
  
    
  
Chapter 2. Signal Representation and Modeling



2.1. Signal Classifications and Properties*



Introduction



 This module will begin our study of signals and systems by laying out some of the fundamentals of signal
	classification.  It is essentially an introduction to the important definitions and
	properties that are fundamental to the discussion of signals
	and systems, with a brief discussion of each.

Classifications of Signals



Continuous-Time vs. Discrete-Time



 As the names suggest, this classification is determined by
	  whether or not the time axis is
	   discrete (countable) or  continuous
	  (Figure 2.1).  A continuous-time signal will
	  contain a value for all real numbers along the time axis.
	  In contrast to this, a discrete-time signal, often created by
	   sampling a continuous signal, will
	  only have values at equally spaced intervals along the time
	  axis.
	
 [image: Figure (sigclass1.png)]

Figure 2.1. 


Analog vs. Digital



 The difference between  analog and
	   digital is similar to the difference between
	  continuous-time and discrete-time.  However, in this case
	  the difference involves the values of the function.  Analog corresponds to a
	  continuous set of possible function values, while digital corresponds to a discrete
	  set of possible function values.  An common example of a digital signal is a binary
	  sequence, where the values of the function can only be one
	  or zero.
	
 [image: Figure (sigclass2.png)]

Figure 2.2. 


Periodic vs. Aperiodic



 
	  Periodic signals
	  repeat with some  period
	  T, while aperiodic, or
	  nonperiodic, signals do not (Figure 2.3).  We can
	  define a periodic function through the following
	  mathematical expression, where t
	   can be any number and T
	   is a positive constant:

	  
()
	      f(t)=f(T+t)
	    

	  
	  The  fundamental period of our function, 
	  f(t)
	  , is the smallest value of T
	   that the still allows Equation to be true.

	
  [image: Subfigure (a) (sigclass3.png)]
(a) A periodic signal with period
	      
		T0
	      

  [image: Subfigure (b) (sigclass4.png)]
(b) An aperiodic signal


Figure 2.3. 


Finite vs. Infinite Length



 As the name implies, signals can be characterized as to
	  whether they have a finite or infinite length set of
	  values.  Most finite length signals are used when dealing
	  with discrete-time signals or a given sequence of values.
	  Mathematically speaking, 
	  
	    f(t)
	   is a  finite-length signal if it is
	  nonzero over a finite interval

	  
	    t1<f(t)<t2
	  

	  where 
	  
	    t1>–∞
	   and 
	  
	    t2<∞
	  .  An example can be seen in Figure 2.4.
	  Similarly, an  infinite-length signal,
	  
	    f(t)
	  , is defined as nonzero over all real numbers: 

	    
	    ∞≤f(t)≤–∞
	  
	
 [image: Figure (finite.png)]

Figure 2.4. 
Finite-Length Signal.  Note that it only has
	  nonzero values on a set, finite interval.


Causal vs. Anticausal vs. Noncausal



 
	   Causal signals are signals that are zero for
	  all negative time, while  anticausal are signals
	  that are zero for all positive time.   Noncausal
	  signals are signals that have nonzero values in both
	  positive and negative time (Figure 2.5).
	
  [image: Subfigure (a) (sigclass5.png)]
(a) A causal signal

  [image: Subfigure (b) (sigclass6.png)]
(b) An anticausal signal

  [image: Subfigure (c) (sigclass7.png)]
(c) A noncausal signal


Figure 2.5. 


Even vs. Odd



 
	  An  even signal is any signal
	  f such that
	  
	    f(t)=f(–t)
	  .  Even signals can be easily spotted as they are
	  symmetric around the vertical axis.  An
	   odd signal, on the other hand, is a signal
	  f such that
	  
	    f(t)=–(f(–t))
	   (Figure 2.6).
	
  [image: Subfigure (a) (sigclass8.png)]
(a) An even signal

  [image: Subfigure (b) (sigclass9.png)]
(b) An odd signal


Figure 2.6. 

 
	  Using the definitions of even and odd signals, we can show
	  that any signal can be written as a combination of an even and
	  odd signal.  That is, every signal has an odd-even
	  decomposition.  To demonstrate this, we have to look no
	  further than a single equation.
	  
()

	  By multiplying and adding this expression out, it can be shown
	  to be true.  Also, it can be shown that
	  
	    f(t)+f(–t)
	  
	  fulfills the requirement of an even function, while
	  
	    f(t)−f(–t)
	  
	  fulfills the requirement of an odd function (Figure 2.7).
	
Example 2.1. 
  [image: Subfigure (a) (sigclass10.png)]
(a) The signal we will decompose using odd-even
		decomposition

  [image: Subfigure (b) (sigclass11.png)]
(b) Even part:
		

  [image: Subfigure (c) (sigclass12.png)]
(c) Odd part:
		

  [image: Subfigure (d) (sigclass13.png)]
(d) Check:
		
		  e(t)+o(t)=f(t)
		


Figure 2.7. 




Deterministic vs. Random



 
	  A  deterministic signal is a signal in which
	  each value of the signal is fixed and can be determined by a
	  mathematical expression, rule, or table.  Because of this
	  the future values of the signal can be calculated from past
	  values with complete confidence.  On the other hand, a
	   random
	  signal has a lot of uncertainty about its
	  behavior.  The future values of a random signal cannot be
	  accurately predicted and can usually only be guessed based
	  on the averages
	  of sets of signals (Figure 2.8).
	
  [image: Subfigure (a) (ran_sin.png)]
(a) Deterministic Signal

  [image: Subfigure (b) (ran_nos.png)]
(b) Random Signal


Figure 2.8. 


Example 2.2. 
 Consider the signal defined for all real t described by
(2.1)

 This signal is continuous time, analog, aperiodic, infinite length, causal, neither even nor odd, and, by definition, deterministic.



Signal Classifications Summary



 This module describes just some of the many ways in which signals can be classified.  They can be continuous time or discrete time, analog or digital, periodic or aperiodic, finite or infinite, and deterministic or random. We can also divide them based on their causality and symmetry properties.  There are other ways to classify signals, such as boundedness, handedness, and continuity, that are not discussed here but will be described in subsequent modules.


2.2. Signal Models



Linear Models*



 
      Finding an MVUB estimator is a very difficult task, in general.
      However, a large number of signal processing problems can be
      respresented by a  linear model of the data. 
    
Importance of Class of Linear Models



 
	
 	MVUB estimator within this class is immediately
	  evident

	Statistical performance analysis of linear models is
	  very straightforward




      

General Form of Linear Model (LM)



 
	
	  x=Hθ+w
	
	where x is the
	 observation vector, H is the known matrix
	( observation or  system matrix),
	θ is the
	unknown  parameter vector, and w is the vector of White
	Guassian noise 
	
	  w∼(0, σ2I)
	.
      
Example 2.3. 
 
	  
	    xn=A+Bn+wn  ,  
		n∈{1, …, N}
	        
	  
	  
	  
	  
	  
	



Probability Model for LM



 
	
	  x=Hθ+w
	
	
      

CRLB and NVUB Estimator



 
	 the MVUB estimator iff 
	  In the case of the LM, 
	  Now using identities 
	
	 for A
	symmetric.
      
 
	We have 
	  Assuming 
	
	  HTH
	 is invertible
	  which leads to
	
(2.2)MVUB Estimator


	
(2.3)Fisher Information Matrix


	
      
 
	
Theorem 2.1.
 
	      If the observed data can be modeled as 
	      
		x=Hθ+w
	      
	      where 
	      
		w∼(0, σ2I)
	       and H
	      is invertible.  Then, the MVUB estimator is 
	       and the covariance of 
	       is 
	      
		Cθ=σ2(HTH)-1
	       and 
	       attains the CRLB.
	      




	    




      

Linear Model Examples



Example 2.4. Curve Fitting
 

Figure 2.9. 

 
	  Model:
	  
	    x(tn)=θ1+θ2tn+…+θptnp−1+w(tn)  ,  
		n∈{1, …, N}
	        
	   where 
	  
	    θ1+θ2tn+…+θptnp−1
	   is a 
	  
	    (
		  p
		  –
		  1
		)st
	  -order polynomial and 
	  
	    w(tn)∼(0, σ2)
	   idd.  Therefore,
	  
	    x=Hθ+w
	  
	  
	  
	    where H is the  Vandermonde
	  matrix.  The MVUB estimator for θ is 
	  
	


Example 2.5. System Identification
 

Figure 2.10. 

 
	  
	    Where 
	  
	    w[n]∼(0, σ2)
	   idd.  Given x and
	  u, estimate
	  h.
	
 
	  In matrix form
	   
	  where 
	   and 
	  
	  
(2.4)MVUB estimator


	   An important question in system identification is
	  how to choose the input 
	  
	    u[n]
	   to "probe" the system most efficiently.
	
 
	  First note that 
	   where 
	  .  Also, since 
	   is symmetric positive definite, we can factor it by 
	   where D is invertible.[1]  Note that 
	  
()
 The Schwarz inequality shows that Equation can become 
	  
()

	   which leads to 
	   The minimum variance is achieved when equality is
	  attained in Equation.  This happens only if 
	   is proportional to 
	  .  That is, 
	   for some constant C.  Equivalently, 
	  
	  
	  which leads to 
	    Combining these equations in matrix form 
	   Therefore, in order to minimize the variance of
	  the MVUB estimator, 
	  
	    u[n]
	   should be chosen to make 
	  
	    HTH
	   diagonal.
	
 
	  
	  For large N, this can be
	  approximated to
	   using the autocorrelation of seq. 
	  
	    u[n]
	  .
	  


	      u[n]=0
	    
	      n<0
	    
	      n>N−1
	    
	      –∞
	    ∞

  These steps lead to
	   where 
	   is the Toeplitz autocorrelation matrix and 
	    For 
	  
	    HTH
	   to be diagonal, we require 
	  
	    r[k]=0
	  , 
	  
	    k≠0
	  .  This condition is approximately realized if we
	  take 
	  
	    u[n]
	   to be a  pseudorandom noise sequence
	  (PRN)[2].
	  Furthermore, the PRN sequence simplifies the estimator
	  computation:
	  
	   which leads to 
	   where 
	  .  
	  
	    rux[i]
	   is the cross-correlation between input and output
	  sequences.
	
 
	  Hence, the approximate MVUB estimator for large N with a PRN
	  input is 
	  
	  
	  
	



CRLB for Signal in White Gaussian Noise



 
	
	  xn=sn(θ)+wn  ,  
	      n∈{1, …, N}
	      
	
	
	
	
	
	
      



Solutions



    
      [image: Statistical Signal Processing]
    

  Chapter 3. Detection Theory



3.1. Hypothesis Testing*



 Suppose you measure a collection of scalars
      
	
	  x1
	  ,
	  …
	  ,
	  xN
	
      . You believe the data is distributed in one of two
      ways. Your first model, call it
      
	H0
      , postulates the data to be governed by the density
      
	f0(x)
       (some fixed density). Your second model, 
      
	H1
      , postulates a different density
      
	f1(x)
      . These models, termed  hypotheses, are
      denoted as follows:
      
	
	  H0
	  :
	  xn∼f0(x)
	  ,
	  n
	  =
	  1
	  …
	  N

	
      
      
	
	  
	  H1
	  :
	  xn∼f1(x)
	  ,
	  n
	  =
	  1
	  …
	  N
	
      
      A  hypothesis test is a rule that, given a
      measurement x, makes
      a decision as to which hypothesis best "explains" the data.
    
Example 3.1. 
 Suppose you are confident that your data is
      normally distributed with variance 1, but you are uncertain about
      the sign of the mean. You might postulate
      
	
	  H0
	  :
	  xn∼(-1, 1)
	  
	
	
	  
	    H1
	    :
	    xn∼(1, 1)
	  
	
	These densities are depicted in Figure 3.1.

	
 [image: Figure (GaussOppMeanUnitVar.png)]
Figure 3.1. 



	Assuming each hypothesis is a priori
	equally likely, an intuitively appealing hypothesis test is to
	compute the sample mean
	, and choose 
	
	  H0
	 if 
	, and 
	
	  H1
	 if 
	. As we will see later, this test is in fact optimal
	under certain assumptions.
      


Generalizations and Nomenclature



 The concepts introduced above can be extended in
      several ways. In what follows we provide more rigorous
      definitions, describe different kinds of hypothesis testing, and
      introduce terminology.
      
Data



 In the most general setup, the observation is
	a collection
	  
	  of random vectors. A common assumption, which facilitates
	  analysis, is that the data are independent and identically
	  distributed (IID). The random vectors may be continuous,
	  discrete, or in some cases mixed. It is generally assumed
	  that all of the data is available at once, although for some
	  applications, such as Sequential
	  Hypothesis Testing, the data is a never ending
	  stream.
	

Binary Versus M-ary Tests



 When there are two competing hypotheses, we
	refer to a  binary hypothesis test. When the
	number of hypotheses is
	  
	    M≥2
	  , we refer to an  M-ary hypothesis
	  test. Clearly, binary is a special case of
	  M-ary, but binary tests are
	  accorded a special status for certain reasons. These include
	  their simplicity, their prevalence in applications, and
	  theoretical results that do not carry over to the
	  M-ary case.
	
Example 3.2. 
Phase-Shift Keying



 Suppose we
	    wish to transmit a binary string of length
	    r over a noisy communication
	    channel. We assign each of the
	      
		M=2r
	       possible bit sequences to a signal
	      , 
	      
		k={1, …, M}
	      
	      where
	      
	      This symboling scheme is known as  phase-shift
	      keying (PSK). After transmitting a signal across
	      the noisy channel, the receiver faces an
	      M-ary hypothesis testing
	      problem:
	      
	      ⋮
	      
	      where
	      
		w∼(0, σ2I)
	      .
	    



 In many binary hypothesis tests, one
	  hypothesis represents the absence of a ceratin
	  feature. In such cases, the hypothesis is usually
	  labelled
	  
	    H0
	   and called the  null hypothesis. 
	  The other hypothesis is labelled 
	  
	    H1
	   and called the  alternative 
	  hypothesis.
	
Example 3.3. 
Waveform Detection



 Consider the problem of detecting a known
	    signal
	      
		s=(s1, …, sN)T
	       in additive white Gaussian noise (AWGN). This
	      scenario is common in sonar and radar systems. Denoting
	      the data as
	      
		x=(x1, …, xN)T
	      , our hypothesis testing problem is
	      
		
		
		  H0
		  :
		
		x=w
	      
	      
		
		  H1
		  :
		
		x=s+w
	      
	      where
	      
		w∼(0, σ2I)
	      .
	      
		H0
	       is the null hypothesis, corresponding to 
	      the absence of a signal.
	    




Tests and Decision Regions



 Consider the general hypothesis testing
	problem where we have N
	d-dimensional observations
	   and M hypotheses. If
	  the data are real-valued, for example, then a hypothesis
	  test is a mapping
	  
	    (
		φ
		:
		(ℝd)N
	        →  {1, …, M})
	  
	  For every possible realization of the input, the test
	  outputs a hypothesis. The test
	  φ partitions the input
	  space into a disjoint collection
	  
	    
	      R1
	      ,
	      …
	      ,
	      RM
	    
	  , where
	  
	  The sets
	  
	    Rk
	   
	  are called  decision regions. The boundary
	  between two decision regions is a  decision
	  boundary. Figure 3.2
	  depicts these concepts when
	  
	    d=2
	  ,
	  
	    N=1
	  , and
	  
	    M=3
	  .

	  
 [image: Figure (decisionRegions.png)]
Figure 3.2. 



	

Simple Versus Composite Hypotheses



 If the distribution of the data under a
	certain hypothesis is fully known, we call it a
	 simple hypothesis. All of the hypotheses in the
	examples above are simple. In many cases, however, we only
	know the distribution up to certain unknown parameters. For
	example, in a Gaussian noise model we may not know the
	variance of the noise. In this case, a hypothesis is said to
	be  composite.
	
Example 3.4. 
 Consider the problem of detecting the signal
	    
	      
	      sn=cos(2πf0(n−k))
	      n={1, …, N}  
	    
	    where k is an unknown delay
	    parameter. Then
	    
	      
		H0
		:
		x=w
	      
	    
	    
	      
		H1
		:
		x=s+w
	      
	    
	    is a binary test of a simple hypothesis 
	    (
	      H0
	    ) versus a composite alternative. Here we 
	    are assuming
	    , with
	    
	      σ2
	     known.
	  


 Often a test involving a composite
	hypothesis has the form
	  
	    
	      H0
	      :
	      θ=θ0
	    
	  
	  
	    
	      H1
	      :
	      θ≠θ0
	    
	  
	  where 
	  
	    θ0
	   is fixed. Such problems are called 
	   two-sided because the composite 
	  alternative "lies on both sides of
	  
	    H0
	  ." When 
	    θ is a scalar, 
	  the test
	  
	    
	      H0
	      :
	      θ≤θ0
	    
	  
	  
	    
	      H1
	      :
	      θ>θ0
	    
	   is called  one-sided. Here, both
	  hypotheses are composite.
	
Example 3.5. 
 Suppose a coin turns up heads with
	  probability p. We want to
	  assess whether the coin is fair 
	    (). We toss the coin
	    N times and record
	    
	      
		x1
		,
		…
		,
		xN
	      
	    
	    (
	      xn=1
	     means heads and 
	    
	      xn=0
	     means tails). Then
	    
	    
	    is a binary test of a simple hypothesis 
	    (
	      H0
	    ) versus a composite alternative. This is 
	    also a two-sided test.
	  




Errors and Probabilities



 In binary hypothesis testing, assuming at least
      one of the two models does indeed correspond to reality, there
      are four possible scenarios:
	 
	Case 1: 
	    
	    
	      H0
	     is true, and we declare 
	    
	      H0
	     to be true
	  
	Case 2: 
	    
	    
	      H0
	     is true, but we declare 
	    
	      H1
	     to be true
	  
	Case 3: 
	    
	    
	      H1
	     is true, and we declare 
	    
	      H1
	     to be true
	  
	Case 4: 
	    
	    
	      H1
	     is true, but we declare 
	    
	      H0
	     to be true
	  


	In cases 2 and 4, errors occur. The names given to these
	errors depend on the area of application. In statistics, they
	are called  type I and  type II errors
	respectively, while in signal processing they are known as a
	 false alarm or a  miss.
      
 Consider the general binary hypothesis testing
      problem
	
	  
	    
	    H0
	    :
	    x∼fθ(x)
	    ,
	    θ∈Θ0
	  
	
	
	  
	    
	    H1
	    :
	    x∼fθ(x)
	    ,
	    θ∈Θ1
	  
	
	If 
	
	  H0
	 is simple, that is, 
	
	  Θ0={θ0}
	, then the  size (denoted
	α), also called the
	 false-alarm probability
	(
	  PF
	), is defined to be
	
	  α=PF=Pr[θ0, 
		declare 
		H1
	      ]
	
	When 
	
	  Θ0
	 is composite, we define
	
	  α=PF=sup
		    θ
		    ∈
		    Θ0
		  (Pr[θ, 
		  declare 
		  H1
		])
	
	For 
	
	  θ∈Θ1
	, the  power (denoted
	β), or  detection
	probability
	(
	  PD
	), is defined to be
	
	  β=PD=Pr[θ, 
		declare 
		H1
	      ]
	
	The probability of a type II error, also called the  miss
	probability, is
	
	  PM=1−PD
	
	If 
	
	  H1
	 is composite, then 
	
	  β=β(θ)
	 is viewed as a function of
	θ.
      

Criteria in Hypothesis Testing



 The design of a hypothesis test/detector often
      involves constructing the solution to an optimization
      problem. The optimality criteria used fall into two classes:
      Bayesian and frequent.
      
 Representing the former approach is the Bayes Risk Criterion. Representing the
      latter is the Neyman-Pearson
      Criterion. These two approaches are developed at length
      in separate modules.
      

Statistics Versus Engineering Lingo



 The following table, adapted from Kay, p.65 [link], summarizes the different terminology for
      hypothesis testing from statistics and signal processing:

	  
	
Table 3.1. 	Statistics	Signal Processing
	Hypothesis Test	Detector
	Null Hypothesis	Noise Only Hypothesis
	Alternate Hypothesis	Signal + Noise Hypothesis
	Critical Region	Signal Present Decision Region
	Type I Error	False Alarm
	Type II Error	Miss
	Size of Test
		(α)	Probability of False Alarm
		  (
		    PF
		  )
		
	Power of Test
		  (β)	Probability of Detection
		  (
		    PD
		  )
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3.2. Criteria



Criteria in Hypothesis Testing*



 
      The criterion used in the previous section - minimize the
      average cost of an incorrect decision - may seem to be a
      contrived way of quantifying decisions.  Well, often it is.  For
      example, the Bayesian decision rule depends explicitly on the
      a priori probabilities; a rational method of
      assigning values to these - either by experiment or through true
      knowledge of the relative likelihood of each model - may be
      unreasonable.  In this section, we develop alternative decision
      rules that try to answer such objections.  One essential point
      will emerge from these considerations: the fundamental
      nature of the decision rule does not change with choice of
      optimization criterion.  Even criteria remote from
      error measures can result in the likelihood ratio test (see
      this problem).
      Such results do not occur often in signal processing and
      underline the likelihood ratio test's significance.
    
Maximum Probability of a Correct Decision



 
	As only one model can describe any given set of data (the
	models are mutually exclusive), the probability of being
	correct 
	
	  Pc 
	 for distinguishing two models is given by
	
	  Pc=Pr[
		  say  
		  ℳ0
		    when  
		  ℳ0
		    true
		]+Pr[
		  say  
		  ℳ1
		    when  
		  ℳ1
		    true
		]
	 We wish to determine the optimum decision region
	placement Expressing the probability correct in terms of the
	likelihood functions
	, the a priori probabilities, and
	the decision regions,
	  We want to maximize 
	 
	  Pc 
	 by selecting the decision regions
	
	  ℜ0
	 and
	
	  ℜ0
	.  The probability correct is maximized by
	associating each value of
	
	  r 
	 with the largest term in the expression for 
	
	  Pc
	.  Decision region
	
	  ℜ0
	, for example, is defined by the collection of values
	of
	
	  r 
	 for which the first term is largest.  As all of the
	quantities involved are non-negative, the decision rule
	maximizing the probability of a correct decision is 
Correct decision
Given 
	  
	    r
	  , choose
	  
	    ℳi
	   for which the product
	   is largest.
	


  Simple manipulations lead to the likelihood ratio test.
	 Note that if the Bayes' costs were chosen so that
	
	  Cii=0
	 and 
	
	  Cij=C
	, (
	
	  i≠j
	), we would have the same threshold as in the
	previous section.  
      
 
	To evaluate the quality of the decision rule, we usually
	compute the  probability of error
	
	  Pe 
	 rather than the probability of being correct.  This
	quantity can be expressed in terms of the observations, the
	likelihood ratio, and the sufficient statistic.
	
()
 When the likelihood ratio is non-monotonic, the
	first expression is most difficult to evaluate.  When
	monotonic, the middle expression proves the most difficult.
	Furthermore, these expressions point out that the likelihood
	ratio and the sufficient statistic can be considered a
	function of the observations
	
	  r 
	; hence, they are random variables and have
	probability densities for each model.  Another aspect of the
	resulting probability of error is that no other
	decision rule can yield a lower probability of
	error.  This statement is obvious as we minimized
	the probability of error in deriving the likelihood ratio
	test.  The point is that these expressions represent a lower
	bound on performance (as assessed by the probability of
	error).  This probability will be non-zero if the conditional
	densities overlap over some range of values of
	
	  r 
	, such as occurred in the previous example.  In this
	region of overlap, the observed values are ambiguous: either
	model is consistent with the observations.  Our "optimum"
	decision rule operates in such regions by selecting that model
	which is most likely (has the highest probability) of
	generating any particular value.
      

Neyman-Pearson Criterion



 
	Situations occur frequently where assigning or measuring the
	a priori probabilities
	
	  Pi 
	 is unreasonable.  For example, just what is the
	a priori probability of a supernova
	occurring in any particular region of the sky?  We clearly
	need a model evaluation procedure which can function without
	a priori probabilities.  This kind of test
	results when the so-called Neyman-Pearson criterion is used to
	derive the decision rule.  The ideas behind and decision rules
	derived with the Neyman-Pearson criterion (Neyman and Pearson [link]) will serve us
	well in sequel; their result is important!
      
 
	Using nomenclature from radar, where model 
	
	  ℳ1
	 represents the presence of a target and 
	
	  ℳ0
	 its absence, the various types of correct and
	incorrect decisions have the following names (Woodward, pp. 127-129 [link]).[3]
	 
	Detection: 
	    
	    
	    we say it's there when it is; 
	    
	      PD=Pr(
		    say  
		    ℳ1
		    |
		    ℳ1
		      true
		  )
	    
	  
	False-alarm: 
	    
	    
	    we say it's there when it's not;
	    
	      PF=Pr(
		    say  
		    ℳ1
		    |
		    ℳ0
		      true
		  )
	    
	  
	Miss: 
	    
	    
	    we say it's not there when it is;
	    
	      PM=Pr(
		    say  
		    ℳ0
		    |
		    ℳ1
		      true
		  )
	    
	  

  The remaining probability 
	
	  Pr[
	      say  
	      ℳ0      
	        |    
		ℳ0
		  true
	      ]
	 has historically been left nameless and equals 
	
	  1−PF
	.  We should also note that the detection and miss
	probabilities are related by 
	
	  PM=1−PD
	.  As these are conditional probabilities, they do
	not depend on the a priori probabilities
	and the two probabilities 
	
	  PF
	 and 
	
	  PD
	 characterize the errors when
	any decision rule is used.
      
 
	These two probabilities are related to each other in an
	interesting way.  Expressing these quantities in terms of the
	decision regions and the likelihood functions, we have
	
	 As the region 
	
	  ℜ1
	 shrinks, both of these
	probabilities tend toward zero; as 
	
	  ℜ1
	 expands to engulf the entire range of observation
	values, they both tend toward unity.  This rather direct
	relationship between 
	
	  PD
	 and 
	
	  PF
	 does not mean that they equal each other;
	in most cases, as 
	
	  ℜ1
	 expands, 
	
	  PD
	 increases more rapidly than 
	
	  PF
	 (we had better be right more often than we are
	wrong!).  However, the "ultimate" situation where a rule is
	always right and never wrong 
	(
	  PD=1
	, 
	
	  PF=0
	) cannot occur when the conditional distributions
	overlap.  Thus, to increase the detection probability we must
	also allow the false-alarm probability to increase.  This
	behavior represents the fundamental tradeoff in hypothesis
	testing and detection theory.
      
 
	One can attempt to impose a performance criterion that depends
	only on these probabilities with the consequent decision rule
	not depending on the a priori
	probabilities.  The Neyman-Pearson criterion assumes that the
	false-alarm probability is constrained to be less than or
	equal to a specified value 
	
	  α
	 while we attempt to maximize the detection
	probability
	
	  PD
	.

	 A subtlety of the succeeding solution is that the
	underlying probability distribution functions may not be
	continuous, with the result that
	
	  PF
	 can never equal the constraining value
	
	  α 
	.  Furthermore, an (unlikely) possibility is that the
	optimum value for the false-alarm probability is somewhat less
	than the criterion value.  Assume, therefore, that we rephrase
	the optimization problem by requiring that the false-alarm
	probability equal a value
	 that is less than or equal to
	
	  α 
	.
      
 
	This optimization problem can be solved using Lagrange
	multipliers (see Constrained
	Optimization); we seek to find the decision rule that
	maximizes
	 where 
	
	  λ 
	 is the Lagrange multiplier.  This optimization
	technique amounts to finding the decision rule that maximizes
	
	  F 
	, then finding the value of the multiplier that
	allows the criterion to be satisfied.  As is usual in the
	derivation of optimum decision rules, we maximize these
	quantities with respect to the decision regions.  Expressing
	
	  PD
	 and 
	
	  PF
	 in terms of them, we have
	
()
 To maximize this quantity with respect to
	
	  ℜ1
	, we need only to integrate over those regions of
	
	  r 
	 where the integrand is positive.  The region
	
	  ℜ1
	 thus corresponds to those values of 
	
	  r 
	 where 
	 and the resulting decision rule is 
	 The ubiquitous likelihood ratio test again appears;
	it is indeed the fundamental quantity in
	hypothesis testing.  Using the logarithm of the likelihood
	ratio or the sufficient statistic, this result can be
	expressed as either
	 or
	
      
 
	We have not as yet found a value for the threshold.  The
	false-alarm probability can be expressed in terms of the
	Neyman-Pearson threshold in two (useful) ways.
	
()
 One of these implicit equations must be solved for
	the threshold by setting
	
	  PF
	 equal to 
	.  The selection of which to use is usually based on
	pragmatic considerations: the easiest to compute.  From the
	previous discussion of the relationship between the detection
	and false-alarm probabilities, we find that to maximize 
	
	  PD
	 we must allow 
	 to be as large as possible while remaining less than
	
	  α 
	.  Thus, we want to find the
	smallest value of
	
	  –λ
	 (note the minus sign) consistent with the
	constraint.  Computation of the threshold is
	problem-dependent, but a solution always exists.
      
Example 3.6. 
 
	  An important application of the likelihood ratio test occurs
	  when 
	  
	    r 
	   is a Gaussian random vector for each model.
	  Suppose the models correspond to Gaussian random vectors
	  having different mean values but sharing the same identity
	  covariance. 
	  
 	
	      
		ℳ0
	      :  
	      
		r∼(0, σ2I)
	      
	    

	
	      
		ℳ1
	      :  
	      
		r∼(m, σ2I)
	       
	    



  Thus, 
	  
	    r
	   is of dimension 
	  
	    L 
	   and has statistically independent, equal variance
	  components.  The vector of means
	  
	    m=(m0, …, m
		      L
		      −
		      1
		    )T
	   distinguishes the two models.  The likelihood
	  functions associated this problem are
	  
	    The likelihood ratio 
	  
	    Λ(r)
	   becomes
	   This expression for the likelihood ratio is
	  complicated.  In the Gaussian case (and many others), we use
	  the logarithm the reduce the complexity of the likelihood
	  ratio and form a sufficient statistic.
	  
()
  The likelihood ratio test then has the much
	  simpler, but equivalent form
	   To focus on the model evaluation aspects of this
	  problem, let's assume means be equal to a positive constant:
	  
	    ml=m
	  
	  (
	    >0
	  ).[4]
	  
	  Note that all that need be known about the observations
	  
	    {rl}
	   is their sum.  This quantity is the sufficient
	  statistic for the Gaussian problem:
	  
	    ϒ(r)=∑rl
	   and 
	  .
	
 
	  When trying to compute the probability of error or the
	  threshold in the Neyman-Pearson criterion, we must find the
	  conditional probability density of one of the decision
	  statistics: the likelihood ratio, the log-likelihood, or the
	  sufficient statistic.  The log-likelihood and the sufficient
	  statistic are quite similar in this problem, but clearly we
	  should use the latter.  One practical property of the
	  sufficient statistic is that it usually simplifies
	  computations.  For this Gaussian example, the sufficient
	  statistic is a Gaussian random variable under each model.
	  
 	
	      
		ℳ0
	      :  
	      
		ϒ(r)∼(0, Lσ2)
	      
	    

	
	      
		ℳ1
	      :  
	      
		ϒ(r)∼(Lm, Lσ2)
	       
	    



  To find the probability of error from Equation, we must evaluate the area under a
	  Gaussian probability density function.  These integrals are
	  succinctly expressed in terms of
	  
	    Q(x)
	  , which denotes the probability that a
	  unit-variance, zero-mean Gaussian random variable exceeds
	  
	    x 
	   (see Probability and
	  Stochastic Processes).  As
	  
	    1−Q(x)=Q(–x)
	  , the probability of error can be written as
	  
	  An interesting special case occurs when 
	  
	    π0=1/2=π1
	  .  In this case, 
	   and the probability of error becomes
	    As 
	  
	    Q(·)
	   is a monotonically decreasing function, the
	  probability of error decreases with increasing values of the
	  ratio
	  .  However, as shown in this figure,
	  
	    Q(·)
	   decreases in a nonlinear fashion.  Thus,
	  increasing 
	  
	    m 
	   by a factor of two may decrease the probability of
	  error by a larger or a smaller factor;
	  the amount of change depends on the initial value of the
	  ratio.
	
 
	  To find the threshold for the Neyman-Pearson test from the
	  expressions given on Equation, we
	  need the area under a Gaussian density.
	  
()

	  As 
	  
	    Q(·)
	   is a monotonic and continuous function, we can now set
	   equal to the criterion value
	  α  with the result
	  
	  where 
	  
	    Q-1(·)
	   denotes the inverse function of 
	  
	    Q(·)
	  .  The solution of this equation cannot
	  be performed analytically as no closed form expression
	  exists for 
	  
	    Q(·)
	   (much less its inverse function); the criterion
	  value must be found from tables or numerical routines.
	  Because Gaussian problems arise frequently, the Table 3.2 accompanying table provides
	  numeric values for this quantity at the decade points.
	  
Table 3.2. 
	      The table displays interesting values for
	      
		Q-1(·)
	       that can be used to determine thresholds in
	      the Neyman-Pearson variant of the likelihood ratio test.
	      Note how little the inverse function changes for decade
	      changes in its argument; 
	      
		Q(·)
	       is indeed very nonlinear.
	    	
		    x
		    
		  	
		    
		      Q-1(x)
		    
		  
	
		    
		      10-1
		    			 
		  	
		    1.281
		  
	
		    
		      10-2
		    
		  	
		    2.396
		  
	
		    
		      10-3
		    
		  	
		    3.090
		  
	
		    
		      10-4
		    
		  	
		    3.719
		  
	
		    	      
		      10-5
		    
		  	
		    4.265
		  
	
		    
		      10-6
		    
		  	
		    4.754
		  



	  The detection probability is given by
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The Bayes Risk Criterion in Hypothesis Testing*



 The design of a hypothesis test/detector often
      involves constructing the solution to an optimization
      problem. The optimality criteria used fall into two classes:
      Bayesian and frequent.
    
 In the Bayesian setup, it is assumed that the
      a priori probability of
      each hypothesis occuring
      (
	πi
      ) is known. A cost
      
	Cij
       is assigned to each possible outcome:
      
	Cij=Pr[
	      say 
	      Hi
	       when 
	      Hj
	       true
	    ]
      
      The optimal test/detector is the one that minimizes the Bayes
      risk, which is defined to be the expected cost of an
      experiment:
      
    
 
      In the event that we have a binary problem, and both
      hypotheses are simple, the decision rule that
      minimizes the Bayes risk can be constructed explicitly. Let us
      assume that the data is continuous (i.e.,
      it has a density) under each hypothesis:
      
	
	  H0
	  :
	  x∼f0(x)
	
      
      
	
	  H1
	  :
	  x∼f1(x)
	
      
      Let 
      
	R0
       and
      
	R1
       
      denote the decision
	regions corresponding to the optimal test. Clearly,
      the optimal test is specified once we specify
      
	R0
       and
      
	R1=R0′
      .
    
 The Bayes risk may be written
      
()

      Recall that 
      
	R0
       and
      
	R1
       
      partition the input space: they are
      disjoint and their union is the full input space. Thus, every
      possible input x
      belongs to precisely one of these regions. In order to minimize
      the Bayes risk, a measurement x should belong to the decision
      region
      
	Ri
       
      for which the corresponding integrand in the preceding equation
      is smaller. Therefore, the Bayes risk is minimized by assigning
      x to
      
	R0
       whenever
      
	π0C00f0(x)+π1C01f1(x)<π0C10f0(x)+π1C11f1(x)
      
      and assigning x to
      
	R1
       
      whenever this inequality is reversed. The resulting rule may be
      expressed concisely as
      
      Here, 
      
	Λ(x)
       is called the  likelihood ratio,
      η is called the threshold, and
      the overall decision rule is called the Likelihood Ratio Test 
      (LRT). The expression
      on the right is called a  threshold.
    
Example 3.7. 
 
	An instructor in a course in detection theory wants to
	determine if a particular student studied for his last test.
	The observed quantity is the student's grade, which we
	denote by
	
	  r
	.  Failure may not indicate studiousness:
	conscientious students may fail the test.  Define the models
	as
	
 	
	    
	      ℳ0
	    :   did not study

	
	    
	      ℳ1
	    : did study



 The conditional densities of the grade are shown in
	Figure 3.3.

	
 [image: Figure (grade.png)]
Figure 3.3. 
Conditional densities for the grade distributions
	    assuming that a student did not study
	    (
	      ℳ0
	    ) or did
	    (
	      ℳ1
	    ) are shown in the top row.  The lower portion
	    depicts the likelihood ratio formed from these densities.
	  


	Based on knowledge of student behavior, the instructor
	assigns a priori probabilities of
	 and
	.  The costs
	
	  C
		i
		​
		j
	      
	 are chosen to reflect the instructor's sensitivity
	to student feelings:
	
	  C01=1=C10
	 (an erroneous decision either way is given the
	same cost) and
	
	  C00=0=C11
	.  The likelihood ratio is plotted in Figure 3.3 and the threshold value
	
	  η
	, which is computed from the a
	  priori probabilities and the costs to be
	, is indicated.  The calculations of this
	comparison can be simplified in an obvious way.
	 or
	 The multiplication by the factor of 50 is a simple
	illustration of the reduction of the likelihood ratio to a
	sufficient statistic.  Based on the assigned costs and
	a priori probabilities, the optimum
	decision rule says the instructor must assume that the
	student did not study if the student's grade is less than
	16.7; if greater, the student is assumed to have studied
	despite receiving an abysmally low grade such as 20.  Note
	that as the densities given by each model overlap entirely:
	the possibility of making the wrong interpretation
	always haunts the instructor.  However,
	no other procedure will be better!
      


 
      A special case of the minimum Bayes risk rule, the minimum probability of error rule, is
      used extensively in practice, and is discussed at length in
      another module.
    
Problems



Exercise 1.
 
	   Denote
	    
	      α=Pr[
		    declare 
		    H1
		     when 
		    H0
		     true
		  ]
	     and 
	    
	      β=Pr[
		    declare 
		    H1
		     when 
		    H1
		     true
		  ]
	    . Express the Bayes risk
	     in terms of α
	     and β, 
	    
	      C
		    i
		    ​
		    j
		  
	    , and 
	    
	      πi
	    . Argue that the optimal decision rule is not 
	    altered by setting
	    
	      C00=C11=0
	    .
	  

	


Exercise 2.
 
	   Suppose we observe
	    
	      x
	     such that
	    
	      Λ(x)=η
	    . Argue that it doesn't matter whether we assign
	    
	      x
	     to 
	    
	      R0
	     or
	    
	      R1
	    .
	  

	




Minimum Probability of Error Decision Rule*



 Consider the binary hypothesis test
      
	
	  ℋ0
	  :
	  x∼f0(x)
	
      
      
	
	  ℋ1
	  :
	  x∼f1(x)
	
      
      Let
      
	πi
      , denote the a priori probability of
      hypothesis
      
	ℋi
      . Suppose our decision rule declares 
      "
	ℋ0
       is the true model" when
      
	x∈R0
      , and it selects
      
	ℋ1
      
      when 
      
	x∈R1
      , where
      
	R1=R0′
      . The probability of making an error, denoted
      
	Pe
      , is
      
()

      In this module, we study the minimum probability of error
      decision rule, which selects
      
	R0
       and
      
	R1
       so as to minimize the above expression.
    
 Since an observation x falls into one and only one of the
    decision regions
      
	Ri
      , in order to minimize
      
	Pe
      , 
      we assign x to the
      region for which the corresponding integrand in Equation
      is smaller. Thus, we select
      
	x∈R0
       if 
      
	π1f1(x)<π0f0(x)
      , and 
      
	x∈R1
       if the inequality is reversed. This decision rule may
      be summarized concisely as
      

      Here, 
      
	Λ(x)
       is called the  likelihood ratio,
      η is called a
       threshold, and the overall decision rule is called
      the Likelihood Ratio Test.
      
     
    
Example 3.8. 
Normal with Common Variance, Uncommon Means



 Consider the binary hypothesis test of a scalar 
	  x
	  
	    
	      ℋ0
	      :
	      x∼(0, σ2)
	    
	  
	  
	    
	      ℋ1
	      :
	      x∼(μ, σ2)
	    
	  
	  where μ and
	  
	    σ2
	   are known, positive quantities. Suppose we observe
	  a single measurement x. The
	  likelihood ratio is
	  
()

	  and so the minimum probability of error decision rule is
	  
	
	  The expression for
	  
	    Λ(x)
	   
	  is somewhat complicated. By applying a sequence of
	  monotonically increasing functions to both sides, we can
	  obtain a simplified expression for the optimal decision rule
	  without changing the rule. In this example, we apply the
	  natural logarithm and rearrange terms to arrive at
	  
	  Here we have used the assumption 
	  
	    μ>0
	  . If
	  
	    μ<0
	  , then dividing by μ
	   would reverse the inequalities.
	
 This form of the decision rule is much
	simpler: we just compare the observed value
	x to a threshold
	γ. Figure 3.4
	depicts the two candidate densities and a possible value of
	γ. If each hypothesis is
	a priori equally likely
	  (), then
	  . Figure 3.4 illustrates the case where
	  
	    π0>π1
	  
	  ().

	   
	  
  [image: Subfigure (a) (GaussUncMeanComVarPd.png)](a)

  [image: Subfigure (b) (GaussUncMeanComVarPf.png)](b)


Figure 3.4. 
The two candidate densities, and a threshold
	    corresponding to
	      
		π0>π1
	      


	    
	  If we plot the two densities so that each is weighted by its
	  a priori probability of occuring, the two
	  curves will intersect at the threshold
	  γ (see Figure 3.5). (Can you explain why this is? Think back
	  to our derivation of the LRT). This plot also offers a way
	  to visualize the probability of error. Recall
	  
()

	  where
	  
	    PM
	  
	  and 
	  
	    PF
	  
	  denote the miss and false alarm probabilities,
	  respectively. These quantities are depicted in Figure 3.5.

	  
 [image: Figure (GaussUncMeanComVarPe.png)]
Figure 3.5. 
The candidate densities weighted by their
	    a priori probabilities. The shaded
	    region is the probability of error for the optimal
	    decision rule.
	    


	  
	  We can express  
	  
	    PM
	  
	  and 
	  
	    PF
	  
	  in terms of the Q-function as
	  
	  When 
	  , we have 
	  , and the error probability is
	  
	  Since
	  
	    Q(x)
	   is monotonically decreasing, this says that the
	  "difficulty" of the detection problem decreases with
	  decreasing σ and
	  increasing μ.
	



 In the preceding example, computation of the
    probability of error involved a one-dimensional integral. If we
    had multiple observations, or vector-valued data, generalizing
    this procedure would involve multi-dimensional integrals over
    potentially complicated decision regions. Fortunately, in many
    cases, we can avoid this problem through the use of sufficient statistics.
    
Example 3.9. 
 Suppose we have the same test as in the
      previous example, but now we have
      N independent observations:
	
	  
	    ℋ0
	    :
	    xn∼(0, σ2)
	    ,
	    n
	    =
	    1
	    ,
	    …
	    ,
	    N
	  
	
	
	  
	    ℋ1
	    :
	    xn∼(μ, σ2)
	    ,
	    n
	    =
	    1
	    ,
	    …
	    ,
	    N
	  
	
	where
	
	  μ>0
	 and
	
	  σ2>0
	 and both are known. The likelihood ratio is
	
()

	As in the previous example,
	we may apply the natural logarithm and rearrange terms to
	obtain an equivalent form of the LRT:
	
	The scalar quantity t is a
	sufficient statistic for the mean. In order to evaluate the
	probability of error without resorting to a multi-dimensional
	integral, we can express
	
	  Pe
	 in terms of t as
	
	  Pe=π1Pr[t<γ    |    
		      ℋ1
		       true
		    ]+π0Pr[t>γ    |    
		      ℋ0
		       true
		    ]
	
	Now t is a linear combination of
	normal variates, so it is itself normal. In particular, we
	have
	
	  t=Ax
	, where
	 is an N-dimensional
	row vector of 1's, and x is multivariate normal with
	mean 0 or
	
	  μ=(μ, …, μ)T
	, and covariance
	
	  σ2I
	. Thus we have
	
	
	  
	      t
	      |
	      ℋ0
	    ∼(A0, Aσ2IAT)=(0, Nσ2)
	

	
	  
	      t
	      |
	      ℋ1
	    ∼(Aμ, Aσ2IAT)=(Nμ, Nσ2)
	

	Therefore, we may write 
	
	  Pe
	
	in terms of the Q-function as
	
     
	In the special case
	, 
	
	Since Q is monotonically
	decreasing, this result provides mathematical support for
	something that is intuitively obvious: The performance of our
	decision rule improves with increasing
	N and
	μ, and decreasing
	σ.
	
	

	
	
Remark
In the context of signal processing, the
	foregoing problem may be viewed as the problem of detecting a
	constant (DC) signal in additive white
	Gaussian noise:

	  
	    
	    
	      ℋ0
	      :
	      xn=wn
	      ,
	      n
	      =
	      1
	      ,
	      …
	      ,
	      N
	    
	 
	  

	  
	   
	    
	      ℋ1
	      :
	      xn=A+wn
	      ,
	      n
	      =
	      1
	      ,
	      …
	      ,
	      N
	    
	   
	  

	  where A is a known, fixed
	  amplitude, and
	  
	    wn∼(0, σ2)
	  . Here A corresponds
	  to the mean μ in the
	  example.
	



      


 The next example explores the minimum
    probability of error decision rule in a
    discrete setting.
    
Example 3.10. 
Repetition Code



 Suppose we have a friend who is trying to
	transmit a bit (0 or 1) to us over a noisy channel. The
	channel causes an error in the transmission (that is, the bit
	is flipped) with probability p,
	where
	  , and p is known. In
	  order to increase the chance of a successful transmission,
	  our friend sends the same bit
	  N times. Assume the
	  N transmissions are
	  statistically independent. Under these assumptions, the bits
	  you receive are Bernoulli random variables:
	  
	    xn∼Bernoulli(θ)
	  . We are faced with the following hypothesis test:
	  
Table 3.3. 	
		    
		      ℋ0
		    
		  	 
		    
		      θ=p
		    
		  	0 sent
	
		    
		      ℋ1
		    
		  	 
		    
		      θ=1−p
		    
		  	1 sent



		
	  We decide to decode the received sequence
	  
	    x=(x1, …, xN)T
	  
	  by minimizing the probability of error. The likelihood ratio is
	  
()

	  where
	   is the number of 1s received.
	  

k is a sufficient statistic for
	  θ.



	  The LRT is
	  
	  Taking the natural logarithm of both sides and rearranging,
	  we have

	  
	  In the case that both hypotheses are equally likely, the
	  minimum probability of error decision is the "majority-vote"
	  rule: Declare
	  
	    ℋ1
	   if there are more 1s than 0s, declare
	  
	    ℋ0
	   otherwise. In the event
	  
	    k=γ
	  , we may decide arbitrarily; the probability of
	  error is the same either way. Let's adopt the convention
	  that
	  
	    ℋ0
	   is declared in this case.
	
 To compute the probability of error of the
	optimal rule, write
	  
()

	  Now k is a binomial random variable, 
	  
	    k∼Binomial(N, θ)
	  , where θ
	  depends on which hypothesis is true. We have
	  
()

	  and
	  
	  Using these formulae, we may compute
	  
	    Pe
	   
	  explicitly for given values of
	  N,
	  p,
	  
	    π0
	   and
	  
	    π1
	  .
	  
	  
	



MAP Interpretation



 The likelihood ratio test is one way of
      expressing the minimum probability of error decision
      rule. Another way is

	
Rule
 Declare hypothesis
	      i such that
	      
		πifi(x)
	       is maximal.
	    





	This rule is referred to as the  maximum a
	posteriori, or  MAP rule, because
	the quantity
	
	  πifi(x)
	 is proportional to the posterior probability of
	hypothesis i. This becomes clear
	when we write
	
	  πi=Pr[ℋi]
	 and
	
	  fi(x)=f(
		x
		|
		ℋi
	      )
	.  
	
	Then, by Bayes rule, the
	posterior probability of
	
	  ℋi
	 given the data is
	
	Here
	
	  f(x)
	 is the unconditional density or mass function for
	x, which is
	effectively a constant when trying to maximiaze with respect to
	i.
      
 According to the MAP interpretation, the optimal
      decision boundary is the locus of points where the weighted
      densities (in the continuous case)
	
	  πifi(x)
	 intersect one another. This idea is illustrated in
	Example 3.9.
      

Multiple Hypotheses



 One advantage the MAP formulation of the minimum
      probability of error decision rule has over the LRT is that it
      generalizes easily to M-ary
      hypothesis testing. If we are to choose between hypotheses
	
	  ℋi
	, 
	
	  i={1, …, M}
	, the optimal rule is still the MAP rule
	
      

Special Case of Bayes Risk



 The
      Bayes risk criterion for
      constructing decision rules assigns a cost
	
	  C
		i
		​
		j
	      
	 to the outcome of declaring
	
	  ℋi
	 when
	
	  ℋj
	 
	is in effect. The probability of error is simply a special
	case of the Bayes risk corresponding to
	
	  C00=C11=0
	 and
	
	  C01=C10=1
	. Therefore, the form of the minimum probability of
	error decision rule is a specialization of the minimum Bayes
	risk decision rule: both are likelihood ratio tests. The
	different costs in the Bayes risk formulation simply shift the
	threshold to favor one hypothesis over the other.
      

Problems



Exercise 3.
 
	   Generally speaking, when is the probability of
	    error zero for the optimal rule? Phrase
	    your answer in terms of the distributions underlying each
	    hypothesis. Does the LRT agree with your answer in this case?
	  

	


Exercise 4.
 
	   Suppose we measure
	    N independent values
	    
	      
		x1
		,
		…
		,
		xN
	      
	    . We know the variance of our measurements 
	    (
	      σ2=1
	    ), but are unsure whether the data obeys a
	    Laplacian or Gaussian probability law:
	    
	    
	  


	   Show that the two densities have the same
	      mean and variance, and plot the densities on the same
	      graph.



	   Find the likelihood ratio.



	   Determine the decision regions for
	      different values of the threshold
	      η. Consider all possible
	      values of
	      
		η>0
	      
	      
Hint
There are three distinct cases.





	   Draw the decision regions and decision
	      boundaries for
	      .



	   Assuming the two hypotheses are equally
	      likely, compute the probability of error. Your answer should
	      be a number.
	    


	


Exercise 5.
 
	  Arbitrary Means and Covariances


 Consider the hypothesis testing problem
	      
	      
	      where
	       and
	      , and
	      
		Σ0
	      ,
	      
		Σ1
	       
	      are positive definite, symmetric
	      d×
		d matrices. Write down the 
	      likelihood ratio test, and simplify, for the following 
	      cases. In each case, provide a geometric description 
	      of the decision boundary.
	    
 
		
		  Σ0=Σ1
		, but
		.
	      

 
		, but
		
		  Σ0≠Σ1
		.

 
		 and
		
		  Σ0≠Σ1
		.



	


Exercise 6.
 
	   Suppose we observe
	    N independent realizations of a
	    Poisson random variable k with
	    intensity parameter λ:
	    
	    We must decide which of two intensities is in effect:
	    
	      
		ℋ0
		:
		λ=λ0
	      
	    
	    
	      
		ℋ1
		:
		λ=λ1
	      
	    
	    where
	    
	      λ0<λ1
	    .
	  


	   Give the minimum probability of error
	      decision rule.



	   Simplify the LRT to a test statistic
	      involving only a sufficient statistic. Apply a monotonically
	      increasing transformation to simplify further.



	   Determine the distribution of the sufficient
	      statistic under both hypotheses. 
Hint
Use the
		characteristic function to show that a sum of IID Poisson
		variates is again Poisson distributed.





	   Derive an expression for the probability of
	      error.
	    



	   Assuming the two hypotheses are equally likely, and
	      
		λ0=5
	       and
	      
		λ1=6
	      , what is the minimum number
	      N of observations needed to
	      attain a probability of error no greater than 0.01? 
Hint
If you have numerical trouble, try rewriting
		the log-factorial so as to avoid evaluating the factorial
		of large integers.




	


Exercise 7.
 
	   In Example 3.10, suppose
	    , and
	    
	      p=0.1
	    . What is the smallest value of
	    N needed to ensure
	    
	      Pe≤0.01
	    ?
	  

	




Neyman-Person



The Neyman-Pearson Criterion*



 In hypothesis
    testing, as in all other areas of statistical inference,
    there are two major schools of thought on designing good tests:
    Bayesian and frequentist (or classical). Consider the simple
    binary hypothesis testing problem 
      
	
	  ℋ0
	  :
	  x∼f0(x)
	
      

       
	
	  ℋ1
	  :
	  x∼f1(x)
	
      
      In the Bayesian setup, the prior probability
      
	πi=Pr[ℋi]
       of each hypothesis occurring is assumed known. This
      approach to hypothesis testing is represented by the minimum Bayes risk criterion and the
      minimum probability of error
      criterion.
    
 In some applications, however, it may not be
    reasonable to assign an a priori probability to
    a hypothesis. For example, what is the a priori
    probability of a supernova occurring in any particular region of
    the sky? What is the prior probability of being attacked by a
    ballistic missile? In such cases we need a decision rule that does
    not depend on making assumptions about the a
    priori probability of each hypothesis. Here the
    Neyman-Pearson criterion offers an alternative to the Bayesian
    framework.
    
 The Neyman-Pearson criterion is stated in terms
    of certain probabilities associated with a particular
    hypothesis test. The relevant quantities are summarized in Table 3.4. Depending on the setting, different terminology
    is used.
Table 3.4. 	Statistics	Signal Processing
	Probability	Name	Notation	Name	Notation
	
	      
		P0(
		    declare 
		    ℋ1
		  )
	      
	    	size	
	      
		α
	      
	    	false-alarm probability	
	      
		PF
	      
	    
	
	      
		P1(
		    declare 
		    ℋ1
		  )
	      
	    	power	
	      
		β
	      
	    	detection probability	
	      
		PD
	      
	    


 Here
      
	Pi(
	    declare 
	    ℋj
	  )
       dentoes the probability that we declare hypothesis 
      
	ℋj
       to be in effect when 
      
	ℋi
       is actually in effect. The probabilities
      
	P0(
	    declare 
	    ℋ0
	  )
       and
      
	P1(
	    declare 
	    ℋ0
	  )
       (sometimes called the  miss probability),
      are equal to
      
	1−PF
       and
      
	1−PD
      , respectively. Thus, 
      
	PF
       and
      
	PD
       represent the two degrees of freedom in a binary 
      hypothesis test. Note that 
      
	PF
       and
      
	PD
       do not involve a priori
      probabilities of the hypotheses.
    
 These two probabilities are related to
    each other through the decision
    regions. If
      
	R1
       is the decision region for 
      
	ℋ1
      , we have
      

      
      The densities
      
	fi(x)
      

      are nonnegative, so as 
      
	R1
       shrinks, both probabilities tend to zero. As
      
	R1
       expands, both tend to one. The ideal case, where
      
	PD=1
       and
      
	PF=0
      , cannot occur unless the distributions do not overlap
      (i.e.,
      
	∫f0(x)f1(x)dx=0
      ). Therefore, in order to increase
      
	PD
      , we must also increase
      
	PF
      . This represents the fundamental tradeoff in 
      hypothesis testing and detection theory.
    
Example 3.11. 
 Consider the simple binary hypothesis test
      of a scalar measurement x:
	
	  
	    ℋ0
	    :
	    x∼(0, 1)
	  
	

	
	  
	    ℋ1
	    :
	    x∼(1, 1)
	  
	
	Suppose we use a threshold test
	
	where
	
	  γ∈ℝ
	 is a free parameter. Then the false alarm and
	detection probabilities are
	

	
	where Q denotes the
	Q-function. These quantities
	are depicted in Figure 3.6.

	
  [image: Subfigure (a) (GaussUncMeanComVarPd.png)](a)

  [image: Subfigure (b) (GaussUncMeanComVarPf.png)](b)


Figure 3.6. 
False alarm and detection values for a certain
	  threshold.


      

	Since the Q-function
	is monotonicaly decreasing, it is evident that both
	
	  PD
	 and
	
	  PF
	 decay to zero as γ 
	increases. There is also an explicit relationship
	
	  PD=Q(Q-1(PF)−1)
	
	A common means of displaying this relationship is with a
	 receiver operating characteristic (ROC) curve,
	which is nothing more than a plot of
	
	  PD
	 versus
	
	  PF
	 (Figure 3.7).

	  
	
 [image: Figure (ROC.png)]
Figure 3.7. 
ROC curve for this example.


      


The Neyman-Pearson Lemma: A First Look



 The Neyman-Pearson criterion says that we should
      construct our decision rule to have maximum probability of
      detection while not allowing the probability of false alarm to
      exceed a certain value α. In
      other words, the optimal detector according to the
      Neyman-Pearson criterion is the solution to the following
      constrainted optimization problem:
      
Neyman-Pearson Criterion



 
	  
()

	

 
	The maximization is over all decision rules (equivalently, over
	all decision regions
	
	  R0
	, 
	
	  R1
	). 
	Using different terminology, the Neyman-Pearson criterion
	selects the most powerful test of size (not exceeding)
	  α.
      
 Fortunately, the above optimization problem has
      an explicit solution. This is given by the celebrated
       Neyman-Pearson lemma, which we now state. To ease
      the exposition, our initial statement of this result only
      applies to continuous random variables, and places a technical
      condition on the densities. A more general statement is given
      later in the module.

	
Theorem 3.1.
 Consider the test
	      
		
		  ℋ0
		  :
		
		x∼f0(x)
	      
	      
		
		  ℋ1
		  :
		
		x∼f1(x)
	      

	      where
	      
		fi(x)
	       is a density. Define
	      , and assume that
	      
		Λ(x)
	       satisfies the condition that for each
	      
		γ∈ℝ
	      , 
	      
		Λ(x)
	       takes on the value
	      γ with probability
	      zero under hypothesis
	      
		ℋ0
	      . The solution to the optimization problem 
	      in Equation is given by
	      

	      where η is such that
	      
	      
	      If 
	      
		α=0
	      , then
	      
		η=∞
	      . The optimal test is unique up to a set of
	      probability zero under
	      
		ℋ0
	       and
	      
		ℋ1
	      .
	    




      
	The optimal decision rule is called the  likelihood ratio
	test.
	
	  Λ(x)
	 is the  likelihood ratio, and
	η is a
	 threshold. Observe that neither the likelihood
	ratio nor the threshold depends on the a
	priori probabilities
	
	  Pr[ℋi]
	. they depend only on the conditional densities
	
	  fi
	 
	and the size constraint
	α. The threshold can often
	be solved for as a function of
	α, as the next example
	shows.
      

Example 3.12. 
 Continuing with Example 3.11,
      suppose we wish to design a Neyman-Pearson decision rule with
      size constraint α. We have
	
()


	By taking the natural logarithm of both sides of the LRT and
	rarranging terms, the decision rule is not changed, and we
	obtain
	

	Thus, the optimal rule is in fact a thresholding rule like we
	considered in Example 3.11. The false-alarm
	probability was seen to be
	
	  PF=Q(γ)
	
	Thus, we may express the value of
	γ required by the
	Neyman-Pearson lemma in terms of
	α:
	
	  γ=Q-1(α)
	
      


Sufficient Statistics and Monotonic Transformations



 For hypothesis testing involving multiple or
     vector-valued data, direct evaluation of the size
	(
	  PF
	) and power
	(
	  PD
	) 
	of a Neyman-Pearson decision rule would require integration
	over multi-dimensional, and potentially complicated decision
	regions. In many cases, however, this can be avoided by
	simplifying the LRT to a test of the form
	

	where the test statistic
	
	  t=T(x)
	 is a sufficient
	statistic for the data. Such a simplified form is
	arrived at by modifying both sides of the LRT with
	montonically increasing transformations, and by algebraic
	simplifications. Since the modifications do not change the
	decision rule, we may calculate
	
	  PF
	 and 
	
	  PD
	 in terms of the sufficient statistic. For 
	example, the false-alarm probability may be written
	
()


	where
	
	  f0(t)
	 denotes the density of t
	 under
	
	  ℋ0
	. Since t
	 is typically of lower dimension than 
	  x, evaluation of
	
	  PF
	 and 
	
	  PD
	 
	can be greatly simplified. The key is being able to reduce the
	LRT to a threshold test involving a sufficient statistic
	for which we know the distribution.
      
Example 3.13. 
Common Variances, Uncommon Means


 Let's design a Neyman-Pearson decision rule
	  of size α for the
	  problem
	    
	      
		ℋ0
		:
		x∼(0, σ2I)
	      
	    
	    
	      
		ℋ1
		:
		x∼(μ1, σ2I)
	      
	    
	    where
	    
	      μ>0
	    ,
	    
	      σ2>0
	     are known, 
	    
	      0=(0, …, 0)T
	    , 
	    
	      1=(1, …, 1)T
	     are N-dimensional
	    vectors, and I
	    is the N
	    ×N identity
	    matrix. The likelihood ratio is
	    
()

	    To simplify the test further we may apply the natural
	    logarithm and rearrange terms to obtain
	    
	    

We have used the assumption
	      
		μ>0
	      . If
	      
		μ<0
	      , then division by
	      μ is not a
	      monotonically increasing operation, and the inequalities
	      would be reversed.
	    



	    The test statistic t is sufficient for the unknown
	    mean. To set the threshold
	    γ, we write the
	    false-alarm probability (size) as
	    
	    To evaluate
	    
	      PF
	    , we need to know the density of 
	    t under
	    
	      ℋ0
	    . Fortunately, t
	    is the sum of normal variates, so it is again normally 
	    distributed. In particular, we have
	    
	      t=Ax
	    , where
	    
	      A=1T
	    , so
	    
	      t∼(A0, A(σ2I)AT)=(0, Nσ2)
	     under
	    
	      ℋ0
	    . Therefore, we may write
	    
	      PF
	     in terms of the Q-function as
	    
	    The threshold is thus determined by
	    
	    Under 
	    
	      ℋ1
	    , we have
	    
	      t∼(A1, A(σ2I)AT)=(Nμ, Nσ2)
	     
	    and so the detection probability (power) is
	    
	    
	    Writing 
	    
	      PD
	     as a function of 
	    
	      PF
	    , the ROC curve is given by
	    

	    The quantity
	     is called the  signal-to-noise
	    ratio. As its name suggests, a larger SNR
	    corresponds to improved performance of the Neyman-Pearson
	    decision rule.

	    
Remark
In the context of signal processing, the
	      foregoing problem may be viewed as the problem of detecting a
	      constant (DC) signal in additive white
		Gaussian noise:
	      
	      

		
		  ℋ0
		  :
		  xn=wn
		  ,
		  n
		  =
		  1
		  ,
		  …
		  ,
		  N
		
		
	      
	      
	      
		
		
		  ℋ1
		  :
		  xn=A+wn
		  ,
		  n
		  =
		  1
		  ,
		  …
		  ,
		  N
		
		
	      
	      
	      where A is a known, fixed
	      amplitude, and
	      
		wn∼(0, σ2)
	      . Here A corresponds
	      to the mean μ in the
	      example.
	    



	  




The Neyman-Pearson Lemma: General Case



 In our initial statement of the Neyman-Pearson
      Lemma, we assumed that for all
      η, the set
	
	  {x|Λ(x)=η}
	
	had probability zero under
	
	  ℋ0
	. This eliminated many important problems 
	from consideration, including tests of discrete data. 
	In this section we remove this restriction.
      
 It is helpful to introduce a more general way of
      writing decision rules. Let φ
      be a function of the data x with
	
	  φ(x)∈[0, 1]
	. φ defines the
	decision rule "declare
	
	  ℋ1
	 with probability
	
	  φ(x)
	." In other words, upon observing x, we flip a 
	"
	  φ(x)
	 coin." If it turns up heads, we declare
	
	  ℋ1
	; otherwise we declare
	
	  ℋ0
	. Thus far, we have only considered rules with
	
	  φ(x)∈{0, 1}
	

	
Theorem 3.2.
 Consider the hypothesis testing problem
	      
		
		  ℋ0
		  :
		
		x∼f0(x)
	      
	      
		
		  ℋ1
		  :
		
		x∼f1(x)
	      

	      where
	      
		f0
	       and
	      
		f1
	       are both pdfs or both pmfs. Let
	      
		α∈[0, 1)
	       be the size (false-alarm probability)
	      constraint. The decision rule
	      
	      is the most powerful test of size
	      α, where
	      η and
	      ρ
	      are uniquely determined by requiring
	      
		PF=α
	      . If
	      
		α=0
	      , we take
	      
		η=∞
	      ,
	      
		ρ=0
	      . This test is unique up to sets of probability
	      zero under
	      
		ℋ0
	       and
	      
		ℋ1
	      .
	    




	
	When
	
	  Pr[Λ(x)=η]>0
	 for certain η
	, we choose
	η and
	ρ as follows: Write
	
	  PF=Pr[Λ(x)>η]+ρPr[Λ(x)=η]
	
	Choose η such that
	
	  Pr[Λ(x)>η]≤α≤Pr[Λ(x)≥η]
	
	Then choose ρ such that
	
	  ρPr[Λ(x)=η]=α−Pr[Λ(x)<η]
	
      
Example 3.14. 
Repetition Code


 Suppose we have a friend who is trying to
	    transmit a bit (0 or 1) to us over a noisy channel. The
	    channel causes an error in the transmission (that is, the bit
	    is flipped) with probability p,
	    where
	    , and p is known. In
	    order to increase the chance of a successful transmission,
	    our friend sends the same bit
	    N times. Assume the
	    N transmissions are
	    statistically independent. Under these assumptions, the bits
	    you receive are Bernoulli random variables:
	    
	      xn∼Bernoulli(θ)
	    . We are faced with the following hypothesis test:
	    
	      
		ℋ0
		:
		θ=p
		 (0 sent)
	      
	    
	    
	      
		ℋ1
		:
		θ=1−p
		 (1 sent)
	      
	    
	    We decide to decode the received sequence
	    
	      x=(x1, …, xN)T
	    
	    by designing a Neyman-Pearson rule. The likelihood ratio is
	    
()

	    where
	     is the number of 1s received.
	    

k is a sufficient statistic for
	    θ.


 The LRT is
	    
	    Taking the natural logarithm of both sides and rearranging,
	    we have

	    

	    The false alarm probability is
	    
()

	    γ and
	    ρ are chosen so that
	    
	      PF=α
	    , as described above.
	  
 The corresponding detection probability is
	    
()

	  




Problems



Exercise 8.
 
	   Design a hypothesis testing problem
	  involving continous random variables such that
	    
	      Pr[Λ(x)=η]>0
	     for certain values of
	    η. Write down the
	    false-alarm probability as a function of the
	    threshold. Make as general a statement as possible about
	    when the technical
	    condition is satisfied.
	  

	


Exercise 9.
 
	   Consider the scalar hypothesis testing problem
	    
	      
		ℋ0
		:
		x∼f0(x)
	      
	    
	    
	      
		ℋ1
		:
		x∼f1(x)
	      
	    
	    where
	    
	  


	   Write down the likelihood ratio test.



	   Determine the decision regions as a function of 
	      
		η1
	       for all
	      
		η>0
	      . Draw a representative of each. What are the
	      "critical" values of
	      η?
	      
Hint
There are five distinct cases.




	  
	   Compute the size and power
	      (
		PF
	       and
	      
		PD
	      ) in terms of the threshold
	      
		η1
	       and plot the ROC.
	      
Hint



	    



	   Suppose we decide to use a simple
	    threshold test
	       instead of the Neyman-Pearson rule. Does our
	      performance
	      
		ℋ0
	       suffer much? Plot the ROC for this decision
	      rule on the same graph as for the previous ROC.
	    


	


Exercise 10.
   
	   Suppose we observe
	    N independent realizations
	    of a Poisson random variable
	    k with intensity parameter
	    λ:
	    
	    We must decide which of two intensities is in effect:
	    
	      
		ℋ0
		:
		λ=λ0
	      
	    
	    
	      
		ℋ1
		:
		λ=λ1
	      
	    
	    where
	    
	      λ0<λ1
	    .
	  


	   Write down the likelihood ratio test.



	   Simplify the LRT to a test statistic
	      involving only a sufficient statistic. Apply a monotonically
	      increasing transformation to simplify further.



	   Determine the distribution of the sufficient
	      statistic under both hypotheses. 
Hint
Use the
		characteristic function to show that a sum of IID Poisson
		variates is again Poisson distributed.





	   Derive an expression for the probability of
	      error.
	    



	   Assuming the two hypotheses are equally likely, and
	      
		λ0=5
	       and
	      
		λ1=6
	      , what is the minimum number
	      N of observations needed
	      to attain a false-alarm probability no greater than
	      0.01?  
Hint
If you have numerical trouble,
	      try rewriting the log-factorial so as to avoid
	      evaluating the factorial of large
	      integers.



	    


	


Exercise 11.
 
	   In Example 3.13, suppose 
	    
	      p=0.1
	    . What is the smallest value of
	    N needed to ensure
	    
	      PF≤0.01
	    ? What is 
	    
	      PD
	     in this case?
	  

	






3.3. Detection with Unknowns




Solutions


