k, E, α, and rss to start at i = 1 and j = 1. Be careful with indices such as i− j, since these
could still be 0.

Apply your algorithm to a 20- 30 ms segment of a speech signal. Use a microphone to record .wav audio
�les on the PC using Sound Recorder or a similar application. Typically, a sample rate of 8 kHz is a good
choice for voice signals, which are approximately bandlimited to 4 kHz. You will use these audio �les to test
algorithms in MATLAB. The functions wavread, wavwrite, sound will help you read, write and play audio
�les in MATLAB:

The output of the algorithm is the prediction coe�cients ak (usually about P = 10 coe�cients is su�-
cient), which represent the speech segment containing signi�cantly more samples. The LPC coe�cients are
thus a compressed representation of the original speech segment, and we take advantage of this by saving or
transmitting the LPC coe�cients instead of the speech samples. Compare the coe�cients generated by your
function with those generated by the levinson or lpc functions available in the MATLAB toolbox. Next,
plot the frequency response of the IIR model represented by the LPC coe�cients (see Speech Processing:
Theory of LPC Analysis and Synthesis (2.21)). What is the fundamental frequency of the speech segment?
Is there any similarity in the prediction coe�cients for di�erent 20- 30 ms segments of the same vowel sound?
How could the prediction coe�cients be used for recognition?

2.6.2 Speech Processing: Theory of LPC Analysis and Synthesis42

2.6.2.1 Introduction

Linear predictive coding (LPC) is a popular technique for speech compression and speech synthesis. The
theoretical foundations of both are described below.

2.6.2.1.1 Correlation coe�cients

Correlation, a measure of similarity between two signals, is frequently used in the analysis of speech and
other signals. The cross-correlation between two discrete-time signals x [n] and y [n] is de�ned as

rxy [l] =
∞∑

n=−∞
x [n] y [n− l] (2.17)

where n is the sample index, and l is the lag or time shift between the two signals Proakis and Manolakis
[9] (pg. 120). Since speech signals are not stationary, we are typically interested in the similarities between
signals only over a short time duration (30 ms). In this case, the cross-correlation is computed only over a
window of time samples and for only a few time delays l = {0, 1, . . . , P}.

Now consider the autocorrelation sequence rss [l], which describes the redundancy in the signal s [n].

rss [l] =

(
l

N

N−1∑
n=0

s [n] s [n− l]
)

(2.18)

41This content is available online at <http://cnx.org/content/m10824/2.5/>.
42This content is available online at <http://cnx.org/content/m10482/2.19/>.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

106 CHAPTER 2. PROJECT LABS

where s [n], n = {−P,−P + 1, . . . , N − 1} are the known samples (see Figure 2.29) and the 1
N is a normalizing

factor.

N − 1

0

s[n]

−l N − l − 1 N − 1

multiply and accumulate to get rss[l]

s[n− l]

−P

0

Figure 2.29: Computing the autocorrelation coe�cients

Another related method of measuring the redundancy in a signal is to compute its autocovariance

rss [l] =

(
1

N − 1

N−1∑
n=l

s [n] s [n− l]
)

(2.19)

where the summation is over N − l products (the samples {s [−P] , . . . , s [−1]} are ignored).

2.6.2.1.2 Linear prediction model

Linear prediction is a good tool for analysis of speech signals. Linear prediction models the human vocal
tract as an in�nite impulse response (IIR) system that produces the speech signal. For vowel sounds
and other voiced regions of speech, which have a resonant structure and high degree of similarity over time
shifts that are multiples of their pitch period, this modeling produces an e�cient representation of the sound.
Figure 2.30 shows how the resonant structure of a vowel could be captured by an IIR system.

1− a1z
−1 − a2z

−2 − . . . aP z−P

1

Figure 2.30: Linear Prediction (IIR) Model of Speech

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

107

The linear prediction problem can be stated as �nding the coe�cients ak which result in the best predic-
tion (which minimizes mean-squared prediction error) of the speech sample s [n] in terms of the past samples

s [n− k], k = {1, . . . , P}. The predicted sample
^
s [n] is then given by Rabiner and Juang [12]

^
s [n] =

P∑
k=1

aks [n− k] (2.20)

where P is the number of past samples of s [n] which we wish to examine.
Next we derive the frequency response of the system in terms of the prediction coe�cients ak. In (2.20),

when the predicted sample equals the actual signal (i.e.,
^
s [n] = s [n]), we have

s [n] =
P∑
k=1

aks [n− k]

s (z) =
P∑
k=1

aks (z) z−k

s (z) =
1

1−∑P
k=1 akz

−k
(2.21)

The optimal solution to this problem is Rabiner and Juang [12]

a =
(
a1 a2 . . . aP

)

r =
(
rss [1] rss [2] . . . rss [P]

)T

R =


rss [0] rss [1] . . . rss [P − 1]

rss [1] rss [0] . . . rss [P − 2]
...

...
...

...

rss [P − 1] rss [P − 2] . . . rss [0]


a = R−1r (2.22)

Due to the Toeplitz property of the R matrix (it is symmetric with equal diagonal elements), an e�cient
algorithm is available for computing a without the computational expense of �nding R−1. The Levinson-
Durbin algorithm is an iterative method of computing the predictor coe�cients a Rabiner and Juang [12]
(p.115).

Initial Step: E0 = rss [0], i = 1
for i = 1 to P .

Steps

1. ki = 1
Ei−1

(
rss [i]−∑i−1

j=1 αj,i−1rss [|i− j|]
)

2. • αj,i = αj,i−1 − kiαi−j,i−1 j = {1, . . . , i− 1}
• αi,i = ki

3. Ei =
(
1− ki2

)
Ei−1

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

108 CHAPTER 2. PROJECT LABS

2.6.2.1.3 LPC-based synthesis

It is possible to use the prediction coe�cients to synthesize the original sound by applying δ [n], the unit
impulse, to the IIR system with lattice coe�cients ki , i = {1, . . . , P} as shown in Figure 2.31. Applying
δ [n] to consecutive IIR systems (which represent consecutive speech segments) yields a longer segment of
synthesized speech.

In this application, lattice �lters are used rather than direct-form �lters since the lattice �lter coe�cients
have magnitude less than one and, conveniently, are available directly as a result of the Levinson-Durbin
algorithm. If a direct-form implementation is desired instead, the α coe�cients must be factored into second-
order stages with very small gains to yield a more stable implementation.

D D D D

y[n]

k1

−k1

k2

−k2

k3

−k3

x[n]

Figure 2.31: IIR lattice �lter implementation.

When each segment of speech is synthesized in this manner, two problems occur. First, the synthesized
speech is monotonous, containing no changes in pitch, because the δ [n]'s, which represent pulses of air from
the vocal chords, occur with �xed periodicity equal to the analysis segment length; in normal speech, we vary
the frequency of air pulses from our vocal chords to change pitch. Second, the states of the lattice �lter (i.e.,
past samples stored in the delay boxes) are cleared at the beginning of each segment, causing discontinuity
in the output.

To estimate the pitch, we look at the autocorrelation coe�cients of each segment. A large peak in the
autocorrelation coe�cient at lag l 6= 0 implies the speech segment is periodic (or, more often, approximately
periodic) with period l. In synthesizing these segments, we recreate the periodicity by using an impulse train
as input and varying the delay between impulses according to the pitch period. If the speech segment does
not have a large peak in the autocorrelation coe�cients, then the segment is an unvoiced signal which has
no periodicity. Unvoiced segments such as consonants are best reconstructed by using noise instead of an
impulse train as input.

To reduce the discontinuity between segments, do not clear the states of the IIR model from one segment
to the next. Instead, load the new set of re�ection coe�cients, ki, and continue with the lattice �lter
computation.

2.6.2.2 Additional Issues

• Spanish vowels (mop, ace, easy, go, but) are easier to recognize using LPC.
• Error can be computed as aTRa, where R is the autocovariance or autocorrelation matrix of a test

segment and a is the vector of prediction coe�cients of a template segment.
• A pre-emphasis �lter before LPC, emphasizing frequencies of interest in the recognition or synthesis,

can improve performance.
• The pitch period for males (80- 150 kHz) is di�erent from the pitch period for females.

• For voiced segments, rss[T]
rss[0]

' 0.25, where T is the pitch period.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

109

2.6.3 Speech Processing: LPC Exercise on TI TMS320C54x43

2.6.3.1 Implementation

The sample rate on the 6-channel DSP boards is �xed at 44.1 kHz, so decimate by a factor of 5 to achieve
the sample rate of 8.82 kHz, which is more appropriate for speech processing.

Compute the autocorrelation or autocovariance coe�cients of 256-sample blocks of input samples from
a function generator for time shifts l = {0, 1, . . . , 15} (i.e., for P = 15) and display these on the oscilloscope
with a trigger. (You may zero out the other 240 output samples to �ll up the 256-sample block). For
computing the autocorrelation, you will have to use memory to record the last 15 samples of the input due
to the overlap between adjacent blocks. Compare the output on the oscilloscope with simulation results from
MATLAB.

The next step is to use a speech signal as the input to your system. Use a microphone as input to the
original thru6.asm44 code and adjust the gains in your system until the output uses most of the dynamic
range of the system without saturating. Now, to capture and analyze a small segment of speech, write code
that determines the start of a speech signal in the microphone input, records a few seconds of speech, and
computes the autocorrelation or autocovariance coe�cients. The start of a speech signal can be determined
by comparing the input to some noise threshold; experiment to �nd a good value. For recording large
segments of speech, you may need to use external memory. Refer to Core File: Accessing External Memory
on TI TMS320C54x45 for more information.

Finally, incorporate your code which computes autocorrelation or autocovariance coe�cients with the
code which takes speech input and compare the results seen on the oscilloscope to those generated by
MATLAB.

2.6.3.1.1 Integer division (optional)

In order to implement the Levinson-Durbin algorithm, you will need to use integer division to do Step 1
(p. 107) of the algorithm. Refer to the Applications Guide[?] and the subc instruction for a routine that
performs integer division.

43This content is available online at <http://cnx.org/content/m10825/2.6/>.
44http://cnx.org/content/m10825/latest/thru6.asm
45"Core File: Accessing External Memory on TI TMS320C54x" <http://cnx.org/content/m10823/latest/>

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

110 BIBLIOGRAPHY

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

Bibliography

[1] R. Blahut. Digital Transmission of Information. Addison-Wesley, 1990.

[2] R. Blahut. Digital Transmission of Information. Addison-Wesley, 1990.

[3] J. Dattorro. E�ect design part 1: Reverberator and other �lters. Journal Audio Engineering Society,
vol. 45:660�684, September 1996.

[4] R. Dressler. Dolby prologic surround decoder principles of operation.
http://www.dolby.com/tech/whtppr.html.

[5] K. Gundry. An introduction to noise reduction. http://www.dolby.com/ken/.

[6] S. Haykin. Adaptive Filter Theory. Prentice Hall, 3rd edition edition, 1996.

[7] II Leon W. Couch. Digital and Analog Communication Systems. Prentice Hall, Upper \\ Saddle River,
New Jersey, 07458, 3rd edition edition, 1995.

[8] Motorola. Implementing IIR/FIR Filters with Motorola's DSP56000/SPS/DSP56001, Digital Signal
Processors. http://merchant.hibbertco.com/mtrlext/fs22/pdf-docs/motorola/apr7.rev2.pdf.

[9] J. G. Proakis and D. G. Manolakis. Digital Signal Processing: Principles, Algorithms, and Applications.
Prentice-Hall, Upper Saddle River, NJ, 1996.

[10] J.G. Proakis. Digital Communications. McGraw-Hill, 3rd edition edition, 1995.

[11] J.G. Proakis. Digital Communications. McGraw-Hill, 3rd edition edition, 1995.

[12] L. Rabiner and B. H. Juang. Fundamentals of Speech Recognition. Prentice-Hall, Englewood Cli�s, NJ,
1993.

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

111

112 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A AC coupled, 5
adaptive �ltering, � 2.1.1(59)
aliasing, � 1.3.2(21)
anti-aliasing, � 1.3.3(22)
anti-aliasing �lter, � 1.1.1(3), 5
anti-imaging, � 1.3.3(22)
anti-imaging �lter, � 1.1.1(3), 5
assembly, � 1.2.1(11), � 1.2.2(14), � 1.6.3(54)
audio e�ects, � 2.2.2(62)
autocorrelation, � 2.6.1(105), � 2.6.2(105),
� 2.6.3(108)
autocovariance, � 2.6.2(105), � 2.6.3(108)

B banz, � 1.3.4(23)
baseband frequency, 66
bi-quad, � 1.4.1(25), 25
Binary Phase Shift Keying, 65
bit-reversed, � 1.5.2(33)
block processing, � 1.5.3(34)
block repeat counter, � 1.4.1(25), � 1.4.4(29),
29
boxcar, � 1.5.2(33)
BPSK, 65, � 2.3.2(67)
butter, � 1.4.1(25), 28, � 1.4.4(29), � 1.4.4(29)

C C, � 1.6.3(54)
C language, � 1.5.3(34)
carrier recovery, � 2.3.2(67)
Chamberlin, � 2.5.2(102)
Code Composer Studio, � 1.1.1(3)
coe�cient quantization, � 1.4.3(28)
coherent demodulation, � 2.3.2(67)
communications, � 1.6.1(49), � 1.6.2(51),
� 1.6.3(54), � 2.3.1(64)
conv, � 1.4.1(25), � 1.4.2(26), 28, � 1.4.4(29),
� 1.4.4(29)
correlation, � 2.6.2(105)
cross-correlation, � 2.6.2(105)

D DDS, 64
decimation, � 1.3.1(20), � 1.3.4(23)
decision statistic, 79

decoder, � 2.5.1(100)
delay, � 2.2.1(61), � 2.2.2(62)
delay-locked loop, � 2.3.3(71), 76
DFT, 32, � 1.5.2(33), � 1.5.3(34)
di�erence equation, � 1.4.1(25), � 1.4.2(26),
� 1.4.4(29), � 1.4.4(29)
di�erence equations, 26
digital communications, � 2.3.2(67)
digital signal processing, � 1.5.3(34),
� 1.6.1(49), � 1.6.2(51), � 1.6.3(54), � 2.3.1(64)
direct digital synthesis, � 2.3.1(64), 64
direct form II, � 1.4.1(25)
direct fortm II, � 1.4.2(26), � 1.4.4(29),
� 1.4.4(29)
Discrete Fourier Transform, 32, � 1.5.2(33),
� 1.5.3(34)
Discrete Time Fourier Transform, � 1.5.2(33),
� 1.5.3(34)
division, � 2.6.3(108)
DLL, 76
Dolby Pro Logic, � 2.5.1(100)
down-sample, � 1.3.4(23)
downsample, � 1.3.1(20), � 1.3.3(22)
downsampling, � 1.3.2(21)
DSP, � 1.1.1(3), � 1.2.1(11), � 1.2.2(14),
� 1.3.1(20), � 1.3.2(21), � 1.3.3(22), � 1.3.4(23),
� 1.4.1(25), � 1.4.2(26), � 1.4.3(28), � 1.4.4(29),
� 1.5.2(33), � 2.1.1(59), � 2.2.1(61), � 2.2.2(62),
� 2.3.2(67), � 2.3.3(71), � 2.5.1(100),
� 2.5.2(102), � 2.6.1(105), � 2.6.2(105),
� 2.6.3(108)
DTFT, 32, � 1.5.2(33), � 1.5.3(34)

E early sample, 77
echo, � 2.2.1(61), � 2.2.2(62)
elin�nite impulse response, � 1.4.4(29)
ellip, � 1.4.1(25), � 1.4.2(26), � 1.4.4(29)
elliptic low-pass �lter, � 1.4.1(25), � 1.4.2(26),
� 1.4.4(29), 29
encoder, � 2.5.1(100)
external memory, � 2.2.2(62)

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

INDEX 113

F fast algorithms, � 1.5.3(34)
Fast Fourier Transform, 32, � 1.5.2(33),
� 1.5.3(34)
feedback, � 1.4.1(25), � 2.2.1(61)
FFT, 32, � 1.5.2(33), � 1.5.3(34)
�lter, � 2.5.2(102)
�lter design, � 1.3.3(22)
�nite impulse response, 3
FIR, 3
FIR �lter, � 1.1.1(3), � 1.2.2(14)
�rs, � 1.2.2(14), 17
�xed-point, � 1.4.3(28)
Fourier transform, � 1.5.2(33)
fractional arithmetic, � 1.2.1(11)
fractional arithmetic mode, 12
frequency domain, � 1.5.3(34)
frequency shift keying, � 1.6.1(49), � 1.6.2(51),
51, � 1.6.3(54), 54, 65
freqz, � 1.4.1(25), � 1.4.2(26), 26, � 1.4.4(29),
� 1.4.4(29)
FSK, 51, 54, 65
function generator, � 1.1.1(3)

G gain, 26
gain factor, � 1.4.1(25), � 1.4.2(26),
� 1.4.4(29), � 1.4.4(29)
gradient descent, � 2.1.1(59)
graphical user interface, � 2.2.1(61)
Gray coding, 53

H hamming, � 1.5.2(33)
hexadecimal, � 1.2.1(11), 11
Hilbert transform, � 2.5.1(100)

I IIR, � 1.4.1(25), 25, � 1.4.2(26), � 1.4.4(29),
� 1.4.4(29), � 2.5.2(102), 106
IIR �lter, � 1.4.3(28)
imaging, � 1.3.2(21)
impulse response, � 1.4.1(25), � 1.4.2(26),
� 1.4.4(29), � 1.4.4(29)
in�nite impulse response, � 1.4.1(25),
� 1.4.2(26), � 1.4.4(29), 106
in�nite impulse-response, 25
integer, � 1.4.3(28)
interpolation, � 1.3.1(20), � 1.3.4(23),
� 2.3.2(67)

L late sample, 77
levinson-durbin, � 2.6.2(105)
levinson-durbin algorithm, � 2.6.1(105), 107
linear predicitive coding, � 2.6.2(105)
Linear prediction, 106
linear predictive coding, � 2.6.1(105), 105

linear time-invariant, � 1.4.1(25), 25,
� 1.4.2(26), � 1.4.4(29), � 1.4.4(29)
LMS, � 2.1.1(59)
low-pass, � 2.5.2(102)
LPC, 105
LTI, � 1.4.1(25), 25, � 1.4.2(26), � 1.4.4(29),
� 1.4.4(29)

M mac, � 1.2.1(11), � 1.2.2(14)
mainlobe, � 1.5.2(33)
matched �lter, � 2.3.3(71), 72
MATLAB, � 1.1.1(3), � 1.3.3(22), � 1.6.1(49)
memory map, � 2.2.2(62)
multirate, � 1.3.2(21), � 1.3.3(22)
multirate processing, 20
multirate sampling, � 1.3.1(20), � 1.3.4(23)
multirate system, � 1.3.1(20), � 1.3.4(23)
music, � 2.5.2(102)

N narrow-band, � 2.5.2(102)
NCO, 68
noise, � 2.3.3(71)
nonlinear phase, � 1.4.1(25)
notch �lter, � 1.4.1(25), � 1.4.2(26), 28,
� 1.4.4(29), � 1.4.4(29)
numerically-controlled oscillator, � 2.3.2(67),
68

O on-time sample, 77
optimization, � 1.6.3(54)
oscilliscope, � 1.1.1(3)
over�ow, � 1.4.2(26), 26

P phase-locked loop, � 2.3.2(67), 67
PLL, 67
PMST, 5
PN, 54
PN generator, 51
poles, � 1.4.1(25), � 1.4.2(26), 26, � 1.4.4(29),
� 1.4.4(29)
processor, � 1.6.3(54)
processor mode status register, 5
pseudo-noise, � 1.6.3(54), 54
pseudo-noise sequence generator, 51
pseudo-random noise, � 1.6.2(51)

Q QPSK, � 2.3.2(67)
quadrature phase-shift keying, � 2.3.3(71)
quantize, � 1.4.1(25), 28, � 1.4.4(29),
� 1.4.4(29)

R READPROG, � 2.2.2(62)
receiver, � 2.3.3(71)

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

114 INDEX

rptz, � 1.2.1(11)

S sample-rate compressor, � 1.3.1(20), 20,
� 1.3.2(21), � 1.3.3(22), � 1.3.4(23)
sample-rate expander, � 1.3.1(20), 20,
� 1.3.2(21), � 1.3.3(22), � 1.3.4(23)
serial port, � 1.3.4(23), � 2.2.1(61)
sidelobe, � 1.5.2(33)
spectral analysis, � 1.5.3(34)
spectrum, � 1.5.3(34)
speech, � 2.6.1(105), � 2.6.2(105)
speech analysis, � 2.6.1(105)
speech coding, � 2.6.1(105), � 2.6.2(105)
speech compression, � 2.6.1(105), � 2.6.2(105)
speech processing, � 2.6.3(108)
speech synthesis, � 2.6.1(105), � 2.6.2(105)
stability, � 1.4.3(28)
stl, � 1.2.1(11)
surround sound, � 2.5.1(100)
symbol, 51
system identi�cation, � 2.1.1(59)

T test vector, � 1.1.1(3)
TMS320C54x, � 1.1.1(3)
transmitter, � 1.6.1(49), � 1.6.2(51),

� 1.6.3(54), � 2.3.1(64)
twiddle-factor, � 1.5.2(33)
two's-compliment, � 1.2.1(11)

U up-sample, � 1.3.4(23)
upsample, � 1.3.1(20), � 1.3.3(22)
upsampling, � 1.3.2(21)

V VCO, 68
Video Processing, � 2.4.2(82)
Video Processing on the TI67x, Memory
Management, Image Developers Kit,
� 2.4.4(92)
voltage-controlled oscillator, � 2.3.2(67), 68

W windowing, � 1.5.2(33), � 1.5.3(34)
wireless, � 2.3.1(64)
WRITPROG, � 2.2.2(62)

X xcorr, � 2.6.1(105)

Z zero-pad, � 1.5.2(33)
zero-placement, � 1.3.3(22)
zeros, � 1.4.1(25), � 1.4.2(26), 26, � 1.4.4(29),
� 1.4.4(29)

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

ATTRIBUTIONS 115

Attributions

Collection: ECE 320 Spring 2004
Edited by: Robert Morrison, Jason Laska
URL: http://cnx.org/content/col10225/1.12/
License: http://creativecommons.org/licenses/by/1.0

Module: "DSP Development Environment: Introductory Exercise for TI TMS320C54x (ECE 420 Speci�c)"
Used here as: "Lab 0: Hardware Introduction"
By: Mark Butala, Jason Laska
URL: http://cnx.org/content/m11019/2.7/
Pages: 3-9
Copyright: Mark Butala, Jason Laska
License: http://creativecommons.org/licenses/by/1.0

Module: "FIR Filtering: Basic Assembly Exercise for TI TMS320C54x"
Used here as: "Lab 1: Prelab"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade, Jason Laska
URL: http://cnx.org/content/m10022/2.22/
Pages: 11-13
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade, Jason Laska
License: http://creativecommons.org/licenses/by/1.0

Module: "FIR Filtering: Exercise for TI TMS320C54x (ECE 320 speci�c)"
Used here as: "Lab 1: Lab"
By: Mark Butala
URL: http://cnx.org/content/m11020/2.6/
Pages: 14-18
Copyright: Mark Butala
License: http://creativecommons.org/licenses/by/1.0

Module: "Multirate Filtering: Introduction"
Used here as: "Lab 2: Theory"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10024/2.21/
Page: 20
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "Multirate Filtering: Theory Exercise"
Used here as: "Lab 2: Prelab (Part 1)"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10620/2.14/
Page: 21
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

116 ATTRIBUTIONS

Module: "Multirate Filtering: Filter-Design Exercise in MATLAB"
Used here as: "Lab 2: Prelab (Part 2)"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10815/2.6/
Page: 22
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "Multirate Filtering: Implementation on TI TMS320C54x"
Used here as: "Lab 2: Lab"
By: Robert Morrison
URL: http://cnx.org/content/m11810/1.3/
Page: 23
Copyright: Robert Morrison
License: http://creativecommons.org/licenses/by/1.0
Based on: Multirate Filtering: Implementation on TI TMS320C54x
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10621/2.8/

Module: "IIR Filtering: Introduction"
Used here as: "Lab 3: Theory"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10025/2.22/
Page: 25
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "IIR Filtering: Filter-Design Exercise in MATLAB"
Used here as: "Lab 3: Prelab (Part 1)"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10623/2.11/
Pages: 26-27
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "IIR Filtering: Filter-Coe�cient Quantization Exercise in MATLAB"
Used here as: "Lab 3: Prelab (Part 2)"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10813/2.5/
Page: 28
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

ATTRIBUTIONS 117

Module: "IIR Filtering: Exercise on TI TMS320C54x (ECE 320 speci�c)"
Used here as: "Lab 3: Lab"
By: Mark Butala
URL: http://cnx.org/content/m11021/2.4/
Pages: 29-30
Copyright: Mark Butala
License: http://creativecommons.org/licenses/by/1.0

Module: "Spectrum Analyzer: Introduction to Fast Fourier Transform (ECE 320 speci�c)"
Used here as: "Lab 4: Theory"
By: Matt Kle�ner
URL: http://cnx.org/content/m11828/1.2/
Page: 32
Copyright: Matt Kle�ner
License: http://creativecommons.org/licenses/by/1.0
Based on: Spectrum Analyzer: Introduction to Fast Fourier Transform (ECE 320 speci�c)
By: Mark Butala
URL: http://cnx.org/content/m10860/2.5/

Module: "Spectrum Analyzer: MATLAB Exercise"
Used here as: "Lab 4: Prelab"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10625/2.8/
Page: 33
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "Spectrum Analyzer: Processor Exercise Using C Language with C Introduction"
Used here as: "Lab 4: Lab"
By: Matt Kle�ner
URL: http://cnx.org/content/m11827/1.5/
Pages: 34-47
Copyright: Matt Kle�ner, Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0
Based on: Spectrum Analyzer: Processor Exercise Using C Language
By: Matthew Berry
URL: http://cnx.org/content/m10658/2.8/

Module: "Digital Transmitter: Frequency Shift Keying Prelab Exercise"
Used here as: "Lab 5: Prelab"
By: Matthew Berry
URL: http://cnx.org/content/m10661/2.5/
Pages: 49-50
Copyright: Matthew Berry
License: http://creativecommons.org/licenses/by/1.0

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

118 ATTRIBUTIONS

Module: "Digital Transmitter: Introduction to Frequency Shift Keying"
Used here as: "Lab 5: Theory"
By: Robert Morrison, Matt Kle�ner, Michael Frutiger
URL: http://cnx.org/content/m11849/1.3/
Pages: 51-53
Copyright: Robert Morrison, Matt Kle�ner, Michael Frutiger
License: http://creativecommons.org/licenses/by/1.0
Based on: Digital Transmitter: Introduction to Frequency Shift Keying
By: Matthew Berry
URL: http://cnx.org/content/m10659/2.4/

Module: "Digital Transmitter: Processor Optimization Exercise for Frequency Shift Keying"
Used here as: "Lab 5: Lab"
By: Robert Morrison, Matt Kle�ner, Michael Frutiger
URL: http://cnx.org/content/m11848/1.3/
Pages: 54-58
Copyright: Robert Morrison, Matt Kle�ner, Michael Frutiger
License: http://creativecommons.org/licenses/by/1.0
Based on: Digital Transmitter: Processor Optimization Exercise for Frequency Shift Keying
By: Matthew Berry
URL: http://cnx.org/content/m10662/2.4/

Module: "Adaptive Filtering: LMS Algorithm"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel Sachs
URL: http://cnx.org/content/m10481/2.14/
Pages: 59-61
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel
Sachs, Jake Janovetz, Michael Kramer, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "Audio E�ects: Real-Time Control with the Serial Port"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel Sachs
URL: http://cnx.org/content/m10483/2.24/
Pages: 61-62
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel
Sachs, Jake Janovetz, Michael Kramer, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "Audio E�ects: Using External Memory"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel Sachs
URL: http://cnx.org/content/m10480/2.17/
Pages: 62-64
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel
Sachs, Jake Janovetz, Michael Kramer, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "Communications: Using Direct Digital Synthesis"
By: Matthew Berry
URL: http://cnx.org/content/m10657/2.5/
Pages: 64-67
Copyright: Matthew Berry
License: http://creativecommons.org/licenses/by/1.0

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

ATTRIBUTIONS 119

Module: "Digital Receiver: Carrier Recovery"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel Sachs
URL: http://cnx.org/content/m10478/2.16/
Pages: 67-71
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel
Sachs, Jake Janovetz, Michael Kramer, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "Digital Receivers: Symbol-Timing Recovery for QPSK"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10485/2.14/
Pages: 71-82
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "Video Processing Manuals"
By: Mark Butala
URL: http://cnx.org/content/m10889/2.5/
Page: 82
Copyright: Mark Butala
License: http://creativecommons.org/licenses/by/1.0

Module: "Video Processing Part 1: Introductory Exercise"
By: Robert Morrison, Arjun Kulothungun, Richard Cantzler
URL: http://cnx.org/content/m11987/1.2/
Pages: 82-88
Copyright: Robert Morrison, Arjun Kulothungun, Richard Cantzler
License: http://creativecommons.org/licenses/by/1.0

Module: "Video Processing Part 2: Grayscale and Color"
By: Arjun Kulothungun, Richard Cantzler
URL: http://cnx.org/content/m11988/1.2/
Pages: 88-92
Copyright: Arjun Kulothungun, Richard Cantzler
License: http://creativecommons.org/licenses/by/1.0

Module: "Video Processing Part 3: Memory Management"
By: Arjun Kulothungun
URL: http://cnx.org/content/m11989/1.2/
Pages: 92-100
Copyright: Arjun Kulothungun
License: http://creativecommons.org/licenses/by/1.0

Module: "Surround Sound: Passive Encoding and Decoding"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10484/2.13/
Pages: 100-102
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

120 ATTRIBUTIONS

Module: "Surround Sound: Chamberlin Filters"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10479/2.15/
Pages: 102-104
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "Speech Processing: LPC Exercise in MATLAB"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10824/2.5/
Page: 105
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "Speech Processing: Theory of LPC Analysis and Synthesis"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10482/2.19/
Pages: 105-108
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Module: "Speech Processing: LPC Exercise on TI TMS320C54x"
By: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael Kramer,
Dima Moussa, Daniel Sachs, Brian Wade
URL: http://cnx.org/content/m10825/2.6/
Pages: 108-109
Copyright: Douglas L. Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Jake Janovetz, Michael
Kramer, Dima Moussa, Daniel Sachs, Brian Wade
License: http://creativecommons.org/licenses/by/1.0

Available for free at Connexions <http://cnx.org/content/col10225/1.12>

ECE 320 Spring 2004
Development of real-time digital signal processing (DSP) systems using a DSP microprocessor; several struc-
tured laboratory exercises, such as sampling and digital �ltering, followed by an extensive DSP project of
the student's choice.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

