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Chapter 1. Weekly Labs



1.1. Lab 0



Lab 0: Hardware Introduction*



Introduction



 
        This exercise introduces the hardware and software used in
        testing a simple DSP system.  When you complete it, you should
        be comfortable with the basics of testing a simple real-time
        DSP system with the debugging environment you will use
        throughout the course.  First, you will connect the laboratory
        equipment and test a real-time DSP system with pre-written
        code to implement an eight-tap (eight coefficient)
         finite impulse response ( FIR)
        filter.  With a working system available, you will then begin
        to explore the debugging software used for downloading,
        modifying, and testing code.  Finally, exercises are included
        to refresh your familiarity with MATLAB.
      

Lab Equipment



 
        This exercise assumes you have access to a laboratory station
        equipped with a Texas Instruments TMS320C549 digital signal
        processor chip mounted on a Spectrum Digital TMS320LC54x
        evaluation board. The DSP evaluation module should be
        connected to a PC running Windows and will be controlled using
        the PC application Code Composer Studio, a debugger and
        development environment.  Mounted on top of each DSP
        evaluation board is a Spectrum Digital surround-sound module
        employing a Crystal Semiconductor CS4226 codec.  This board
        provides two analog input channels and six analog output
        channels at the CD sample rate of 44.1 kHz.  The DSP board can
        also communicate with user code or a terminal emulator running
        on the PC via a serial data interface.
      
 
        In addition to the DSP board and PC, each laboratory station
        should also be equipped with a function generator to provide
        test signals and an oscilloscope to display the processed
        waveforms.
      
Step 1: Connect cables



 
          Use the provided BNC cables to connect the output of the
          function generator to input channel 1 on the DSP evaluation
          board.  Connect output channels 1 and 2 of the board to
          channels 1 and 2 of the oscilloscope.  The input and output
          connections for the DSP board are shown in Figure 1.1.
        
 [image: Example Hardware Setup]

Figure 1.1. Example Hardware Setup

 
          Note that with this configuration, you will have only one
          signal going into the DSP board and two signals coming out.
          The output on channel 1 is the filtered input signal, and
          the output on channel 2 is the unfiltered input signal.
          This allows you to view the raw input and filtered output
          simultaneously on the oscilloscope.  Turn on the function
          generator and the oscilloscope.
        

Step 2: Log in



 
          Use the network ID and password provided to log into the PC
          at your laboratory station.
        
 
          When you log in, two shared networked drives should be
          mapped to the computer: the W: drive, which
          contains your own private network work directory, and the
          V: drive, where the necessary files for ECE 420
          are stored.  Be sure to save any files that you use for the
          course to the W: drive.  Temporary files may be
          stored in the C:\TEMP directory; however, since
          files stored on the C: drive are accessible to
          any user, are local to each computer, and may be erased at
          any time, do not store course files on the C:
          drive.  On the V: drive, the directories
          v:\ece420\54kx\dsplib\ and
          c:\ece420\54x\dsptools\ contain the files
          necessary to assemble and test code on the TI DSP evaluation
          boards.
        
 
	  Although you may want to work exclusively in one or the
	  other of lab-partners' network account, you should be
          sure that both partners have copies of the lab assignment
          assembly code. 
 Warning
Not having the assembly
          code during a quiz because "it's on my partner's account" is
          NOT a valid excuse!

 For copying
          between partners' directory on W: or for
          working outside the lab, FTP access to your files is
          available at ftp://elalpha.ece.uiuc.edu.
        


The Development Environment



 
	The evaluation board is controlled by the PC through the JTAG
	interface (XDS510PP) using the application Code Composer
	Studio.  This development environment allows the user to
	download, run, and debug code assembled on the PC.  Work
	through the steps below to familiarize yourself with the
	debugging environment and real-time system using the provided
	FIR filter code (Steps 3, 4 and 5), then verify the filter's
	frequency response with the subsequent MATLAB exercises (Steps
	6 and 7).
      
Step 3: Assemble filter code



 
          Before you can execute and test the provided FIR filter
          code, you must assemble the source file.  First, bring up a
          DOS prompt window and create a new directory to
          hold the files, and then copy them into your directory:
        
 	w:

	mkdir lab0

	cd lab0

	copy v:\ece420\54x\dsplib\filter.asm .

	copy v:\ece420\54x\dsplib\coef.asm .



 
	  Next, assemble the filter code by typing asm
	  filter at the DOS prompt.  The
	  assembling process first includes the FIR filter
	  coefficients (stored in coef.asm) into the
	  assembly file filter.asm, then compiles the
	  result to produce an output file containing the executable
	  binary code, filter.out.  
	

Step 4: Verify filter execution



 
	  With your filter code assembled, double-click on the Code
	  Composer icon to open the debugging environment.  Before
	  loading your code, you must reset the DSP board and
	  initialize the  processor mode status register
	  ( PMST).  To reset the board, select the
	  Reset option from the Debug menu
	  in the Code Composer application.
	
 
	  Once the board is reset, select the CPU
	  Registers option from the View menu,
	  then select CPU Register.  This will open a
	  sub-window at the bottom of the Code Composer application
	  window that displays several of the DSP registers.  Look for
	  the PMST register; it must be set to the
	  hexadecimal value FFE0 to have the DSP
	  evaluation board work correctly.  If it is not set
	  correctly, change the value of the PMST
	  register by double-clicking on the value and making the
	  appropriate change in the Edit Register window
	  that comes up.
	
 
	  Now, load your assembled filter file onto the DSP by
	  selecting Load Program from the
	  File menu.  Finally, reset the DSP again, and
	  execute the code by selecting Run from the
	  Debug menu.

	
 
	  The program you are running accepts input from input channel
	  1 and sends output waveforms to output channels 1 and 2 (the
	  filtered signal and raw input, respectively).  Note that the
	  "raw input" on output channel 2 may differ from the actual
	  input on input channel 1, because of distortions introduced
	  in converting the analog input to a digital signal and then
	  back to an analog signal.  The A/D and D/A converters on the
	  six-channel surround board operate at a sample rate of 44.1
	  kHz and have an  anti-aliasing filter and an
	   anti-imaging filter, respectively, that in the
	  ideal case would eliminate frequency content above 22.05
	  kHz.  The converters on the six-channel board are also
	   AC coupled and cannot pass DC signals.  On the
	  basis of this information, what differences do you expect to
	  see between the signals at input channel 1 and at output
	  channel 2?
	
 
	  Set the amplitude on the function generator to 1.0 V
	  peak-to-peak and the pulse shape to sinusoidal.  Observe the
	  frequency response of the filter by sweeping the input
	  signal through the relevant frequency range.  What is the
	  relevant frequency range for a DSP system with a sample rate
	  of 44.1 kHz?
	
 
	  Based on the frequency response you observe, characterize
	  the filter in terms of its type (e.g., low-pass, high-pass,
	  band-pass) and its -6 dB (half-amplitude) cutoff frequency
	  (or frequencies).  It may help to set the trigger on channel
	  2 of the oscilloscope since the signal on channel 1 may go
	  to zero.
	

Step 5: Re-assemble and re-run with new filter



 
          Once you have determined the type of filter the DSP is
          implementing, you are ready to repeat the process with a
          different filter by including different coefficients during
          the assembly process.
          
          Copy a second set of FIR coefficients over to your working
          directory with the following:
        
 	copy coef.asm coef1.asm

	copy v:\ece420\54x\dsplib\coef2.asm coef.asm



 
	  You can now repeat the assembly and testing process with the
	  new filter using the asm instruction at the
	  DOS prompt and repeating the steps required to
	  execute the code discussed in Step
	  4.
	
 
	  Just as you did in Step 4,
	  determine the type of filter you are running and the
	  filter's -6 dB point by testing the system at various
	  frequencies.
	

Step 6: Check filter response in MATLAB



 
	  In this step, you will use MATLAB to verify the frequency
	  response of your filter by copying the coefficients from the
	  DSP to MATLAB and displaying the magnitude of the frequency
	  response using the MATLAB command freqz.
	
 
	  The FIR filter coefficients included in the file
	  coef.asm are stored in memory on the DSP
	  starting at location (in hex) 0x1000, and each
	  filter you have assembled and run has eight coefficients.
	  To view the filter coefficients as signed integers, select
	  the Memory option from the
	  View menu to bring up a Memory Window
	  Options box.  In the appropriate fields, set the
	  starting address to 0x1000 and the format to
	  16-Bit Signed Int.  Click "OK" to open a memory
	  window displaying the contents of the specified memory
	  locations.  The numbers along the left-hand side indicate
	  the memory locations.
	
 
	  In this example, the filter coefficients are placed in
	  memory in decreasing order; that is, the last coefficient,
	  
	    h[7]
	  , is at location 0x1000 and the first
	  coefficient,
	  
	    h[0]
	  , is stored at 0x1007.
	
 
	  Now that you can find the coefficients in memory, you are
	  ready to use the MATLAB command freqz to view
	  the filter's response.  You must create a vector in MATLAB
	  with the filter coefficients to use the freqz
	  command.  For example, if you want to view the response of
	  the three-tap filter with coefficients -10, 20, -10 you can
	  use the following commands in MATLAB:
	  
 	h = [-10, 20, -10];

	plot(abs(freqz(h)))




	
 
	  Note that you will have to enter eight values, the contents
	  of memory locations 0x1000 through
	  0x1007, into the coefficient vector,
	  h.
	
 
	  Does the MATLAB response compare with your experimental
	  results?  What might account for any differences?
	

Step 7: Create new filter in MATLAB and verify



 
	  MATLAB scripts will be made available to you to aid in code
	  development.  For example, one of these scripts allows you
	  to save filter coefficients created in MATLAB in a form that
	  can be included as part of the assembly process without
	  having to type them in by hand (a very useful tool for long
	  filters).  These scripts may already be installed on your
	  computer; otherwise, download the files from the links as
	  they are introduced.
	
 
	  First, have MATLAB generate a "random" eight-tap filter by
	  typing h = gen_filt; at a MATLAB prompt.  Then
	  save this vector of filter coefficients by typing
	  save_coef('coef.asm',flipud(h)); Make sure you
	  save the file in your own directory.  (The scripts that
	  perform these functions are available as gen_filt.m and save_coef.m)
	
 
	  The save_coef MATLAB script will save the
	  coefficients of the vector h into the named
	  file, which in this case is coef.asm.  Note
	  that the coefficient vector is "flipped" prior to being
	  saved; this is to make the coefficients in
	  
	    h
	   fill DSP memory-locations
	  0x1000 through
	  0x1007 in reverse order, as before.
	
 
	  You may now re-assemble and re-run your new filter code as
	  you did in Step 5.
	
 
	  Notice when you load your new filter that the contents of
	  memory locations 0x1000 through
	  0x1007 update accordingly.
	

Step 8: Modify filter coefficients in memory



 
	  Not only can you view the contents of memory on the DSP
	  using the debugger, you can change the contents at any
	  memory location simply by double-clicking on the location
	  and making the desired change in the pop-up window.
	
 
	  Change the contents of memory locations 0x1000
	  through 0x1007 such that the coefficients
	  implement a scale and delay filter with impulse response:
	  
()
	      h[n]=8192δ[n−4]
	    
 Note that the DSP interprets the integer value
	  of 8192 as a fractional number by dividing the integer by
	  32,768 (the largest integer possible in a 16-bit two's
	  complement register).  The result is an output that is
	  delayed by four samples and scaled by a factor of
	  .  More information on the DSP's interpretation of
	  numbers appears in Two's Complement
	  and Fractional Arithmetic for 16-bit Processors.

A clear and complete understanding of how the
	  DSP interprets numbers is absolutely necessary to
	  effectively write programs for the DSP.  Save yourself time
	  later by learning this material now!



	
 
	  After you have made the changes to all eight coefficients,
	  run your new filter and use the oscilloscope to measure the
	  delay between the raw (input) and filtered (delayed)
	  waveforms.
	
 
	  What happens to the output if you change either the scaling
	  factor or the delay value?  How many seconds long is a
	  six-sample delay?
	

Step 9: Test-vector simulation



 
	  As a final exercise, you will find the output of the DSP for
	  an input specified by a test vector.  Then you will compare
	  that output with the output of a MATLAB simulation of the
	  same filter processing the same input; if the DSP
	  implementation is correct, the two outputs should be almost
	  identical.  To do this, you will generate a waveform in
	  MATLAB and save it as a test vector. You will then run your
	  DSP filter using the test vector as input and import the
	  results back into MATLAB for comparison with a MATLAB
	  simulation of the filter.
	
 
	  The first step in using test vectors is to generate an
	  appropriate input signal.  One way to do this is to use the
	  MATLAB function to generate a sinusoid that sweeps across a
	  range of frequencies.  The MATLAB function
	  save_test_vector (available as save_test_vector.m can then
	  save the sinusoidal sweep to a file you will later include
	  in the DSP code.
	
 
	  Generate a sinusoidal sweep and save it to a DSP test-vector
	  file using the following MATLAB commands:
	
 
	  
	  >> t=sweep(0.1*pi,0.9*pi,0.25,500);    % Generate a frequency sweep
	  >> save_test_vector('testvect.asm',t); % Save the test vector
	  
	
 
	  Next, use the MATLAB conv command to generate a
	  simulated response by filtering the sweep with the filter
	  
	    h
	   you generated using gen_filt
	  above. Note that this operation will yield a vector of
	  length 507 (which is
	  
	    n+m−1
	  , where 
	  
	    n
	   is the length of the filter and 
	  
	    m 
	   is the length of the input).  You should keep only
	  the first 500 elements of the resulting vector.
	
 
	  
	  >> out=conv(h,t)                  % Filter t with FIR filter h
	  >> out=out(1:500)                 % Keep first 500 elements of out
	  
	
 
	  Now, modify the file filter.asm to use the
	  alternative "test vector" core file, vectcore.asm.  Rather than
	  accepting input from the A/D converters and sending output
	  to the D/A, this core file takes its input from, and saves
	  its output to, memory on the DSP.  The test vector is stored
	  in a block of memory on the DSP evaluation board that will
	  not interfere with your program code or data.  
Note
The test vector is stored in the ".etext"
	  section.  See Core File:
	  Introduction to Six-Channel Board for TI EVM320C54
	  for more information on the DSP memory sections, including a
	  memory map.


 The memory block that holds the test
	  vector is large enough to hold a vector up to 4,000 elements
	  long. The test vector stores data for both channels of input
	  and from all six channels of output.
	
 
	  To run your program with test vectors, you will need to
	  modify filter.asm.  The assembly source is
	  simply a text file and can be edited using the editor of
	  your preference, including WordPad, Emacs, and VI.  Replace
	  the first line of the file with two lines.  Instead of:
	
 
	  
	  .copy 	"v:\ece420\54x\dsplib\core.asm"
	  
	
 
	  use:
	
 
	  
	  .copy 	"testvect.asm"
	  .copy	"v:\ece420\54x\dsplib\vectcore.asm"
	  
	
 
	  Note that, as usual, the whitespace in front of the
	  .copy directive is required.
	
 
	  These changes will copy in the test vector you created and
	  use the alternative core file.  After modifying your code,
	  assemble it, then load and run the file using Code Composer
	  as before.  After a few seconds, halt the DSP (using the
	  Halt command under the Debug menu)
	  and verify that the DSP has halted at a branch statement
	  that branches to itself. In the disassembly window, the
	  following line should be highlighted: 0000:611F F073 B
	  611fh.
	
 
	  Next, save the test output file and load it back into
	  MATLAB.  This can be done by first saving 3,000 memory
	  elements (six channels times 500 samples) starting with
	  location 0x8000 in program memory.  Do this by
	  choosing File->Data->Save... in Code Composer
	  Studio, then entering the filename output.dat
	  and pressing Enter.  Next, enter
	  0x8000 in the Address field of the dialog box
	  that pops up, 3000 in the Length field, and
	  choose Program from the drop-down menu next to
	  Page. Always make sure that you use the correct
	  length (six times the length of the test vector) when you
	  save your results.
	
 
	  Last, use the read_vector (available as read_vector.m) function to read
	  the saved result into MATLAB. Do this using the following
	  MATLAB command:
	
 
	  
	  >> [ch1, ch2] = read_vector('output.dat');
	  
	
 
	  Now, the MATLAB vector ch1 corresponds to the
	  filtered version of the test signal you generated. The
	  MATLAB vector ch2 should be nearly identical to
	  the test vector you generated, as it was passed from the DSP
	  system's input to its output unchanged.  
Note
Because of quantization error introduced in
	  saving the test vector for the 16-bit memory of the DSP, the
	  vector ch2 will not be identical to the MATLAB
	  generated test vector.  Furthermore, a bug in our test vector environment sometimes causes blocks of samples to be dropped, so the test vector output signal may have gaps.



	
 
	  After loading the output of the filter into MATLAB, compare
	  the expected output (calculated as out above)
	  and the output of the filter (in ch1 from
	  above). This can be done graphically by simply plotting the
	  two curves on the same axes; for example:
	
 
	  
	  >> plot(out,'r'); % Plot the expected curve in red 
	  >> hold on        % Plot the next plot on top of this one 
	  >> plot(ch1,'g'); % Plot the expected curve in green 
	  >> hold off 
	  
	
 
	  You should also ensure that the difference between the two
	  outputs is near zero. This can be done by plotting the
	  difference between the two vectors:
	
 
	  
	  >> plot(out(1:length(ch1))-ch1); % Plot error signal 
	  
	
 
	  You will observe that the two sequences are not exactly the
	  same; this is due to the fact that the DSP computes its
	  response to 16 bits precision, while MATLAB uses 64-bit
	  floating point numbers for its arithmetic.  Blocks of output samples may also be missing from the test vector output due to a bug in the test vector core.  Nonetheless, the test vector environment allows one to run repeatable experiments using the same known test input for debugging.
	




1.2. Lab 1



Lab 1: Prelab*



Assembly Exercise



 
	Analyze the following lines of code.  Refer to Two's Complement and Fractional Arithmetic
	for 16-bit Processors, Addressing Modes for TI TMS320C54x,
	and the Mnemonic
	Instruction Set [url] manual for help.
      
 
	
	1  FIR_len .set    3
	2
	3  ; Assume: 
	4  ;   BK = FIR_len
	5  ;   AR0 = 1
	6  ;   AR2 = 1000h
	7  ;   AR3 = 1004h
	8  ;
	9  ;   FRCT = 1
	10
	11      stl     A,*AR3+%
	12      rptz    A,(FIR_len-1)
	13      mac     *AR2+0%,*AR3+0%,A
	
      
 
	Anything following a ";" is considered a comment.
	In this case, the comments indicate the contents of the
	auxiliary registers, the BK register, and the address registers before the execution of
	the first instruction, stl.  
        The line FIR_len .set 3 defines the name FIR_len as equal to 3. The BK register contains the length of the 
        circular buffer we want to use.  The % modifies the increment operator + so that it
        behaves as a circular buffer.  This means that the address registers will be incremented until the 
        (memory-address mod value-in-BK) = 0. When the increment operator + is followed by a 0,
        it increments by the value specified in register AR0. 
    
 
        Note that any number
	followed by an "h" or preceded with a
	0x represents a  hexadecimal value.
      
Example 1.1. 
 
	  1000h and 0x1000 both refer to the decimal number 4096.
	


 
	Assume that the data memory is initialized as follows starting
	at location 1000h.
      
 [image: Figure (reg1.png)]

Figure 1.2. 
Data Memory Assignment (before execution)

 
	After familiarizing yourself with the stl,
	rptz, and mac instructions, step
	through each line of code and record the values of the
	accumulator A and auxiliary registers
	AR2 and AR3 in the spaces provided
	in Table 1.1.  Additionally, record the value
	of the memory contents after all three instructions have been
	"executed" in the blank data memory table provided in Figure 1.3.
      
Table 1.1. Execution Results	A	AR2	AR3	 
	00 0000 8000h	1000h	1004h	at start of code
	 	 	 	after stl instruction
	 	 	 	after rptz instruction
	 	 	 	after first mac instruction
	 	 	 	
		  after second mac instruction
		
	 	 	 	after third mac instruction


 
	When working through the exercise, take into account that the
	accumulator A is a 40-bit register, and that the
	multiplier is in the  fractional arithmetic mode.
	In this mode, integers on the DSP are interpreted as
	fractions, and the multiplier will treat them accordingly.
	This is done by shifting the result of the integer multiplier
	in the ALU left one bit. (All the arithmetic is fractional in these examples.)  
        Multiplies performed by the ALU
	(via the mac instruction) produce a result that
	is twice what you would expect if you just multiplied the two
	integers together.  DSP numerical representation and
	arithmetic are described further in Two's Complement and Fractional Arithmetic
	for 16-bit Processors.
      
 [image: Figure (reg2.png)]

Figure 1.3. 
Data Memory Assignment (after execution)



Lab 1: Lab*



Introduction



 
	In this exercise, you will program in the DSP's assembly
	language to create FIR filters.  Begin by studying the
	assembly code for the basic FIR filter filter.asm.
      
 
filter.asm

	   
	  1	.copy "core.asm"  	; Copy in core file
	  2   					; This initializes DSP and jumps to "main"
	  3	
	  4  FIR_len .set   8			; This is an 8-tap filter.
	  5	
	  6          .sect ".data"		; Flag following as data declarations
	  7   
	  8    	    .align 16			; Align to a multiple of 16
	  9  coef					; assign label "coeff"
	  10	    .copy "coef.asm"		; Copy in coefficients
	  11
	  12	    .align 16
	  13 firstate
	  14 	    .space 16*8			; Allocate 8 words of storage for
	  15					; filter state.
	  16
	  17	    .sect ".text"		; Flag the following as program code
	  18  main
	  19      ; Initialize various pointers
	  20	    stm    #FIR_len,BK		; initialize circular buffer length
	  21	    stm    #coef,AR2    	; initialize coefficient pointer
	  22	    stm	   #firstate,AR3	; initialize state pointer
	  23	    stm    #1,AR0		; initialize AR0 for pointer increment
	  24	
	  25  loop
	  26      ; Wait for a new block of 64 samples to come in
	  27  	    WAITDATA
	  28	
	  29      ; BlockLen = the number of samples that come from WAITDATA (64)
	  30    	    stm     #BlockLen-1, BRC	; Put repeat count into repeat counter
	  31    	    rptb    endblock-1		; Repeat between here and 'endblock' 
	  32
	  33    	    ld	    *AR6,16, A		; Receive ch1 into A accumulator
	  34    	    mar     *+AR6(2)            ; Rcv data is in every other channel
	  35    	    ld      *AR6,16, B		; Receive ch2 into B accumulator
	  36    	    mar     *+AR6(2)            ; Rcv data is in every other channel
	  37    
	  38    	    ld	    A,B			; Transfer A into B for safekeeping
	  39
	  40      ; The following code executes a single FIR filter.
	  41	
	  42    	    sth     A,*AR3+%		; store current input into state buffer
	  43    	    rptz    A,(FIR_len-1)	; clear A and repeat
	  44    	    mac     *AR2+0%,*AR3+0%,A	; multiply coef. by state & accumulate
	  45    
	  46    	    rnd     A			; Round off value in 'A' to 16 bits                            
	  47    
	  48     ; end of FIR filter code. Output is in the high part of 'A.'
	  49
	  50    	    sth     A, *AR7+		; Store filter output (from A) into ch1
	  51    	    sth     B, *AR7+		; Store saved input (from B) into ch2
	  52    
	  53    	    sth     B, *AR7+		; Store saved input to ch3...ch6 also
	  54    	    sth     B, *AR7+		; ch4
	  55    	    sth     B, *AR7+		; ch5 
	  56    	    sth     B, *AR7+		; ch6
	  57   
	  58  endblock:
	  59      b loop
	
 
	filter.asm applies an FIR filter to the signal
	from input channel 1 and sends the resulting output to output
	channel 1.  It also sends the original signal to output
	channel 2.
      
 
	First, create a work directory on your network drive for the
	files in this exercise, and copy filter.asm from
	v:\ece320\54x\dsplib to your work directory (this
	is thesame file you worked with in Lab 0).  Then, use MATLAB
	to generate two 20-tap FIR filters. The first filter should
	pass signals from 4 kHz to 8 kHz; the second filter should
	pass from 8 kHz to 12 kHz. For both filters, allow a 1 kHz
	transition band on each edge of the filter passband.  To
	create these filters, first convert these band edges to
	digital frequencies based on the 44.1 kHz sample rate of the
	system, then use the MATLAB command remez to
	generate this filter; you can type help remez for
	more information.  Use the save_coef command to
	save each of these filters into different files. (Make sure
	you reverse the vectors of filter coefficients before you save
	them.)  Also save your filters as a MATLAB matrix, since you
	will need them later to generate test vectors. This can be
	done using the MATLAB save command. Once this is
	done, use the freqz command to plot the frequency
	response of each filter.
      

Part 1: Single-Channel FIR Filter



 
	For now, you will implement only the filter with a 4 kHz to 8
	kHz passband. Edit filter.asm to use the
	coefficients for this filter by making several changes.
      
 
	First, the length of the FIR filter for this exercise is 20,
	not 8.  Therefore, you need to change FIR_len to
	20. FIR_len is set using the .set
	directive, which assigns a number to a symbolic name. You will
	need to change this to FIR_len .set 20.
      
 
	Second, you will need to ensure that the .copy
	directive brings in the correct coefficients. Change the
	filename to point to the file that contains the coefficients
	for your first filter.
      
 
	Third, you will need to modify the .align and
	.space directives appropriately. The TI
	TMS320C54x DSP requires that circular buffers, which are used
	for the FIR filter coefficient and state buffers, be aligned
	so that they begin at an address that is a multiple of a power
	of two greater than the length of the buffer. Since you are
	using a 20-tap filter (which uses 20-element state and
	coefficient buffers), the next greater power of two is 32.
	Therefore, you will need to align both the state and
	coefficient buffers to an address that is a multiple of 32.
	(16-element buffers would also require alignment to a multiple
	of 32.)  This is done with the .align command. In
	addition, memory must be reserved for the state buffer. This
	is done using the .space directive, which takes
	as its input the number of bits of space
	to allocate. Therefore, to allocate 20 words of storage, use
	the directive .space 16*20 as shown below:
      
 
	
	1         .align 32             % Align to a multiple of 32
	2  coef   .copy  "filter1.asm"  % Copy FIR filter coefficients
	3
	4         .align 32             % Align to a multiple of 32
	5  state  .space 16*20          % Allocate 20 words of data space
      
 
	Assemble your code, set PMST to
	0xFFE0, reset the DSP, and run.  Ensure that it
	is has the correct frequency response. After you have verified
	that this code works properly, proceed to the next step.
      

Part 2: Dual-Channel FIR Filters



 
	First, make a copy of your modified filter.asm
	file from Part 1. Work from this
	copy; do not modify your working filter from the previous
	part. You will use that code again later.
      
 
	Next, modify your code so that in addition to sending the
	output of your first filter (with a 4 kHz to 8 kHz passband)
	to output channel 1 and the unfiltered input to output channel
	2, it sends the output of your second filter (with a 8 kHz to
	12 kHz passband) to output channel 3. To do this, you will
	need to use the .align and .copy
	directives to load the second set of coefficients into data
	memory.  You will also need to add instructions to initialize
	a pointer to the second set of coefficients and to perform the
	calculations for the second filter.  
      
Exercise 1.
Extra Credit Problem
 
	    One extra credit point will be awarded to you and your
	    partner if you can implement the dual-channel system
	    without using the auxiliary registers AR4 and
	    AR5?  Why is this more difficult?  Renaming
	    AR4 and AR5 using the
	    .asg directive does not count!
	  




 
	Using the techniques introduced in DSP
	Development Environment: Introductory Exercise for TI
	TMS320C54x, generate an appropriate test vector and
	expected outputs in MATLAB. Then, using the test-vector core
	file also introduced in DSP
	Development Environment: Introductory Exercise for TI
	TMS320C54x, find the system's output given this test
	vector.  In MATLAB, plot the expected and actual outputs of
	the both filters and the difference between the expected and
	actual outputs. Why is the output from the DSP system not
	exactly the same as the output from MATLAB?
      

Part 3: Alternative Single-Channel FIR Implementation



 
	An alternative method of implementing symmetric FIR filters
	uses the  firs instruction.  Modify
	your code from Part 1 to implement
	the filter with a 4 kHz to 8 kHz passband using the
	firs.
      
 
	Two differences in implementation between your code from Part 1 and the code you will write for
	this part are that (1) the firs instruction
	expects coefficients to be located in program memory instead
	of data memory, and (2) firs requires the states
	to be broken up into two separate circular buffers.  Refer to
	the firs instruction on page 4-59 in
	the Mnemonic
	Instruction Set [url] manual, as well as a description and
	example of its use on pages 4-5 through 4-8 of
	the Applications
	Guide [url] for more information (Volumes 2 and
	4 respectively of the TMS320C54x DSP Reference
	Set).
      
 
	AR0 needs to be set to -1 for this code to work
	properly.  Why?  
Note
COEFF is a
	label to the coefficients now expected to be in program
	memory.  Refer to the firs description for more
	information).



      
 
	
	 
	1	mvdd	*AR2,*AR3+0%		; write x(-N/2) over x(-N)
	2	sth	A,*AR2			; write x(0) over x(-N/2)
	3	add	*AR2+0%,*AR3+0%,A 	; add x(0) and x(-(N-1))
	4					;   (prepare for first multiply)
	5
	6	rptz	B,#(FIR_len/2-1)  	  
	7	firs	*AR2+0%,*AR3+0%,COEFF
	8	mar	??????? 		; Fill in these two instructions
	9	mar	???????			; They modify AR2 and AR3.
	10
	11					; note that the result is now in the
	12					;  B accumulator
      
 
	Because states and coefficients are now treated differently
	than in your previous FIR implementation, you will need to
	modify the pointer initializations to
      
 
	
	1	stm	#(FIR_len/2),BK		; initialize circular buffer length
	2	stm	#firstate_,AR2		; initialize location containing first 
	3					;   half of states
	4
	5	stm	#-1,AR0			; Initialize AR0 to -1
	6
	7	stm	#firstate2_,AR3	        ; initialize location containing last half
	
      
 
	Use the test-vector core file to find the output of this
	system given the same test vector you used to test the
	two-filter system. Compare the output of this code against the
	output of the same filter implemented using the
	mac instruction. Are the results the same? Why or
	why not?  Ensure that the filtered output is sent to output
	channel 1, and that the unmodified output is still sent to
	output channel 2.
 Warning
You will lose credit if
	the unmodified output is not present or if the channels are
	reversed!


      

Quiz Information



 
        The quiz for Lab 1 is broken down as follows:
      
 	 1 point: Prelab (must be ready to show the TA the week
	  before the quiz)

	 4 points: Working code: you must demonstrate that your
	  code works using input from function generator and that it
	  works using input from appropriate test vectors.  Have an
	  .asm file ready to
	  demonstrate each.  Of the 4 points, you get 0.5 points for a
	  single 20-tap filter, 2 points for the two-filter system,
	  and 1.5 points for the system using the firs
	  opcode.

	 5 points: Oral quiz score.

	 1 extra credit point: As described above.



 
        The oral quiz may cover signal processing material relating to
        FIR filters, including, but not limited to, the delay through
        FIR filters, generalized linear phase, and the differences
        between ideal FIR filters and realizable FIR filters.  You may
        also be asked questions about digital sampling theory,
        including, but not limited to, the Nyquist sampling theorem
        and the relationship between the analog frequency spectrum and
        the digital frequency spectrum of a continuous-time signal
        that has been sampled.
      
 
        The oral quiz will cover the code that
        you have written during the lab.  You are expected to
        understand, in detail, all of the code in the files you have
        worked on, even if your partner or a TA wrote it.  (You are
        not expected to understand the core file in detail).  The TA
        will ask you to explain various lines of code as part of the
        quiz.  The TAs may also ask questions about 2's complement
        fractional arithmetic, circular buffers, alignment, and the
        mechanics of either of the two FIR filter implementations.
        You could be ready to trace through any of the code on paper
        and explain what each line of code does.
      
 
        Use the TI documentation, specifically the Mnemonic
	Instruction Set [url] manual.  Hard-copies of this manual can
	also be found in the lab.  Also, feel free to ask the TAs to
	help explain the code that you have been given.
      


Resources



Fixed-Point Number Representation*



 
      Fixed-point arithmetic is generally used when hardware cost, speed,
      or complexity is important.  Finite-precision quantization issues
      usually arise in fixed-point systems, so we concentrate on fixed-point
      quantization and error analysis in the remainder of this course.
      For basic signal processing computations such as digital
      filters and FFTs, the magnitude of the data, the internal
      states, and the output can usually be scaled to obtain good performance
      with a fixed-point implementation.
    
Two's-Complement Integer Representation



 
      As far as the hardware is concerned, fixed-point number systems
      represent data as B-bit
      integers. The two's-complement number system is usually used:
      
      
      
 [image: Figure (fig1FixedPoint.png)]
Figure 1.4. 


      The most significant bit is known at the  sign
      bit; it is 0 when the number is non-negative; 1 when the
      number is negative.
      
    

Fractional Fixed-Point Number Representation



 
      For the purposes of signal processing, we often regard the
      fixed-point numbers as binary fractions between
      
	[-1, 1)
      , by implicitly placing a decimal point after the sign bit.
      
      
 [image: Figure (fig2FixedPoint.png)]
Figure 1.5. 


      
      or
      
      This interpretation makes it clearer how to implement digital
      filters in fixed-point, at least when the coefficients have a
      magnitude less than 1.
    

Truncation Error



 
      Consider the multiplication of two binary
      fractions
      
 [image: Figure (fig3FixedPoint.png)]
Figure 1.6. 


      
      Note that full-precision multiplication almost doubles the
      number of bits; if we wish to return the product to a
      B-bit representation, we must
      truncate the
      
	B−1
       least significant bits. However, this introduces
       truncation error (also known as  quantization error,
      or  roundoff error if the number is rounded to the nearest
      B-bit fractional value rather than truncated). Note
      that this occurs after multiplication.

    

Overflow Error



 
      Consider the addition of two binary fractions;
      
 [image: Figure (fig4FixedPoint.png)]
Figure 1.7. 


     
      Note the occurence of wraparound  overflow; this
      only happens with addition. Obviously, it
      can be a bad problem.
    

 
      There are thus two types of fixed-point error: roundoff error,
      associated with data quantization and multiplication, and
      overflow error, associated with data quantization and
      additions. In fixed-point systems, one must strike a balance
      between these two error sources; by scaling down the data, the
      occurence of overflow errors is reduced, but the relative size
      of the roundoff error is increased.
    
 
    


      Since multiplies require a number of additions, they
      are especially expensive in terms of hardware
      (with a complexity proportional to
      
	BxBh
      , where 
      
	Bx
       is the number of bits in the data, and 
      
	Bh
       is the number of bits in the filter coefficients).
      Designers try to minimize both
      
	Bx
       and 
       
	Bh
      , and often choose
      
	Bx≠Bh
      !
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Lab 2: Theory*



Introduction



 
	In the exercises that follow, you will explore some of the
	effects of  multirate processing using the system
	in Figure 1.8.  The  sample-rate
	  compressor 
	(
	  ↓D
	) in the block-diagram removes 
	
	  D−1
	 of every 
	
	  D
	 input samples, while the  sample-rate
	  expander 
	(
	  ↑U
	) inserts 
	
	  U−1
	 zeros after every input sample.  With the
	compression and expansion factors set to the same value (
	
	  D=U
	), filters FIR 1 and FIR 3 operate at the sample rate
	
	  Fs 
	, while filter FIR 2 operates at the lower rate of
	.
      
 [image: Introduction]

Figure 1.8. 
Net multirate system

 
	Later, you will implement the system and control the
	compression and expansion factors at runtime with an interface
	provided for you.  You will be able to disable any or all of
	the filters to investigate multirate effects.  What purpose do
	FIR 1 and FIR 3 serve, and what would happen in their absence?
      


Lab 2: Prelab (Part 1)*



Multirate Theory Exercise



 
	Consider a sampled signal with the DTFT 
	
	  X(ω)
	
	shown in Figure 1.9.
      
 [image: Multirate Theory Exercise]

Figure 1.9. 
DTFT of the input signal.

 
	Assuming 
	
	  U=D=3
	, use the relations between the DTFT of a signal
	before and after sample-rate compression and expansion
	(Equation 1.1 and Equation 1.2) to sketch
	the DTFT response of the signal as it passes through the
	multirate system of Figure 1.10 (without any
	filtering).  Include both the intermediate response
	
	  W(ω)
	 and the final response
	
	  Y(ω)
        .  It is important to be aware that the translation
        from digital frequency 
        
          ω
         to analog frequency depends on the sampling rate.
        Therefore, the conversion is different for 
        
          X(ω)
         and
        
          W(ω)
        .
      
(1.1)

(1.2)
	  Y(ω)=W(Uω)
	
 [image: ]

Figure 1.10. 
Multirate System



Lab 2: Prelab (Part 2)*



Filter-Design Exercise



 
	  Using the zero-placement method, design the FIR filters for
	  the multirate system in Multirate Filtering: Introduction.
	  Recall that the 
	
	  z
	-transform of a length-
	
	  N
	 FIR filter is a polynomial in 
	
	  z-1
	, and that this polynomial can be factored into
	
	  N−1
	 roots.
      
(1.3)

 
	Use this relation to design a low-pass filter
	(for the anti-aliasing and anti-imaging filters of the multirate 
	system) by placing twelve
	complex zeros on the unit circle at
	,
	,
	, 
	, 
	, and 
	
	  ±π
	.  This filter that you have just designed will
	serve for both FIR 1 and FIR 3.  For filter FIR 2 (operating
	at the decimated rate), use four equally-spaced zeros on the
	unit circle located at
	 and 
	.  Be sure to adjust the resulting filter
	coefficients to ensure that the gain does not exceed one  
	at any frequency.
      
 
	Design your filters by writing a MATLAB script to compute the
	filter coefficients from the given zero locations.  The MATLAB
	function poly is very useful for this; type
	help poly in MATLAB for details.
      
 
        Once you have determined the coefficients of the filters, use
        MATLAB function freqz to plot the frequency
        responses.  You will find that the frequency response of these
        filters has a large gain.  Adjust the resulting filter
        coefficients to ensure that the largest frequency gain is less
        than or equal to one by dividing the coefficients by an
        appropriate value.  Do the frequency responses match your
        expectations based on the locations of the zeros in the
        z-plane?
      


Lab 2: Lab*



Implementation



 
	Before implementing the entire system shown in Multirate Processing:
	Introduction, we recommend you design a system that
	consists of a cascade of filters FIR 1 and FIR 2 without the
	sample-rate compressor or expander.  After verifying that the
	response of your two-filter system is correct, proceed to
	implement the complete multirate system and verify its total
	response.  At first, use fixed compression and expansion
	factors of
	
	  D=U=4
	.  After you have verified that the multirate system
        works at a fixed rate, you should modify your code so that the 
        rate can be changed easily.  Later, you have the option of controlling 
        this factor in real-time using a MATLAB interface.   
        Regardless of whether you choose to use the MATLAB interface,
        you must be able to quickly change the compression and expansion  
        factors when you demo your code.
      
Compressed-rate processing



 
	  In order to perform the processing at the lower sample rate,
	  implement a counter in your code.  Your counter will
	  determine when the compressed-rate processing is to occur,
	  and it can also be used to determine when to insert zeros
	  into FIR 3 to implement the sample-rate expander.
	
 
	  Some instructions that may be useful for implementing your
	  multirate structure are the addm (add to
	  memory) and bc (branch conditional)
	  instructions.  You may also find the banz
	  (branch on auxiliary register not zero) and the b
          (branch) instruction useful.
	

Real-time rate change and MATLAB interface (Optional)



 
	  A simple graphical user interface (GUI) is available (as
	  mrategui.m, which requires
	  ser_snd.m) that sends a number
	  between 1 and 10 to the DSP via the serial port.  This can
	  be used to change the compression and expansion factor in
	  real time.
	
 
	  Run the GUI by typing mrategui at the MATLAB
	  prompt.  A figure should automatically open up with a slider
	  on it; adjusting the slider changes the compression and
	  expansion factor sent to the DSP.
	
 
	  The assembly code for interacting with the serial port, provided in   
          the handout Core File: Serial Port 
          Communication Between MATLAB and TI TMS320C54x, stores the     
          last number that the DSP has received from the computer in the
	  memory location labeled hold.  Therefore,
	  unless you have changed the serial portion of the given
	  code, you can find the last compression and expansion factor
	  set by the GUI in this location.  You need to modify your
	  code so that each time a new number is received on the
	  serial port, the compression and expansion factor is
	  changed.  If a "1" is received on the serial port, the
	  entire system should run at the full rate; if a "10" is
	  received, the system should discard nine samples between
	  each sample processed at the lower rate.
	
 
	  Note that the READSER and WRITSER
	  macros, which are used to read data from and send data to
	  the serial port, overwrite AR0,
	  AR1, AR2, and AR3
	  registers, as well as BK and the condition flag
	  TC.  You must therefore ensure that these
	  registers are not used by your code, or that you save and
	  restore their values in memory before you call the
	  READSER and WRITSER macros.  This
	  can be done using the mvdm and
	  mvmd instructions.  The serial macros set up
	  the AR1 and AR3 each time they are
	  called, so there is no need to change these registers before
	  the macros are called.
	
 
	  More detail about the READSER and
	  WRITSER macros can be found in Core File: Serial Port Communication
	  Between MATLAB and TI TMS320C54x.
	




1.4. Lab 3



Lab 3: Theory*



Introduction



 
	Like finite impulse-response (FIR) filters,  infinite
	impulse-response ( IIR) filters are
	 linear time-invariant ( LTI) systems
	that can recreate a large range of different frequency
	responses.  Compared to FIR filters, IIR filters have both
	advantages and disadvantages.  On one hand, implementing an
	IIR filter with certain stopband-attenuation and
	transition-band requirements typically requires far fewer
	filter taps than an FIR filter meeting the same
	specifications.  This leads to a significant reduction in the
	computational complexity required to achieve a given frequency
	response.  However, the poles in the transfer function require
	feedback to implement an IIR system.  In addition to inducing
	nonlinear phase in the filter (delaying different frequency
	input signals by different amounts), the feedback introduces
	complications in implementing IIR filters on a fixed-point
	processor.  Some of these complications are explored in IIR Filtering: Filter-Coefficient
	Quanitization Exercise in MATLAB.
      
 
	Later, in the processor exercise, you will explore the
	advantages and disadvantages of IIR filters by implementing
	and examining a fourth-order IIR system on a fixed-point DSP.
	The IIR filter should be implemented as a cascade of two
	second-order, Direct Form II sections.  The data flow for a
	second-order, Direct-Form II section, or  bi-quad,
	is shown in Figure 1.11.  Note that in Direct Form
	II, the states (delayed samples) are neither the input nor the
	output samples, but are instead the intermediate values
	
	  w[n]
	.
      
 [image: Introduction]

Figure 1.11. 
Second-order, Direct Form II section



Lab 3: Prelab (Part 1)*



 
	The transfer function for the second-order section shown in
	IIR Filtering:
	Introduction is

	
()

      
Exercise



 
	  First, derive the above transfer function.  Begin by writing
	  the  difference equations for
	  
	    w[n]
	   in terms of the input and past values 
	  (
	    w[n−1]
	   and 
	  
	    w[n−2]
	  ).  Then write the difference equation for 
	  
	    y[n]
	   also in terms of the past samples of 
	  
	    w[n]
	  .  After finding the two difference equations,
	  compute the corresponding Z-transforms and use the relation
	   to verify the IIR transfer function in Equation.
	
 
	  Next, design the coefficients for a fourth-order filter
	  implemented as the cascade of two bi-quad sections.  Write a
	  MATLAB script to compute the coefficients.  Begin by
	  designing the fourth-order filter and checking the response
	  using the MATLAB commands
	
 
	  
	  [B,A] = ellip(4,.25,10,.25) 
	  freqz(B,A)
	  
	
 
	  
Note
MATLAB's  freqz
	    command displays the frequency responses of IIR filters
	    and FIR filters.  For more information about this, type
	    help freqz.  Be sure to look at MATLAB's
	    definition of the transfer function.  


Note
If you use the freqz command as
	    shown above, without passing its returned data to another
	    function, both the magnitude (in decibels) and the phase
	    of the response will be shown.
	  



	
 
	  Next you must find the roots of the numerator,
	   zeros, and roots of the denominator,
	   poles, so that you can group them to create two
	  second-order sections.  The MATLAB commands
	  roots and poly will be useful for
	  this task.  Save the scripts you use to decompose your
	  filter into second-order sections; they will probably be
	  useful later.
	
 
	  Once you have obtained the coefficients for each of your two
	  second-order sections, you are ready to choose a
	   gain factor, 
	  
	    G
	  , for each section.  As part of your MATLAB script,
	  use freqz to compute the response
	   with 
	  
	    G=1
	   for each of the sets of second-order coefficients.
	  Recall that on the DSP we cannot represent numbers greater
	  than or equal to 1.0.  If the maximum value of
	   is or exceeds 1.0, an input with magnitude less
	  than one could produce
	  
	    w[n]
	   terms with magnitude greater than or equal to one;
	  this is  overflow.  You must therefore select a
	  gain values for each second-order section such that the
	  response from the input to the states,
	  , is always less than one in magnitude.  In other
	  words, set the value of 
	  
	    G
	   to ensure that
	  .
	

Preparing for processor implementation



 
	  As the processor exercises become more complex, it will
	  become increasingly important to observe good programming
	  practices. Of these, perhaps the most important is careful
	  planning of your program flow, memory and register use, and
	  testing procedure.  Write out pseudo-code for the processor
	  implementation of a bi-quad. Make sure you consider the way
	  you will store coefficients and states in memory. Then, to
	  prepare for testing, compute the values of
	  
	    w[n]
	   and 
	  
	    y[n]
	   for both second-order sections at 
	  
	    n={0, 1, 2}
	   using the filter coefficients you calculated in
	  MATLAB.  Assume
	  
	    x[n]=δ[n]
	   and all states are initialized to zero.  You may
	  also want to create a frequency sweep test-vector like the
	  one in DSP Development Environment:
	  Introductory Exercise for TI TMS320C54x and use the
	  filter command to find the outputs for that input. Later,
	  you can recreate these input signals on the DSP and compare
	  the output values it calculates with those you find now. If
	  your program is working, the values will be almost
	  identical, differing only slightly because of quantization
	  effects, which are considered in IIR
	  Filtering: Filter-Coefficient Quantization Exercise in
	  MATLAB.
	



Lab 3: Prelab (Part 2)*



Filter-Coefficient Quantization



 
	One important issue that must be considered when IIR filters
	are implemented on a fixed-point processor is that the filter
	coefficients that are actually used are quantized from the
	"exact" (high-precision floating point) values computed by
	MATLAB.  Although quantization was not a concern when we
	worked with FIR filters, it can cause significant deviations
	from the expected response of an IIR filter.
      
 
	By default, MATLAB uses 64-bit floating point numbers in all
	of its computation. These floating point numbers can typically
	represent 15-16 digits of precision, far more than the DSP can
	represent internally.  For this reason, when creating filters
	in MATLAB, we can generally regard the precision as
	"infinite," because it is high enough for any reasonable task.
	
Note

	  Not all IIR filters are necessarily "reasonable"!
	



	The DSP, on the other hand, operates using 16-bit fixed-point
	numbers in the range of -1.0 to
	
	  1.0−2-15
	.  This gives the DSP only 4-5 digits of precision
	and only if the input is properly scaled to occupy the full
	range from -1 to 1.
      
 
	For this section exercise, you will examine how this
	difference in precision affects a  notch filter
	generated using the  butter command:
	[B,A] = butter(2,[0.07 0.10],'stop').
      
Quantizing coefficients in MATLAB



 
	  It is not difficult to use MATLAB to  quantize
	  the filter coefficients to the 16-bit precision used on the
	  DSP.  To do this, first take each vector of filter
	  coefficients (that is, the 
	  
	    A
	   and 
	  
	    B 
	   vectors) and divide by the smallest power of two
	  such that the resulting absolute value of the largest filter
	  coefficient is less than or equal to one.  This is an easy
	  but fairly reasonable approximation of how numbers outside
	  the range of -1 to 1 are actually handled on the DSP.
	
 
	  Next, quantize the resulting vectors to 16 bits of precision
	  by first multiplying them by
	  
	    215=32768
	  , rounding to the nearest integer (use
	  round), and then dividing the resulting vectors
	  by 32768. Then multiply the resulting numbers, which will be
	  in the range of -1 to 1, back by the power of two that you
	  divided out.
	

Effects of quantization



 
	  Explore the effects of quantization by quantizing the filter
	  coefficients for the notch filter.  Use the
	  freqz command to compare the response of the
	  unquantized filter with two quantized versions: first,
	  quantize the entire fourth-order filter at once, and second,
	  quantize the second-order ("bi-quad") sections separately
	  and recombine the resulting quantized sections using the
	   conv function.  Compare the
	  response of the unquantized filter and the two quantized
	  versions.  Which one is "better?"  Why do we always
	  implement IIR filters using second-order sections instead of
	  implementing fourth (or higher) order filters directly?
	
 
	  Be sure to create graphs showing the difference between the
	  filter responses of the unquantized notch filter, the notch
	  filter quantized as a single fourth-order section, and the
	  notch filter quantized as two second-order sections.  Save
	  the MATLAB code you use to generate these graphs, and be
	  prepared to reproduce and explain the graphs as part of your
	  quiz.  Make sure that in your comparisons, you rescale the
	  resulting filters to ensure that the response is unity (one)
	  at frequencies far outside the notch.
	



Lab 3: Lab*



Implementation



  On the DSP, you will implement the
	 elliptic low-pass filter designed using the
	ellip command from IIR
	Filters: Filter-Design Exercise in MATLAB. You should
	not try to implement the notch filter designed in IIR Filtering: Filter-Coefficient
	Quantization Exercise in MATLAB, because it will not
	work correctly when implemented using Direct Form II.  (Why
	not?)
      
 
	To implement the fourth-order filter, start with a single set
	of second-order coefficients and implement a single
	second-order section.  Make sure you write and review
	pseudo-code before you begin programming.
	Once your single second-order IIR is working properly you can
	then proceed to code the entire fourth-order filter.
      
Large coefficients



 
	  You may have noticed that some of the coefficients you have
	  computed for the second-order sections are larger than 1.0
	  in magnitude.  For any stable second-order IIR section, the
	  magnitude of the "0" and "2" coefficients 
	  (
	    a0
	   and 
	  
	    a2
	  , for example) will always be less than or equal to
	  1.0.  However, the magnitude of the "1" coefficient can be
	  as large as 2.0.  To overcome this problem, you will have to
	  divide the
	  
	    a1
	   and 
	  
	    b1
	   coefficients by two prior to saving them for your
	  DSP code.  Then, in your implementation, you will have to
	  compensate somehow for using half the coefficient value.
	

Repeating code



 
	  Rather than write separate code for each second-order
	  section, you are encouraged first to write one section, then
	  write code that cycles through the second-order section code
	  twice using the repeat structure below.  Because the IIR
	  code will have to run inside the block I/O loop and this
	  loop uses the  block repeat counter
	  (BRC), you must use another looping structure
	  to avoid corrupting the BRC.  
Note
You will have to make sure that your code uses
	  different coefficients and states during the second cycle of
	  the repeat loop.



	
 
	  
	  stm     (num_stages-1),AR1

	  start_stage

	  ; IIR code goes here

	  banz    start_stage,*AR1-
	

Gain



 
	  It may be necessary to add gain to the output of the system.
	  To do this, simply shift the output left (which can be done
	  using the ld opcode with its optional
	  shift parameter) before saving the output to
	  memory.
	


Grading



 
        Your grade on this lab will be split into three parts:
      
 	1 point: Prelab

	4 points: Code.  Your DSP code implementing the
        fourth-order IIR filter is worth 3 points and the MATLAB
        exercise is worth 1 point.

	5 points: Oral quiz.  The quiz may cover differences
        between FIR and IIR filters, the prelab material, and the
        MATLAB exercise.





Resources



Fixed-Point Quantization*



 
      The fractional B-bit two's
    complement number representation evenly distributes 
      
	2B
       quantization levels between 
      
	-1
       and 
      
	1−2–((B−1))
      . The spacing between quantization levels is then
      
      Any signal value falling between two levels is assigned to one
      of the two levels.
    
 
      
	XQ=Q[x]
       is our notation for quantization.
      
	e=Q[x]−x
       is then the quantization error.
    
 
      One method of quantization is  rounding, which assigns the signal
      value to the nearest level. The maximum
      error is thus
      .
    
	  [image: Subfigure (a) (subfig1aFixed-PointQuant.png)](a)

	  [image: Subfigure (b) (subfig1bFixed-PointQuant.png)](b)



Figure 1.12. 

 
      Another common scheme, which is often easier to implement in
      hardware, is  truncation.
      
	Q[x]
       assigns x to the next
      lowest level.
      
	  [image: Subfigure (a) (subfig2aFixed-PointQuant.png)](a)

	  [image: Subfigure (b) (subfig2bFixed-PointQuant.png)](b)



Figure 1.13. 


     
      The worst-case error with truncation is
      
	Δ=2–((B−1))
      , which is twice as large as with rounding. Also, the
      error is always negative, so on average it may have a non-zero
      mean (i.e., a bias component).
    
 
      Overflow is the other problem. There are two common types: two's
      complement (or  wraparound) overflow, or 
       saturation overflow.
      
	 <db:title>wraparound</db:title> [image: wraparound (subfig3aFixed-PointQuant.png)](a)

	 <db:title>saturation</db:title> [image: saturation (subfig3bFixed-PointQuant.png)](b)



Figure 1.14. 


     
      Obviously, overflow errors are bad because they are typically
      large; two's complement (or
      wraparound) overflow introduces more error than saturation, but is easier
      to implement in hardware. It also has the advantage that if the
      sum of several numbers is between
      
	[-1, 1)
      , the final answer will be correct even if intermediate
      sums overflow! However, wraparound overflow leaves IIR systems
      susceptible to zero-input large-scale limit cycles, as discussed in
      another module. As usual, there are many tradeoffs to evaluate, and
      no one right answer for all applications.
    



1.5. Lab 4



Intro*



Introduction



 
        In this lab you are going to apply the  Fast Fourier
	Transform ( FFT) to analyze the spectral
	content of an input signal in real time. You will also 
        explore algorithms that estimate a stationary random signal's
         Power Spectral Density ( PSD). Finally,
        you will be introduced to using the C environment and code
        optimization in a practical application. This knowledge will be
        applied in optimizing a reference implementation of a PSD estimator.
      

Fast Fourier Transform



 
        First, samples of the
         power spectrum of a deterministic signal will be
        calculated via the magnitude squared of the FFT of the windowed
        signal. You will transform a 1024-sample block of input data
        and send the power spectrum to the output for display on the
        oscilloscope. After computing the
	FFT of a 1024-sample block of input data, you will then
	compute the squared magnitude of the sampled spectrum and send
	it to the output for display on the oscilloscope.  In contrast
	to the systems you have implemented in the previous labs, the
	FFT is an algorithm that operates on blocks of samples at a
	time.  In order to operate on blocks of samples, you will need
	to use interrupts to halt processing so that samples can be
	transferred.
      
 
	The FFT can be used to analyze the spectral content of a
	signal.  Recall that the FFT is an efficient algorithm for
	computing the  Discrete Fourier Transform
	( DFT), a frequency-sampled version of the
	 DTFT.
      
 
	DFT:
	
()
 where
	
	  n∧k∈{0, 1, …, N−1}
	
      
 
        Your implementation will include windowing of the input data
        prior to the FFT computation.  This is simple a point-by-point
        multiplication of the input with an analysis window.  As you
        will explore in the prelab exercises, the choice of window
        affects the shape of the resulting spectrum.
      
 
        A block diagram of the spectrum analyzer you
        will implement in the lab, including the required input and
        ouput locations, is depicted in Figure 1.15.
      
 [image: Figure (spectrum_system.png)]

Figure 1.15. 

          FFT-based spectrum analyzer
        


Pseudo-Noise Sequence Generator



 
        Second, you will generate a colored, psuedo-noise (PN) sequence as
        input to the power spectrum algorithm. The noise sequence will be
        generated with a linear feedback shift register, whose operation is
        as shown in Figure 1.16. This PN generator is simply a
        shift-register and an XOR gate. Bits 0, 2, and 15 of the shift-register
        are XORed together and the result is shifted into the lowest bit of
        the register. This lowest bit is the output of the PN generator,
        and the highest bit is discarded in the shift process.
        The LSB is used to generate a
        value of ±M and this
        sequence will repeat with a period of
        
          2B−1
        , where B is the width in
        bits of the shift register and M is
        a constant. The power spectral density of this sequence is flat
        (white) and
        it will be "colored" via a fourth-order IIR filter. PN generators of
        this type are a useful source of random data bits for system testing.
        They are especially useful as a data model in simulating communication
        systems as these systems tend to randomize the bits seen by the
        transmission scheme so that bandwidth can be efficiently utilized.
        However, this method will not produce very "random" numbers.
        For more on this, see
        
        Pseudorandom number generator [url],
        
        Linear feedback shift register [url],
        and chapter 7, section 4 of
        
        Numerical Recipes [url].
      
 [image: Pseudo-Noise Generator (pn-gen.png)]

Figure 1.16. Pseudo-Noise Generator


Power Spectral Density Estimation



 
        The direct-power-spectrum (DPS) algorithm outlined above is insufficient
        for estimating the PSD of a stationary noise
        signal because the variance of the estimated PSD is proportional to the
        value of the actual PSD. For the third part of this lab you will try to
        reduce the variance of the PSD estimate by windowing the
        autocorrelation of the noise signal and computing the fft.
      
 
        The autocorrelation of a sequence is the correlation of the
        sequence with itself:
      
 
	
()
 where
	
	  m∈{–((N−1)), –((N−2)), …, N−1}
	

      
 
        For random signals, the autocorrelation here is an estimate
        of the actual autocorrelation.
        As |m| is
        increased, the number of samples used in the autocorrelation decreases. 
        The windowed-DPS algorithm is equivalent to taking the FFT of the
        autocorrelation of the windowed data. Windowing of the data
        adds even more noise to the autocorrelation estimate, since the
        autocorrelation is performed on a distorted version of the original
        signal. An improvement can be made by constructing an accurate estimate
        of the autocorrelation (using a rectangular window),
        applying a window and computing the FFT. The motivation for applying
        the window at the latter stage is that emphasis should be given to
        accurate autocorrelation values while less accurate values should be
        de-emphasized or discarded.
      
 
        A good empirical characterization of a random process requires
        sufficient data, and both of the PSD-estimation algorithms defined
        above can be extended to accomodate more data. There is one caveat,
        however: many
        real-world processes are modeled as short-time
        stationary processes (non-stationary models are hard to deal with),
        so there is a practical limit to how much data is available for a PSD
        estimate.
        Additional data is added to the direct-PSD estimation algorithm by
        adding multiple spectra together, thereby smoothing the PSD estimate.
        Additional data is added to the windowed-autocorrelation method
        by computing the autocorrelation of the total data set before
        windowing. You will explore the windowed-autocorrelation method on
        the DSP. 
      

Compiling and Optimization



 
        A second objective of this lab exercise is to introduce the
        TMS320C549 C environment in a practical DSP application. The C
        environment provides a fast and convenient way to implement
        a DSP system using C and assembly modules. You will also learn how
        to optimize a program and when to use C or assembly. In future labs,
        the benefits of using the C environment will become clear as larger
        systems are developed.
      


PreLab*



MATLAB Exercise, Part 1



 
	Since the DFT is a sampled version of the spectrum of a
	digital signal, it has certain sampling effects.  To explore
	these sampling effects more thoroughly, we consider the effect
	of multiplying the time signal by different window functions
	and the effect of using zero-padding to increase the length
	(and thus the number of sample points) of the DFT.  Using the
	following MATLAB script as an example, plot the
	squared-magnitude response of the following test cases over
	the digital frequencies
	.  
      
 	rectangular window with no zero-padding

	hamming window with no zero-padding

	rectangular window with zero-padding by factor of four
	(i.e., 1024-point FFT)

	hamming window window with zero-padding by factor of
	  four



 
	Window sequences can be generated in MATLAB by using the
	boxcar and hamming functions.
      
 
	
	1  N = 256;                % length of test signals
	2  num_freqs = 100;        % number of frequencies to test
	3
	4  % Generate vector of frequencies to test
	5
	6  omega = pi/8 + [0:num_freqs-1]'/num_freqs*pi/4;
	7
	8  S = zeros(N,num_freqs);                 % matrix to hold FFT results
	9
	10
	11  for i=1:length(omega)                   % loop through freq. vector
	12     s = sin(omega(i)*[0:N-1]');          % generate test sine wave
	13     win = boxcar(N);                     % use rectangular window
	14     s = s.*win;                          % multiply input by window
	15     S(:,i) = (abs(fft(s))).^2;           % generate magnitude of FFT
	16                                          % and store as a column of S
	17  end
	18
	19  clf;
	20  plot(S);                                % plot all spectra on same graph
	21
	
      
 
	Make sure you understand what every line in the script does.
	What signals are plotted?
      
 
	You should be able to describe the tradeoff between mainlobe
	width and sidelobe behavior for the various window functions.
	Does zero-padding increase frequency resolution?  Are we
	getting something for free?  What is the relationship between
	the DFT,
	
	  X[k]
	, and the DTFT,
	
	  X(ω)
	, of a sequence
	
	  x[n]
	?
      

MATLAB Exercise, Part 2



 
        Download and run the MATLAB file
        lab4b.m [link] to observe direct and
        autocorrelation-based PSD estimates. A pseudo noise generator is
        filtered with a fourth-order IIR filter and various PSD estimates are
        computed and plotted. 
      
 [image: Figure (plot1.png)]

Figure 1.17. 

          First plot
        

 
        The first plot contains PSD estimates, using a 1024-point FFT,
        from the first 512 samples of the 1024-sample sequence. The direct
        method is to take the squared-magnitude of the FFT of the sequence. The
        autocorrelation (AC) method is to take the magnitude of the FFT of the
        autocorrelation of the sequence. In this case rectangular windows were
        used in both FFTs. 
        Why do the estimates look exactly the same? Will the
        estimates be alike if all 1024 samples are used with a 1024-sample
        FFT, with all other conditions being equal? Why or why not?
      
 [image: Figure (plot2.png)]

Figure 1.18. 

          Second plot
        

 
        The second plot contains PSD estimates, using a 1024-point FFT,
        from the first 32 samples of the 1024-sample sequence. The direct
        and AC estimates are computed in the same manner described above,
        except a hamming window has been applied to the sequence in the
        direct-PSD estimate. Why are these estimates different? What will
        make these estimates identical?
      
 [image: Figure (plot3.png)]

Figure 1.19. 

          Third plot
        

 
        The third plot contains PSD estimates, using a 1024-point FFT,
        from all 32-sample blocks of the 1024-sample sequence. The direct-PSD
        estimate is computed by summing the hamming-windowed PSD estimates of
        each 32-sample block. The AC-PSD estimate is computed by taking the
        magnitude of the FFT of 63 samples of the autocorrelation of the
        entire 1024-point sequence. Why are 63 samples used in comparing the
        AC method to the direct method?
      
 [image: Figure (plot4.png)]

Figure 1.20. 

          Fourth plot
        

 
        The fourth plot contains the unfiltered spectrum of the PN sequence
        and the impulse response of the coloring filter. 
      
 
        Try various the block lengths (Np) and
        direct-PSD window types. Observe the changes. Are there any
        tradeoffs? Does either the direct method or the autocorrelation method
        have an advantage over the other? Is there a direct-method window that
        results in identical block-based estimates?
        For simplicity, the autocorrelation window in this lab is
        rectangular. Can we, however, consider this an unbiased autocorrelation
        estimate that is windowed by a rectangular window? (Hint: see the
        MATLAB documentation for the xcorr function.) If not,
        how would you create an unbiased autocorrelation estimate before
        windowing, and what is the effective window that we have applied to
        the unbiased autocorrelation?
      


Lab*



Implementation



 
        As this is your first experience with the C environment, you will
        have the option to add most of the required code in C or assembly.
        A C skeleton will provide access to input samples, output samples,
        and interrupt handling code. You will add code to transfer the
        inputs and outputs (in blocks at a time), apply a hamming window,
        compute the magnitude-squared spectrum, and include a trigger pulse.
        After the hamming window is created, either an assembly or C module
        that bit reverses the input and performs an FFT calculation is called.
      
 
        As your spectrum analyzer works on a block of samples at a
        time, you will need to use interrupts to pause your processing
        while samples are transferred from/to the CODEC (A/D and D/A)
        buffer.  Fortunately, the interrupt handling routines have
        been written for you in a C shell program available at
        v:\ece420\54x\dspclib\lab4main.c and the core
        code.
      
Interrupt Basics



 
          Interrupts are an essential part of the operation of any
          microprocessor.  They are particularly important in embedded
          applications where DSPs are often used.  Hardware interrupts
          provide a way for interacting with external devices while
          the processor executes code.  For example, in a key entry
          system, a key press would generate a hardware interrupt.
          The system code would then jump to a specified location in
          program memory where a routine could process the key input.
          Interrupts provide an alternative to polling.  Instead of
          checking for key presses at a predetermined rate (requires a
          clock), the system could be busy executing other code.  On
          the TI-C54x DSP, interrupts provide a convenient way to
          transfer blocks of data to/from the CODEC in a timely
          fashion.
        

Interrupt Handling



 
          The lab4main.c code and the core code are intended
          to make your interaction with the hardware much simpler. As
          there was a core file for working in the assembly environment
          (Labs 0-3), there is a core file for the C environment 
          (V:\ece420\54x\dspclib\core.asm) which handles the interrupts
          from the CODEC (A/D and D/A) and the serial port. Here, we
          will describe the important aspects of the core code necessary
          to complete the assignment.
        
 
          At the heart of the hardware interaction is the auto-buffering
          serial port. In the auto-buffering serial mode, the TI-C54x
          processor is able to do processing
          uninterrupted while samples are
          transferred to/from a buffer of length
          
            BlockLen=64
           samples. However, the spectrum analyzer to be
          implemented in this lab works over a block of
          
            N=1024
           samples.  If it were possible to compute a
          1024-point FFT in the sample time of one
          BlockLen, then no additional interrupt handling
          routines would be necessary.  Samples could be collected in
          a 1024-length buffer and a 1024-point FFT could be computed
          uninterrupted while the auto-buffering buffer fills.
          Unfortunately, the DSP is not fast enough to accomplish this
          task.
        
 
          We now provide an explanation of the shell C program
          lab4main.c listed in Appendix A.  The
          lab4main.c file contains the function
          interrupt void irq and a main program.  The
          main program is an infinite loop over blocks of
	  
	    N=1024
	   samples.  Note that while the DSP is executing
          instructions in this loop, interrupts occur every
          BlockLen samples.  Inside the infinite loop,
          you will insert code to do the operations which
          follow. Although each of these operations may be performed
          in C or assembly, we suggest you follow the guidelines
          suggested.

          
 	Transfer inputs and outputs (C)

	Apply a Hamming Window (C/assembly)

	Bit-reverse the input (C and assembly)

	Apply an 
              
		N
	      -point FFT (C and assembly)

	Compute the magnitude-squared spectrum (C/assembly)

	Include a trigger pulse (C/assembly)




        
 
          The function WaitAudio is an assembly function in the core code
          which handles the CODEC interrupts.  An interrupt from the CODEC
          occurs every BlockLen samples.  The
          SetAudioInterrupt(irq) call in the main program
          tells the core code to jump to the irq function
          when an interrupt occurs.  In the irq function,
          BlockLen samples of the A/D input in
          Rcvptr (channel 1) are written to a length
          
            N
	   inputs buffer, and
          BlockLen of the output samples in the
          outputs buffer are written to the D/A output
          via Xmitptr on channel 2. In C, pointers may be
          used as array names so that Xmitptr[0] is the
          first word pointed to by Xmitptr. As in the
          assembly core, the input samples are not in 
          consecutive order.  The right and left inputs are offset from 
          Rcvptr respectively by 
          
            4i
           and
          
            4i+2
          ,
          
            i=0
          , …,
          
            BlockLen−1
          .
          The six output channels are accessed consecutively as offsets
          from Xmitptr. On channel 1 of the
          output, the input is echoed out. You are to fill
          the buffer outputs with the windowed
          magnitude-squared FFT values by performing the operations
          listed above.
        
 
          In the main code, the while(!input_full);
          loop waits for
          
            N
	   samples to collect in the inputs
          buffer.  Next, the
          
            N
           inputs and outputs must be transferred.  You are
          to write this portion of code.  This portion of code is to
          be done first, within BlockLen sample times;
          otherwise the first BlockLen of samples of
          output would not be available on time.  Once this loop is
          finished, the lengthy processing of the FFT can continue.
          During this processing, the DSP is interrupted every
          BlockLen samples to transfer samples.  Once
          this processing is over, the infinite loop returns to
          while(!input_full); to wait for
          
            N
           samples to finish collecting.
        
 
          The flow diagram in Figure 1.21 summarizes the
          operation of the interrupt handling routine
        
	  [image: Subfigure (a) (main_flow.png)](a) main

	  [image: Subfigure (b) (interrupt_flow.png)](b) interrupt handler



Figure 1.21. 

            Overall program flow of the main function and the
            interrupt handling function.
          


Assembly FFT Routine



 
          As the list of operations indicates, bit-reversal and FFT
          computation are to be done in both C and assembly.  For the
          assembly version, make sure that the line defining
          C_FFT is commented in lab4main.c.
          We are providing you with a shell assembly file, available at
          v:\ece420\54x\dspclib\c_fft_given.asm and shown
          in Appendix B, containing many
          useful declarations and some code. The code for performing
          bit-reversal and other declarations needed for the FFT
          routine are also provided in this section.
          However, we would like you to enter this code
          manually, as you will be expected to understand its
          operation.
          
        
 
          The assembly file c_fft_given.asm
          contains two main parts, the data section 
          starting with .sect ".data" and the
          program section starting with  
          .sect ".text".  Every function and
          variable accessed in C must be preceded by a single underscore
          _ in assembly and a 
          .global _name must be placed in the
          assembly file for linking.  In this example, 
          bit_rev_fft is an assembly function called from 
          the C program with a label _bit_rev_fft in the
          text portion of the assembly file and a
          .global _bit_rev_fft declaration.  In each
          assembly function, the macro ENTER_ASM is
          called upon entering and LEAVE_ASM is
          called upon exiting.  These macros are defined in
          v:\ece420\54x\dspclib\core.inc.  The 
          ENTER_ASM macro saves the status registers
          and AR1, AR6, and
          AR7 when entering a function as required
          by the register use conventions.  The ENTER_ASM
          macro also sets the status registers to the assembly conventions we 
          have been using (i.e, FRCT=1 for fractional
          arithmetic and CPL=0 for
          DP referenced addressing).  The
          LEAVE_ASM macro just restores the saved
          registers.
        
Parameter Passing



 
          The parameter passing convention between assembly and C is 
          simple for single input, single output assembly functions.  From 
          a C program, the input to an assembly program is in the low part
          of accumulator A with the output returned 
          in the same place.  When more
          than one parameter is passed to an assembly function, the
          parameters are passed on the stack (see the core file 
          description for more information).  We suggest that you avoid
          passing or returning more than one parameter.  Instead, use global 
          memory addresses to pass in or return more than one parameter.  
          Another alternative is to pass a pointer to the start of a buffer
          intended for passing and returning parameters.
        

Registers Modified



 
          When entering and leaving an assembly function, the 
          ENTER_ASM and LEAVE_ASM
          macros ensure that certain registers are saved and restored.  
          Since the C program may use any and all registers, the state of
          a register cannot be expected to remain the same between calls to
          assembly function(s).  Therefore, any information that 
          needs to be preserved across calls to an assembly function must be 
          saved to memory!
        

 
          Now, we explain how to use the FFT routine provided by TI
          for the C54x. The FFT routine fft.asm located
          in v:\ece420\54x\dsplib\ computes an in-place,
          complex FFT. The length of the FFT is defined as a label
          K_FFT_SIZE and the algorithm assumes that the
          input starts at data memory location _fft_data.
          To have your code assemble for an
          
            N
	  -point FFT, you will have to include the following
          label definitions in your assembly code.
        
 
	  
	  N                 .set       1024
	  K_FFT_SIZE        .set       N           ; size of FFT
	  K_LOGN            .set       10          ; number of stages (log_2(N))
	  
        
 
          In addition to defining these constants, you will have to
          include twiddle-factor tables for the FFT.  These tables
          (twiddle1 and twiddle2) are available in the shared
          directory v:\ece420\54x\dsplib\.  Note that the
          tables are each
          
            N
	   points long representing values from 0 to just shy
          of 180 degrees and must be accessed using a
          circular pointer. To include these
          tables at the proper location in memory with the appropriate
          labels referenced by the FFT, use the following
        
 
	  
	  .sect  ".data"
	  .align  1024
	  sine         .copy "v:\ece420\54x\dsplib\twiddle1"
	  .align  1024
	  cosine       .copy "v:\ece420\54x\dsplib\twiddle2"
	  
        
 
          The FFT provided requires that the input be in bit-reversed
          order, with alternating real and imaginary
          components. Bit-reversed addressing is a convenient way to
          order input
          
            x[n]
           into a FFT so that the output 
          
            X(k)
           is in sequential order (i.e.
          
            X(0)
          ,
          
            X(1)
          , …,
          
            X(N−1)
           for an 
          
            N
	  -point FFT).  The following table illustrates the
          bit-reversed order for an eight-point sequence.
        
Table 1.2. 	Input Order	Binary Representation	Bit-Reversed Representation	Output Order
	0	000	000	0
	1	001	100	4
	2	010	010	2
	3	011	110	6
	4	100	001	1
	5	101	101	5
	6	110	011	3
	7	111	111	7


 
          The following routine performs the bit-reversed reordering
          of the input data.  The routine assumes that the input is
          stored in data memory starting at the location labeled
          _bit_rev_data, which must be aligned to the
          least power of two greater than the input buffer length, and
          consists of alternating real and imaginary parts.  Because
          our input data is going to be purely real in this lab, you
          will have to make sure that you set the imaginary parts to
          zero by zeroing out every other memory location.
        
 
          
	  1    bit_rev:
	  2            STM     #_bit_rev_data,AR3          ; AR3 -> original input
	  3            STM     #_fft_data,AR7              ; AR7 -> data processing buffer
	  4            MVMM    AR7,AR2                     ; AR2 -> bit-reversed data
	  5            STM     #K_FFT_SIZE-1,BRC
	  6            RPTBD   bit_rev_end-1
	  7            STM     #K_FFT_SIZE,AR0             ; AR0 = 1/2 size of circ buffer
	  8            MVDD    *AR3+,*AR2+
	  9            MVDD    *AR3-,*AR2+
	  10            MAR     *AR3+0B
	  11    bit_rev_end:
	  12            NOP
          13            RET
          
        
 
          As mentioned, in the above code _bit_rev_data
          is a label indicating the start of the input data and
          _fft_data is a label indicating the start of a
          circular buffer where the bit-reversed data will be
          written. Note that although AR7 is not used by
          the bit-reversed routine directly, it is used extensively in
          the FFT routine to keep track of the start of the FFT data
          space.
        
 
          In general, to have a pointer index memory in bit-reversed
          order, the AR0 register needs to be set to
          one-half the length of the circular buffer; a statement such
          as ARx+0B is used to move the ARx
          pointer to the next location. For more information regarding
          the bit-reversed addressing mode, refer to page
          5-18 in the TI-54x
          CPU and Peripherals manual [url].  Is it possible to
          bit-reverse a buffer in place?  For a diagram of the
          ordering of the data expected by the FFT routine, see
          Figure 4-10 in the TI-54x
          Applications Guide [url].  Note that the FFT code uses all
          the pointers available and does not restore the pointers to
          their original values.
        

C FFT Routine



 
           A bit-reversing and FFT routine have also been provided in 
           lab4fft.c, listed in
           Appendix C. Again,
           make sure you understand how the bit reversal is taking
           place.
           In lab4main.c, the line defining C_FFT
           must not be commented for use of the C FFT routine. The sine
           tables (twiddle factors) are located in 
           sinetables.h.
           This fft requires its inputs in two buffers, the real buffer
           real and the imaginary buffer imag,
           and the output is placed in the same buffers.
           The length of the FFT, N, and logN are
           defined in lab4.h, which is also listed in 
           Appendix C.
           When experimenting with the C
           FFT make sure you modify these length values instead of the ones
           in the assembly code and lab4main.c!
        

Creating the Window



 
          As mentioned, you will be using the FFT to compute the
          spectrum of a windowed input.  For your implementation you
          will need to create a 1024-point Hamming window.  First,
          create a Hamming window in matlab using the function
          hamming.  For the assembly FFT, use
          save_coef to save the window to a file
          that can then be included in your code with the
          .copy directive.  For the C FFT, use the matlab
          function 
          write_intvector_headerfile
          with name set to 'window' and
          elemperline set to 8 to create
          the header file that is included in lab4main.c.
        

Displaying the Spectrum



 
          Once the DFT has been computed, you must calculate the
          squared magnitude of the spectrum for display.

          
()
              (|X(k)|)2=(ℜ(X(k)))2+(ℑ(X(k)))2
            
 You may find the assembly instructions
          squr and squra useful in
          implementing Equation.
        
 
          Because the squared magnitude is always nonnegative, you can
          replace one of the magnitude values with a -1.0 as a trigger
          pulse for display on the oscilloscope. This is easily
          performed by replacing the DC term (
          
            k=0
          )
          with a -1.0 when copying the magnitude values to the output buffer. The
          trigger pulse is necessary for the oscilloscope to lock to a specific
          point in the spectrum and keep the spectrum fixed on the scope.
        

Intrinsics



 
          If you are planning on writing some of the code in C, then
          you may be forced to use intrinsics.  Intrinsic instructions
          provide a way to use assembly instructions directly in C.
          An example of an intrinsic instruction is
          bit_rev_data[0]=_smpyr(bit_rev_data[0],window[0])
          which performs the assembly signed multiply round
          instruction.  You may also find the _lsmpy
          instruction useful.  For more information on intrinsics, see
          page 6-22 of the TI-C54x
          Optimizing C/C++ Compiler User's Guide [url].
        
 
          The following lines of code were borrowed from the C FFT to serve
          as an example of arithmetic operations in C.  Save
          this code in a file called mathex.c and compile this file by typing
          c_asm mathex.c at a command prompt. Look at
          the resulting assembly file and investigate the differences between
          each block.  Be sure to reference page 6-10 of the
          compiler user's guide to find 
          out what the state of the FRCT and OVM bits are. Run
          this program on the DSP, halt the program, and compare the
          output values in a memory window. Does each block work properly
          for all possible values?
        
 
          
            int s1, s2;
            int t1, t2;
            int i1, i2;
            int n1 = 16383, n2 = 16382, n3 = 16381, n4 = 16380;

            void main(void)
            {
               /* Code for standard 32-bit hardware, */
               /* with x,y limited to 16 bits        */
               s1 = (n1*n2 + n3*n4) >> 15;
               s2 = (n1 + n2) >> 1;

               /* Code for TI TMS320C54X series */
               t1 = ((long int)(n1*n2) + (long int)(n3*n4)) >> 15;
               t2 = ((long int)n1 + (long int)n2) >> 1;

               /* Intrinsic code for TMS320C54X series */
               i1 = _sadd(_smpy(n1,n2), _smpy(n3,n4));
               i2 = _sshl(_sadd(n1, n2),-1);

               while(1);
            }
          
        

Compiling and Linking



 
          A working program can be produced by compiling the C code and
          linking assembly modules and the core module.  The compiler
          translates C code to a relocatable assembly form.  The linker
          assigns physical addresses on the DSP to the relocatable data
          and code segments, resolves .global
          references and links runtime libraries.
        
 
          The procedure for compiling C code and linking assembly modules
          has been automated for you in the batch file 
          v:\ece420\54x\dsptools\c_asm.bat.  The name of the
          first file becomes the name of the executable. Once you have
          completed lab4main.c and c_fft_given.asm,
          type c_asm lab4main.c c_fft_given.asm to produce a
          lab4main.out file to be loaded onto the DSP.  For the
          C FFT type c_asm lab4main.c lab4fft.c to produce
          lab4main.out.
          Load the output file onto the DSP as usual and confirm that valid
          FFTs are calculated.  Once valid output is obtained, measure how
          many clock cycles it takes to compute both the assembly and C FFT.
        


Reference Implementation of a PSD estimator



 
        We provide for you in Appendix D
        and E a complete C implementation
        of a PSD estimator. The input is an IIR-filtered pseudo-noise (PN)
        sequence generator and the PSD estimate is based on windowing the
        autocorrelation with a rectangular window.
        The code consists of the files lab4bmain.c,
        lab4b.h, intrinsics.h, pn.c,
        iirfilt.c, autocorr.c,
        c_fft_given_iirc.asm, and the previously-given TI FFT
        routine. The assembly file c_fft_given_iirc.asm differs
        from c_fft_given.asm in that the window array has been
        removed and variables and arrays associated with IIR filtering have
        been added. Note that the multiply functions in the functions are
        actually compiler directives contained in intrinsics.h.
        Make sure you know which ones are used and why; note that
        VPO is not defined by the TI compiler, therefore the
        corresponding section of the #ifdef statement is not used.
        Compile and link these files by issuing
        c_asm lab4bmain.c pn.c iirfilt.c autocorr.c
        c_fft_given_iirc.asm
        at the command line. Load lab4bmain.out onto the DSP and
        run the code. Make sure that an
        IIR-filtered PN sequence appears on channel 1 and its PSD estimate
        appears on channel 2.
      
 
        Does the output match your expectations based on the theory? Does this
        application illustrate any limitations of the FFT implementation?
        (Hint: note that most of the values in the FFT input are zero.)
        The previously-given C implementation uses a similar algorithm as the
        TI FFT; take a look at the C code for help.
        What are the limitation(s) of the FFT that show up in this application?
      
 
        In lab4b.h M sets the number of
        autocorrelation points that are calculated. What is the maximum value
        of M that allows the reference routines to run in real
        time? In determining this value you may find it useful to connect a
        wave-function generator to the input and copy inputs
        into display_inputs. You may limit M to
        powers of 2 minus 1.
      

Quiz Information



 
        From your prelab experiments, you should be able to describe
        the effect of windowing and zero-padding on FFT spectral
        analysis.  In your DSP system, experiment with different
        inputs, changing
        
	  N
	 and the type of window.  Can you explain what happens
        as the input frequency is increased beyond the Nyquist rate? Does the
        
          (|X(k)|)2
         coincide with what you expect from Matlab?  What is
        the relationship between the observed spectrum and the DTFT?
        What would happen if the FFT calculation takes longer than it
        takes to fill inputs with
        
	  N
	 samples? How long does it take to compute each FFT?
        What are the tradeoffs between writing code in C versus assembly?
      

Appendix A:



 
        lab4main.c
      
 
        
1    /* v:/ece420/54x/dspclib/lab4main.c */
2    /* dgs - 9/14/2001                  */
3    /* mdk - 2/10/2004   C FFT update   */
4
5    #include "v:/ece420/54x/dspclib/core.h"
6
7    /* comment the next line to use assembly fft */
8    #define C_FFT
9
10    #ifdef C_FFT /* Use C FFT */
11
12       #include "window.h"
13       #include "lab4.h" /* Number of C FFT points defined here */
14
15       /* function defined in lab4fft.c */
16       void fft(void);
17
18       /* FFT data buffers */
19       int real[N]; /* Real part of data      */
20       int imag[N]; /* Imaginary part of data */
21
22    #else        /* Use assembly FFT */
23
24       #define N 1024   /* Number of assembly FFT points */
25
26       /* Function defined by c_fft_given.asm */
27       void bit_rev_fft(void);
28
29       /* FFT data buffers (declared in c_fft_given.asm) */
30       extern int bit_rev_data[N*2]; /* Data input for bit-reverse function */
31       extern int fft_data[N*2];     /* In-place FFT & Output array         */
32       extern int window[N];         /* The Hamming window                  */
33
34    #endif       /* C_FFT */
35
36
37    /* Our input/output buffers */
38    int inputs[N];
39    int outputs[N];
40
41    volatile int input_full = 0;  /* volatile means interrupt changes it */
42    int count = 0;
43
44
45    interrupt void irq(void)
46    {
47      int *Xmitptr,*Rcvptr;                      /* pointers to Xmit & Rcv Bufs   */
48      int i;
49
50      static int in_irq = 0;           /* Flag to prevent reentrance */
51
52      /* Make sure we're not in the interrupt (should never happen) */
53      if( in_irq )
54        return;
55
56      /* Mark we're processing, and enable interrupts */
57      in_irq = 1;
58      enable_irq();
59
60      /* The following waitaudio call is guaranteed not to
61         actually wait; it will simply return the pointers. */
62      WaitAudio(&Rcvptr,&Xmitptr);
63
64      /* input_full should never be true... */
65      if( !input_full )
66      {
67        for (i=0; i<BlockLen; i++)
68        {
69          /* Save input, and echo to channel 1 */
70          inputs[count] = Xmitptr[6*i] = Rcvptr[4*i];
71
72          /* Send FFT output to channel 2 */
73          Xmitptr[6*i+1] = outputs[count];
74
75          count++;
76        }
77      }
78
79      /* Have we collected enough data yet? */
80      if( count >= N )
81        input_full = 1;
82
83      /* We're not in the interrupt anymore... */
84      disable_irq();
85      in_irq = 0;
86    }
87
88
89    main()
90    {
91      /* Initialize IRQ stuff */
92      count = 0;
93      input_full = 0;
94      SetAudioInterrupt(irq);        /* Set up interrupts */
95
96      while (1)
97      {
98        while( !input_full );     /* Wait for a data buffer to collect */
99
100        /* From here until we clear input_full can only take *
101         * BlockLen sample times, so don't do too much here. */
102
103        /* First, transfer inputs and outputs */
104
105    #ifdef C_FFT /* Use C FFT */
106        /* I n s e r t   c o d e   t o   f i l l   */
107        /* C   F F T   b u f f e r s               */
108
109    #else        /* Use assembly FFT */
110        /* I n s e r t   c o d e   t o   f i l l   */
111        /* a s s e m b l y   F F T   b u f f e r s */
112
113    #endif       /* C_FFT */
114
115        /* Done with that... ready for new data collection */
116        count = 0;      /* Need to reset the count                */
117        input_full = 0; /* Mark we're ready to collect more data  */
118
119        /**********************************************************/
120        /* Now that we've gotten the data moved, we can do the    */
121        /* more lengthy processing.                               */
122
123    #ifdef C_FFT /* Use C FFT */
124
125        /* Multiply the input signal by the Hamming window.       */
126        /* . . . i n s e r t   C / a s m   code . . .             */
127
128        /* Bit-reverse and compute FFT in C                       */
129        fft();
130
131        /* Now, take absolute value squared of FFT                */
132        /* . . . i n s e r t   C / a s m   code . . .             */
133
134        /* Last, set the DC coefficient to -1 for a trigger pulse */
135        /* . . . i n s e r t   C / a s m   code . . .             */
136
137        /* done, wait for next time around!                       */
138
139
140    #else        /* Use assembly FFT */
141
142        /* Multiply the input signal by the Hamming window.       */
143        /* . . . i n s e r t   C / a s m   code . . .             */
144
145        /* Bit-reverse and compute FFT in assembly                */
146        bit_rev_fft();
147
148        /* Now, take absolute value squared of FFT                */
149        /* . . . i n s e r t   C / a s m   code . . .             */
150
151        /* Last, set the DC coefficient to -1 for a trigger pulse */
152        /* . . . i n s e r t   C / a s m   code . . .             */
153
154        /* done, wait for next time around!                       */
155
156
157    #endif       /* C_FFT */
158
159      }
160    }
        
      

Appendix B:



 
        c_fft_given.asm
      
 
        
1    ; v:\ece420\54x\dspclib\c_fft_given.asm
2    ; dgs - 9/14/2001
3        .copy "v:\ece420\54x\dspclib\core.inc"
4
5        .global	_bit_rev_data
6        .global _fft_data
7        .global _window
8	
9        .global _bit_rev_fft
10
11        .sect	".data"
12
13        .align 4*N
14    _bit_rev_data .space 16*2*N	; Input to _bit_rev_fft
15
16        .align	4*N
17    _fft_data .space 16*2*N		; FFT output buffer
18
19
20    ; Copy in the Hamming window
21    _window					; The Hamming window
22        .copy	"window.asm"	
23
24        .sect ".text"
25
26    _bit_rev_fft
27        ENTER_ASM
28                                                  
29        call bit_rev                    ; Do the bit-reversal.
30
31        call fft		        ; Do the FFT
32
33        LEAVE_ASM
34        RET                                     
35
36    bit_rev:
37        STM     #_bit_rev_data,AR3          ; AR3 -> original input
38        STM     #_fft_data,AR7              ; AR7 -> data processing buffer
39        MVMM    AR7,AR2                     ; AR2 -> bit-reversed data
40        STM     #K_FFT_SIZE-1,BRC
41        RPTBD   bit_rev_end-1
42        STM     #K_FFT_SIZE,AR0             ; AR0 = 1/2 size of circ buffer
43        MVDD    *AR3+,*AR2+
44        MVDD    *AR3-,*AR2+
45        MAR     *AR3+0B
46    bit_rev_end:
47        NOP
48        RET
49
50    ; Copy the actual FFT subroutine.
51    fft_data  .set	_fft_data	; FFT code needs this.
52        .copy 	"v:\ece420\54x\dsplib\fft.asm"
53
54
55    ; If you need any more assembly subroutines, make sure you name them
56    ; _name, and include a ".global _name" directive at the top. Also,
57    ; don't forget to use ENTER_ASM at the beginning, and LEAVE_ASM
58    ; and RET at the end!
        
      

Appendix C:



 
        lab4.h
      
 
        
1    #define N 1024       /* Number of FFT points */
2    #define logN 10
        
      
 
        lab4fft.c
      
 
        
1    /*****************************************************************/
2    /* lab4fft.c                                                     */
3    /* Douglas L. Jones                                              */
4    /* University of Illinois at Urbana-Champaign                    */
5    /* January 19, 1992                                              */
6    /* Changed for use w/ short integers and lookup table for ECE420 */
7    /* Matt Kleffner                                                 */
8    /* February 10, 2004                                             */
9    /*                                                               */
10    /*   fft: in-place radix-2 DIT DFT of a complex input            */
11    /*                                                               */
12    /*   Permission to copy and use this program is granted          */
13    /*   as long as this header is included.                         */
14    /*                                                               */
15    /* WARNING:                                                      */
16    /*   This file is intended for educational use only, since most  */
17    /*   manufacturers provide hand-tuned libraries which typically  */
18    /*   include the fastest fft routine for their DSP/processor     */
19    /*   architectures. High-quality, open-source fft routines       */
20    /*   written in C (and included in MATLAB) can be found at       */
21    /*   http://www.fftw.org                                         */
22    /*                                                               */
23    /*   #defines expected in lab4.h                                 */
24    /*         N:   length of FFT: must be a power of two            */
25    /*      logN:   N = 2**logN                                      */
26    /*                                                               */
27    /*   16-bit-limited input/output (must be defined elsewhere)     */
28    /*   real:   integer array of length N with real part of data    */
29    /*   imag:   integer array of length N with imag part of data    */
30    /*                                                               */
31    /*   sinetables.h must                                           */
32    /*   1) #define Nt to an equal or greater power of two than N    */
33    /*   2) contain the following integer arrays with                */
34    /*      element magnitudes bounded by M = 2**15-1:               */
35    /*         costable:   M*cos(-2*pi*n/Nt), n=0,1,...,Nt/2-1       */
36    /*         sintable:   M*sin(-2*pi*n/Nt), n=0,1,...,Nt/2-1       */
37    /*                                                               */
38    /*****************************************************************/
39
40    #include "lab4.h"
41    #include "sinetables.h"
42
43    extern int real[N];
44    extern int imag[N];
45
46    void fft(void)
47    {
48       int   i,j,k,n1,n2,n3;
49       int   c,s,a,t,Wr,Wi;
50
51       j = 0;            /* bit-reverse */
52       n2 = N >> 1;
53       for (i=1; i < N - 1; i++)
54       {
55          n1 = n2;
56          while ( j >= n1 )
57          {
58             j = j - n1;
59             n1 = n1 >> 1;
60          }
61          j = j + n1;
62
63          if (i < j)
64          {
65             t = real[i];
66             real[i] = real[j];
67             real[j] = t;
68             t = imag[i];
69             imag[i] = imag[j];
70             imag[j] = t;
71          }
72       }
73
74       /* FFT */
75       n2 = 1; n3 = Nt;
76
77       for (i=0; i < logN; i++)
78       {
79          n1 = n2;      /* n1 = 2**i     */
80          n2 = n2 + n2; /* n2 = 2**(i+1) */
81          n3 = n3 >> 1; /* cos/sin arg of -6.283185307179586/n2 */
82          a = 0;
83
84          for (j=0; j < n1; j++)
85          {
86             c = costable[a];
87             s = sintable[a];
88             a = a + n3;
89
90             for (k=j; k < N; k=k+n2)
91             {
92                /* Code for standard 32-bit hardware, */
93                /* with real,imag limited to 16 bits  */
94                /*
95                Wr = (c*real[k+n1] - s*imag[k+n1]) >> 15;
96                Wi = (s*real[k+n1] + c*imag[k+n1]) >> 15;
97                real[k+n1] = (real[k] - Wr) >> 1;
98                imag[k+n1] = (imag[k] - Wi) >> 1;
99                real[k] = (real[k] + Wr) >> 1;
100                imag[k] = (imag[k] + Wi) >> 1;
101                */
102                /* End standard 32-bit code */
103
104                /* Code for TI TMS320C54X series */
105
106                Wr = ((long int)(c*real[k+n1]) - (long int)(s*imag[k+n1])) >> 15;
107                Wi = ((long int)(s*real[k+n1]) + (long int)(c*imag[k+n1])) >> 15;
108                real[k+n1] = ((long int)real[k] - (long int)Wr) >> 1;
109                imag[k+n1] = ((long int)imag[k] - (long int)Wi) >> 1;
110                real[k] = ((long int)real[k] + (long int)Wr) >> 1;
111                imag[k] = ((long int)imag[k] + (long int)Wi) >> 1;
112
113                /* End code for TMS320C54X series */
114
115                /* Intrinsic code for TMS320C54X series */
116                /*
117                Wr = _ssub(_smpy(c, real[k+n1]), _smpy(s, imag[k+n1]));
118                Wi = _sadd(_smpy(s, real[k+n1]), _smpy(c, imag[k+n1]));
119                real[k+n1] = _sshl(_ssub(real[k], Wr),-1);
120                imag[k+n1] = _sshl(_ssub(imag[k], Wi),-1);
121                real[k] = _sshl(_sadd(real[k], Wr),-1);
122                imag[k] = _sshl(_sadd(imag[k], Wi),-1);
123                */
124                /* End intrinsic code for TMS320C54X series */
125             }
126          }
127       }
128       return;
129    }
        
      

Appendix D: Main routine, header files for PSD estimator



 
        lab4b.h
      
 
        intrinsics.h
      
 
        lab4bmain.c
      
 
        
1    #define N 1024    /* Length of output buffers */
2    #define L N       /* Length of input data     */
3    #define logL 10   /* log base 2 of L          */
4    #define M 31      /* Compute 2*M+1 autocorrelation points */
5
6    /* #define M (L/2-1) */ /* Be sure to use ()'s in this case */
7                            /* or algebraic substitution bugs   */
8                            /* can be introduced                */
        
      
 
        
1    /* Compiler intrinsics for the TI compiler        */
2    /* and the Very Portable Optimizer (VPO) port     */
3    /* to TMS320C54X series DSPs                      */
4    /*                                                */
5    /* Use compile option -DVPO when using VPO        */
6    /*                                                */
7    /* Copyright September 2005 by Matt Kleffner      */
8    /* under the Creative Commons Attribution License */
9
10    #ifndef INTRINSICS_H
11
12    #define INTRINSICS_H
13
14    #ifdef VPO
15
16    long int vpo_l_mul_ii(int w0, int w1);
17
18    /* fractional multiply without fractional mode (long result) */
19    #define _l_mul_fract_fb0_ii(w0,w1) \
20             (vpo_l_mul_ii(w0,w1) << 1)
21
22    /* fractional multiply with fractional mode already on (long result) */
23    #define _l_mul_fract_fb1_ii(w0,w1) \
24             (vpo_l_mul_ii(w0,w1))
25
26    /* fractional multiply without fractional mode (int result) */
27    #define _i_mul_fract_fb0_ii(w0,w1) \
28             (vpo_l_mul_ii(w0,w1) >> 15)
29
30    /* fractional multiply with fractional mode already on (int result) */
31    #define _i_mul_fract_fb1_ii(w0,w1) \
32             (vpo_l_mul_ii(w0,w1) >> 16)
33
34    #define _set_fract_bit() vpo_set_fract()
35    #define _reset_fract_bit() vpo_reset_fract()
36    #define _set_ovm_bit() vpo_set_ovm()
37    #define _reset_ovm_bit() vpo_reset_ovm()
38
39    #define _l_add_shiftl_li(w0,w1) (((int32)(w0))+(((int32)(int16)(w1))<<16) )
40    #define _l_sub_shiftl_li(w0,w1) (((int32)(w0))-(((int32)(int16)(w1))<<16) )
41
42    #else
43
44    /* fractional multiply without fractional mode (long result) */
45    #define _l_mul_fract_fb0_ii(w0,w1) \
46             (((long int)w0 * (long int)w1) << 1)
47
48    /* fractional multiply with fractional mode already on (long result) */
49    #define _l_mul_fract_fb1_ii(w0,w1) \
50             (((long int)w0 * (long int)w1))
51
52    /* fractional multiply without fractional mode (int result) */
53    #define _i_mul_fract_fb0_ii(w0,w1) \
54             (((long int)w0 * (long int)w1) >> 15)
55
56    /* fractional multiply with fractional mode already on (int result) */
57    #define _i_mul_fract_fb1_ii(w0,w1) \
58             (((long int)w0 * (long int)w1) >> 16)
59
60    #define _set_fract_bit() asm("   ssbx frct")
61    #define _reset_fract_bit() asm(" rsbx frct")
62    #define _set_ovm_bit() asm("  ssbx ovm")
63    #define _reset_ovm_bit() asm("   rsbx ovm")
64
65    #endif /* VPO */
66
67    #endif /* INTRINSICS_H */
        
      
 
        
1    /* v:\ece420\54x\dspclib\lab4bmain.c */
2    /* PN generation, IIR filtering, and autocorrelation added */
3    /* by Matt Kleffner - 9/2004 */
4    /* Original by dgs  - 9/14/2001 */
5    /* Use governed by the Creative Commons Attribution License */
6
7    #include "v:\ece420\54x\dspclib\core.h"
8
9    /* #define N 1024 */            /* Number of FFT points */
10    #include "lab4b.h"              /* Define N here in header file */
11
12    /* function defined in pn.c */
13    void rand_fillbuffer(void);
14    unsigned int *iseed;            /* seed for rand_fillbuffer() and randbit() */
15
16    /* IIR values and buffers (declared in c_fft_given_iirc.asm) */
17    #define IIR_order 4
18    extern int scale;
19    extern int coef[IIR_order];
20    extern int state[IIR_order];
21
22    /* Pointer to state buffer location */
23    int iirptr;
24
25    /* function defined in iirfilt.c */
26    void iirfilt(void);
27
28    /* function defined in autocorr.c */
29    void autocorr(void);
30
31    /* Function defined by c_fft_given_iirc.asm */
32    void bit_rev_fft(void);
33
34    /* FFT data buffers (declared in c_fft_given_iirc.asm) */
35    extern int bit_rev_data[N*2];   /* Data input for bit-reverse function */
36    extern int fft_data[N*2];       /* In-place FFT & Output array */
37
38    /* Our input/output buffers */
39    int inputs[N];
40    int outputs[N];
41    int display_inputs[N];
42    int autocorr_in[N];
43    int autocorr_out[N];
44
45    volatile int input_full = 0;    /* volatile means interrupt changes it */
46    int count = 0;
47
48    interrupt void irq(void)
49    {
50      int *Xmitptr,*Rcvptr;         /* pointers to Xmit & Rcv Bufs */
51      int i;
52
53      static int in_irq = 0;        /* Flag to prevent reentrance */
54
55      /* Make sure we're not in the interrupt (should never happen) */
56      if( in_irq )
57        return;
58
59      /* Mark we're processing, and enable interrupts */
60      in_irq = 1;
61      enable_irq();
62
63      /* The following waitaudio call is guaranteed not to
64         actually wait; it will simply return the pointers. */
65      WaitAudio(&Rcvptr,&Xmitptr);
66
67      /* input_full should never be true... */
68      if( !input_full )
69      {
70        for (i=0; i<BlockLen; i++)
71        {
72          /* Save input, send display_inputs to channel 1 */
73          inputs[count] = Rcvptr[4*i];
74          Xmitptr[6*i] = display_inputs[count];
75          /* inputs[count] = Xmitptr[6*i] = Rcvptr[4*i];  */
76
77          /* Send FFT output to channel 2 */
78          Xmitptr[6*i+1] = outputs[count];
79
80          count++;
81        }
82        /* Have we collected enough data yet? */
83      }
84        if( count >= N ) input_full = 1;
85
86      /* We're not in the interrupt anymore... */
87      disable_irq();
88      in_irq = 0;
89    }
90
91    main()
92    {
93      int i;
94      /* Initialize IRQ stuff */
95      count = 0;
96      input_full = 0;
97
98      /* Initialize autocorr_out to zero since some values will remain zero */
99      for (i = 0; i < N; ++i)
100      {
101         autocorr_out[i] = 0;
102         display_inputs[i] = 0;
103      }
104
105      /* Initialize PN-sequence generator */
106      *iseed = 1;
107
108      /* Initialize IIR filter states to zero */
109      iirptr = 0;
110      for (i = 0; i < IIR_order; ++i) state[i] = 0;
111
112      SetAudioInterrupt(irq);       /* Set up interrupts */
113
114      while (1)
115      {
116        while( !input_full );       /* Wait for a data buffer to collect */
117
118        /* From here until we clear input_full can only take *
119         * BlockLen sample times, so don't do too much here. */
120
121        /* First, transfer inputs and outputs */
122
123        for (i = 0; i < N; i++) {
124            display_inputs[i] = autocorr_in[i];
125            outputs[i] = fft_data[i*2] << 8;
126
127            /* Some statements useful in debugging */
128            /* display_inputs[i] = inputs[i]; */
129            /* Be sure to comment out PN-sequence generation */
130            /* when using the next line */
131            /* autocorr_in[i] = 32767; inputs[i];*/
132        }
133        /* Last, set the DC coefficient to -1 for a trigger pulse */
134        outputs[0] = -32768;
135
136        /* Done with that... ready for new data collection */
137        count = 0;            /* Need to reset the count               */
138        input_full = 0;     /* Mark we're ready to collect more data */
139
140        /*************************************************************/
141        /* Now that we've gotten the data moved, we can do the      */
142        /* more lengthy processing.                                 */
143
144        /* Generate PN input */
145        rand_fillbuffer();
146
147        /* Filter input */
148        iirfilt();
149
150        /* Calculate autocorrelation */
151        autocorr();
152
153        /* Transfer autocorr output to FFT input buffer */
154        for (i = 0; i < N; i++) {
155            bit_rev_data[i*2] = autocorr_out[i];
156            bit_rev_data[i*2+1] = 0;
157        }
158        /* Bit-reverse and compute FFT */
159        bit_rev_fft();
160
161        /* Done, wait for next time around! */
162      }
163    }

        
      

Appendix E: Additional routines for PSD estimator



 
        pn.c
      
 
        iirfilt.c
      
 
        autocorr.c
      
 
        c_fft_given_iirc.asm
      
 
        
1    /* ECE420, Lab 4, Reference PN Generator Implementation (Non-Optimized) */
2    /* Matt Kleffner 08/04                                                  */
3    /* Original by Michael Frutiger 02/24/04                                */
4    /* Use governed by the Creative Commons Attribution License             */
5
6    #include "lab4b.h"
7
8    extern unsigned int *iseed;
9    extern int autocorr_in[N];
10
11    /* Returns as an integer a random bit, based on the 15 lowest significant
12       bits in iseed (which is modified for the next call). */
13    int randbit()
14    {
15       int newbit;
16       /* XOR bits 15, 1 and 0 of iseed */
17       newbit =  (*iseed >> 15) & 1 ^ (*iseed >> 1) & 1 ^ *iseed & 1;
18       /* Leftshift the seed and put the result of the XOR's in bit 1. */
19       *iseed=(*iseed << 1) | newbit;
20       return(newbit);
21    }
22
23    void rand_fillbuffer(void)
24    {
25       int i;
26
27       for (i = 0; i < N; ++i)
28       {
29          if (randbit()) autocorr_in[i] =  32767;
30          else           autocorr_in[i] = -32767;
31       }
32    }
        
      
 
        
1    /* Simple, unoptimized IIR filter (feedback only) */
2    /* for TMS320C54X series DSPs                     */
3    /* Copyright September 2005 by Matt Kleffner      */
4    /* under the Creative Commons Attribution License */
5
6    #include "lab4b.h"
7    #include "intrinsics.h"
8
9    /* IIR values and buffers (declared in c_fft_given_iirc.asm) */
10    #define IIR_order 4
11    extern int scale;
12    extern int coef[IIR_order];
13    extern int state[IIR_order];
14
15    /* Arrays declared in main routine */
16    extern int autocorr_in[N];
17    extern int autocorr_out[N];
18
19    /* Pointer to state buffer location */
20    extern int iirptr;
21
22    void iirfilt()
23    {
24        int i, j;
25
26        _set_fract_bit();
27        /* Filter PN input */
28        for (i = 0; i < N; ++i)
29        {
30           int sum = 0;
31           /* Calculate and sum all feedback terms except the "oldest" one */
32           for (j = 0; j < (IIR_order-1); ++j)
33           {
34              sum += _i_mul_fract_fb1_ii(coef[j],state[iirptr]);
35              /* Avoid usage of "modulo" routine */
36              iirptr++;
37              if (iirptr == IIR_order) iirptr = 0;
38           }
39           /* Calculate and sum oldest feedback term without incrementing iirptr */
40           sum += _i_mul_fract_fb1_ii(coef[IIR_order-1],state[iirptr]);
41
42           /* Calculate direct input contribution */
43           sum += _i_mul_fract_fb1_ii(scale,autocorr_in[i]);
44           autocorr_in[i] = sum;
45           state[iirptr] = autocorr_in[i];
46        }
47        _reset_fract_bit();
48    }
       
      
 
        
1    /***********************************************************/
2    /* autocorr.c                                              */
3    /* Copyright August 2004 by Matt Kleffner                  */
4    /* under the Creative Commons Attribution License          */
5    /*                                                         */
6    /* Simple, unoptimized autocorrelation function            */
7    /* for ECE 420 (TMS320C54X series)                         */
8    /*                                                         */
9    /* #defines expected in lab4b.h                            */
10    /*    L: length of data in autocorr_in buffer              */
11    /*    N: length of data in autocorr_out buffer             */
12    /* logL: log base 2 of L (used for scaling output)         */
13    /*    M: Largest positive lag of autocorrelation desired   */
14    /*       (must be < L and < N/2)                           */
15    /*                                                         */
16    /* 16-bit-limited input/output (must be defined elsewhere) */
17    /*  autocorr_in: buffer for input data  (L pts)            */
18    /* autocorr_out: buffer for output data (N pts)            */
19    /*               N must be >= 2*M+1                        */
20    /*               assumed to be full of zeros at start      */
21    /*               output in zero-phase form                 */
22    /***********************************************************/
23
24    #include "lab4b.h"
25    #include "intrinsics.h"
26
27    extern int autocorr_in[L];
28    extern int autocorr_out[N];
29
30    void autocorr(void)
31    {
32       int i,j,temp;
33
34       _set_fract_bit();
35       for(i=0;i<=M;++i)
36       {
37          long int sum=0;
38          for(j=0;j<(L-i);++j)
39          {
40             temp = _i_mul_fract_fb1_ii(autocorr_in[j],autocorr_in[j+i]);
41             sum += temp;
42          }
43          autocorr_out[i]=(int)(sum >> logL);
44       }
45       _reset_fract_bit();
46
47       /* Copy values for negative indeces at end of buffer */
48       for(i=1,j=N-1;i<=M;++i,--j)
49       {  autocorr_out[j]=autocorr_out[i]; }
50    }
        
      



1.6. Lab 5



Optimization Theory*



Introduction to Code Optimization



 
        Most practical DSP applications have a clock-cycle and/or memory
        budget. Initial implementations typically don't meet these budgets;
        therefore, the code must be optimized. Code development usually
        follows six steps:
          
 	Develop algorithm on paper

	Simulate in MATLAB

	Develop and simulate more efficient implementations

	Implement algorithm in C

	Use library routines when available

	Use optimizing compiler

	Manually write assembly routines for key routines




      

Develop algorithm on paper



 
        The algorithm to be implemented should first be designed on paper.
        In addition to equations describing the algorithm, its design should
        include inputs and outputs of each routine and
        a flow chart of the operation of the complete program.
        Never design an algorithm or a program at a
        computer. While it may be possible to implement some basic
        algorithms and programs this way, compilers cannot overcome any design 
        flaws that are likely to be introduced.
      

Simulate in Matlab



 
        Before any C code is written, the algorithm should be developed and
        simulated in MATLAB since problems with the algorithm design can be
        found more easily. This is done by applying the algorithm to
        test vectors and inspecting and/or plotting the results. Once the
        algorithm is completely defined, C implementation can begin. Recall
        that in each of the previous labs a MATLAB simulation step was given
        before assembly implementation.
      

Develop and simulate more efficient implementations



 
        An efficient algorithm used as few multiplications and additions as
        possible. Applying DSP theory to "simplify" the algorithm is a common
        way of doing this. The autocorrelation function is a simple example:
        a simple-minded way of implementing this is to
        compute sums for each lag, but careful inspection of the autocorrelation
        function reveals that it is actually a function of the
        absolute value of the lag. Therefore each value
        at a negative lag is identical to the value at the corresponding
        positive lag. Approximately half the apparent multiplications and
        additions are
        therefore required. If the entire autocorrelation sequence is needed,
        the autocorrelation can be optimized even further
        if it is treated as a convolution of two sequences. An FFT and an
        inverse FFT can then be used to compute the autocorrelation.
      

C Implementation



 
        After the algorithm has been designed and optimized, an initial
        implentation in C is done. Tips on writing code with efficiency in
        mind can be found 
        here [url].
        It is important, however, to get a working implementation of
        the algorithm in a reasonable amount of time as some optimizations 
        cannot be anticipated by the programmer.
        Some of these coding techniques in the URL reference can be applied
        later on when it is clear which routines need the most optimization.
        This implementation can serve as a reference implementation to compare
        the correctness and speed of optimized versions.
      

Library routines



 
        If the algorithm uses common mathematical operations, such as the
        cosine and FFT operations, it is usually
        wise to use existing library routines instead of "reinventing the
        wheel." As many library routines are readily available from DSP
        manufacturers and over the internet, the first factor to consider in
        using a library is its license: do you have permission to use it in
        your application? Libraries can often be used freely for educational
        and research purposes, but any other use requires inspection
        of the library license.
      
 
        The second factor to consider is the design goal of the library: was
        it designed for speed or low memory usage? Typically speed can be
        bought with more memory and vice-versa, so when selecting a library
        it is important to decide
        which budget (speed or memory) is more important with respect to the
        routine.
      

Compiler Optimization



 
        Recall that the basic operation of a C compiler is to translate C
        source code into assembly instructions and then into an executable.
        
 "Compiler optimization is used to improve the
        efficiency (in terms of
        running time or resource usage) of the executables output by a
        compiler. These techniques allow programmers to write source code
        in a straightforward manner, expressing their intentions clearly,
        while allowing the computer to make choices about implementation
        details that lead to efficient execution. Contrary to what the term
        might imply, this rarely results in executables that are perfectly
        "optimal" by any measure, only executables that are much improved
        compared to direct translation of the programmer's original source."
         [link]


      
 
        An optimizing compiler traditionally groups optimizations into
        phases. Each phase contains a series of
        optimizations (or transformations) that are performed in a fixed order.
        These phases
        are usually turned on with command-line flags such as -O1,
        -O2, etc. Each flag indicates an optimization "level"
        where the level includes all of the lower levels. At higher
        optimization levels bugs in the code are sometimes introduced, so it
        is important to check the behavior of a compiler-optimized program
        against the reference implementation. Keep the highest optimization
        level that produces accurate code.
      
 
        At this point the compiled code should be checked against the budgetary
        constraints. Is it fast enough? Does it fit in available memory?
        Total memory usage is placed in a file produced by the compiler
        (sometimes a command-line flag is needed for this). Speed can be
        measured in a couple of ways. The most common method is the use of a
         profiler. A profiler tracks the performance of the program,
        providing data on how many times each function is called, as well as
        how much time each function takes in terms of cycles and percentages
        of total program cycles. A simulator also allows clock cycles to be
        measured, typically by allowing the user to place breakpoints around
        sections of code to be measured. If the speed and memory properties of 
        the compiled code fit the budget, optimization is finished. If not,
        some of the routines must be hand-written in assembly.
      

Write key assembly routines manually



 
        Finally, if the budget cannot be met with the other optimization
        techniques some routines must be written in assembly. Manually-written
        assembly code is usually the most efficient, but it is
        labor-intensive and it is not portable to other architectures.
        Therefore it is done as a last resort and only on routines that
        absolutely require it for budget constraints to be met. This is done
        by rewriting the routine that consumes the largest portion of the
        budget, followed by the next largest budget-consuming routine and so
        on until the budget is met. It should be noted
        that this step is almost always required in embedded applications as
        current state-of-the-art C compilers and optimizers do not produce
        sufficiently fast and/or small code.
      
 
        If meeting the budget is unexpectedly difficult, remember
        that  no compiler optimization or assembler can effectively
        overcome a poor algorithm design or implementation. 
        If you are confident that your implentation is fast and accurate, then
        the budget may be too tight for the application. Either some parts of
        the application must be removed (extra "features", for example) or
        an architecture with more resources must be used.
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Lab*



 
    In this lab you are to implement and optimize the
    a pseudo-noise (PN)
    sequence generator, IIR filter, and autocorrelation routines that are
    part of the previous lab's PSD estimator.
    For the lab grade, you will be judged on the execution time of
    your system (memory usage need not be minimized).
  
Reference Implementation



 
      After taking a look at the source code of the PSD estimator
      reference implementation, you
      will likely discover inefficiencies. This implementation is provided as
      the "reference implementation" of the optimization process and to
      define the expected input and output of the application. The computational
      efficiency of your code will be judged against this implementation.
      While the given code might serve as a starting point, you should do
      whatever you need to do to make your code as efficient
      as possible, while operating in an equivalent manner as the given code.
    
 
      The exact portion of the code to be optimized is defined below. 
      You may write in C, assembly, or any combination of the two; choose
      whatever will allow you to write the fastest code. The optimization
      process will be smoother if you plan for optimization before
      you begin any programming.
    

Optimization



 
      Since a primary purpose of this lab is to learn optimization and
      efficient code techniques, your lab grade will be based
      primarily on the total execution time of your system.
      You are not required to optimize memory use.  Note that by execution
      time we mean cycle count, not the number of instructions in
      your program. Remember that several of the TMS320C54xx
      instructions take more than one cycle. The multicycle
      instructions are primarily the multi-word instructions,
      including instructions that take immediates, like
      stm, and instructions using direct addressing
      of memory (such as ld *(temp),A). Branch and
      repeat statements also require several cycles to execute.
      Most C instructions take more than one cycle. The debugger
      can be used to determine the exact number of cycles used by
      your code; ask your TA to demonstrate. However, since the
      number of execution cycles used by an instruction is usually
      determined by the number of words in its encoding, the
      easiest way to estimate the number of cycles used by your
      code is to count the number of instruction words in the
      .lst file or the disassembly window in the
      debugger.
    
 
      We will grade you based on the number of cycles used between
      the input_full = 0; and bit_rev_fft();
      statements. Note that some instructions, like RPT, are
      non-repeatable instructions; their use may cause
      unnecessary glitches in I/O. For grading simplicity, your final
      code should not have modifications except between these two instructions,
      and M should be set to 31.
      If the number of cycles between the two points is variable, the maximum
      possible number of cycles will be counted. You must use the
      core.asm file in
      v:\ece320\54x\dsplib\core.asm or the C core
      file in v:\ece320\54x\dspclib\core.asm as
      provided by the TAs; these files may not be
      modified. We reserve the right to test your code by
      modifying the inputs.
    

Routine-Specific Optimization Tips



 
      If you are programming the PN generator in assembly, you may wish
      to refer to the description of assembly instructions for
      logical operations in Section 2-2 of the
      C54x Mnemonic Instruction Set reference.
      Initialize the shift register to one. You can debug the PN output by
      comparing it to the output of the MATLAB code. Be prepared to
      prove to a TA that your PN generator works properly as part of your quiz.
    
 
      Your IIR filtering routine can debugged by writing an impulse followed
      by zeros in autocorr_in instead of randsample.
    
 
      Your autocorrelation routine can be debugged by commenting out the
      IIR-filtering routine and writing the maximum DC value into
      autocorr_in in a similar manner as described the
      IIR-debugging step. Note that each of these tips is the most helpful if
      the output is inspected in memory.
    

Grading



 
      This lab is to be completed in one week.
      Grading for this lab will be a bit different from past labs:

      
 	 1 point: Prelab

	 2 points: Working code, implemented from scratch in assembly
   language or C. 

	 5 points: Optimization. These points will be assigned based
   on your cycle counts and the optimizations you have made. 

	 2 points: Oral quiz. 




    



Solutions


Chapter 2. Project Labs



2.1. Digital Receiver



Digital Receiver: Carrier Recovery*



Introduction



 
	After gaining a theoretical understanding of the carrier
	recovery sub-system of a digital receiver, you will simulate
	the sub-system in MATLAB and implement it on the DSP.  The
	sub-system described is specifically tailored to a
	non-modulated carrier.  A complete implementation will require
	modifications to the design presented.
      
 
	The  phase-locked loop ( PLL) is a
	critical component in coherent communications receivers that
	is responsible for locking on to the carrier of a received
	modulated signal.  Ideally, the transmitted carrier frequency
	is known exactly and we need only to know its phase to
	demodulate correctly.  However, due to imperfections at the
	transmitter, the actual carrier frequency may be slightly
	different from the expected frequency.  For example, in the
	QPSK transmitter of Digital
	Transmitter: Introduction to Quadrature Phase-Shift
	Keying, if the digital carrier frequency is 
	 and the D/A is operating at 44.1 kHz, then the
	expected analog carrier frequency is
	.  If there is a slight change to the D/A sample rate
	(say
	
	  fc=44.05kHz
	), then there will be a corresponding change in the
	actual analog carrier frequency

	(
	  fc=11.0125kHz
	).
      
 
	This difference between the expected and actual carrier
	frequencies can be modeled as a time-varying phase.  Provided
	that the frequency mismatch is small relative to the carrier
	frequency, the feedback control of an appropriately calibrated
	PLL can track this time-varying phase, thereby locking on to
	both the correct frequency and the correct phase.
      
 [image: Introduction]

Figure 2.1. 
PLL Block Diagram

Numerically controlled oscillator



 
	  In a complete coherent receiver implementation, carrier
	  recovery is required since the receiver typically does not
	  know the exact phase and frequency of the transmitted
	  carrier.  In an analog system this recovery is often
	  implemented with a  voltage-controlled
	  oscillator ( VCO) that allows for precise
	  adjustment of the carrier frequency based on the output of a
	  phase-detecting circuit.
	
 
	  In our digital application, this adjustment is performed
	  with a  numerically-controlled oscillator
	  ( NCO) (see Figure 2.1).  A simple
	  scheme for implementing an NCO is based on the following
	  re-expression of the carrier sinusoid:
	  
()
	      sin(ωcn+θc)=sin(θ[n])
	    
 where
	  
	    θ[n]=ωcn+θc
	   
	  (
	    ωc
	   and
	  
	    θc
	   represent the carrier frequency and phase,
	  respectively).  Convince yourself that this time-varying
	  phase term can be expressed as
	   and then recursively as
	  
()
	      θ[n]=θ[n−1]+ωc
	    
 The NCO can keep track of the phase,
	  
	    θ[n]
	  , and force a phase offset in the demodulating
	  carrier by incorporating an extra term in this recursive
	  update:
	  
()
	      θ[n]=θ[n−1]+ωc+dpd[n]
	    
where
	  
	    dpd[n]
	   is the amount of desired phase offset at time
	  
	    n 
	  .  (What would
	  
	    dpd[n]
	   look like to generate a frequency offset?)
	

Phase detector



 
	  The goal of the PLL is to maintain a demodulating sine and
	  cosine that match the incoming carrier.  Suppose
	  
	    ωc
	   is the believed digital carrier frequency.  We can
	  then represent the actual received carrier frequency as the
	  expected carrier frequency with some offset,
	  .  The NCO generates the demodulating sine and
	  cosine with the expected digital frequency
	  
	    ωc
	   and offsets this frequency with the output of the
	  loop filter.  The NCO frequency can then be modeled as
	  
	  .  Using the appropriate trigonometric identities
	  [1], the in-phase and quadrature signals can
	  be expressed as
	  
()


	  
()


	  After applying a low-pass filter to remove the double
	  frequency terms, we have
	  
()


	  
()

	  Note that the quadrature signal,
	  
	    zQ[n]
	  , is zero when the received carrier and internally
	  generated waves are exactly matched in frequency and phase.
	  When the phases are only slightly mismatched we can use the
	  relation
	  
()
	      sin(θ)≈θ  ,  
		  small
		  
	    
 and let the current value of the quadrature
	  channel approximate the phase difference:
	  .  With the exception of the sign error, this
	  difference is essentially how much we need to offset our NCO
	  frequency[2].  To make sure that the sign of the phase
	  estimate is right, in this example the phase detector is
	  simply negative one times the value of the quadrature
	  signal.  In a more advanced receiver, information from both
	  the in-phase and quadrature branches is used to generate an
	  estimate of the phase error.[3]
	

Loop filter



 
	  The estimated phase mismatch estimate is fed to the NCO via
	  a loop filter, often a simple low-pass filter. For this
	  exercise you can use a one-tap IIR filter,
	  
()
	      y[n]=βx[n]+αy[n−1]
	    
 To ensure unity gain at DC, we select
	  
	    β=1−α
	  
	
 
	  It is suggested that you start by choosing
	  
	    α=0.6
	   and
	  
	    K=0.15
	   for the loop gain.  Once you have a working
	  system, investigate the effects of modifying these values.
	


MATLAB Simulation



 
	Simulate the PLL system shown in Figure 2.1
	using MATLAB.  As with the DLL simulation, you will have to
	simulate the PLL on a sample-by-sample basis.
      
 
	Use Equation to implement your NCO in MATLAB.
	However, to ensure that the phase term does not grow to
	infinity, you should use addition modulo
	
	  2π
	 in the phase update relation.  This can be done by
	setting
	
	  θ[n]=θ[n]−2π
	 whenever 
	
	  θ[n]>2π
	.
      
 
	Figure 2.2 illustrates how the proposed PLL will
	behave when given a modulated BPSK waveform.  In this case the
	transmitted carrier frequency was set to
	 to simulate a frequency offset.
      
 [image: MATLAB Simulation]

Figure 2.2. 
Output of PLL sub-system for BPSK modulated
	  carrier.

 
	Note that an amplitude transition in the BPSK waveform is
	equivalent to a phase shift of the carrier by
	.  Immediately after this phase change occurs, the
	PLL begins to adjust the phase to force the quadrature
	component to zero (and the in-phase component to
	
	  1/2
	).  Why would this phase detector not work in a real
	BPSK environment?  How could it be changed to work?
      

DSP Implementation



 
	As you begin to implement your PLL on the DSP, it is highly
	recommended that you implement and test your NCO block first
	before completing the rest of your phase-locked loop.
      
Sine-table interpolation



 
	  Your NCO must be able to produce a sinusoid with
	  continuously variable frequency.  Computing values of

	  
	    sin(θ[n])
	  

	  on the fly would require a prohibitive amount of computation
	  and program complexity; a look-up table is a better
	  alternative.
	
 
	  Suppose a sine table stores 
	  
	    N
	   samples from one cycle of the waveform:
	  .  Sine waves with discrete frequencies
	   are easily obtained by outputting every
	  
	    pth
	   value in the table (and using circular
	  addressing).  The continuously variable frequency of your
	  NCO will require non-integer
	  increments, however.  This raises two issues: First, what
	  sort of interpolation should be used to get the in-between
	  sine samples, and second, how to maintain a non-integer
	  pointer into the sine table.
	
 
	  You may simplify the interpolation problem by using
	  "lower-neighbor" interpolation, i.e., by using the integer
	  part of your pointer.  Note that the full-precision,
	  non-integer pointer must be maintained in memory so that the
	  fractional part is allowed to accumulate and carry over into
	  the integer part; otherwise, your phase will not be accurate
	  over long periods.  For a long enough sine table, this
	  approximation will adjust the NCO frequency with sufficient
	  precision.[4]
	
 
	  Maintaining a non-integer pointer is more difficult.  In
	  earlier exercises, you have used the auxiliary registers
	  (ARx) to manage pointers with integer
	  increments.  The auxiliary registers are not suited for the
	  non-integer pointers needed in this exercise, however, so
	  another method is required.  One possibility is to perform
	  addition in the accumulator with a modified decimal point.
	  For example, with
	  
	    N=256
	  , you need eight bits to represent the integer
	  portion of your pointer.  Interpret the low 16 bits of the
	  accumulator to have a decimal point seven bits up from the
	  bottom; this leaves nine bits to store the integer part
	  above the decimal point.  To increment the pointer by one
	  step, add a 15-bit value to the low part of the accumulator,
	  then zero the top bit to ensure that the value in the
	  accumulator is greater than or equal to zero and less than
	  256.[5] To use the integer part of this
	  pointer, shift the accumulator contents seven bits to the
	  right, add the starting address of the sine table, and store
	  the low part into an ARx register.  The
	  auxiliary register now points to the correct sample in the
	  sine table.
	
 
	  As an example, for a nominal carrier frequency 
	   and sine table length 
	  
	    N=256
	  , 
	  the nominal step size is an integer 

          .  Interpret the 16-bit pointer as having nine bits
	  for the integer part, followed by a decimal point and seven
	  bits for the fractional part.  The corresponding literal
	  (integer) value added to the accumulator would be
	  
	    16×27=2048
	  .[6]
	

Extensions



 
	  You may want to refer to Proakis [link] and Blahut [link]. These references may help
	  you think about the following questions:
	  
 	
	      How does the noise affect the described carrier
	      recovery method?
	    

	
	      What should the phase-detector look like for a BPSK
	      modulated carrier?  (Hint: You would need to consider
	      both the in-phase and quadrature channels.)
	    

	
	      How does α affect the bandwidth of the loop
	      filter?
	    

	
	      How do the loop gain and the bandwidth of the
	      loop filter affect the PLL's ability to lock on to a
	      carrier frequency mismatch?
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Digital Receivers: Symbol-Timing Recovery for QPSK*



Introduction



 
	This receiver exercise introduces the primary components of a
	QPSK receiver with specific focus on symbol-timing recovery.
	In a receiver, the received signal is first coherently
	demodulated and low-pass filtered (see Digital Receivers: Carrier Recovery for
	QPSK) to recover the message signals (in-phase and
	quadrature channels).  The next step for the receiver is to
	sample the message signals at the symbol rate and decide which
	symbols were sent.  Although the symbol rate is typically
	known to the receiver, the receiver does not know when to
	sample the signal for the best noise performance.  The
	objective of the symbol-timing recovery loop is to find the
	best time to sample the received signal.
      
 
	Figure 2.3 illustrates the digital receiver system.
	The transmitted signal coherently demodulated with both a sine
	and cosine, then low-pass filtered to remove the
	double-frequency terms, yielding the recovered in-phase and
	quadrature signals,
	 and
	
	.  These operations are explained in Digital Receivers: Carrier Recovery for
	QPSK.  The remaining operations are explained in this
	module.  Both branches are fed through a  matched
	filter and re-sampled at the symbol rate.  The matched
	filter is simply an FIR filter with an impulse response
	matched to the transmitted pulse.  It aids in timing recovery
	and helps suppress the effects of noise.
      
 [image: Figure (receiv.png)]

Figure 2.3. 
Digital receiver system

 
	If we consider the square wave shown in Figure 2.4
	as a potential recovered in-phase (or quadrature) signal
	(i.e., we sent the data
	
	  [+1, -1, +1, -1, …]
	) then sampling at any point other than the symbol
	transitions will result in the correct data.
      
 [image: Figure (clean_bpsk.png)]

Figure 2.4. 
Clean BPSK waveform.

 [image: Figure (noisy_bpsk.png)]

Figure 2.5. 
Noisy BPSK waveform.

 
	However, in the presence of noise, the received waveform may
	look like that shown in Figure 2.5.
	In this case, sampling at any point other than the symbol
	transitions does not guarantee a correct data decision.  By
	averaging over the symbol duration we can obtain a better
	estimate of the true data bit being sent
	(
	  +1
	 or 
	
	  -1 
	).  The best averaging filter is the matched filter,
	which has the impulse response
	
	  u[n]−u[n−Tsymb]
	,
        where
        
          u[n]
	
        is the unit step function,
	for the simple rectangular pulse shape used in
        Digital
	Transmitter: Introduction to Quadrature Phase-Shift
	Keying.  [7]Figure 2.6 and Figure 2.7 show the result of
	passing both the clean and noisy signal through the matched
	filter.
      
 [image: Figure (clean_mf_out.png)]

Figure 2.6. 
Averaging filter output for clean input.

 [image: Figure (noisy_mf_out.png)]

Figure 2.7. 
Averaging filter output for noisy input.

 
	Note that in both cases the output of the matched filter has
	peaks where the matched filter exactly lines up with the
	symbol, and a positive peak indicates a
	
	  +1
	 was sent; likewise, a negative peak indicates a
	
	  -1
	 was sent.  Although there is still some noise in
	second figure, the peaks are relatively easy to distinguish
	and yield considerably more accurate estimation of the data
	(
	  +1
	 or 
	
	  -1 
	) than we could get by sampling the original noisy
	signal in Figure 2.5.
      
 
	The remainder of this handout describes a symbol-timing
	recovery loop for a BPSK signal (equivalent to a QPSK signal
	where only the in-phase signal is used).  As with the above
	examples, a symbol period of
	
	  Ts=16
	 samples is assumed.  
      
Early/late sampling



 
	  One simple method for recovering symbol timing is performed
	  using a  delay-locked loop ( DLL).
	  Figure 2.8 is a block diagram of the necessary
	  components.
	
 [image: Figure (dll.png)]

Figure 2.8. 
DLL block diagram.

 
	  Consider the sawtooth waveform shown in Figure 2.6, the output of the matched filter with a
	  square wave as input.  The goal of the DLL is to sample this
	  waveform at the peaks in order to obtain the best
	  performance in the presence of noise.  If it is not sampling
	  at the peaks, we say it is sampling too early or too late.
	
 
	  The DLL will find peaks without assistance from the user.
	  When it begins running, it arbitrarily selects a sample,
	  called the  on-time sample, from the matched
	  filter output.  The sample from the time-index one greater
	  than that of the on-time sample is the  late
	  sample, and the sample from the time-index one less
	  than that of the on-time sample is the  early
	  sample.  Figure 2.9 shows an example of
	  the on-time, late, and early samples.  Note in this case
	  that the on-time sample happens to be at a peak in the
	  waveform.  Figure 2.10 and Figure 2.11
	  show examples in which the on-time sample comes before a
	  peak and after the peak.
	
 
	  The on-time sample is the output of the DLL and will be used
	  to decide the data bit sent.  To achieve the best
	  performance in the presence of noise, the DLL must adjust
	  the timing of on-time samples to coincide with peaks in the
	  waveform.  It does this by changing the number of
	  time-indices between on-time samples.  There are three
	  cases:
	  
 	
	      In Figure 2.9, the on-time sample is already
	      at the peak, and the receiver knows that peaks are
	      spaced by
	      
		Tsymb 
	       samples.  If it then takes the next on-time
	      sample
	      
		Tsymb
	       samples after this on-time sample, it will be
	      at another peak.
	    

	
	      In Figure 2.10, the on-time sample is too
	      early.  Taking an on-time sample
	      
		Tsymb
	       samples later will be too early for the next
	      peak.  To move closer to the next peak, the next on-time
	      sample is taken
	      
		Tsymb+1
	       samples after the current on-time sample.
	    

	
	      In Figure 2.11, the on-time sample is too
	      late.  Taking an on-time sample
	      
		Tsymb 
	       samples later will be too late for the next
	      peak.  To move closer to the next peak, the next on-time
	      sample is taken
	      
		Tsymb−1
	       samples after the current on-time sample.
	    




	  The offset decision block uses the on-time, early, and late
	  samples to determine whether sampling is at a peak, too
	  early, or too late.  It then sets the time at which the next
	  on-time sample is taken.
	
 [image: Figure (ontime.png)]

Figure 2.9. 
Sampling at a peak.

 [image: Figure (early.png)]

Figure 2.10. 
Sampling too early.

 [image: Figure (late.png)]

Figure 2.11. 
Sampling too late.

 
	  The input to the offset decision block is 
	  
	    on-time(late−early)
	  , called the  decision statistic.
	  Convince yourself that when the decision statistic is
	  positive, the on-time sample is too early, when it is zero,
	  the on-time sample is at a peak, and when it is negative,
	  the on-time sample is too late.  It may help to refer to
	  Figure 2.9, Figure 2.10, and Figure 2.11.  Can you see why it is necessary to
	  multiply by the on-time sample?
	
 
	  The offset decision block could adjust the time at which the
	  next on-time sample is taken based only on the decision
	  statistic.  However, in the presence of noise, the decision
	  statistic becomes a less reliable indicator.  For that
	  reason, the DLL adds many successive decision
	  statistics and corrects timing only if the sum
	  exceeds a threshold; otherwise, the next on-time sample is
	  taken
	  
	    Tsymb 
	   samples after the current on-time sample.  The
	  assumption is that errors in the decision statistic caused
	  by noise, some positive and some negative, will tend to
	  cancel each other out in the sum, and the sum will not
	  exceed the threshold because of noise alone.  On the other
	  hand, if the on-time sample is consistently too early or too
	  late, the magnitude of the added decision statistics will
	  continue to grow and exceed the threshold.  When that
	  happens, the offset decision block will correct the timing
	  and reset the sum to zero.
	

Sampling counter



 
	  The symbol sampler maintains a counter that decrements every
	  time a new sample arrives at the output of the matched
	  filter.  When the counter reaches three, the matched-filter
	  output is saved as the late sample, when the counter reaches
	  two, the matched-filter output is saved as the on-time
	  sample, and when the counter reaches one, the matched-filter
	  output is saved as the early sample.  After saving the early
	  sample, the counter is reset to either 
	  
	    Tsymb−1
	  , 
	  
	    Tsymb
	  , or 
	  
	    Tsymb+1
	  , according to the offset decision block.
	


MATLAB Simulation



 
	Because the DLL requires a feedback loop, you will
	have to simulate it on a sample-by-sample basis in
	MATLAB.	
      
 
	Using a square wave of period 
	
	  32
	 samples as input, simulate the DLL system shown in
	Figure 2.8.  Your input should be
	several hundred periods long.  What does it model?  Set the
	decision-statistic sum-threshold to
	
	  1.0
	; later, you can experiment with different values.
	How do you expect different thresholds to affect the DLL?
      
 
	Figure 2.12 and Figure 2.13 show the
	matched filter output and the on-time sampling times
	(indicated by the impulses) for the beginning of the input,
	before the DLL has locked on, as well as after 1000 samples
	(about 63 symbols' worth), when symbol-timing lock has been
	achieved.  For each case, note the distance between the
	on-time sampling times and the peaks of the matched filter
	output.
      
 [image: Figure (non_locked_dll.png)]

Figure 2.12. 
Symbol sampling before DLL lock.

 [image: Figure (locked_dll.png)]

Figure 2.13. 
Symbol sampling after DLL lock.


DSP Implementation



 
	Once your MATLAB simulation works, DSP implementation is
	relatively straightforward.  To test your implementation, you
	can use the function generator to simulate a BPSK waveform by
	setting it to a square wave of the correct frequency for your
	symbol period.  You should send the on-time sample and the
	matched-filter output to the D/A to verify that your system is
	working.
      

Extensions



 
	As your final project will require some modification to the
	discussed BPSK signaling, you will want to refer to the listed
	references, (see Proakis [link] and Blahut [link], and consider some of the following
	questions regarding such modifications:

	
 	How much noise is necessary to disrupt the
	    DLL?

	What happens when the symbol sequence is random 
	    (not simply 
	    
	      [+1, -1, +1, -1, …]
	    )?
	  

	What would the matched filter look like for different
	    symbol shapes?

	What other methods of
	    symbol-timing recovery are available for your application?
	  

	How does adding decision statistics help suppress the 
	    effects of noise?
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2.2. Audio Effects



Audio Effects: Real-Time Control with the Serial Port*



Implementation



 
	For this exercise, you will extend the system from Audio Effects: Using External Memory
	to generate a feedback-echo effect. You will then extend this
	echo effect to use the serial port on the DSP EVM. The serial
	interface will receive data from a MATLAB GUI that allows the
	two system gains and the echo delay to be changed using
	on-screen sliders.
      
Feedback system implementation



 [image: Feedback system implementation]

Figure 2.14. 
Feedback System with Test Points

 
	  First, modify code from Audio
	  Effects: Using External Memory to create the
	  feedback-echo system shown in Figure 2.14. A
	  one-tap feedback-echo is a simple audio effect that sounds
	  remarkably good.  You will use both channels of input by
	  summing the two inputs so that either or both may be used as
	  an input to the system. Also, send several test signals to
	  the six-channel board's D/A converters:
	
 	The summed input signal

	The input signal after gain stage 
	    
	      G1
	    
	  

	The data going into the long delay

	The data coming out of the delay



 
	  You will also need to set both the
	  input gain
	  
	    G0
	   and the feedback gain
	  
	    G1
	  
	  to prevent overflow. 
	
 
	  As you implement this code, ensure that the delay
	  n and the gain values
	  
	    G1 
	   and
	  
	    G2 
	   are stored in memory and can be easily changed
	  using the debugger. If you do this, it will be easier to
	  extend your code to accept its parameters from MATLAB in
	  MATLAB Interface
	  Implementation.
	
 
	  To test your echo, connect a CD player or microphone to the
	  input of the DSP EVM, and connect the output of the DSP EVM
	  to a loudspeaker.  Verify that an input signal echoes
	  multiple times in the output and that the spacing between
	  echoes matches the delay length you have chosen.
	

MATLAB interface implementation



 
	  After studying the MATLAB interface outlined at the end of Using the Serial Port with a MATLAB GUI, write MATLAB code
	  to send commands to the serial interface based on three
	  sliders: two gain sliders (for
	  
	    G1 
	   and
	  
	    G2 
	  ) and one delay slider (for n). Then
	  modify your code to accept those commands and change the
	  values for
	  
	    G1 
	  ,
	  
	    G2 
	   and n. Make sure that n
	  can be set to values spanning the full range of 0 to
	  131,072, although it is not necessary that every number in
	  that range be represented.

	



Audio Effects: Using External Memory*



Introduction



 
	Many audio effects require storing thousands of samples in
	memory on the DSP.  Because there is not enough memory on the
	DSP microprocessor itself to store so many samples, external
	memory must be used.
      
 
	In this exercise, you will use external memory to implement a
	long audio delay and an audio echo.  Refer to Core File: Accessing External Memory on TI
	TMS320C54x for a description and examples of accessing
	external memory.
      

Delay and Echo Implementation



 
	You will implement three audio effects: a long, fixed-length
	delay, a variable-length delay, and a feedback-echo.
      
Fixed-length delay implementation



 
	  First, implement the 131,072-sample delay shown in Figure 2.15 using the READPROG and
	  WRITPROG macros.  Use memory locations
	  010000h-02ffffh in external
	  Program RAM to do this; you may also want to use the
	  dld and dst opcodes to store and
	  retrieve the 32-bit addresses for the accumulators. Note
	  that these two operations store the words in memory in
	  big-endian order, with the high-order word first.
	
 [image: Fixed-length delay implementation]

Figure 2.15. 
Fixed-Length Delay

 
	  Remember that arithmetic operations that act on the
	  accumulators, such as the add instruction,
	  operate on the complete 32- or 40-bit value. Also keep in
	  mind that since 131,072 is a power of two, you can use
	  masking (via the and instruction) to implement
	  the circular buffer easily.  This delay will be easy to
	  verify on the oscilloscope. (How long, in seconds, do you
	  expect this delay to be?)
	

Variable-delay implementation



 
	  Once you have your fixed-length delay working, make a copy
	  and modify it so that the delay can be changed to any length
	  between zero (or one) and 131,072 samples by changing the
	  value stored in one double-word pair in memory. You should
	  keep the buffer length equal to 131,072 and change only your
	  addressing of the sample being read back; it is more
	  difficult to change the buffer size to a length that is not
	  a power of two.
	
 
	  Verify that your code works as expected by timing the delay
	  from input to output and ensuring that it is approximately
	  the correct length.
	

Feedback-echo implementation



 
	  Last, copy and modify your code so that the value taken from
	  the end of the variable delay from Variable-delay implementation is
	  multiplied by a gain factor and then added back into the
	  input, and the result is both saved into the delay line and
	  sent out to the digital-to-analog converters. Figure 2.16 shows the block diagram.  (It
	  may be necessary to multiply the input by a gain as well to
	  prevent overflow.)  This will make a one-tap feedback echo,
	  an simple audio effect that sounds remarkably good.  To test
	  the effect, connect the DSP EVM input to a CD player or
	  microphone and connect the output to a loudspeaker.  Verify
	  that the echo can be heard multiple times, and that the
	  spacing between echoes matches the delay length you have
	  chosen.
	
 [image: Feedback-echo implementation]

Figure 2.16. 
Feedback Echo





2.3. Surround Sound



Surround Sound: Chamberlin Filters*



Introduction



 
     Chamberlin filter topology is frequently used in music
	applications where very narrow-band, low-pass filters are
	necessary.  Chamberlin implementations do not suffer from some
	stability problems that arise in direct-form implementations
	of very narrow-band responses. For more information about
	IIR/FIR filter design for DSPs, refer to the Motorola Application Note [link].  

Filter Topology



 
	A Chamberlin filter is a simple two-pole IIR filter with the
	transfer function given in Equation:
	
()
 where
	
	  F(c)
	 determines the frequency where the filter peaks, and
	 determines the rolloff.  Q is
	defined as the positive ratio of the center frequency to the
	bandwidth.  A derivation and more detailed explanation is
	given in Dattorro [link].  The
	topology of the filter is shown in Figure 2.17.
	Note that the final feedback stage puts a pole just inside the
	unit circle on the real axis.  For a response with smaller
	bandwidth, move the pole closer to the unit circle, but do not
	move it so far that the filter becomes unstable.  Multiple
	second-order sections can be cascaded to yield a sharper
	rolloff.


	
 [image: Filter Topology]

Figure 2.17. 
Chamberlin Filter Topology

 
	Figure 2.18 and Figure 2.19 show how
	the response of the filter varies with
	
	  Qc
	 and
	
	  Fc
	.
      
 [image: Filter Topology]

Figure 2.18. 
Chamberlin filter responses for various
	  
	  Qc
	   (
	  
	    Fc=.3
	  ) 

 [image: Filter Topology]

Figure 2.19. 
Chamberlin filter responses for various
	  
	  Fc
	   (
	  
	    Qc=.8333
	  ) 
	


Exercise



 
	First, create a MATLAB script that takes two parameters,
        
	  Qc
	 and
	
	  Fc
	, and plots the frequency response of a filter with a
        transfer function given in Equation.  Then
        implement a Chamberlin filter on the DSP and compare its
        performance with that of your MATLAB simulation for the same
        values of
        
	  Qc
	 and
	
	  Fc
	.  What do you observe?
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Surround Sound: Passive Encoding and Decoding*



Introduction



 
	To begin understanding how to decode the Dolby Pro Logic
	Surround Sound standard, you will implement a Pro Logic
	encoder and a passive surround sound decoder.  This decoder
	operates on many of the same principles as the more
	sophisticated commercial systems.  Significantly more
	technical information regarding Dolby Pro Logic can be found
	at Gundry [link].  

Encoder



 
	You will create a MATLAB implementation of the passive encoder
	given by the block diagram in Figure 2.20.
      
 [image: Encoder]

Figure 2.20. 
Dolby Pro Logic Encoder

 
	The encoder block diagram shows four input signals: Left,
	Center, Right, and Surround.  These are audio signals created
	by a sound designer during movie production that are intended
	to play back from speakers positioned at the left side, at the
	front-center, at the right side, and at the rear of a home
	theater.  The system in the block diagram encodes these four
	channels of audio on two output channels, Lt and
	Rt, in such a way that an appropriately designed
	decoder can approximately recover the original four channels.
	Additionally, to accommodate those who do not use a surround
	sound receiver, the encoder outputs are listenable when played
	back on a stereo (two-channel) system, even retaining the
	correct left-right balance.
      
 
	The basic components of the encoder are multipliers, adders, a
	Hilbert transform, a band-pass filter, and a Dolby Noise
	Reduction encoder.  If you wish to implement Dolby Noise
	Reduction, refer to Dressler [link].  The
	other components are discussed below.
      
 
	The transfer function of the Hilbert Transform is shown in
	Figure 2.21.  The Hilbert Transform is an ideal
	(unrealizable) all-pass filter with a phase shift of
	
	  -90°
	.  Observe that a cosine input becomes a sine and a
	sine input becomes a negative cosine.  In MATLAB, generate a
	cosine and sine signal of some frequency and use the
	hilbert function to perform on each signal an
	approximation to the Hilbert Transform.  (Why is the Hilbert
	Transform unrealizable?)  The imaginary part of the Hilbert
	Transform output (i.e.,
	imag(hilbert(signal))) will be the
	
	  -90°
	 phase-shifted version of the original signal.  Plot
	each signal to confirm your expectations.
      
 [image: Encoder]

Figure 2.21. 
Hilbert transform transfer function

 
	For the band-pass filter, design a second-order Butterworth
	filter using the butter function in MATLAB.
      
Generating a surround signal



 
	  Create four channels of audio to encode as a Pro Logic
	  Surround Signal.  Use simple mixing techniques to generate
	  the four channels.  For example, use a voice signal for the
	  center channel and fade a roaming sound such as a helicopter
	  from left to right and front to back.  In MATLAB, use the
	  wavread and auread functions to
	  read .wav and .au audio files
	  which can be found on the Internet.
	


Decoder



 
	Implement the passive decoder shown in Figure 2.22
	on the DSP.  Use an appropriate time delay based on the
	distance between the front and back speakers and the speed of
	sound.
      
 [image: Decoder]

Figure 2.22. 
Dolby Pro Logic Passive Decoder

 
	Is there significant crosstalk between the front and surround
	speakers?  Do you get good separation between left and right
	speakers?  Can you explain how the decoder recovers
	approximations to the original four channels?
      

Extensions



 
	Differences in power levels between channels are used to
	enhance the directional effect in what is called "active
	decoding."  One way to find the power level in a signal is to
	square it and pass the squared signal through a very
	narrow-band low-pass filter 
	(
	  f≤
	      80
	      Hz
	    
	).  How is the low-frequency content of the squared
	signal related to the power of the original signal?  Remember
	that squaring a signal in the time domain is equivalent to
	convolving the signal with itself in the frequency domain.
      
 
	To implement a very narrow-band low-pass filter, you may
	consider using the Chamberlin filter topology, described in
	Surround Sound: Chamberlin
	Filters.
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2.4. Adaptive Filtering



Adaptive Filtering: LMS Algorithm*



Introduction



 
	Figure 2.23 is a block diagram of system
	identification using adaptive filtering.  The objective is to
	change (adapt) the coefficients of an FIR filter,
	
	  W
	, to match as closely as possible the response of an
	unknown system,
	
	  H
	.  The unknown system and the adapting filter process
	the same input signal
	
	  x[n]
	 and have outputs 
	
	  d[n]
	(also referred to as the desired signal) and
	
	  y[n]
	.
      
 [image: Introduction]

Figure 2.23. 

	  System identification block diagram.

Gradient-descent adaptation



 
	  The adaptive filter,
	  
	    W
	  , is adapted using the least mean-square
	  algorithm, which is the most widely used adaptive filtering
	  algorithm.  First the error signal,
	  
	    e[n]
	  , is computed as
	  
	    e[n]=d[n]−y[n]
	  , which measures the difference between the output
	  of the adaptive filter and the output of the unknown system.
	  On the basis of this measure, the adaptive filter will
	  change its coefficients in an attempt to reduce the error.
	  The coefficient update relation is a function of the error
	  signal squared and is given by
	  
()

	
 
	  The term inside the parentheses represents the gradient of
	  the squared-error with respect to the
	  
	    ith 
	   coefficient.  The gradient is a vector pointing in
	  the direction of the change in filter coefficients that will
	  cause the greatest increase in the error signal.  Because
	  the goal is to minimize the error, however, Equation updates the filter coefficients in the
	  direction opposite the gradient; that is why the gradient
	  term is negated.  The constant
	  
	    μ
	   is a step-size, which controls the amount of
	  gradient information used to update each coefficient.  After
	  repeatedly adjusting each coefficient in the direction
	  opposite to the gradient of the error, the adaptive filter
	  should converge; that is, the difference between the unknown
	  and adaptive systems should get smaller and smaller.
	
 
	  To express the gradient decent coefficient update equation
	  in a more usable manner, we can rewrite the derivative of the
	  squared-error term as
	  
()

	  
	  
()
which in turn gives us the final LMS coefficient
	  update,
	  
()
	      hn+1[i]=hn[i]+μex[n−i]
	    
  The step-size 
	  
	    μ
	   directly affects how quickly the adaptive filter
	  will converge toward the unknown system.  If
	  
	    μ 
	   is very small, then the coefficients change only a
	  small amount at each update, and the filter converges
	  slowly.  With a larger step-size, more gradient information
	  is included in each update, and the filter converges more
	  quickly; however, when the step-size is too large, the
	  coefficients may change too quickly and the filter will
	  diverge.  (It is possible in some cases to determine
	  analytically the largest value of
	  
	    μ
	   ensuring convergence.)
	


MATLAB Simulation



 
	Simulate the system identification block diagram
	shown in Figure 2.23.  
      
 
	Previously in MATLAB, you used the filter command
	or the conv command to implement shift-invariant
	filters.  Those commands will not work here because adaptive
	filters are shift-varying, since the coefficient update
	equation changes the filter's impulse response at every sample
	time.  Therefore, implement the system identification block on
	a sample-by-sample basis with a do loop, similar
	to the way you might implement a time-domain FIR filter on a
	DSP.  For the "unknown" system, use the fourth-order,
	low-pass, elliptical, IIR filter designed for the IIR Filtering: Filter-Design Exercise in
	MATLAB.
      
 
	Use Gaussian random noise as your input, which can be
	generated in MATLAB using the command randn.
	Random white noise provides signal at all digital frequencies
	to train the adaptive filter.  Simulate the system with an
	adaptive filter of length 32 and a step-size of
	
	  0.02
	.  Initialize all of the adaptive filter coefficients
	to zero.  From your simulation, plot the error (or
	squared-error) as it evolves over time and plot the frequency
	response of the adaptive filter coefficients at the end of the
	simulation.  How well does your adaptive filter match the
	"unknown" filter?  How long does it take to converge?
      
 
	Once your simulation is working, experiment with different
	step-sizes and adaptive filter lengths.
      

Processor Implementation



 
	Use the same "unknown" filter as you used in the MATLAB simulation.  
      
 
	Although the coefficient update equation is relatively
	straightforward, consider using the lms
	instruction available on the TI processor, which is designed
	for this application and yields a very efficient
	implementation of the coefficient update equation.
      
 
	To generate noise on the DSP, you can use the PN generator
	from the Digital Transmitter:
	Introduction to Quadrature Phase-Shift Keying, but
	shift the PN register contents up to make the sign bit random.
	(If the sign bit is always zero, then the noise will not be
	zero-mean and this will affect convergence.)  Send the desired
	signal,
	
	  d[n]
	, the output of the adaptive filter,
	
	  y[n]
	, and the error to the D/A for display on the
	oscilloscope.
      
 
	When using the step-size suggested in the MATLAB simulation
	section, you should notice that the error converges very
	quickly.  Try an extremely small
	
	  μ
	 so that you can actually watch the amplitude of the
	error signal decrease towards zero.
      

Extensions



 
	If your project requires some modifications to the
	implementation here, refer to Haykin [link] and consider some of the
	following questions regarding such modifications:

	
 	How would the system in Figure 2.23 change
	    for different applications? (noise cancellation,
	    equalization, etc.)
	  

	
	    What happens to the error when the step-size is too large
	    or too small?
	  

	
	    How does the length of an adaptive FIR filters affect
	    convergence?
	  

	
	    What types of coefficient update relations are possible
	    besides the described LMS algorithm?
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2.5. Speech Processing



Speech Processing: Theory of LPC Analysis and Synthesis*



Introduction



 
	 Linear predictive coding ( LPC) is a
	popular technique for speech compression and speech synthesis.
	The theoretical foundations of both are described below.
      
Correlation coefficients



 
	  Correlation, a measure of similarity between two signals, is
	  frequently used in the analysis of speech and other signals.
	  The cross-correlation between two discrete-time signals
          
            x[n]
           and
          
            y[n]
           is defined as
          
()

	  where 
	  
	    n
	   is the sample index, and 
	  
	    l
	   is the lag or time shift between the two signals
	  Proakis and Manolakis [link]
	  (pg. 120).  Since speech signals are not
	  stationary, we are typically interested in the similarities
	  between signals only over a short time duration
	  (
	    <30
	   ms).  In this case, the cross-correlation is
	  computed only over a window of time samples and for only a
	  few time delays
          
	    l={0, 1, …, P}
          . 
	
 

	Now consider the autocorrelation sequence
	  
	    rss[l]
	  , which describes the redundancy in the signal

	  
	    s[n]
	  .

          
()
 where

	  
	    s[n]
	  ,

          
	    n={-P, (-P)+1, …, N−1}
           are the known samples (see Figure 2.24) and the
	   is a normalizing factor.
	
 [image: Correlation coefficients]

Figure 2.24. 

	    Computing the autocorrelation coefficients
	  

 
	  Another related method of measuring the redundancy in a
	  signal is to compute its autocovariance


          
()
 where the summation is over 

	  
	    N−l
	   products (the samples

          
	    {s[-P], …, s[-1]}
           are ignored).
	

Linear prediction model



 
	   Linear prediction is a good tool for analysis
	  of speech signals.  Linear prediction models the human vocal
	  tract as an  infinite impulse response
	  ( IIR) system that produces the speech signal.
	  For vowel sounds and other voiced regions of speech, which
	  have a resonant structure and high degree of similarity over
	  time shifts that are multiples of their pitch period, this
	  modeling produces an efficient representation of the
	  sound. Figure 2.25 shows how the resonant
	  structure of a vowel could be captured by an IIR system.
	
 [image: Linear prediction model]

Figure 2.25. 

	    Linear Prediction (IIR) Model of Speech
	  

 
	  The linear prediction problem can be stated as finding the
	  coefficients
	  
	    ak
	  
	  which result in the best prediction (which minimizes
	  mean-squared prediction error) of the speech sample
	  
	    s[n]
	   in terms of the past samples 
	  
	    s[n−k]
	  ,
          
	    k={1, …, P}
          . The predicted sample 
	   is then given by Rabiner
	  and Juang [link]
	 
()
 where 
	  
	    P
	   is the number of past samples of 
	  
	    s[n]
	   which we wish to examine. 
	 
 
	  Next we derive the frequency response of the system
	  in terms of the prediction coefficients
	  
	    ak
	  . In Equation, when the predicted
	  sample equals the actual signal (i.e.,
	  ), we have

	  

	  

	  
()
 The optimal solution to this problem is Rabiner and Juang [link]

	  

	  

	  


	  
()
	      a=R-1r
	    

	  
	  Due to the Toeplitz property of the 
	  
	    R 
	   matrix (it is symmetric with equal diagonal
	  elements), an efficient algorithm is available for computing
	  
	    a 
	   without the computational expense of finding
	   
	    R-1
	  .  The  Levinson-Durbin algorithm is an
	  iterative method of computing the predictor coefficients
	  
	    a 
	   Rabiner and Juang [link]
	  (p.115).
	
 
	  Initial Step:
	  
	    E0=rss[0]
	  ,
	  
	    i=1
	  
	
 
	  for
	  
	    i=1
	  
	  to 
	  
	    P
	  . 
	
 
	  
 Steps
	
	      
	    

	
	      
 	
		  
		    α
			    j
			    ,
			    i
			  =α
				  j
				  ,
			 	  i
				  –
			 	  1
				−kiα
			   	i
			  	–
			  	j
			  	,
			   	i
			    	–
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		    j={1, …, i−1}
		  
		

	
		  
		    α
			    i
			    ,
			    i
			  =ki
		  
		




	    

	
	      
		Ei=(1−ki2)E
			  i
			  –
			  1
			
	      

	    




	

LPC-based synthesis



 
	  It is possible to use the prediction coefficients to
	  synthesize the original sound by applying
	  
	    δ[n]
	  , the unit impulse, to the IIR system with lattice
	  coefficients
	  
	    ki
	    ,
	    i={1, …, P}
          

	  as shown in Figure 2.26.  Applying
	  
	    δ[n]
	  
	  to consecutive IIR systems (which represent consecutive
	  speech segments) yields a longer segment of synthesized
	  speech.
	
 
	  In this application, lattice filters are used rather than
	  direct-form filters since the lattice filter coefficients
	  have magnitude less than one and, conveniently, are
	  available directly as a result of the Levinson-Durbin
	  algorithm.  If a direct-form implementation is desired
	  instead, the 
	  
	    α 
	   coefficients must be factored into second-order
	  stages with very small gains to yield a more stable
	  implementation.
	
 [image: LPC-based synthesis]

Figure 2.26. 

	    IIR lattice filter implementation.
	  

 
	  When each segment of speech is synthesized in this manner,
	  two problems occur.  First, the synthesized speech is
	  monotonous, containing no changes in pitch, because the
	  
	    δ[n]
	  's, which represent pulses of air from the vocal
	  chords, occur with fixed periodicity equal to the analysis
	  segment length; in normal speech, we vary the frequency of
	  air pulses from our vocal chords to change pitch.  Second,
	  the states of the lattice filter (i.e.,
	  past samples stored in the delay boxes) are cleared at the
	  beginning of each segment, causing discontinuity in the
	  output.
	
 
	  To estimate the pitch, we look at the autocorrelation coefficients of 
	  each segment.  A large peak in the autocorrelation coefficient at 
	  lag 
	  
	     l ≠ 0 
	   implies the speech segment is periodic (or, more
	  often, approximately periodic) with period
	  
	    l
	  .  In synthesizing these segments, we recreate the
	  periodicity by using an impulse train as input and varying
	  the delay between impulses according to the pitch period.
	  If the speech segment does not have a large peak in the
	  autocorrelation coefficients, then the segment is an
	  unvoiced signal which has no periodicity.  Unvoiced segments
	  such as consonants are best reconstructed by using noise
	  instead of an impulse train as input.
	
 
	  To reduce the discontinuity between segments, do not clear
	  the states of the IIR model from one segment to the next.
	  Instead, load the new set of reflection coefficients,
	  
	    ki
	  , and continue with the lattice filter computation.
	


Additional Issues



 
	
 	Spanish vowels (mop,
	  ace, easy,
	  go, but) are
	  easier to recognize using LPC.

	Error can be computed as

	    
	      aTRa
	    , where 
	    
	      R
	    
	    is the autocovariance or autocorrelation matrix of a test
	    segment and 
	    
	      a
	     is the vector of prediction coefficients of a
	    template segment.
	  

	
	    A pre-emphasis filter before LPC, emphasizing frequencies
	    of interest in the recognition or synthesis, can improve
	    performance.
	  

	
	    The pitch period for males
	     (
	      80
	    -
	    
	      150
	     kHz) is different from the pitch period for
	    females.
	  

	
	    For voiced segments,

	    , where 
	    
	      T
	     is the pitch period.
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Speech Processing: LPC Exercise in MATLAB*



MATLAB Exercises



 
	First, take a simple signal (e.g., one
	period of a sinusoid at some frequency) and plot its
	autocorrelation sequence for appropriate values of
	
	  l
	. You may wish to use the xcorr MATLAB
	function to compare with your own version of this function.
	At what time shift 
	
	  l
	 is
	
	  rss[l]
	 maximized and why?  Is there any symmetry in
	
	  rss[l]
	?  What does
	
	  rss[l]
	 look like for periodic signals?
      
 
	Next, write your own version of the Levinson-Durbin algorithm
	in MATLAB.  Note that MATLAB uses indexing from
	
	  1
	 rather than
	
	  0
	.  One way to resolve this problem is to start the
	loop with
	
	  i=2
	, then shift the variables
	
	  k
	,
	
	  E
	,
	
	  α
	, and
	
	  rss
	 to start at 
	
	  i=1
	 and 
	
	  j=1
	. Be careful with indices such as 
	
	  i−j
	, since these could 
	still be 
	
	  0
	.  
      
 
	Apply your algorithm to a 
	
	  20
	-
	
	  30
	 ms segment of a speech signal.  Use a microphone to
	record .wav audio files on the PC using Sound
	Recorder or a similar application.  Typically, a sample rate
	of 
	
	  8
	 kHz is a good choice for voice signals, which are
	approximately bandlimited to 
	
	  4
	
	kHz.  You will use these audio files to test algorithms in
	MATLAB.  The functions wavread,
	wavwrite, sound will help you read,
	write and play audio files in MATLAB:
	
      
 
	The output of the algorithm is the prediction coefficients

 	
	  ak
	 (usually about 
	
	  P=10
	 coefficients is sufficient), which represent the
	speech segment containing significantly more samples.  The LPC
	coefficients are thus a compressed representation of the
	original speech segment, and we take advantage of this by
	saving or transmitting the LPC coefficients instead of the
	speech samples.  Compare the coefficients generated by your
	function with those generated by the levinson or
	lpc functions available in the MATLAB toolbox.
	Next, plot the frequency response of the IIR model represented
	by the LPC coefficients (see Speech Processing: Theory of LPC Analysis and
	Synthesis).  What is the fundamental frequency of the
	speech segment?  Is there any similarity in the prediction
	coefficients for different
	
	  20
	-
	
	  30
	
	ms segments of the same vowel sound?  How could the prediction
	coefficients be used for recognition?
      


Speech Processing: LPC Exercise on TI TMS320C54x*



Implementation



 
	The sample rate on the 6-channel 
	DSP boards is fixed at 
	
	  44.1
	 kHz, so decimate by a factor of 
	
	  5
	 to achieve the sample rate of
	
	  8.82
	 kHz, which is more appropriate for speech
	processing.
      
 
	Compute the autocorrelation or 
	autocovariance coefficients of 
	
	  256
	-sample blocks of input samples from a function
	generator for time shifts
	
	  l={0, 1, …, 15}
	 (i.e., for 
	
	  P=15
	) and 
	display these on the oscilloscope with a trigger.  (You may zero out 
	the other 
	
	  240
	 output samples to fill up the
	
	  256
	-sample block).  For computing the autocorrelation,
	you will have to use memory to record the last
	
	  15
	 samples of the input due to the overlap between
	adjacent blocks.  Compare the output on the oscilloscope with
	simulation results from MATLAB.
      
 
	The next step is to use a speech signal as the input to your
	system.  Use a microphone as input to the original thru6.asm code and adjust the gains in
	your system until the output uses most of the dynamic range of
	the system without saturating.  Now, to capture and analyze a
	small segment of speech, write code that determines the start
	of a speech signal in the microphone input, records a few
	seconds of speech, and computes the autocorrelation or
	autocovariance coefficients.  The start of a speech signal can
	be determined by comparing the input to some noise threshold;
	experiment to find a good value.  For recording large segments
	of speech, you may need to use external memory. Refer to Core File: Accessing External Memory on TI
	TMS320C54x for more information.
      
 
	Finally, incorporate your code which computes autocorrelation
	or autocovariance coefficients with the code which takes
	speech input and compare the results seen on the oscilloscope
	to those generated by MATLAB.
      
Integer division (optional)



 
	  In order to implement the Levinson-Durbin algorithm, you
	  will need to use integer division to do Step 1 of the
	  algorithm.  Refer to the Applications
	  Guide [url] and the subc instruction
	  for a routine that performs integer division.
	




2.6. Video Processing



Introduction to the IDK*



Introduction



 
        The purpose of this lab is to acquaint you with the TI
         Image Developers Kit ( IDK).  The IDK
        contains a floating point C6711 DSP, and other hardware that
        enables real time video processing.  In addition to the IDK,
        the video processing lab bench is equipped with an NTSC camera
        and a standard color computer monitor.
      
 
        You will complete an introductory exercise to gain familiarity
        with the IDK programming environment.  In the exercise, you
        will modify a C skeleton to horizontally flip and invert video
        input from the camera.  The output of your video processing
        algorithm will appear in the top right quadrant of the
        monitor.  In addition, you will analyze existing C code that
        implements filtering and edge detection algorithms to gain
        insight into IDK programming methods.  The output of these
        "canned" algorithms, along with the unprocessed input, appears
        in the other quadrants of the monitor.
      
  An additional goal of this lab is to give you the
        opportunity to discover tools for developing an original
        project using the IDK.
      

Video Processing Setup



 
        The camera on the video processing lab bench generates an
        analog video signal in NTSC format.  NTSC is a standard for
        transmitting and displaying video that is used in television.
        The signal from the camera is connected to the "composite
        input" on the IDK board (the yellow plug).  This is
        illustrated in Figure 2-1 on page 2-3 of the
        IDK
        User's Guide [url].  Notice that the IDK board is actually
        two boards stacked on top of each other.  The bottom board
        contains the C6711 DSP, where your image processing algorithms
        will run.  The top board is the daughterboard, which contains
        hardware for interfacing with the camera input and monitor
        output.  For future video processing projects, you may connect
        a video input other than the camera, such as the output from a
        DVD player.  The output signal from the IDK is in RGB format,
        so that it may be displayed on a computer monitor.
      
 
        At this point, a description of the essential terminology of
        the IDK environment is in order.  The video input is first
        decoded and then sent to the FPGA, which resides on the
        daughterboard.  The FPGA is responsible for the filling of the
        frame buffer and video capture.  For a detailed description
        the FPGA and its functionality, we advise you to read Chapter
        2 of the IDK
        User's Guide [url].
      
 
        The  Chip Support Library ( CSL) is an
        abstraction layer that allows the IDK daughterboard to be used
        with the entire family of TI C6000 DSPs (not just the C6711
        that we're using); it takes care of what is different from
        chip to chip.
      
 
        The  Image Data Manager ( IDM) is a
        set of routines responsible for moving data between on chip
        internal memory and external memory on the board during
        processing.  The IDM helps the programmer by taking care of
        the pointer updates and buffer management involved in
        transferring data.  Your DSP algorithms will read and write to
        internal memory, and the IDM will transfer this data to and
        from external memory.  Examples of external memory include
        temporary "scratch pad" buffers, the input buffer containing
        data from the camera, and the output buffer with data destined
        for the RGB output.
      
 
        The TI C6711 DSP uses a different instruction set than the
        5400 DSP's you are familiar with in lab.  The IDK environment
        was designed with high level programming in mind, so that
        programmers would be isolated from the intricacies of assembly
        programming.  Therefore, we strongly suggest that you do all
        your programming in C.  Programs on the IDK typically consist
        of a main program that calls an image processing routine.  The
        image processing routine may make several calls to specialized
        functions.  These specialized functions consist of an outer
        wrapper and an inner component.  The component performs
        processing on one line of an image.  The wrapper oversees of
        the processing of the entire image, using the IDM to move data
        back and forth between internal memory and external memory.
        In this lab, you will modify a component to implement the
        flipping and inverting algorithm.
      
 
        In addition, the version of Code Composer that the IDK uses is
        different from the one you have used previously.  The IDK uses
        Code Composer Studio v2.1.  It is similar to the other
        version, but the process of loading code is slightly
        different.
      

Code Overview



 
        The program flow for these image processing applications may
        be a bit different from your previous experiences in C
        programming.  In most C programs, the main function is where
        program execution starts and ends.  In this real-time
        application, the main function serves only to setup
        initializations for the cache, the CSL, and the DMA channel.
        When it exits, the main task, tskMainFunc(), will
        execute automatically, starting the DSP/BIOS.  This is where
        our image processing application begins.
      
 
        The tskMainFunc(), in main.c, opens
        the handles to the board for image capture
        (VCAP_open()) and to the display
        (VCAP_open()) and calls the grayscale function.
        Here, several data structures are instantiated that are
        defined in the file img_proc.h.  The IMAGE
        structures will point to the data that is captured by the FPGA
        and the data that will be output to the display.  The
        SCRATCH_PAD structure points to our internal and external
        memory buffers used for temporary storage during processing.
        LPF_PARAMS is used to store filter coefficients for the low
        pass filter.
      
 
        The call to img_proc() takes us to the file
        img_proc.c.  First, several variables are
        declared and defined.  The variable quadrant will denote on
        which quadrant of the screen we currently want output;
        out_ptr will point to the current output spot in
        the output image; and pitch refers to the byte offset between
        two lines.  This function is the high level control for our
        image-processing algorithm.  See algorithm flow.
      
 [image: Figure (flow.png)]

Figure 2.27. 

          Algorithm flow.
        

 
        The first function called is the pre_scale_image
        function in the file pre_scale_image.c.  The
        purpose of this function is to take the 640x480 image and
        scale it down to a quarter of its size by first downsampling
        the input rows by two and then averaging every two pixels
        horizontally.  The internal and external memory spaces in the
        scratch pad are used for this task.  The vertical downsampling
        will occur when only every other line is read into the
        internal memory from the input image.  Within internal memory,
        we will operate on two lines of data (640 columns/line) at a
        time, averaging every two pixels (horizontal neighbors) and
        producing two lines of output (320 columns/line) that are
        stored in the external memory.
      
 
        To accomplish this, we will need to take advantage of the IDM
        by initializing the input and output streams.  At the start of
        the function, two instantiations of a new structure
        dstr_t are declared.  You can view the structure
        contents of dstr_t on p. 2-11 of the
        IDK
        Programmer's Guide [url].  The structure contents are defined
        with calls to dstr_open().  This data flow for
        the pre-scale is shown in data
        flow.
      
 [image: Figure (data_flow.png)]

Figure 2.28. 

          Data flow of input and output streams.
        

 
        To give you a better understanding of how these streams are
        created, let's analyze the parameters passed in the first call
        to dstr_open():
      
External address: in_image->data



 
          This is a pointer to the place in memory serving as the
          source of our input data (it's the source because the last
          function parameter is set to DSTR_INPUT).
        

External size: (rows + num_lines) * cols = (240 + 2) *
          640



 
          This is the total size of our input data. We will only be
          taking every other line from in_image->data, so
          only 240 rows. The extra two rows are for buffer.
        

Internal address: int_mem



 
          This is a pointer to an 8x640 lexographic array,
          specifically scratchpad->int_data.  This is
          where we will be putting the data on each call to
          dstr_get().
        

Internal size: 2 * num_lines * cols = 2 * 2 * 640



 
          The size of space available for data to be input into
          int_mem from in_image->data.
          Because double buffering is used, num_lines is
          set to 2.
        

Number of bytes/line: cols = 640, Number of lines:
          num_lines = 2



 
          Each time dstr_get() is called, it will
          return a pointer to 2 lines of data, 640 bytes in
          length.
        

External memory increment/line: stride*cols = 1*640



 
          Left as an exercise.
        

Window size: 1 for double buffered



 
          The need for the window size is not really apparent here.
          It will become apparent when we do the 3x3 block
          convolution.  Then, the window size will be set to 3.  This
          tells the IDM to send a pointer to 3 lines of data when
          dstr_get() is called, but only increment the
          stream's internal pointer by 1 (instead of 3) the next time
          dstr_get() is called.  This is not a parameter
          when setting up an output stream.
        

Direction of input: DSTR_INPUT



 
          Sets the direction of data flow. If it had been set to
          DSTR_OUTPUT (as done in the next call to
          dstr_open()), we would be setting the data to
          flow from the Internal Address to the External Address.
        

 
        Once our data streams are setup, we can begin processing by
        calling the component function pre_scale() (in
        pre_scale.c) to operate on one block of data at a
        time.  This function will perform the horizontal scaling by
        averaging every two pixels.  This algorithm operates on four
        pixels at a time.  The entire function is iterated within
        pre_scale_image() 120 times, which is the number
        of rows in each quadrant.  Before
        pre_scale_image() exits, the data streams are
        closed, and one line is added to the top and bottom of the
        image to provide context necessary for the next processing
        steps.  Now that the input image has been scaled to a quarter
        of its initial size, we will proceed with the four image
        processing algorithms.  In img_proc.c, the
        set_ptr() function is called to set the variable
        out_ptr to point to the correct quadrant on the
        640x480 output image.  Then copy_image(),
        copy_image.c, is called, performing a direct copy
        of the scaled input image into the lower right quadrant of the
        output.
      
 
        Next we will set the out_ptr to point to the
        upper right quadrant of the output image and call
        conv3x3_image() in conv3x3_image.c.
        As with pre_scale_image(), the
        _image indicates this is only the wrapper
        function for the ImageLIB component, conv3x3().
        As before, we must setup our input and output streams.  This
        time, however, data will be read from the external memory,
        into internal memory for processing, and then written to the
        output image.  Iterating over each row, we compute one line of
        data by calling the component function conv3x3()
        in conv3x3.c.
      
 
        In conv3x3(), you will see that we perform a 3x3
        block convolution, computing one line of data with the low
        pass filter mask.  Note here that the variables
        IN1[i], IN2[i], and
        IN3[i] all grab only one pixel at a time.  This
        is in contrast to the operation of pre_scale()
        where the variable in_ptr[i] grabbed 4 pixels at a time.  This
        is because in_ptr was of type unsigned int, which
        implies that it points to four bytes of data at a time.
        IN1, IN2, and IN3 are
        all of type unsigned char, which implies they point to a
        single byte of data.  In block convolution, we are computing
        the value of one pixel by placing weights on a 3x3 block of
        pixels in the input image and computing the sum.  What happens
        when we are trying to compute the rightmost pixel in a row?
        The computation is now bogus.  That is why the wrapper
        function copies the last good column of data into the two
        rightmost columns.  You should also note that the component
        function ensures output pixels will lie between 0 and 255.
      
 
        Back in img_proc.c, we can begin the edge
        detection algorithm, sobel_image(), for the lower
        left quadrant of the output image.  This wrapper function,
        located in sobel_image.c, performs edge detection
        by utilizing the assembly written component function
        sobel() in sobel.asm. The wrapper
        function is very similar to the others you have seen and
        should be straightforward to understand. Understanding the
        assembly file is considerably more difficult since you are not
        familiar with the assembly language for the c6711 DSP. As
        you'll see in the assembly file, the comments are very helpful
        since an "equivalent" C program is given there.
      
 
        The Sobel algorithm convolves two masks with a 3x3 block of
        data and sums the results to produce a single pixel of output.
        This algorithm approximates a 3x3 nonlinear edge enhancement
        operator.  The brightest edges in the result represent a rapid
        transition (well-defined features), and darker edges represent
        smoother transitions (blurred or blended features).
      

Using the IDK Environment



 
        This section provides a hands-on introduction to the IDK
        environment that will prepare you for the lab exercise.
        First, connect the power supply to the IDK module.  Two green
        lights on the IDK board should be illuminated when the power
        is connected properly.
      
 
        You will need to create a directory img_proc for
        this project in your home directory.  Enter this new
        directory, and then copy the following files as follows
        (again, be sure you're in the directory img_proc
        when you do this):
      
 
        
        copy V:\ece320\idk\c6000\IDK\Examples\NTSC\img_proc
        copy V:\ece320\idk\c6000\IDK\Drivers\include
        copy V:\ece320\idk\c6000\IDK\Drivers\lib
        
      
 
        After the IDK is powered on, open Code Composer 2 by clicking
        on the "CCS 2" icon on the desktop.  From the "Project" menu,
        select "Open," and then open img_proc.pjt. You
        should see a new icon appear at the menu on the left side of
        the Code Composer window with the label
        img_proc.pjt. Double click on this icon to see a
        list of folders.  There should be a folder labeled "Source."
        Open this folder to see a list of program files.
      
 
        The main.c program calls the
        img_proc.c function that displays the output of
        four image processing routines in four quadrants on the
        monitor.  The other files are associated with the four image
        processing routines.  If you open the "Include" folder, you
        will see a list of header files.  To inspect the main program,
        double click on the main.c icon.  A window with
        the C code will appear to the right.
      
 
        Scroll down to the tskMainFunc() in the
        main.c code.  A few lines into this function, you
        will see the line
        LOG_printf(&trace,"Hello\n");.  This line
        prints a message to the message log, which can be useful for
        debugging.  Change the message "Hello\n" to
        "Your Name\n" (the "\n" is a
        carriage return).  Save the file by clicking the little floppy
        disk icon at the top left corner of the Code Composer window.
      
 
        To compile all of the files when the ".out" file
        has not yet been generated, you need to use the "Rebuild All"
        command.  The rebuild all command is accomplished by clicking
        the button displaying three little red arrows pointing down on
        a rectangular box.  This will compile every file the main.c
        program uses.  If you've only changed one file, you only need
        to do a "Incremental Build," which is accomplished by clicking
        on the button with two little blue arrows pointing into a box
        (immediately to the left of the "Rebuild All" button).  Click
        the "Rebuild All" button to compile all of the code.  A window
        at the bottom of Code Composer will tell you the status of the
        compiling (i.e., whether there were any errors or warnings).
        You might notice some warnings after compilation - don't worry
        about these.
      
 
        Click on the "DSP/BIOS" menu, and select "Message Log." A new
        window should appear at the bottom of Code Composer.  Assuming
        the code has compiled correctly, select "File" -> "Load
        Program" and load img_proc.out (the same
        procedure as on the other version of Code Composer).  Now
        select "Debug" -> "Run" to run the program (if you have
        problems, you may need to select "Debug" -> "Go Main" before
        running).  You should see image processing routines running on
        the four quadrants of the monitor.  The upper left quadrant
        (quadrant 0) displays a low pass filtered version of the
        input.  The low pass filter "passes" the detail in the image,
        and attenuates the smooth features, resulting in a "grainy"
        image.  The operation of the low pass filter code, and how
        data is moved to and from the filtering routine, was described
        in detail in the previous section.  The lower left quadrant
        (quadrant 2) displays the output of an edge detection
        algorithm.  The top right and bottom right quadrants
        (quadrants 1 and 3, respectively), show the original input
        displayed unprocessed.  At this point, you should notice your
        name displayed in the message log.
      

Implementation



 
        You will create the component code flip_invert.c
        to implement an algorithm that horizontally flips and inverts
        the input image.  The code in flip_invert.c will
        operate on one line of the image at a time.  The
        copyim.c wrapper will call
        flip_invert.c once for each row of the prescaled
        input image.  The flip_invert function call
        should appear as follows:
      
 
        
        flip_invert(in_data, out_data, cols);
        
      
 
        where in_data and out_data are
        pointers to the input and output buffers in internal memory,
        and cols is the length of each column of the
        prescaled image.
      
 
        The img_proc.c function should call the
        copyim.c wrapper so that the flipped and inverted
        image appears in the top right (first) quadrant.  The call to
        copyim is as follows: copyim(scratch_pad,
        out_img, out_ptr, pitch);
      
 
        This call is commented out in the im_proc.c code.
        The algorithm that copies the image (unprocessed) to the
        screen is currently displayed in quadrant 1, so you will need
        to comment out its call and replace it with the call to
        copyim.
      
 
        Your algorithm should flip the input picture horizontally,
        such that someone on the left side of the screen looking left
        in quadrant 3 will appear on the right side of the screen
        looking right.  This is similar to putting a slide in a slide
        projector backwards.  The algorithm should also invert the
        picture, so that something white appears black and vice versa.
        The inversion portion of the algorithm is like looking at the
        negative for a black and white picture.  Thus, the total
        effect of your algorithm will be that of looking at the wrong
        side of the negative of a picture.
Hint
Pixel
        values are represented as integers between 0 and 255.



      
 
        To create a new component file, write your code in a file
        called "flip_invert.c".  You may find the
        component code for the low pass filter in
        "conv3x3_c.c" helpful in giving you an idea of
        how to get started.  To compile this code, you must include it
        in the "img_proc" project, so that it appears as
        an icon in Code Composer.  To include your new file, right
        click on the "img_proc.pjt" icon in the left
        window of Code Composer, and select "Add Files."
      


Video Processing Manuals*



Essential documentation for the 6000 series TI DSP



 
        The following documentation will certainly prove useful:

        
 	The IDK
          Programmer's Guide

	The IDK
          User's Guide

	The IDK
          Video Device Drivers User's Guide





        
Note
Other manuals may be found on TI's website by searching for
        TMS320C6000 IDK



      


Video Processing Part 1: Introductory Exercise*



Introduction



 
       The purpose of this lab is to acquaint you with the TI Image Developers Kit (IDK). The IDK contains a floating point C6711 DSP, and other hardware that enables real time video/image processing. In addition to the IDK, the video processing lab bench is equipped with an NTSC camera and a standard color computer monitor.

 
You will complete an introductory exercise to gain familiarity with the IDK programming environment. In the exercise, you will modify a C skeleton to horizontally flip and invert video input (black and white) from the camera. The output of your video processing algorithm will appear in the top right quadrant of the monitor. 

 
In addition, you will analyze existing C code that implements filtering and edge detection algorithms to gain insight into IDK programming methods. The output of these "canned" algorithms, along with the unprocessed input, appears in the other quadrants of the monitor.

 
Finally, you will create an auto contrast function. And will also work with a color video feed and create a basic user interface, which uses the input to control some aspect of the display.

 
An additional goal of this lab is to give you the opportunity to discover tools for developing an original project using the IDK.
    
Important Documentation



 
        The following documentation will certainly prove useful:

        
 	The IDK
          User's Guide.  Section 2 is the most important.

	The IDK
          Video Device Drivers User's Guide.  The sections on timing are not too important, but pay attention to the Display and Capture systems and have a good idea of how they work.

	The IDK
          Programmer's Guide.  Sections 2 and 5 are the ones needed. Section 2 is very, very important in Project Lab 2. It is also useful in understanding “streams” in project lab 1.





        
Note
Other manuals may be found on TI's website by searching for
        TMS320C6000 IDK



      


Video Processing - The Basics



 
The camera on the video processing lab bench generates a video signal in NTSC format. NTSC is a standard for transmitting and displaying video that is used in television. The signal from the camera is connected to the "composite input" on the IDK board (the yellow plug). This is illustrated in Figure 2-1 on page 2-3 of the IDK User's Guide. Notice that the IDK board is actually two boards stacked on top of each other. The bottom board contains the C6711 DSP, where your image processing algorithms will run. The daughterboard is on top, it contains the hardware for interfacing with the camera input and monitor output. For future video processing projects, you may connect a video input other than the camera, such as the output from a DVD player. The output signal from the IDK is in RGB format, so that it may be displayed on a computer monitor.

 
At this point, a description of the essential terminology of the IDK environment is in order. The video input is first decoded and then sent to the FPGA, which resides on the daughterboard. The FPGA is responsible for video capture and for the filling of the input frame buffer (whose contents we will read). For a detailed description of the FPGA and its functionality, we advise you to read Chapter 2 of the IDK User's Guide.

 
The Chip Support Library (CSL) is an abstraction layer that allows the IDK daughterboard to be used with the entire family of TI C6000 DSPs (not just the C6711 that we're using); it takes care of what is different from chip to chip.

 
The Image Data Manager (IDM) is a set of routines responsible for moving data between on-chip internal memory, and external memory on the board, during processing. The IDM helps the programmer by taking care of the pointer updates and buffer management involved in transferring data. Your DSP algorithms will read and write to internal memory, and the IDM will transfer this data to and from external memory. Examples of external memory include temporary "scratch pad" buffers, the input buffer containing data from the camera, and the output buffer with data destined for the RGB output.

 
The two different memory units exist to provide rapid access to a larger memory capacity. The external memory is very large in size – around 16 MB, but is slow to access. But the internal is only about 25 KB or so and offers very fast access times. Thus we often store large pieces of data, such as the entire input frame, in the external memory. We then bring it in to internal memory, one small portion at a time, as needed. A portion could be a line or part of a line of the frame. We then process the data in internal memory and then repeat in reverse, by outputting the results line by line (or part of) to external memory. This is full explained in Project Lab 2, and this manipulation of memory is important in designing efficient systems.

 
The TI C6711 DSP uses a different instruction set than the 5400 DSP's you are familiar with in lab. The IDK environment was designed with high level programming in mind, so that programmers would be isolated from the intricacies of assembly programming. Therefore, we strongly suggest that you do all your programming in C. Programs on the IDK typically consist of a main program that calls an image processing routine. 

 
The main program serves to setup the memory spaces needed and store the pointers to these in objects for easy access. It also sets up the input and output channels and the hardware modes (color/grayscale ...). In short it prepares the system for our image processing algorithm.

 
The image processing routine may make several calls to specialized functions. These specialized functions consist of an outer wrapper and an inner component. The wrapper oversees the processing of the entire image, while the component function works on parts of an image at a time. And the IDM moves data back and forth between internal and external memory. 

 
As it brings in one line in from external memory, the component function performs the processing on this one line. Results are sent back to the wrapper. And finally the wrapper contains the IDM instructions to pass the output to external memory or wherever else it may be needed.

 
Please note that this is a good methodology used in programming for the IDK. However it is very flexible too, the "wrapper" and "component functions" are C functions and return values, take in parameters and so on too. And it is possible to extract/output multiple lines or block etc. as later shown.

 
In this lab, you will modify a component to implement the flipping and inverting algorithm. And you will perform some simple auto-contrasting as well as work with color.

 
In addition, the version of Code Composer that the IDK uses is different from the one you have used previously. The IDK uses Code Composer Studio v2.1. It is similar to the other version, but the process of loading code is slightly different.


Code Description



Overview and I/O



 
The next few sections describe the code used. First please copy the files needed by following the instructions in the "Part 1" section of this document. This will help you easily follow the next few parts. 

 
The program flow for image processing applications may be a bit different from your previous experiences in C programming. In most C programs, the main function is where program execution starts and ends. In this real-time application, the main function serves only to setup initializations for the cache, the CSL, and the DMA (memory access) channel. When it exits, the main task, tskMainFunc(), will execute automatically, starting the DSP/BIOS. It will loop continuously calling functions to operate on new frames and this is where our image processing application begins.

 
The tskMainFunc(), in main.c, opens the handles to the board for image capture (VCAP_open()) and to the display (VCAP_open()) and calls the grayscale function. Here, several data structures are instantiated that are defined in the file img_proc.h. The IMAGE structures will point to the data that is captured by the FPGA and the data that will be output to the display. The SCRATCH_PAD structure points to our internal and external memory buffers used for temporary storage during processing. LPF_PARAMS is used to store filter coefficients for the low pass filter.

 
The call to img_proc() takes us to the file img_proc.c. First, several variables are declared and defined. The variable quadrant will denote on which quadrant of the screen we currently want output; out_ptr will point to the current output spot in the output image; and pitch refers to the byte offset (distance) between two lines. This function is the high level control for our image-processing algorithm. See algorithm flow.

 [image: Figure (video1.jpg)]

Figure 2.29. 
Algorithm Flow

 
The first function called is the pre_scale_image function in the file pre_scale_image.c. The purpose of this function is to take the 640x480 image and scale it down to a quarter of its size by first downsampling the input rows by two and then averaging every two pixels horizontally. The internal and external memory spaces, pointers to which are in the scratch pad, are used for this task. The vertical downsampling occurs when every other line is read into the internal memory from the input image. Within internal memory, we will operate on two lines of data (640 columns/line) at a time, averaging every two pixels (horizontal neighbors) and producing two lines of output (320 columns/line) that are stored in the external memory.

 
To accomplish this, we will need to take advantage of the IDM by initializing the input and output streams. At the start of the function, two instantiations of a new structure dstr_t are declared. You can view the structure contents of dstr_t on p. 2-11 of the IDK Programmer's Guide. These structures are stream "objects". They give us access to the data when using the dstr_open() command. In this case dstr_i is an input stream as specified in the really long command dstr_open(). Thus after opening this stream we can use the get_data command to get data one line at a time. Streams and memory usage are described in greater detail in the second project lab. This data flow for the pre-scale is shown in data flow.

 [image: Figure (video2.jpg)]

Figure 2.30. 
Data flow of input and output streams.

 
To give you a better understanding of how these streams are created, let's analyze the parameters passed in the first call to dstr_open() which opens an input stream.

 
External address: in_image->data
This is a pointer to the place in external memory serving as the source of our input data (it's the source because the last function parameter is set to DSTR_INPUT). We're going to bring in data from external to internal memory so that we can work on it. This external data represents a frame of camera input. It was captured in the main function using the VCAP_getframe() command.

 
External size: (rows + num_lines) * cols = (240 + 2) * 640
This is the total size of the input data which we will bring in. We will only be taking two lines at a time from in_image->data, so only 240 rows. The "plus 2" represents two extra rows of input data which represent a buffer of two lines - used when filtering, which is explained later.

 
Internal address: int_mem
This is a pointer to an 8x640 array, pointed to by scratchpad->int_data. This is where we will be putting the data on each call to dstr_get(). We only need part of it, as seen in the next parameter, as space to bring in data. 

 
Internal size: 2 * num_lines * cols = 2 * 2 * 640
The size of space available for data to be input into int_mem from in_image->data. We pull in two lines of the input frame so it num_lines * cols. We have the multiply by 2 as we are using double buffering for bringing in the data. We need double the space in internal memory than the minimum needed, the reason is fully explained in IDK Programmer's Guide.

 
Number of bytes/line: cols = 640, Number of lines: num_lines = 2
Each time dstr_get_2D() is called, it will return a pointer to 2 new lines of data, 640 bytes in length. We use the function dstr_get_2D(), since we are pulling in two lines of data. If instead we were only bringing in one line, we would use dstr_get() statements.

 
External memory increment/line: stride*cols = 1*640
The IDM increments the pointer to the external memory by this amount after each dstr_get() call.

 
Window size: 1	 for double buffered single line of data
(Look at the three documentation pdfs for a full explanation of double buffering)
The need for the window size is not really apparent here. 
It will become apparent when we do the 3x3 block convolution. Then, the window size will be set to 3 (indicating three lines of buffered data). This tells the IDM to send a pointer to extract 3 lines of data when dstr_get() is called, but only increment the stream's internal pointer by 1 (instead of 3) the next time dstr_get() is called. Thus you will get overlapping sets of 3 lines on each dstr_get() call. This is not a useful parameter when setting up an output stream.

 
Direction of input: DSTR_INPUT
Sets the direction of data flow. If it had been set to DSTR_OUTPUT (as done in the next call to dstr_open()), we would be setting the data to flow from the Internal Address to the External Address.

 
We then setup our output stream to write data to a location in external memory which we had previously created.

 
Once our data streams are setup, we can begin processing by first extracting a portion of input data using dstr_get_2D(). This command pulls the data in and we setup a pointer (in_data) to point to this internal memory spot. We also get a pointer to a space where we can write the output data (out_data) when using dstr_put(). Then we call the component function pre_scale() (in pre_scale.c) to operate on the input data and write to the output data space, using these pointers. 

 
The prescaling function will perform the horizontal scaling by averaging every two pixels. This algorithm operates on four pixels at a time. The entire function is iterated within pre_scale_image() 240 times, which results in 240 * 2 rows of data being processed – but only half of that is output. 

 
Upon returning to the wrapper function, pre_scale_image, a new line is extracted; the pointers are updated to show the location of the new lines and the output we had placed in internal memory is then transferred out. This actually happens in the dstr_put() function – thus is serves a dual purpose; to give us a pointer to internal memory which we can write to, and the transferring of its contents to external memory.

 
Before pre_scale_image() exits, the data streams are closed, and one line is added to the top and bottom of the image to provide context necessary for the next processing steps (The extra two lines - remember?). Also note, it is VERY important to close streams after they have been used. 
If not done, unusual things such as random crashing and so may occur which are very hard to track down.

 
Now that the input image has been scaled to a quarter of its initial size, we will proceed with the four image processing algorithms. In img_proc.c, the set_ptr() function is called to set the variable out_ptr to point to the correct quadrant on the 640x480 output image. Then copy_image(), copy_image.c, is called, performing a direct copy of the scaled input image into the lower right quadrant of the output.

 
Next we will set the out_ptr to point to the upper right quadrant of the output image and call conv3x3_image() in conv3x3_image.c. As with pre_scale_image(), the _image indicates this is only the wrapper function for the ImageLIB (library functions) component, conv3x3(). As before, we must setup our input and output streams. This time, however, data will be read from the external memory (where we have the pre-scaled image) and into internal memory for processing, and then be written to the output image. Iterating over each row, we compute one line of data by calling the component function conv3x3() in conv3x3.c.

 
In conv3x3(), you will see that we perform a 3x3 block convolution, computing one line of data with the low pass filter mask. Note here that the variables IN1[i], IN2[i], and IN3[i] all grab only one pixel at a time. This is in contrast to the operation of pre_scale() where the variable in_ptr[i] grabbed 4 pixels at a time. This is because in_ptr was of type unsigned int, which implies that it points to four bytes (the size of an unsigned int is 4 bytes) of data at a time. IN1, IN2, and IN3 are all of type unsigned char, which implies they point to a single byte of data. In block convolution, we are computing the value of one pixel by placing weights on a 3x3 block of pixels in the input image and computing the sum. What happens when we are trying to compute the rightmost pixel in a row? The computation is now bogus. That is why the wrapper function copies the last good column of data into the two rightmost columns. You should also note that the component function ensures output pixels will lie between 0 and 255. For the same reason we provided the two extra "copied" lines when performing the prescale.

 
Back in img_proc.c, we can begin the edge detection algorithm, sobel_image(), for the lower left quadrant of the output image. This wrapper function, located in sobel_image.c, performs edge detection by utilizing the assembly written component function sobel() in sobel.asm. The wrapper function is very similar to the others you have seen and should be straightforward to understand. Understanding the assembly file is considerably more difficult since you are not familiar with the assembly language for the c6711 DSP. As you'll see in the assembly file, the comments are very helpful since an "equivalent" C program is given there.

 
The Sobel algorithm convolves two masks with a 3x3 block of data and sums the results to produce a single pixel of output. One mask has a preference for vertical edges while the other mask for horizontal ones. This algorithm approximates a 3x3 nonlinear edge enhancement operator. The brightest edges in the result represent a rapid transition (well-defined features), and darker edges represent smoother transitions (blurred or blended features).



Part One



 
This section provides a hands-on introduction to the IDK environment that will prepare you for the lab exercise. First, connect the power supply to the IDK module. Two green lights on the IDK board should be illuminated when the power is connected properly.

 
You will need to create a directory img_proc for this project in your home directory. Enter this new directory, and then copy the following files as follows (again, be sure you're in the directory img_proc when you do this):

 

 	copy V:\ece320\idk\c6000\IDK\Examples\NTSC\img_proc

	copy V:\ece320\idk\c6000\IDK\Drivers\include

	copy V:\ece320\idk\c6000\IDK\Drivers\lib





      
After the IDK is powered on, open Code Composer 2 by clicking on the "CCS 2" icon on the desktop. From the "Project" menu, select "Open," and then open img_proc.pjt. You should see a new icon appear at the menu on the left side of the Code Composer window with the label img_proc.pjt. Double click on this icon to see a list of folders. There should be a folder labeled "Source." Open this folder to see a list of program files.

  
The main.c program calls the img_proc.c function that displays the output of four image processing routines in four quadrants on the monitor. The other files are associated with the four image processing routines. If you open the "Include" folder, you will see a list of header files. To inspect the main program, double click on the main.c icon. A window with the C code will appear to the right.

  
Scroll down to the tskMainFunc() in the main.c code. A few lines into this function, you will see the line LOG_printf(&trace,"Hello\n"). This line prints a message to the message log, which can be useful for debugging. Change the message "Hello\n" to "Your Name\n" (the "\n" is a carriage return). Save the file by clicking the little floppy disk icon at the top left corner of the Code Composer window.

  
To compile all of the files when the ".out" file has not yet been generated, you need to use the "Rebuild All" command. The rebuild all command is accomplished by clicking the button displaying three little red arrows pointing down on a rectangular box. This will compile every file the main.c program uses. If you've only changed one file, you only need to do a "Incremental Build," which is accomplished by clicking on the button with two little blue arrows pointing into a box (immediately to the left of the "Rebuild All" button). Click the "Rebuild All" button to compile all of the code. A window at the bottom of Code Composer will tell you the status of the compiling (i.e., whether there were any errors or warnings). You might notice some warnings after compilation - don't worry about these.

  
Click on the "DSP/BIOS" menu, and select "Message Log." A new window should appear at the bottom of Code Composer. Assuming the code has compiled correctly, select "File" -> "Load Program" and load img_proc.out (the same procedure as on the other version of Code Composer). Now select "Debug" -> "Run" to run the program (if you have problems, you may need to select "Debug" -> "Go Main" before running). You should see image processing routines running on the four quadrants of the monitor. The upper left quadrant (quadrant 0) displays a low pass filtered version of the input. The low pass filter "passes" the detail in the image, and attenuates the smooth features, resulting in a "grainy" image. The operation of the low pass filter code, and how data is moved to and from the filtering routine, was described in detail in the previous section. The lower left quadrant (quadrant 2) displays the output of an edge detection algorithm. The top right and bottom right quadrants (quadrants 1 and 3, respectively), show the original input displayed unprocessed. At this point, you should notice your name displayed in the message log.

Implementation



  
You will create the component code flip_invert.c to implement an algorithm that horizontally flips and inverts the input image. The code in flip_invert.c will operate on one line of the image at a time. The copyim.c wrapper will call flip_invert.c once for each row of the prescaled input image. The flip_invert function call should appear as follows:

        
flip_invert(in_data, out_data, cols);

        
where in_data and out_data are pointers to the input and output buffers in internal memory, and cols is the length of each column of the prescaled image.

 
The img_proc.c function should call the copyim.c wrapper so that the flipped and inverted image appears in the top right (first) quadrant. The call to copyim is as follows: copyim(scratch_pad, out_img, out_ptr, pitch);

 
This call is commented out in the im_proc.c code. The algorithm that copies the image (unprocessed) to the screen is currently displayed in quadrant 1, so you will need to comment out its call and replace it with the call to copyim.

 
Your algorithm should flip the input picture horizontally, such that someone on the left side of the screen looking left in quadrant 3 will appear on the right side of the screen looking right. This is similar to putting a slide in a slide projector backwards. The algorithm should also invert the picture, so that something white appears black and vice versa. The inversion portion of the algorithm is like looking at the negative for a black and white picture. Thus, the total effect of your algorithm will be that of looking at the wrong side of the negative of a picture.

Hint
Pixel values are represented as integers between 0 and 255.




 
To create a new component file, write your code in a file called "flip_invert.c". You may find the component code for the low pass filter in "conv3x3_c.c" helpful in giving you an idea of how to get started. To compile this code, you must include it in the "img_proc" project, so that it appears as an icon in Code Composer. To include your new file, right click on the "img_proc.pjt" icon in the left window of Code Composer, and select "Add Files." Compile and run!




Video Processing Part 2: Grayscale and Color*



Introduction



 
The purpose of this project lab is to introduce how to further manipulate data acquired in grayscale mode and then expand this to the realm of color.  This lab is meant as a follow-up to “Video Processing Part 1: Introductory Exercise,”.  This lab will implement a grayscale auto-contrast and color image manipulation.

 
You will complete an introductory exercise to demonstrate your familiarity with the IDK programming environment.  You will then complete an introductory exercise in how to use color; and modify a C skeleton to apply simple color masks to video input from the camera.

 
After this lab, you should be able to effectively and efficiently manipulate grayscale images, as well as modify color images.

 
You may want to refer to the following TI manuals:

 	IDK
          User's Guide

	IDK
          Video Device Drivers User's Guide

	IDK
          Programmer's Guide.  Section 2 is very, very important in this lab.






Prelab



 
Having familiarized yourself with grayscale images in the previous project lab, the first part of the prelab will require you to code a function similar to the flip_invert function you have already designed, while the second part of the prelab will introduce how to use and access color images.

Grayscale



 
In this part of the prelab exercise, you will develop an algorithm to find the maximum and minimum values of a grayscale input image.  Create a function that will process one row of the image at a time and find the overall minimum and maximum intensities in the image.

 
auto_contrast_find_extrema(in_data, min, max, col)


Color



 
The NTSC camera acquires images in the color format YCbCr, where Y represents luminosity, Cb the blue component, and Cr the red component.  Each image must be converted to 16-bit RGB for output on a standard color computer monitor.  The function “ycbcr422pl_to_rgb565” performs this conversion.  Knowing how this function converts each pixel to RGB is relatively unimportant, however, knowing the packed (5:6:5) RBG format is essential.

 
Before we ignore the ycbcr422pl_to_rgb565 function completely, it is useful to look at how it operates.  Find the run time of the function by examining the file “ycbcr422pl_to_rgb565.c” and note that it must convert an even number of pixels at a time.  If it were possible to have this function process the whole color image at in one function call, how many clock cycles would the function take?  Since we are limited in the number of rows we can modify at a time, how many clock cycles should it take to process the whole image one row at a time?  To demonstrate the overhead needed for this function, note how many clock cycles the function would take if it converted the whole image two pixels at a time.

 [image: Figure (color_table.JPG)]

Figure 2.31. 
RGB (5:6:5).
A packed RGB pixel holds 5 bits for red, 6 bits for green, and 5 bits for blue.


 
Since each color is not individually addressable in the packed RGB format (e.g. bits representing red and blue are stored in the same byte), being able to modify different bits of each byte is necessary.  To help clarify what bits are being set/cleared/toggled, numbers can be represented in hex format.  For example, the integer 58 can be represented by “00111010” in binary or by “3A” in hex.  In C, hex numbers are indicated with the prefix “0x.”

 
Example:

 	int black = 0x00;  // black = 0

	int foo_h = 0xF0;  // foo_h = 240

	int foo_l = 0x0D;  // foo_l = 13





 
Another thing to note is that each pixel requires two bytes of memory, requiring two memory access operations to alter each pixel. Also NOTE that in a row of input color data, the indexing starts at 1. Thus RGB[1] contains red/green data and then RGB[2] contains the green/blue data – both for the first pixel.

 
What is the packed RGB value for the highest intensity green?  What is the value of the first addressable byte of this ‘hi-green’ pixel?  What is the value of the second byte?

 
Now, say you are given the declaration of a pixel as follows:

 
int pixel;

 
Write a simple (one line is sufficient) section of code to add a blue tint to a pixel.
Do the same for adding a red tint, and for a green tint (may require more than one line).
Use the and (represented by an ampersand) operator to apply a mask.



Implementation



 
The first part of this lab will require you to write a function to perform auto-contrasting.  You should use your function from prelab 2.1 to obtain the maximum and minimum values of the image, and then create another function to do the appropriate scaling.

 
The second part of this lab will involve implementing some simple, and hopefully cool, color effects.

Grayscale



 
Use the function you designed in prelab 2.1 to create an algorithm to auto-contrast the image.  Auto-contrast is accomplished by scaling the pixel value from the min-to-max range to the full range.  This effect is seen below:

 [image: Figure (channel_gray.jpg)]

Figure 2.32. 
(left) Frequency of a grayscale image with pixel intensities ranging in value from 32 to 128, and (right) Frequency of the same grayscale image after performing an auto-contrast.


 
Recall from “Introduction to the IDK” that the DSP has a floating point unit; the DSP will
perform floating point instructions much faster than integer division, quare-root, etc.

 
Example:

 	int opposite, adjacent;

	float tan;

	tan = ((float) opposite) / ((float) adjacent);





 
This function should be called similarly to the flip_invert function in the previous lab.  Once you have implemented your function, look for ways to optimize it.  Notice that you must loop through the image twice: once to find the minimum and maximum values, and then again to apply the scaling.  (Hint: the function dstr_rewind rewinds the image buffer).

 
Use the same core files for this part of the lab as were used in the previous lab.  You may simply make a copy of the previous lab’s folder and develop the necessary code from there.


Color



 
In this part of the lab, you will use the concepts from the prelab to implement certain effects.

 
Copy the directory “V:\ece320\projects\colorcool” to your W: drive.  

 
We want to use a certain area of the screen as a "control surface". For example, the fingers held up on a hand placed within that area can be used as a parameter, to control the image on the screen. Specifically, we will use the total brightness of this control surface to control the color tint of the screen.

 
You are given a shell program which takes in a color input frame in YcbCr format and converts it to RGB. You will modify this shell to 

 	1. Calculate the total brightness

	2. Calculate the tint for each color component R, G and B.

	3. Apply the tint to the image





Code Briefing



 
The code provided merely performs a color conversion required to go from the input NTSC image to the output RGB image. The relevant streams of data are brought in using the 
in_luma, in_cr, in_cb  	odd and even streams

 
The odd, even is done because the input YcbCr data is interlaced and the different "color" components Y(luminance), Cr, and Cb are stored in different arrays, unlike RGB where the data is packed together for each pixel.
Thus the streams are accessed inside the color_conv_image wrapper function. We then pass a line at a time to the color_conv component function which converts and flips one line at a time. 

 
We will need to modify the code here, in color_conv to achieve your goals. The control surface will be a square block 100 by 100 pixels in the bottom left corner of the screen. The brightness will be calculated by summing all the R, G and B values of all the pixels in this portion of the screen. We then apply the tint effect as such:

 	if the total brightness is below a certain level 'X': use a red tint,

	if the total brightness is above 'X' and below 'Y' : use a green tint,

	if above 'Y' : use a blue tint





 
The tint has to be scaled too. For example, if brightness is less than X but close to it we need a high blue. But if it's closer to zero we need a darker blue and so on. The scaling need not be linear. In fact if you did the auto-contrast function you will have noticed that the floating point operations are expensive, they tend to slow the system. This is more so in the color case, as we have more data to scale. So try to use simple bit shifts to achieve the needed effect. 

 	Right Shift : >>

	Left Shift : <<

	Masking : Use a single ampersand, so to extract the first red component: RGB[1] &amp; 0xF8






Tips and Tricks



 
You're on your own now! But some things to remember and to watch out for are presented here, as well as ideas for improvement.  Remember:

 	The input is two bytes per pixel. Keep the packed RGB format in mind.

	Also we process one line at a time from top to bottom. We cannot go back to previous lines to change them. So we can only modify the tint of the screen below the control surface. What you could do however is keep global variables for the different scalings in main. Then pass these to color_conv by reference, and update it when converting colors. But perform the update after using the existing scale values to scale the screen region above the control surface. This will introduce a delay from scaling change to screen update. This can be solved by copying the entire input to memory before outputting it but this is quite expensive, and we'll deal with memory in the next section.

	Be careful when performing masking, shifting and separting. Bring things down to least significant set of bits (within a byte) to simplify thinking of the scaling. Also be careful not to overlap masks, especially during shifting and adding





 
Here are a few recommendations:

 	Try to use the Y data passed to the color_con funtion to compute the brightness – much faster.

	Also poke around and find out how to use the Cr, Cb data and scale those. It's far less expensive and may produce neater results.

	If something doesn't work, think things through again. Or better still take a break and then come back to the problem.









Video Processing Part 3: Memory Management*



Introduction



 
In this project, you will learn how to combine the use of the external and internal memory systems of the IDK, as well as how to use the TI-supplied library functions. It may seem daunting, but fear not, there are only a few commands to learn. The key is to know how to use them well.

 
The project assignment will involve copying a portion of the input image and displaying it in a different area of the screen.  The area copied to should be quickly and easily adjustable in the code. In addition to this, we will filter this copied portion and display it as well.

 
And you must refer to the following TI manuals available on the class website under the Projects section. The sections mentioned in Video Processing Lab 1 are also important.

 	IDK
          Video Device Drivers User's Guide  The Display and Capture systems are important – the figures on pages 2-7 and 3-8 are useful too.

	IDK
          Programmer's Guide.  Sections 2 and 5 are the ones needed. Section 2 is very important here. Keep a printout if necessary, it is useful as a reference.






Memory - The Basics



 
As explained in the previous lab, there are two sections of memory, internal and external. The internal is small but fast, whereas the external is large but slow. An estimate of the sizes: 25K for the internal, 16M for the external, in bytes.

 
As seen earlier, this necessitates a system of transferring memory contents between the two memory systems. For example, an input color screen is in YCbCr format. This consists of 640 X 480 pixels with 8 bits per pixel. This results in 300 Kbytes, which cannot be stored in internal memory. This same problem applies for the output buffer.

 
Thus it is best to use the external memory for storage of large chunks of data, and the internal memory for processing of smaller chunks. An example of this, as seen in the previous lab, was color conversion. In that system, we brought in the input frame line-by-line into internal memory. We then converted the color space and stored the results in internal memory as well. Following this, we transferred the results to external memory.

 
This is the basic overview of the need for the two memory systems. Next we will discuss the setup and use of memory spaces, explaining the workings of the color conversion program


Memory - Setup



 
Firstly, please copy the directory below to your account so you can follow the code as we go along.

 
V:\ece320\projects\colorcool

 
The program in this directory is a basic color conversion program which outputs the input frame to the display.

Allocating Memory Space



 
The first step in using memory is to declare it, i.e. tell the compiler to setup some space for it. This is done at the very beginning of the ‘main.c’ file. 

 	1. Declare the type of memory space and it’s name. Use the #pragma DATA_SECTION command. There are two parameters :

 	a) the name of the memory spaces

	b) and the type – internal or external






	2. Then specify the byte alignment using the #pragma DATA_ALIGN command. 
This is similar to the byte alignment in the C54x. So, to store black and white images, you would use 8 bits. But for RGB, you would use 16 bits.
 

// specifies name of mem space – ext_mem
// and type as internal memory – ".image:ext_sect"
// the data_align specification is the byte alignment – ours is
// 8 bits
#pragma DATA_SECTION(ext_mem,".image:ext_sect");
#pragma DATA_ALIGN(ext_mem,8);

// specifies name of mem space – int_mem
// and type as internal memory – ".image:int_sect"
// the data_align specification is the byte alignment – ours is 
// 8 bits
#pragma DATA_SECTION(int_mem,".chip_image:int_sect");
#pragma DATA_ALIGN(int_mem, 16);





	We then specify the size of the memory space. We use a variable for the basic unit size (e.g. unsigned char for 1 byte) and a length for the number of basic units needed. Please note, the memory space is not delineated by ‘image’ rows or columns, The system thinks it is one long array of data, it is up to us to process this as separate lines of ‘image’ data.
 


// specify size as  width 640
//			    height 480
//			    and 8 bytes per pixel
// which could represent an RGB screen of 640 X 480 with 
// 2 bytes per pixel. Unsigned char = 8 bytes
unsigned char ext_mem[640 * 480 * 2];

// here we create 6 lines of RGB data of 640 columns each,
// 2 bytes per pixel 
unsigned char int_mem[6 * 2 * 640];









 
Now have a look at the main.c file and take note of the memory spaces used. The internal memory is of size 12 * 640. This single memory space is going to be used to store both the input lines from the camera image and also the results of the color conversion, thus explaining its large size. Basically the internal memory is partitioned by us for different buffers. The output data buffer needs only 4*640 bytes thus it's space starts at 

 
int_mem  + (8 * cols); 	//cols = 640

 
and ends at 12*cols – which gives us 4*cols of space. Though it is useful to partition internal memory in such a way, it is recommended not to. It is very easy to mess up the other data too, so simple, so our solution would have been to create a separate memory space of size 4*cols.

 
The external memory, though declared here, will not be used in the program, however you may need to allocate some external memory for this project lab assignment.


The INPUT and OUTPUT buffers and Main.c Details



 
Good examples of the external memory use are the input buffer (captured image) and output buffer (to be placed onto the screen). There are a few steps in obtaining these buffers:

 	1. First, we open the capture and display devices in tskMainFunc() using 
 

	VDIS_open();
	VCAP_open();




	2. If the open calls are successful, we then call the color function to process the video feed using
 

	color(VCAP_NTSC, VDIS_640X480X16, numFrames);


This specifies: 

 	the capture image format – NTSC

	display image format and size

	numFrames to run the system for – in our case one day		
to be passed on to the color function. Please note, we merely specify the formats but do not configure the system to use these formats, yet.




We then move on to the color(…) function within main.c


	3. First we declare some useful pointers which we will use for the various images and their components and so forth. The IMAGE structure holds a pointer to the image array (img_data). In addition, it holds integers for the number of image rows (img_rows) and number of image columns (img_cols).(Implementation Details in img_proc.h) Declare more of these structures as needed for any memory spaces you create yourself.	
	Furthermore, “scratch_pad” structures hold information about the location and size of internal and external memories. This is another use of pointers being used to hold the locations of the different memory spaces. (Implementation Details in img_proc.h)
We also configure the display and capture formats using 
 

	VDIS_config(displayMode);
	VCAP_config(captureMode);




	Following this we enter the loop :
 
		  
        for (frameCnt=0; frameCnt<numFrames; frameCnt++)


This loop iterates for a set number of frames and processes them one at a time.  And the lines following this :
 

	input  = VCAP_getFrame(SYS_FOREVER);
	output = (Uint16*)VDIS_toggleBuffs(0);


are used to obtain the capture and output frames. After this statement, ‘input’ will hold a pointer to external memory where the captured frame is stored. The ‘input’ pointer holds pointers ‘y1’, ‘c1’ etc to the different color component of the image. These color components are in external memory as well.
And ‘output’ will hold a pointer to a buffer in external memory, to which we will write whatever we need to output to the screen. Basically the buffer is the size of the output frame (640 X 480 X 2 bytes/pixel), and we can write what we wish to it. And, the next time togglebufs(0) is called, everything we placed in that buffer will be put on the screen. And a new buffer will be allocated, the pointer ‘output’ will be updated and we can now write to the next frame.
The next line 
 

	out_image.img_data = (unsigned char *) output;


updates the pointers we had setup.
We then move on to the color_convert(..) routine. We pass the memory pointers we had created so that our color_conv program can process the input frame we obtained.
In color_conv, we begin by setting up streams to bring in data and streams to send out data. After that we begin the color-space conversion.








Memory Streams



 
Memory streams are structures used to facilitate the transfer of data between internal and external memory. But why do we need a structure? Can’t we just do it manually?

 
You could, but you’d spend two months to do the same work as a single stream, which only takes a few minutes (hopefully). So to cut a long story short, streams are your friends. They help remove much of the complexity associated with internal/external memory transfers.

 
First, please make sure you’ve read the manual sections mentioned on page 1.
There are two basic types of streams : input and output. Input is a transfer from external to internal. Output is the opposite. Think of bringing in and putting out.

 
For each type we need to specify various parameters, such source and destination addresses, increments, size of transfer chunks and so forth. This specification is done once for each transfer session (say, once for each image transfer), using the dstr_open command. We then use dstr_get and dstr_put commands to tell the stream to bring in or put out data one chunk at a time. 

Creating and Destroying Streams



 
Streams are dstr_t objects. You can create a dstr_t object and then initialize it using the dstr_open() command. Basically, start with,
 

	dstr_t   o_dstr;


Then use the
 
 
	dstr_open (…);


The dstr_open () specification is given in the manual. Some clarifications are made here. As an example we will consider the output stream o_dstr in color_convert(). This stream is an output stream. This stream is used to transfer data from internal memory to the screen output data buffer. (we captured the buffer's memory location in the previous section using togglebufs(), it's memory address is stored in the pointer  out_image->img_data)

 
Arguments
(note : out_rows  = 480, out_cols = 640): 

 	 

dstr_t  *dstr


needs a pointer to the data stream object we wish to use. In our case this would be o_dstr.

	 

void *x_data


takes a pointer to the location in external memory which we are using. In our program this is specified in   out_image->img_data. And since we are using an output stream, this argument specifies the Destination of the stream. (This argument is the Source for an input stream)

	 

int x_size


takes in the size of the external data buffer to which we are writing to. This specifies the actual number of bytes of external memory we will be traversing. So this is NOT necessarily the full size of the output buffer (i.e. NOT always 640 X 480 X 2)
For our example we are writing to the full screen hence we use 
 

	(2 * out_rows * out_cols)

 
which results in 640 X 480 X 2 bytes of data.

An example of the exception is when we write to only, say, the first 10 rows of the screen. In this case we would only traverse: 10 X 640 X 2 bytes. 

One more thing to note is that if you need to only write to the first 40 columns of the first 10 rows, you would still need to traverse the same amount of space and you would use 10 X 640 X 2 bytes again for this argument. In this case however, you will be skipping some of the data, as shown later.


	 

void *i_data


takes a pointer to the location in internal memory we are using. In our program this is specified as   out_data. And since we are using an output stream, this argument specifies the Source of our stream. (This argument is the Destination for an input stream).


	 

unsigned short i_size


is used to specify the total size of the internal memory we will be using. In our case we will be writing one line of the output screen - (4 * out_cols) 
This is the amount we allocated earlier.

This evaluates to 640 * 2 * 2 bytes. The extra ‘2’ is needed for double-buffering, which is a system used by the IDK for transferring data into internal memory. Basically, the IDM (image data manger) needs twice the amount of internal memory as data transferred. i.e. one line is worth only 640 * 2 bytes, but because of double buffering we allocate twice that for the IDM’s use. Remember this when allocating memory space for internal memory.


	 

unsigned short quantum


specifies the amount of data transferred in a single dstr_get or dstr_put statement. In our case it would be (2 * out_cols). This evaluates to 640 * 2 bytes – one line of the output screen each time we use dstr_put

Now, if we were transferring only part of a line, let’s take the first 40 columns of the first 10 rows example. With each dstr_put, we will output only the first forty columns of each row. Thus we are transferring 40 * 2 bytes in each call.

But this can be extended further. By use of the ‘dstr_get_2D’ we can transfer multiple lines of data. So we can, say, transfer two full rows of the output screen (4 * cols)  or in our mini-example this would mean 2 * 40 * 2 bytes.

Transferring of multiple lines is very useful, especially when using filters which work on 2-D ‘regions’ of data.


	 

unsigned short multiple


specifies the number of lines we are transferring with each call. Now this is not the conceptual number of lines. It is the physical multiple of argument 6 that we are transferring. It is best to leave this at one and modify argument 6 above.


	 

unsigned short stride


needs the amount by which to move the external memory pointer. This gives us control over how the lines are extracted. In our case, it being the simplest, we move one line at a time : 2*out_cols

The stride pointer is especially useful when creating input streams. For example you can pull in overlapping lines of input. So you can pull in lines 1 and 2 in the first dstr_get(). The next dstr_get() can pull in lines 2 and 3  or you can setup it up to pull lines 3 and 4  or  4 and 5 or ….. depending on the stride.

In particular, this is useful in Sobel (edge-detect) filtering, where you need data above and below a pixel to evaluate the output.


	 

unsigned short w_size


is the window size. For transferring a single line at a time we would use '1' here, and the system will recognize this is as one line double-buffered. But if we needed to transfer two lines we would merely submit '2' as the argument.


	 

dstr_t dir


specifies the type of stream. Use DSTR_OUTPUT for output stream and DSTR_INPUT for input stream. 






 
Once a stream is created, you can use the get and put commands in a loop, to bring in or put out line/s of data. Calling dstr_get on an input stream will give you a buffer where data is present to be read off. And calling an output stream will give you a buffer to which you can write data (which will be transported out on the next dstr_put call).

 
Remember, you have to be careful how many times you call these functions as you so not want to overflow. For example in our output example, we could call the dstr_put() upto 480 times – the number of single row transfers. Anymore, and the system may crash.

 
Also please remember to close the stream once you are done with it, i.e after all iterations. See the color_convert function to see when we close the streams using dstr_close(…). This is VERY important, since not closing a stream will cause random crashing of your system. The system may seem to run as you expected, but it will crash, if not after 1 second, then after 1 minute or 1 hour. This problem is one of the first you should look for when debugging such symptoms.

 
Also take a look at the streams for the input color components YCbCr to see how they are setup. You will find the figure on Device Driver Paper page 3-8 very useful in deciphering these streams. Understand them and you are set!

 
Quick-Test: Write a stream to obtain one-line buffers for columns 31 through 50 (20 columns) of the output buffer, with 50 rows. This rectangular region should start at pixel (100, 200). So each transfer should give a buffer of 20 * 2 bytes worth of information. Think of how you’d setup the stream. 


Memory Tricks and Tips



 
Some simple memory tips are given here, you can come up with your own too.

 	Know how data flows in your system, this will help you increse efficiency and possibly eliminate complex stream use as well.

	The dstr_get_2D and dstr_put_2D are used for multiple line transfers. Use these to your advantage.

	You can use a simple memory ping-pong system to lessen memory use. If you need to use, say 200 X 300 rectangular region and filter it repeatedly. Then keep two memory 200 X 300 memory spaces. Write to the first, filter out to the second. Then filter the second out to the first, and so on until you're done.







Limitations



 

 	Space is a always a factor, especially with internal memory.

	It's harder to extract columns of data as opposed to rows. To transfer a column, you need to setup a different stream, one that skips a whole ‘row-1’ of data with each dstr_get statement. Then you will need to iterate this to get the pixel on each row of that column. Multiple get's are necessary because the data is not contiguous in memory.







IDK Libraries



 
To make your life easier, the IDK has some libraries which you can use for common image processing tasks. One such function is the Sobel (edge-detect) filter. These functions are usually hand coded in assembly and are extremely efficient, so it's best not to try to beat them.

 
The Sobel filter is contained in the file 'sobel_h.asm' and the header file needed is 'sobel_h.h'.
You must add the program file and it's header in the project to use them. Next you will need to create a wrapper function and use the 
 

	#include "sobel_h.h"


directive in the wrapper function at the top. Don't forget to create a header function for your wrapper as well and add it to your project.

 
Next you will need to setup the streams and provide the assembly function the needed parameters. Namely, it needs a pointer to 3 lines worth of input data to be processed, one line of output data, the number of columns and number of rows. The library Sobel filter works on 3 lines of input and produces 1 line of output with each call. Look at the 'sobel_h.asm' to get a better understanding of the parameters

 
This material should be familiar from the previous lab where we explored wrapper and component functions. Now time for the assignment!


The Assignment



 
Your assignment, should you choose to accept it is to build a simple filter system. You will start with the basic color conversion program given to you in:
 

	V:\ece320\projects\colorcool


The system will copy the red-component of a 100 by 100 area of the screen (let’s call this area M). It will place this in a different area of the screen. Also you will need to place a Sobel filtered version of this red-area to the screen as well. The locations where the copied and filtered images are placed must be quickly modifiable on request (use variable position as parameters to wrapper functions rather than fixed coordinates)

Tips, Tricks and Treats



 

 	Plan the system before hand to make efficient use of modular functions and memory

	For example, you only need just one “output area if size M” function to screen.

	Keep handy pointers to the different memory spaces.

	Use wrapper functions for the filter and copy_to_screen operations.

	Write the modules so that they can be tested independently.

	Be careful with color conversion. For example when copying the red-component of M, you need only 8 bits per pixel.

	Keep the previous lab in mind when deciding when/where to extract the area M.









Solutions


Chapter 3. General References



3.1. Processor



Two's Complement and Fractional Arithmetic for 16-bit Processors*



Two's-complement notation



 
	 Two's-complement notation is an efficient way of
	representing signed numbers in microprocessors. It offers the
	advantage that addition and subtraction can be done with
	ordinary unsigned operations.  When a number is written in
	two's complement notation, the most significant bit of the
	number represents its sign: 0 means that the number is
	positive, and 1 means the number is negative. A positive
	number written in two's-complement notation is the same as the
	number written in unsigned notation (although the most
	significant bit must be zero). A negative number can be
	written in two's complement notation by inverting all of the
	bits of its absolute value, then adding one to the result.
      
Example 3.1. 
 
	  Consider the following four-bit two's complement numbers (in
	  binary form):
	
Table 3.1. 	
		  
		    1=00012
		  
			
		  
		    -1=11102+12=11112
		  
		
	
		  
		    2=00102
		  
			
		  
		    -2=11012+12=11102
		  
		
	
		  
		    6=01102
		  
			
		  
		    -6=10012+12=10102
		  
		
	
		  
		    8=10002
		  
			
		  
		    -8=01112+12=10002
		  
		


 
	  
Note

	      10002
	    


	


 
	The maximum number that can be represented with a
	
	  k
	-bit two's-complement notation is
	
	  2k-1−1
	, and the minimum number that can be represented is
	
	  -2k-1
	. The maximum integer that can be represented in a
	16-bit memory register is 32767, and the minimum integer is
	-32768.
      

Fractional arithmetic



 
	The DSP microprocessor is a 16-bit integer processor with some
	extra support for  fractional arithmetic.
	Fractional arithmetic turns out to be very useful for DSP
	programming, since it frees us from worries about overflow on
	multiplies. (Two 16-bit numbers, multiplied together, can
	require 32 bits for the result. Two 16-bit fixed-point
	fractional numbers also require 32 bits for the result, but
	the 32-bit result can be rounded into 16 bits while only
	introducing an error of approximately
	
	  2-16
	.)  For this reason, we will be using fixed-point
	fractional representation to describe filter taps and inputs
	throughout this course.
      
 
	Unfortunately, the assembler and debugger we are using do not
	recognize this fractional fixed-point representation. For this
	reason, when you are using the assembler or debugger, you will
	see decimal values (ranging from -32768 to 32767) on screen
	instead of the fraction being represented. The conversion is
	simple; the fractional number being represented is simply the
	decimal value shown divided by 32768. This allows us to
	represent numbers between -1 and
	
	  1−2-15
	. 

	
Note

	  1 cannot be represented exactly.
	



      
 
	When we multiply using this representation,
	an extra shift left is required. Consider the two examples
	below:
      
Example 3.2. 
Table 3.2. 	fractional	
		  
		    0.5×0.5=0.25
		  
		
	decimal	
		  
		    16384×16384=4096×216
                       : 4096/32768
                      =1/8
		  
		
	hex	
		  
		    400016×400016=100016×216
		  
		


Table 3.3. 	fractional	
		  
		    0.125×0.75=0.093750
		  
		
	decimal	
		  
		    4096×24576=1536×216
                       : 1536/32768
                      =0.046875
		  
		
	hex	
		  
		    100016×600016=060016×216
		  
		




 
	You may wish touse the MATLAB commands hex2dec and dec2hex.
        When we do the multiplication, we are primarily interested in
	the top 16 bits of the result, since these are the data that
	are actually used when we store the result back into memory
	and send it out to the digital-to-analog converter.  (The
	entire result is actually stored in the accumulator, so
	rounding errors do not accumulate when we do a sequence of
	multiply-accumulate operations in the accumulators.)  As the
	example above shows, the top 16 bits of the result of
	multiplying the fixed point fractional numbers together is
	half the expected fractional result. The extra left shift
	multiplies the result by two, giving us the correct final
	product.
      
 
	The left-shift requirement can alternatively be explained by
	way of decimal place alignment.  Remember that when we
	multiply decimal numbers, we first multiply them ignoring the
	decimal points, then put the decimal point back in the last
	step.  The decimal point is placed so that the total number of
	digits right of the decimal point in the multiplier and
	multiplicand is equal to the number of digits right of the
	decimal point in their product.  The same applies here; the
	"decimal point" is to the right of the leftmost (sign) bit,
	and there are 15 bits (digits) to the right of this point. So
	there are a total of 30 bits to the right of the decimal in
	the source.  But if we do not shift the result, there are 31
	bits to the right of the decimal in the 32-bit result. So we
	shift the number to the left by one bit, which effectively
	reduces the number of bits right of the decimal to 30.
      
 
	Before the numbers are multiplied by the ALU, each term is
	 sign-extended generating a 17-bit number from the
	16-bit input.  Because the examples presented above are all
	positive, the effect of this sign extension is simply adding
	an extra "0" bit at the top of the register
	(i.e., positive numbers are not affected by
	the sign extension).  As the following example illustrates,
	not including this sign-bit for negative numbers produces
	erroneous results.
      
Table 3.4. 	fractional	
		
		  -0.5×0.5=-0.25
		
	decimal	
		
		  49152×16384=12288×216
                     : 12288/32678
                    =0.375
		
	      
	hex	
		
		  C00016×400016=3000000016=300016×216
		
	      


 
	Note that even after the result is left-shifted by one bit
	following the multiply, the top bit of the result is still
	"0", implying that the result is incorrectly interpreted as a
	positive number.
      
 
	To correct this problem, the ALU sign-extends negative
	multipliers and multiplicands by placing a "1" instead of a
	"0" in the added bit. This is called  sign
	extension because the sign bit is "extended" to the
	left another place, adding an extra bit to the left of the
	number without changing the number's value.
      
Table 3.5. 	fractional	
		
		  -0.5×0.5=-0.25
		
	hex	
		
		  1C00016×400016=7000000016=700016×216
		
	      


 
	Although the top bit of this result is still "0", after the
	final 1-bit left-shift the result is E000 000h
	which is a negative number (the top bit is "1").  To check the
	final answer, we can negate the product using the two's
	complement method described above.  After flipping all of the
	bits we have 1FFF FFFFh, and adding one yields
	2000 0000h, which equals 0.25 when interpreted as
	an 32 bit fractional number.
      


Addressing Modes for TI TMS320C54x*



 
      Microprocessors provide a number of ways to specify the location
      of data to be used in calculations.  For example, one of the
      data values to be used in an add instruction may be
      encoded as part of that instruction's  opcode, the
      raw machine language produced by the assembler as it parses your
      assembly language program.  This is known as  immediate
      addressing.  Alternatively, perhaps the opcode will
      instead contain a memory address which holds the data
      ( direct addressing). More commonly, the instruction
      will specify that an auxiliary register holds the memory address
      which in turn holds the data ( indirect addressing).
      The processor knows which addressing mode is being used by
      examining special bit fields in the instruction opcode.
    
 
      Knowing the basic addressing modes of your microprocessor is
      important because they map directly into assembly language
      syntax.  Many annoying and sometimes hard-to-find bugs are
      caused by inadvertently using the wrong addressing mode in an
      instruction. Also, in any assembly language, the need to use a
      particular addressing mode often dictates which instruction one
      picks for a given task.
    
 
      Chapter five, Data Addressing, in the CPU
      and Peripherals [url] reference contains extended descriptions
      of most of the addressing modes described below.
    
Accumulators: src, dst



 
        Whenever the abbreviations src or
        dst are used in the assembly language syntax
        description for an instruction, it means that only the
        accumulators A and B may be used for
        that particular operand.  These are seen everywhere, but two
        classic examples are ld, which always loads data
        into an accumulator from somewhere else, and
        sth/stl, which always store data from an
        accumulator to somewhere else.
      
 
        Examples:
      
 
        
	ld     *AR5,A     ; sets A = (contents of memory location pointed to by AR5)
	sth    B,*AR7+    ; sets (contents of memory location pointed to be AR7) = B,
	;    and then increments AR7 by one
	
      

Memory-mapped Registers: MMR, MMRx, MMRy



 
        Many of the TMS320C54x registers are memory-mapped, meaning
        that they occupy real addresses at the low end of data memory
        space.  The most commonly used of these are the auxiliary
        registers AR0 through AR7.  Whenever
        the abbreviation MMR is used in the assembly
        language syntax description for an instruction, it means that
        any memory-mapped register may be used for that particular
        operand.  Only eight instructions use memory-mapped register
        addressing: ldm, mvdm,
        mvmd, mvmm, popm,
        pshm, stlm, and stm.
        With mvmm, since the instruction accepts two
        memory-mapped register operands, MMRx and
        MMRy, only AR0-AR7 and
        SP may be used.
      
 
        Do not use an asterisk in front of ARx variables
        here, since this is not indirect addressing.
      
 
        Examples:
      
 
        
	mvmm    AR3,AR5   ; sets AR5 = AR3
	stm     #5,AR2    ; sets AR2 = 5
	ldm     AR0,A     ; sets A = AR0
	
      

Immediate Addressing: #k3, #k5, K, #k9, #lk



 
         Immediate addressing means that the numerical
        value of the data is itself provided within the assembly
        instruction.  Various TMS320C54x instructions allow immediate
        data of 3, 5, 8, 9, or 16 bits in length, which are signified
        in the assembly language syntax descriptions with one of the
        above symbols. The 16-bit form is the most common and is
        signified by #lk.  16-bit immediate values always
        require an extra instruction word and therefore take an extra
        machine cycle to execute.
      
 
        An immediate data operand is almost always specified in
        assembler syntax by prepending a pound sign (#)
        to the data.  Depending on the context, the assembler may
        assume that you meant immediate addressing anyway.
      
 
        Examples:
      
 
        
	ld       #0,A      ; sets A = 0
	cmpm     AR1,#1    ; sets flag TC = 1 if AR1 == 1; else TC = 0
	
      
 
        Labels make this more complicated.  Recall that a label in
        your assembly code is nothing more than shorthand for the
        memory address where the labeled code or data is stored.  So
        does an instruction like
      
 
        
	stm     coef,AR2   ; sets AR2 = memory address of label coef
        
      
 
        mean to store the contents of memory location
        coef in AR2, or does it mean to
        store the memory address coef itself in
        AR2? The second interpretation is correct.
        Because the stm instruction has only one form,
        expecting a #lk immediate operand, the assembler
        does not care whether the label is prefixed with a pound sign
        or not.  Still, it would have been better for us to include
        the pound sign in the above example for clarity.
      
 
        Many instructions have several versions allowing the use of
        different addressing modes (see ld for a good
        example of this).  With these instructions, including the
        pound sign is not optional when specifying immediate
        addressing.  The only safe rule, then, is always to prefix the
        label with a pound sign if you wish to specify the memory
        address of the label and not the contents of that address.
      
 
        If you are not sure how a particular instruction has been
        assembled, you can always examine the .lst file
        produced by the assembler, and compare the hexadecimal opcodes
        listed to the left of the assembly instructions with the
        assembly opcodes given in the assembly language manual
        (Chapter 4 of the Mnemonic
        Instruction Set [url] reference).
      

Direct Addressing: Smem and others



 
        In the modes called  direct addressing by TI, the
        instruction opcode contains a memory offset (see the "dma"
        bits on page 5-8 of the 
        CPU and Peripherals [url] reference) seven bits long, which
        is combined with either the DP (data pointer) or
        SP (stack pointer) register to obtain a complete
        16-bit data-memory address.  This divides the data memory into
        pages of 128 words each.
      
 
        SP is initialized for you in the core file and
        should not need to be modified.  SP-referenced
        direct addressing is used by the pshd,
        pshm, popd, and popm
        instructions for stack manipulation, as well as by all
        subroutine calls and returns, which save program addresses on
        the stack.
      
 
        DP-referenced direct addressing is available
        wherever you see the Smem abbreviation in an
        assembly syntax description.  The advantage of
        DP-referenced addressing over the
        *(lk) form described in the next section is that
        DP-referenced addressing will not add an extra
        instruction word (and corresponding extra machine cycle).  The
        disadvantage is that it is limited to 128 words of contiguous
        memory, and you have to make sure that DP points
        to the right 128 words.  DP may be changed with
        the ld instruction as needed.
      
 
        Examples:
      
 
        
	ld     10,A      ; sets A = (contents of memory location DP + 10)
	add    6,B       ; sets B = B + (contents of memory location DP + 6)
        
      
 

	
Note

	  Make sure you understand that the numbers 10 and 6 above are
	  interpreted as memory addresses, not
	  data values.  To get data values, you would need to use a
	  pound sign in front of the numbers.
	



      

Absolute Addressing: dmad, pmad, *(lk)/Smem



 
        This seems to be TI's term for all the forms of direct
        addressing which it does not call direct addressing!  It is
        represented in assembly-instruction syntax-definitions using
        one of the above abbreviations (*(lk) addressing
        is available when the syntax definition says
        Smem).
      
dmad



 
          dmad (Data Memory ADdress) operands are used by
          mvxx data move
          instructions and represent 16-bit memory addresses in data
          memory whose contents are used in the instruction.
        
 
          Example:
        
 
          
	  f3ptr   .word    0          ; reserve one word of storage; initialize to 0
	  . . . .  
	  mvdm    f3ptr,AR4  ; set AR4 = memory address of f3ptr
          
        

pmad



 
          pmad (Program Memory ADdress) operands are used
          by the firs, macd,
          macp, mvdp, and mvpd
          instructions, as well as all subroutine calls and branching
          instructions.  They represent 16-bit addresses in program
          memory whose contents are used in the instruction, or jumped
          to in the case of branch instructions.  Other than
          subroutine calls and branches, the most common use of a
          pmad is for the firs instruction.
        
 
          Example:
        
 
          
	  firs    *AR3+,*AR4+,coefs
          
        
 
	  
Note
coefsnot


        

*(lk)



 
          *(lk) addressing is a syntactic oddity.  The
          asterisk symbol generally means that indirect addressing is
          being used (see below), but this is actually direct
          addressing with a 16-bit data memory address encoded in the
          instruction's last word.  The reason for the asterisk is
          that TI does set the "I" bit in the
          opcode, usually denoting indirect addressing, and this form
          can only be used when an Smem is called for in
          the assembly syntax.  Other bits in the low byte of the
          first instruction word tell the processor that the
          "*(lk) exception" is to be used, and to fetch
          the memory address in the next word (see the MOD bits on
          page 5-10 of the CPU
          and Peripherals [url] reference).  You can easily recognize
          this addressing mode in .lst files because the
          low byte of the first instruction word always equals
          F8h.
        
 
          Examples:
        
 
          
	  hold    .word    1           ; reserve one word of storage and initialize to 1
	  count   .word    0           ; reserve one word of storage and initialize to 0
	  . . . .
	  ld       *(count),B  ; sets B = 0 (assuming memory was not changed)
	  st       T,*(hold)   ; sets (storage location at address hold) = T
          
        


Indirect Addressing:  Smem, Xmem, Ymem



 
         Indirect addressing on the TMS320C54x always uses
        the auxiliary registers AR0 through
        AR7 and comes in two basic flavors.  These are
        easily recognized from the assembly language syntax
        descriptions as either Smem or
        Xmem/Ymem.
      
Smem



 
          In Smem indirect addressing, only one indirect
          address is used in the instruction and a number of
          variations is possible (see the table on page 5-13 of the
          CPU
          and Peripherals [url] reference).  An asterisk is always
          used, which signifies indirect addressing.  Any of the
          registers AR0-AR7 may be used,
          with optional modifications: automatic post-decrement by
          one, pre- and post-increment by one, post-increment and
          post-decrement by n (n being
          stored in AR0), and more, including many
          options for circular addressing (which automatically
          implements circular buffers) and bit-reversed addressing
          (which is useful for FFTs).
        

Xmem/Ymem



 
          Xmem/Ymem indirect addressing is generally used
          in instructions that need two different indirect addresses,
          although there are a few instances where an
          Xmem by itself is specified in order to save
          bits in the opcode for other options. In
          Xmem/Ymem indirect addressing, fewer bits are
          used to encode the option modifiers in the opcode; hence,
          fewer options are available: post-increment by one,
          post-decrement by one, and post-increment by
          AR0 with circular addressing.
        
 
          Examples:
        
 
          
	  stl    B,*AR6     ; sets (contents of location pointed to by AR6) = low word of B
	  stl    B,*AR6+0%  ; sets (contents of location pointed to by AR6) = low word of B,
	  ;      then increments AR6 with circular addressing
	  mar    *+AR3(-6)  ; decrements AR3 by 6 (increment by -6)
          
        
 

	  
Note

	    The mar (modify address register) instruction
	    is unusual in the sense that it takes an Smem
	    operand but does nothing with the data pointed to by the
	    ARx register.  Its purpose is to perform any
	    of the allowed register modifications discussed above
	    without having to do anything else.  This is often handy
	    when you are using an Xmem/Ymem-type
	    instruction but need to do an ARx
	    modification that is only allowed with an
	    Smem-type operand.
	  



        


Summary



 
        The ld instruction is illustrative of the many
        possible addressing modes which can be selected with the
        proper choice of assembly language syntax:
      
 
        
	ld      #0,A         ; immediate data:  sets A = 0
	ld      0,A          ; DP-referenced direct:  sets A = (contents of the address DP + 0)
	ld      mydata,A     ; DP-referenced direct:  sets A = (contents of the address
	;       DP + lower seven bits of mydata)
	ld      #mydata,A    ; immediate data:  sets A = 16 bit address mydata
	ld      *(mydata),A  ; *(lk) direct:  sets A = (contents of the 16 bit address mydata)
	ld      B,A          ; accumulator:  sets A = B
	ld      *AR1+,A      ; indirect:  sets A = (contents of address pointed to by AR1),
	;       and afterwards increments AR1 by one
	ldm     AR2,A        ; memory-mapped register:  sets A = AR2
        
      



3.2. Core Files



Core File: Accessing External Memory on TI TMS320C54x*



Introduction



 
	The TI DSP evaluation boards you use have a large amount of
	memory; in addition to the 32K words internal to the DSP,
	there are another 256K words of memory installed on the EVM
	board.  For many exercises, the data sets are small, and you
	worked with only the on-chip memory of the DSP and were not
	expected to consider how the use of memory impacted
	performance.  However, the large delays often required in
	audio processing, for example, require that many thousands of
	samples be stored in memory. There is not enough memory on the
	DSP microprocessor itself to store a second or more of samples
	at a 44.1 kHz sample rate, so the off-chip memory must be
	used.
      

EVM Memory Maps



 
	As you have seen, the TI TMS320C54x DSP has two separate
	memory spaces, called Program and Data.  Usually, Program
	contains your assembled program, and Data contains data, but
	sometimes it may be convenient or more efficient to violate
	this convention.  (For instance, the firs
	instruction requires filter coefficients in the Program
	address space.)  The Data space is 64K long and is accessed
	using the 16-bit auxiliary registers
	(ARx). Although the Program space is normally
	accessed using 16-bit literals stored in your program code,
	the Program space is, in fact, significantly larger than 64K.
	Using special "extended addressing" instructions, the TI DSP
	can access up to 8192K-words of memory in the Program space.
	The extended addressing instructions include far calls and
	jumps that reset the full 23-bit program counter, as well as
	accumulator-addressed data-transfer instructions.
      
Internal and external memory



 
	  In many exercises, it is possible to store program
	  instructions and data entirely in the DSP's on-chip
	  ("internal") memory. This internal memory has several
	  advantages over off-chip ("external") memory: it is much
	  faster (data stored can be accessed without delay), and
	  multiple reads and writes can access the DSP's on-chip
	  memory simultaneously. However, many applications (including
	  the audio delay effect of Using
	  External Memory) require a data buffer too large to
	  fit into the on-chip memory. For these large buffers, we
	  must use the larger but slower external memory.
	
 
	  When writing programs that require large amounts of memory,
	  use the internal memory to hold your code, filter
	  coefficients, and any small buffers you need.  External
	  memory should be used for large buffers that you only access
	  a few times per sample, like the delay buffer described in
	  Audio Effects: Using
	  External Memory.
	

TMS320C549x DSP EVM memory maps
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Figure 3.1. 
DSP EVM memory maps

 
	  As these memory maps show, the EVM's Data address space is
	  addressed fully by the 16-bit auxiliary registers
	  (ARx) and address-extension words and the
	  mapping of Data memory is not affected by the
	  OVLY bit. However, because the Program memory
	  space is much larger than can be addressed by the 16-bit
	  addressing register or the 16-bit literals stored in the
	  program, it is split up into 64K (16-bit) pages by the
	  hardware. Normal instructions, such as call,
	  firs, and mvpd accept only 16-bit
	  addresses, and can therefore only address the current "page"
	  (usually address in the form 00xxxxh, which
	  corresponds to the addresses the linker uses for your
	  program's code). To access the full 23-bit address space,
	  the DSP offers special accumulator-addressed load, store,
	  and jump instructions.
	
 
	  Further complicating matters is the fact that the
	  OVLY bit affects the mapping of the Program
	  memory space.  If you remember, before we load our DSP
	  program, we have to change the PMST to
	  FFE0h. We do this to set the OVLY
	  bit in the PMST, which maps the internal memory
	  into both the Program and Data spaces of the DSP.  If
	  OVLY is 1, the internal memory appears in both
	  the Data and Program memory address space at locations
	  0080h to 07FFFh. Therefore, with
	  OVLY set, anything written into Data memory
	  below 07FFFh will overwrite a program stored in
	  the same location. [8] In addition, copies of the internal memory
	  also appear in the extended Program address space, occupying
	  locations 0080h-7FFFh of each
	  page. Therefore, with OVLY set, any addresses
	  to Program memory locations in the form of
	  xx0000h-xx7FFFh reference internal
	  memory.
	
 
	  When OVLY is zero, internal memory is not
	  mapped into the Program space at all; in this case, the
	  Program space includes only external memory. In this mode,
	  all 192K words of external Program RAM are accessible,
	  although several wait states will be required for accessing
	  each item of memory.  In the overlay mode, only addresses in
	  the ranges of 08000h-0FF00h,
	  1800h-1FFFFh, and
	  28000h-2FFFFh are available to
	  store your data buffers; the remaining addresses are
	  unmapped or map to the on-chip RAM.
	
 
	  To escape this confusion and allow the full 192K-words of
	  external Program RAM to be used for your data buffers, the
	  core file provides mechanisms for manipulating the
	  PMST indirectly. Instead of accessing the
	  external Program RAM directly, we can use the special macros
	  to access the RAM that is normally "hidden" by the internal
	  memory. This allows us to use the full range of external
	  memory available: addresses
	  000000h-00FF00h and
	  010000h-02FFFF. However, since
	  addresses 00FF00h-00FFFFh are
	  reserved by the core file, you must be careful not to write
	  to addresses in this range.  


Accessing Extended Program RAM



 
	The core file provides two macros for accessing data stored in
	the external Program RAM: READPROG and
	WRITPROG.  These macros allow the processor to
	copy data between data memory and external Program
	memory. Both macros address external Program memory using the
	value in accumulator A.  READPROG
	reads data from the external Program memory location pointed
	to by A and writes it to the data memory location pointed to
	by AR1. WRITPROG reads data from the
	memory location pointed to by AR1 and writes it
	to the location in external Program RAM specified by
	accumulator A. Both macros take one parameter, a
	count; specifying 1 reads or writes one word from external
	memory, and specifying some other number
	
	  n
	 transfers 
	
	  n
	 words starting at the locations pointed to by
	A and AR1.  AR1 is left
	pointing at the word after the last word read or written; no
	other registers are modified.
      
 
	For instance, the following code fragment loads the value
	contained in memory location 023456h into the
	location 0064h in data memory using the
	READPROG macro:
      
 

	
	1    stm	#64h,AR1	; load 64h into AR1
	2    ld	#02h,16,A	; load 02h in high part of A
	3    adds 	#3456h,A	; fill in low part of A
	4				; A contains 023456h
	5	  READPROG 1 		; read from 023456h in external Program RAM
	6				; into *AR1 in Data RAM
	
      
 
	The WRITPROG macro can be used similarly to write
	into extended Program RAM:
      
 

	      
	1   stm	#64h,AR1	; load 64h into AR1
	2	ld	#02h,16,A	; load 02h in high part of A
	3	adds	#3456h,A	; fill in low part of A
	4				; A contains 023456h
	5	WRITPROG	1	; write from *AR1 in Data RAM to
	6				; 023456h in external Program RAM
	
      
 
	Note that Code Composer will not display or allow you to
	change the contents of the external Program RAM on the
	memory-dump or disassembly screen, though you can view or
	change it indirectly by watching the effects of the
	READPROG and WRITPROG macros on data
	memory.
      


Core File: Introduction to Six-Channel Board for TI EVM320C54*



The Six Channel Surround Sound Board



 
	The six-channel board attaches to the top of the DSP
	evaluation module and replaces its onboard, one-channel A/D
	and D/A with six channels of D/A and two channels of A/D
	running at a sample rate of 44.1 kHz. Alternatively, the A/D
	can be disabled and a SP/DIF digital input enabled, allowing
	PCM digital data from a CD or DVD to be sent directly into the
	DSP for processing. The two input channels and six output
	channels all sample at the same time; clock skew between
	channels is not an issue. By default, the core code reads and
	writes blocks of 64 samples for each channel of input and
	output; however, this aggregation can be changed to any value
	between 1 and 80 samples[9].  If your code needs a larger
	aggregation of samples - for instance, for a 256 point FFT -
	you will need to do this aggregation yourself.
      
 
	Other features include buffered serial communication code,
	which allows you to send and receive data from the serial
	port. This can be used to control your DSP program with a
	graphical user-interface on the PC; it can also be used to
	report status back to the PC for applications such as speech
	recognition.
      
 
	The core code, core.asm
	(which requires globals.inc,
	ioregs.inc, and misc.inc) also initializes the DSP
	itself. It enables the fractional arithmetic mode for the ALU,
	programs the wait states for the external memory, and sets the
	DSP clock to 80 MHz[10].
      
Testing the six-channel sample code



 
	  We will start with a sample application, which simply sends
	  the inputs into the outputs--relaying both the audio inputs
	  from the A/D converters to the D/A converters, and any data
	  that comes in on the serial port back to the PC.  To
	  familiarize yourself with this sample application, locate a
	  copy of thru6.asm
	  and assemble it.
	
 
	  Once you have done that, start Code Composer. Since we are
	  using the on-chip RAM on the TMS320C549 to hold program
	  code, we need to map that RAM into program space before we
	  can load our code. This can be done by opening the CPU
	  Registers window (the same one you use to look at the
	  ARx registers and the accumulators) and
	  changing the PMST register to
	  0xFFE0. This sets the OVLY bit to
	  1, switching the internal RAM into the DSP's program memory
	  space.
	
 
	  Finally, load the thru6.out file, use Code
	  Composer's Reset DSP menu option to reset the
	  DSP, and run the code.  Probe at the connections with the
	  function generator and the oscilloscope; inputs and outputs
	  are shown in Figure 3.2. Note that output
	  channels 1-3 come from input channel 1, and output channels
	  4-6 come from input channel 2. Figure 3.2 shows
	  the six-channel board's connector configuration.
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Figure 3.2. 
Six-Channel Board Analog Inputs and Outputs

 
	  Also test the serial communications portion of the thru6.asm
	  application. This can be done by starting a provided
	  terminal emulator package (such as Teraterm Pro or
	  HyperTerminal), configuring it to communicate at 38400 bps,
	  with no parity, eight data bits, and one stop bit, and
	  attaching the correct serial port on the computer to the TI
	  TMS320C54x EVM.  A serial port is a 9-pin D-shell connector;
	  it is located on the DSP EVM next to the power
	  connector. Typically, there will be two matching D-shell
	  connectors on your computer, often labeled COM1 and COM2;
	  make sure you connect your serial cable to the right one!

	
 
	  Once you have started the terminal emulator, and the
	  emulator has been correctly set to communicate with the DSP
	  board, reload and rerun the thru6.asm
	  application. Once it is running, you should be able to
	  communicate with the DSP by typing text into the terminal
	  emulator's window. Characters that you type should be echoed
	  back; this indicates that the DSP has received and
	  retransmitted the characters. If the DSP is not connected
	  properly or not running, nothing will be displayed as you
	  type. If this happens, check the connections and the
	  terminal emulator configuration, and try again.  Due to a
	  terminal emulation quirk, the "Enter" key does not work
	  properly.
	
 
	  After you have verified that the EVM is communicating with
	  the PC, close the terminal window.


Memory Maps and the Linker



 
	Because the DSP has separate program and data spaces, you
	would expect for the program and data memory to be
	independent. However, for the DSP to run at its maximum
	efficiency, it needs to read its code from on-chip RAM instead
	of going off-chip; off-chip access requires a one- or
	two-cycle delay whenever an instruction is read.  The 32K
	words of on-chip RAM, however, are a single memory block; we
	cannot map one part of it into program space and another part
	of it into data space. It is possible to configure the DSP so
	that the on-chip RAM is mapped into both program space and
	data space, allowing code to be executed from the onboard
	memory and avoiding the extra delay.  Figure 3.3
	shows the DSP's memory map with the DSP's on-chip memory
	mapped into program space.
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Figure 3.3. 
Hardware Memory Map

 
	Because the same on-chip RAM is mapped into both program and
	data space, you must be careful not to overwrite your code
	with data or vice versa. To help you, the linker will place
	the code and data in different parts of the memory map. If you
	use the .word or .space directives
	to inform the linker of all of your usage of data memory, you
	will not accidentally try to reuse memory that has been used
	to store code or other data.  (Remember that
	.word allocates one memory location and
	initializes it to the value given as its
	parameter. .space 16*<words> allocates
	<words> words of uninitialized storage.)
	Avoid using syntaxes like stm #2000h,AR3 to point
	auxiliary registers to specific memory locations directly, as
	you may accidentally overwrite important code or
	data. Instead, use syntaxes like stm #hold,AR3,
	where hold is a label for memory explicitly
	declared by .word or .space
	directives.
      
 
	There are two types of internal memory on the TI TMS320C549
	DSP: SARAM (Single Access RAM) and DARAM (Dual Access
	RAM). The first 8K of internal memory is DARAM; the next 24K
	is SARAM. The difference between these two types of memory is
	that while SARAM can only be read or written once in a cycle,
	DARAM can be read or written twice in a cycle. This is
	relevant because the TMS320C549 DSP core can access memory up
	to three times in each cycle: two accesses in Data RAM to read
	or write operands, and one access in Program RAM to fetch the
	next instruction.  Both DARAM and SARAM are divided into
	"pages"; access to memory located in different "pages" will
	never conflict. If, however, two operands are fetched from the
	same "page" of SARAM (which is divided into 8K word pages:
	2000h-3FFFh,
	4000h-5FFFFh, and
	6000h-7FFFh) in the same cycle, a
	one-cycle stall will occur while the second memory location is
	accessed.  Due to the pipeline, two memory accesses in the
	same instruction execute in different cycles. However, if two
	successive instructions access the same area of SARAM, a stall
	can occur.
      
 
	Part of the SARAM (from 6000h to
	7FFFh) is used for storing your program code; a
	small amount of SARAM below 6000h is also used
	for storing the DSP's stack.  Part of the DARAM (from
	0800h to 0FFFh) is used for the
	input and output buffers and is also unavailable. Ensure that
	any code you write does not use any of these reserved sections
	of data memory. In addition, the core file reserves six
	locations in scratch-pad RAM (060h to
	065h); do not use these locations in your program
	code.
      

Sections and the Linker



 
	You can use the .text directive to declare
	program code, and the .data directive to declare
	data. However, there are many more sections defined by the
	linker control file. Note that the core file uses memory in
	some of these sections.
      
 
	You can place program code in the following sections using the
	.sect directive:
	
 	
	    .text: (.sect ".text") SARAM
	    between 6000h and 7FFFh (8192
	    words)
	  

	
	    .etext: (.sect ".etext")
	    External RAM between 8000h and
	    FEFFh (32,512 words) The test-vector version
	    of the DSP core stores the test vectors in the
	    .etext section.
	  





	You can place data in the following sections:

	
 	
	    .data: (.sect ".data") DARAM between
	    1000h and 1FFFh (4096 words)
	  

	
	    .sdata: (.sect ".sdata") SARAM between
	    2000h and 5EFFh (16,128 words)
	  

	
	    .ldata: (.sect ".ldata") DARAM between
	    0080h and 07FFh (1,920 words)
	  

	
	    .scratch: (.sect ".scratch") Scratchpad RAM
	    between 0060h and 007Fh (32
	    words)
	  

	
	    .edata: (.sect ".edata") External RAM between
	    8000h and FFFFh (32,768 words)
	    (Requires special initialization; if you need to use this
	    memory, load and run the thru6.asm
	    application before you load your application to initialize
	    the EVM properly.)
	  




	If you always use these sections to allocate data storage
	regions instead of setting pointers to arbitrary locations in
	memory, you will greatly reduce the chances of overwriting
	your program code or important data stored at other locations
	in memory. However, the linker cannot prevent your pointers
	from being incremented past the end of the memory areas you
	have allocated.
      
 
	Figure 3.4 shows the memory regions and sections
	defined by the linker control file. Note that the sections
	defined in the linker control file but not listed above are
	reserved by the core file and should not be used.
      
 [image: Figure (linkmap.png)]

Figure 3.4. 
Linker Memory Map and Section Names


Using the Core File



 
	To simplify discussion, we have split up the thru6.asm
	file into two separate files for discussion. One, thru6a.asm contains only the code for
	using the A/D and D/A converters on the six-channel surround
	board; the other, ser_echo.asm
	contains only the code to send and receive data from the
	serial port.
      
Using the D/A and A/D converters



 

	  Here we will discuss thru6a.asm, which is shown below.
	  ser_echo.asm
	  is discussed in Core
	  File: Serial Port Communication Between MATLAB and TI
	  TMS320C54x.

	
 
	  

	  1		.copy "core.asm"
	  2
	  3		.sect ".text"
	  4	main
	  5		; Your initialization goes here.
	  6	
	  7	loop
	  8		; Wait for a new block of 64 samples to come in
	  9		WAITDATA
	  10	
	  11		; BlockLen = the number of samples that come from WAITDATA (64)
	  12		stm #BlockLen-1, BRC	; Repeat BlockLen=64 times
	  13		rptb block-1		; ...from here to the "block" label
	  14
	  15		ld      *AR6,16, A		; Receive ch1
	  16		mar *+AR6(2)                ; Rcv data is in every other word
	  17		ld      *AR6,16, B		; Receive ch2
	  18		mar *+AR6(2)                ; Rcv data is in every other word
	  19
	  20		; Code to process samples goes here.
	  21
	  22		sth A, *AR7+		; Store into output buffer, ch1
	  23		sth A, *AR7+		; ch2
	  24		sth A, *AR7+		; ch3
	  25
	  26		sth B, *AR7+		; Store into output buffer, ch4
	  27		sth B, *AR7+		; ch5
	  28		sth B, *AR7+		; ch6
	  29		    
	  30	block
	  31		b loop

	  

	
 

	  Line 1 copies in the core code, which
	  initializes the six-channel board and the serial interface,
	  provides the interface macros, and then jumps to "main" in
	  your code. Line 3 declares that what follows
	  should be placed in the program-code area in internal
	  memory.
	  
	
 
	  On Line 4, we find the label "main". This is
	  the entry point for your code; once the DSP has finished
	  initializing the six-channel board and the serial port, the
	  core file jumps to this label.
	
 
	  On Line 9, there is a call to
	  WAITDATA. WAITDATA waits for the
	  next block of 64 samples to arrive from the A/D. When it
	  returns, a pointer to the samples captured by the A/D is
	  returned in AR6 (which can also be referred to
	  as pINBUF); a pointer to the start of the
	  output buffer is returned in AR7 (also
	  pOUTBUF). Note that WAITDATA
	  simply calls the wait_fill subroutine in the
	  core file, which uses the B register
	  internally, along with the DP register and the
	  TC flag; therefore, do not expect the value of
	  B to be preserved across the
	  WAITDATA call.
	
 
	  Lines 12 and 13 set up a block
	  repeat. BlockLen is set by the core code as the
	  length of a block; the repeat instruction therefore repeats
	  for every sample time.  Lines 15-18 retrieve
	  one sample from each of the two channels; note that the
	  received data is placed in every other memory
	  location. Lines 22-24 place the first input
	  channel into the first three output channels, and
	  lines 26-28 place the second input channel into
	  the last three output channels. Figure 3.2 shows the relationship between the channel
	  numbers shown in the code and the inputs and outputs on the
	  six-channel board.
	
 
	  Line 31 branches back to the top, where we wait
	  for the next block to arrive and start over.
	

Using test vectors



 
	  A second version of the core file offers the same interface
	  as the standard core file, but instead of reading input
	  samples from the A/D converters on the six-channel board and
	  sending output samples to the D/A converters, it reads and
	  writes from test vectors generated in MATLAB.
	
 
	  Test vectors provide a method for testing your code with
	  known input.  Given this known input and the specifications
	  of the system, we can use simulations to determine the
	  expected output of the system. We can then compare the
	  expected output with the measured output of the system.  If
	  the system is functioning properly, the expected output and
	  measured output should match[11].

	
 
	  Testing your system with test vectors may seem silly in some
	  cases, because you can see if simple filters work by looking
	  at the output on the oscilloscope as you change the input
	  frequency. However, they become more useful as you write
	  more complicated code. With more complicated DSP algorithms,
	  testing becomes more difficult; when you correct an error
	  that results in one case not working, you may introduce an
	  error that causes another case to work improperly.  This may
	  not be immediately visible if you simply look at the
	  oscilloscope and function generator; the oscilloscope does
	  not display the signal continuously and transient errors may
	  be hidden.  In addition, it is easy to forget to check all
	  possible input frequencies by sweeping the function
	  generator after making a change.
	
 
	  More importantly, the test vectors also allow you to test
	  signals that cannot be generated or displayed with the
	  oscilloscope and function generator.  One important signal
	  that cannot be generated or tested with the function
	  generator and oscilloscope is the impulse function; there is
	  no way to view the impulse response of a filter directly
	  without using test vectors. The unit impulse represents a
	  particularly good test vector because it is easy to compare
	  the actual impulse response of a digital filter against the
	  expected impulse response. Testing using the impulse
	  response also exposes the entire range of digital
	  frequencies, unlike testing using periodic waveforms
	  generated by the function generator.
	
 
	  Lastly, testing using test vectors allows us to isolate the
	  DSP from the analog input and output section. This is useful
	  because the analog sections have some limitations, including
	  imperfect anti-aliasing and anti-imaging filters.  Testing
	  using test vectors allows us to ensure that what we see is
	  due only to the digital signal processing system, and not
	  imperfections in the analog signal or electronics.
	
 
	  After generating a test vector in MATLAB, save it to a file
	  that can be brought into your code using the MATLAB command
	  save_test_vector (available as save_test_vector.m):
	
 
	  
	  >> save_test_vector('testvect.asm',ch1_in,ch2_in);  % Save test vector
	  

	
 
	  (where ch1_in and ch2_in are the
	  input test vectors for input channel 1 and input channel 2;
	  ch2_in can be omitted, in which case both
	  channels of the test-vector input will have the same data.)
	
 
	  Next, modify your code to include the test-vector support
	  code and the test-vector file you have created. This can be
	  done by replacing the first line of the file (which is a
	  linker directive to copy in core.asm) with two
	  lines. Instead of:
	
 
	  
	  .copy	"core.asm"
	  

	
 
	  use:
	
 
	  
	  .copy	"testvect.asm"
	  .copy	"vectcore.asm"
	  

	
 
	  Note that, as usual, the whitespace in front of the
	  .copy directive is required.  (Download
	  vectcore.asm into your work directory if you do not
	  already have a copy.)
	
 
	  The test vectors occupy the .etext section of
	  program memory between 08000h and
	  0FEFFh. If you do not use this section, it will
	  not interfere with your program code or data. This memory
	  block is large enough to hold a test vector of up to 4,000
	  elements. Both channels of input, and all six channels of
	  output, are stored in each test vector element.
	
 
	  Now assemble and load the file, and reset and run as usual.
	  After a few seconds, halt the DSP (using the Halt command
	  under the Debug window) and verify that the DSP has halted
	  at a branch statement that branches to itself: spin b
	  spin.
	
 
	  Next, the test vector should be saved and loaded back into
	  MATLAB.  This is done by saving
	  
	    6k
	   memory elements (where 
	  
	    k
	   is the length of the test vector in samples, and
	  the 6 corresponds to the six output channels) starting with
	  location 08000h in program memory.  Do this by
	  choosing File->Data->Save... in Code Composer,
	  then entering the filename output.dat and
	  pressing Enter.  Next, enter
	  0x8000 in the Address field of the dialog box
	  that appears,
	  
	    6k
	   in the Length field, and choosing "Program" from
	  the drop-down menu next to "Page." (Always ensure that you
	  use the correct length - six times the length of the test
	  vector - when you save your results.)
	
 
	  Last, use the read_vector function (available
	  as read_vector.m)
	  to read the saved test vector output into MATLAB. Do this
	  using the following MATLAB command:
	
 
	  
	  >> [ch1, ch2, ch3, ch4, ch5, ch6] = read_vector('output.dat');
	  

	
 
	  The MATLAB vectors ch1 through ch6
	  now contain the output of your program code in response to
	  the input from the test vector.
	




3.3. Code Composer



Debugging and Troubleshooting in Code Composer*



Introduction



 
	Code Composer provides a rich debugging environment that
	allows you to step through your code, set breakpoints, and
	examine registers as your code executes. This document
	provides a brief introduction to some of these debugging
	features.
      

Debugging Code



Controlling program flow



 
	  Breakpoints are points in the code where execution is
	  stopped and control of the DSP is returned to the debugger,
	  allowing you to view the contents of registers and
	  memory. Breakpoints can be activated or deactivated by
	  double-clicking on any line of code in the disassembly
	  window.[12]
	
 
	  You may also want to step through your program code,
	  executing one line at a time, to follow branches and watch
	  memory change with the results of calculations. This can be
	  done by choosing the "Step Into" or "Step Over" menu options
	  from the "Debug" pull-down menu. (Unlike "Step Over," "Step
	  Into" traces subroutine calls caused by "call" opcodes.)
	
 
	  Like most DSPs, the DSP we are using is a pipelined
	  processor, which means that instructions execute in several
	  stages over several clock cycles.  Unfortunately, our
	  debugger does not "flush" the pipeline of all current
	  instructions when it halts your program; i.e., the DSP does
	  not execute all remaining stages of instructions.  As a
	  consequence, when a program halts, the register values shown
	  in the register and memory windows may not actually the last
	  values written.  Often, the values shown correspond to
	  values written several cycles before the current
	  instruction.  If it is necessary to know the exact contents
	  of the registers at any particular point in the program
	  flow, simply insert three or more nop (no
	  operation) instructions into your program after the
	  instruction in question. Then, to debug, execute the
	  instruction in question and the nop
	  instructions that follow; this will flush the pipeline.
	
 
	  You can choose the "Run Free" option from the "Debug"
	  pull-down menu to allow the your code to run freely,
	  ignoring any breakpoints.  The code will continue running
	  until explicitly halted with the "Halt" command.
	
 
	  Note that stopping and restarting execution sometimes
	  confuses the A/D and D/A converters on the six-channel
	  surround-sound board.  If this happens, the output will
	  generally go to zero or become completely unrelated to the
	  input signal. This can be fixed by simply resetting the DSP
	  and starting your code from the beginning.
	
 
	  The bar on the left-hand side of the Code Composer Studio
	  window contains shortcuts for many of the commands in the
	  Debug menu.
	  
Practice

	    Practice setting breakpoints in your program code and
	    single-stepping by setting a breakpoint after the
	    WAITDATA call and tracing through the program
	    flow for several iterations of the FIR filter code. What
	    code does the WAITDATA call correspond to in
	    the disassembly window?
	  




	


Troubleshooting



 
	The DSP boards can behave unexpectedly. If there is no output,
	try the following (from less to more drastic):

	
 	Use the Debug menu to halt and reset the DSP, verify
	    that the PMST is set to 0xFFE0,
	    reload the code, reset the DSP, and restart the code.
	  

	Press the "Reset" button on the DSP evaluation board,
	    then use the Code Composer Studio menus to halt, reset the
	    DSP, verify the PMST, reload, reset the DSP
	    again, and restart your code.
	  

	Close Code Composer Studio, then
	     power-cycle the DSP by unplugging power to
	    the DSP board, waiting five seconds, and plugging it back
	    in.  Then restart Code Composer Studio. You will need to
	    reset the PMST to 0xFFE0, then
	    reload, reset the DSP, and execute your code.
	  




	If code does not load correctly, close Code Composer Studio
	and power-cycle the DSP.
      
 
	If problems persist after power-cycling the DSP, ensure that
	the DSP board is functioning properly by executing previously
	verified code.  Do not forget to set the PMST and
	to reset the DSP from the Code Composer Studio menu.
      
 
	If you try all of these steps and still see problems, ask a
	teaching assistant for help.
      



3.4. MATLAB



Using the Serial Port with a MATLAB GUI*



Introduction



 
            The serial port on the back of the DSP box can be used to transmit 
            data between the DSP and the PC during real-time operation.  Eight bits of
            data can be transmitted at one time (signed or unsigned).  This can then be used 
            as feedback from the DSP for a variety of applications.  The serial port is 
            connected to a data buffer which holds values coming from the DSP until they are read.  This
            allows for sending larger amounts of data (more than 1-byte) at a time from the DSP to the PC.
            The same is true in the opposite direction.  
            
 Our Serial Port Specifications
	Port: com2

	DataRate: 38400

	Parity: None

	StopBits : 1 Stop Bit

	DataBits : 8 Data Bits

	Handshaking : none




            These parameters can be used when accessing the serial port through third-party utilities such
            as HyperTerminal (included with windows).
        

Using the DSP to Access the Serial Port



 
            The serial port data buffer can be written to with either C or assembly code.  
            These functionalities are supplied through the core file, so it must be included
            with any of this code.
        
Using Assembly to Send/Receive



 
                Accessing the serial port in assembly comes in the form of macros (READSER and WRITSER).  
                These macros allow for multiple bytes of data to be written to the serial port
                buffer at a time.  
            
 	
                READSER
                 : READSER accepts one parameter, an integer number(n).  The macro will read n bytes
                into memory and place them starting at the address *AR3.  The macro modifies AR3 and it is left
                pointing to one byte past the last memory location written.  The actual number of data bytes read is
                put into AR1.  If AR1 is zero, there were no available data byte sin the buffer. The calling
                format is: READSER n
            

	
                WRITSER
                 : Similar to the previous macro, WRITSER takes a single integer parameter n.  This macro will add
                n bytes starting at *AR3 to the serial port buffer.  *AR3
                is left pointing one location after the last memory read.  This data is queued in the buffer and will
                remain there until the PC retrieves the data. The calling format is: WRITSER n
            



Warning

                READSER and WRITSER modify registers AR0, AR1, AR2, AR3, and BK as well as the flag TC. 
            


 
                The core file allows up to 126 characters to be stored in the input and output buffers. 
                No checks to protect against buffer overflows are made, so do not allow the input and output 
                buffers to overflow. (The length of the buffers can be changed by changing ser_rxlen and ser_txlen
                values in the core.asm file.) The buffers are 127 characters long; however, 
                the code cannot distinguish between a completely-full and completely-empty buffer. 
                Therefore, only 126 characters can be stored in the buffers. 
            
 
                It is easy to check if the input or output buffers in memory are empty. 
                The input buffer can be checked by comparing the values stored in the memory 
                locations srx_head and srx_tail; if both memory locations hold the same value, 
                the input buffer is empty. Likewise, the output buffer can be checked by comparing 
                the values stored in memory locations stx_head and stx_tail. The number of characters 
                in the buffer can be computed by subtracting the head pointer from the tail pointer; 
                add the length of the buffer (normally 127) if the resulting distance is negative. 
            
Example 3.3. 
 
                Download the code here ser_echo
            
 
1 .copy "v:\54x\dsplib\core.asm" 
2 
3       .sect ".data" 
4 hold  .word 0 
5 
6       .sect ".text" 
7 main 
8       stm #hold,AR3       ; Read to hold location  
9 
10      READSER 1          ; Read one byte from serial port 
11          
12      cmpm AR1,#1        ; Did we get a character? 
13      bc main,NTC        ; if not, branch back to start 
14 
15      stm #hold,AR3      ; Write from hold location 
16      WRITSER 1          ; ... one byte 
17 
18      b main 
            
 
                On Line 8, we tell READSER to receive into the location hold by setting AR3 to point at it. 
                On Line 9, we call READSER 1 to read one serial byte into hold; the byte is placed in the 
                low-order bits of the word and the high-order bits are zeroed. If a byte was read, 
                AR1 will be set to 1. AR1 is checked in Line 12; Line 13 branches back to the top if no 
                byte was read. Otherwise, we tell reset AR3 to hold (since READSER moved it), then call 
                WRITSER to send the word we received on Line 16. On Line 18, we branch back to the start to 
                receive another character. 
            


Alternative Method in Assembly



 
                Many students have found that there are issues with the READSER and WRITSER macros.  Performance
                of these macros is often "flaky" if they even work at all.  Two ECE 320 students 
                I-Ju Liao and Jung-Gyu Lee from the Fall 2002 semester created this alternative method which
                provides much better assembly support for serial port access.  The following is a skeleton
                for reading data from the serial port onto the DSP:
            
Example 3.4. 
 
                Skeleton of a program for receiving data over the serial port. The function 
                of interest is get_data. In this function, we first recieve one 8 bit value 
                and store it at value_1. Then, we receive one 16 bit value and store it at 
                value_2. 
            
 
.copy "v:\ece320\54x\dsplib\core.asm" 
                                    
                                    
        .sect ".data" 
value_1 .word 0 
value_2 .word 0 
                    
                    
        .sect ".text" 
main: 
                    
loop: 
        WAITDATA 
                
        call #get_data      ; call function to get serial port data 
                    
        stm #BlockLen-1, BRC 
        rptb endblock-1 
                
        ;******your code goes here
                    
endblock: 
        b loop 


                    
get_data: 
        pshm AR0            ; we save all registers that are used in 
        pshm AR2            ; this function - note that accumulator 
        pshm AR3            ; B IS OVERWRITTEN! 
        pshm BK 
                    
        mvdm #srx_head, AR2 ; srx_head, defined in core.asm, points 
                            ; to one element past the last value 
                            ; recieved in the serial recieve buffer 
                                            
        stm #ser_rxlen, BK  ; set BK to length of receive buffer 
                        
        mar *+AR2(-4)%      ; AR2 now points to the most recently 
                            ; received block of 24 bits, i.e. one 8 
                            ; bit value and one 16 bit value 
                   
        stm #1, AR0         ; set increment 
                        
        stm #value_1, AR3   ; get first value 
        mvdd *AR2+0%, *AR3  ; save at value_1 
                        
        stm #value_2, AR3   ; get second value 
        ld *AR2+%, 8, B     ; place first 8 bits in high part of B 
        or *AR2+%, B        ; combine last 8 bits in low part of B 
        stl B, *AR3         ; save at value_2 
                    
        popm BK 
        popm AR3 
        popm AR2 
        popm AR0 
        ret
                


Note

                    The above program does not describe an alternative means for transmitting data 
                    from the DSP board. Some simple sleuthing in the core.asm file starting at stx 
                    head should shed some light on the subject. 
                




Using C to Send/Receive



 
                There are several functions for transmitting and receiving serial data within the C environment: 
            
 	SerialRX() takes no arguments and returns an integer, which is the next byte waiting in the serial input buffer. If there is no byte waiting, the function returns -1. 

	SerialTX() takes one argument, an integer to place in the serial output buffer. It returns nothing. 

	SerialRXBufCheck() takes no arguments and returns the number of bytes waiting in the serial input buffer. 

	SerialRXm() takes two arguments: the first is the number of bytes to read from the serial input buffer, and the second is a pointer, which is usually the name of an array into which the bytes will be copied. If you attempt to read more bytes than are waiting, the function will only copy those bytes that are waiting and then return. It always returns the number of characters read. 

	SerialTXm() takes two arguments: the first is the number of characters to write into the serial output buffer, and the second is a pointer, which is usually the name of an array containing the bytes to copy. It returns nothing. 



Note

                The restrictions on buffer length discussed in the assembly section also apply in C: No more than 126 bytes can be stored in the serial transmit buffer or in the serial input buffer, and the core file does not attempt to prevent buffer overflow. Be careful. 
            


Example 3.5. 
 
                The following example shows a simple C program that will echo received serial data back through the serial port, much like the assembly example from the previous section. 
            
 
1   #include "v:/ece320/54x/dspclib/core.h" /* Declarations for core file */ 
2 
3   main() 
4   { 
5       int *Rcvptr, *Xmitptr; /* pointers to Xmit and Rcv Bufs */ 
6       int i; 
7  
8       while(1) 
9       { 
10          WaitAudio(&Rcvptr, &Xmitptr); 
11 
12          for(i=0; i < BlockLen; i++) 
13          { 
14              Xmitptr[6*i] = Rcvptr[4*i]; 
15              Xmitptr[6*i+1] = Rcvptr[4*i]; 
16              Xmitptr[6*i+2] = Rcvptr[4*i]; 
17              Xmitptr[6*i+3] = Rcvptr[4*i+2]; 
18              Xmitptr[6*i+4] = Rcvptr[4*i+2];         
19              Xmitptr[6*i+5] = Rcvptr[4*i+2]; 
20          } 
21 
22          i = SerialRX(); /* Check serial port */ 
23          if (i > 0) 
24              SerialTX(i); /* Echo received byte */ 
25 
26      } 
27  } 
            
 
                As you can see, working with the serial port is easier in C than in assembly.  
            


Example 3.6. 
 
                    The next example demonstrates how to receive and transmit multiple bytes using SerialRXm() and SerialTXm.
                
 
1   #include "v:/ece320/54x/dspclib/core.h" /* Declarations for core file */ 
2 
3   main() 
4   { 
5       int *Rcvptr, *Xmitptr; /* pointers to Xmit and Rcv Bufs */ 
6       int i; 
7       int array[10]; 
8 
9       while(1) 
10      { 
11          WaitAudio(&Rcvptr,&Xmitptr); 
12 
13          for(i=0; i < BlockLen; i++) 
14          { 
15              Xmitptr[6*i] = Rcvptr[4*i]; 
16              Xmitptr[6*i+1] = Rcvptr[4*i]; 
17              Xmitptr[6*i+2] = Rcvptr[4*i]; 
18              Xmitptr[6*i+3] = Rcvptr[4*i+2]; 
19              Xmitptr[6*i+4] = Rcvptr[4*i+2]; 
20              Xmitptr[6*i+5] = Rcvptr[4*i+2];             
21          } 
22 
23          if ( SerialRXBufCheck() >= 10 ) 
24              SerialRXm(10,array); /* copy serial receive data into array1 */ 
25              SerialTXm(10,array); /* echo all ten bytes */ 
26 
27      } 
28  } 
                




Using MATLAB to Access the Serial Port (PC)



 
            MATLAB can be used to access the data coming from the serial port.  This guide will show the set-up
            procedures neccesary.  Other serial-port readers should also work as long as they are set up
            with the parameters specified in the introduction.
        
Sending Data



 
                Before accessing the serial port, it must be initialized through MATLAB.  This is done
                with this code:
                 

    % Set serial port mode 
    !mode com2:38400,n,8,1
                

                which sets the port to all of neccesary parameters.  The port is still not open for writing,
                however it is now in the correct mode.  To open the port, the fopen command is used, which returns 
                a file descriptor to the port:
                 

    % open com port for data transfer 
    fid = fopen('com2:','w'); 
                

                'com2:' is the port on the PC, 'w' means that we are opening the port for writing, and fid is
                the file descriptor.  For our purposes, you can think of the file descriptor as the port
                buffer itself, and when you write to it, you are writing directly to the buffer.  To write to
                the serial port buffer, the fwrite command is used:
                 

    fwrite(fid,data,'int8'); 
                

                data is the data to send to the port, fid is the file descriptor of the open port, and 'int8' is
                the type of data being sent.  For a list of different data types, check MATLAB help files with
                help serial.  Since the DSP is blind to the different types and we can
                only use 8 bits at a time, int8 should work.  
            
 
                Before finishing a function, or before executing a read from the serial port, the port MUST BE CLOSED.
                Failure to close the port, will result in blocking access to other functions and apps on 
                the machine that need to use the port.  A reset pulse is sent before closing.  The port is closed with the fclose command:
                 

    % send reset pulse 
    fwrite(fid,255,'int8'); 
    % close com port connection 
    fclose(fid); 
                

                It seems intuitive that to read from the port, it need to be opened with a 'r' or a 'r+' instead
                of 'w'.  According to the MATLAB help files this is true, but in practice it does not work.  See the next
                section for information on how to read from the serial port.  Another method of opening the port
                is using the fid = serial('com2'); command.  This does not seem to 
                work for reading either.  See the MATLAB help for more details and methods.
            

Receiving Data



 
                Although MATLAB is supposed to support both writing and reading data from the serial port, 
                reading data seems to either produce no result, generate an error, or crash MATLAB. To remedy the situation
                GetSerialData() has been written.  This function will allow you to get vectors of data from
                the serial port buffer.
            
Setting Up GetSerialData.cpp



 
                    You can download a copy of GetSerialdata.dll and skip this step. If you wish to modify the 
                    code for GetSerialData.cpp to handle other serial port protocols (such as handshaking 
                    and other features) you can use this to help you re-make the code. 
                
 Files you will need:
	GetSerialData.cpp

	stdafx.h



 
                    To compile the code, change to the directory (in MATLAB) with GetSerialData.cpp. 
                    Type the command: 
                     

    mex GetSerialData.cpp
                    

                    MATLAB may ask you to set up a compiler. Choose the MATLAB compiler (It is 
                    usually one of the first options and has the word MATLAB somewhere in its path). 
                    After doing this, repeat the 'mex' command on the code. Note: This code will only work 
                    with Windows (only been tested on XP). 
                
 
                    Compiling the C code produces a .dll file. The file at this stage is similar to a .m 
                    file in that it adds custom functionality to MATLAB. To use the file, place it in the 
                    directory where you will use the GetSerialData function. 
                

Using GetSerialData with the DSP



 
                    GetSerialData should work with both the assembly and C implementations of outputting 
                    data to the serial port. Sometimes a DSP will not output any serial port data. Often 
                    times this means this feature is broken on the DSP, but occasionally you can get the serial port to 
                    output data if you halt your program, press the red button a couple of times, flip the switch twice, 
                    and reload your program. To test the port for incoming data, load up the program 'Hyperterm' 
                    (StartMenu:Accessories:Communications:Hyperterm). Connect to com2 with data rate 38400 and look 
                    for ascii characters. It is suggested that you test for data first with the terminal and not 
                    MATLAB because if there is no data coming into MATLAB, it will stall until the function times out. 
                
Note

                    You do not need to worry about opening or closing the com2 port because the function does it
                    all under the hood.  The port must be available for usage (so if MATLAB was writing to the port
                    earlier, it has to be closed).
                


 
                    Once the DSP is running code that outputs data to the serial port, it continuously sends 
                    the data. GetSerialData simply 'captures' the output from the buffer and records it to a MATLAB row vector 
                    of specified size. The calling format is: 
                     

        y = GetSerialData('port', baud, size); 
                    

                    
 	'port' is the serial port to which the DSP is connected. For our use it will be 'com2'. The port name must be entered in quotes. 

	baud is the speed at which we transfer data. For the DSPs in lab we use 38400. 

	size is the length of the row vector you want to acquire. 

	y is the output vector. 




                    After calling the function, it will not return until it has receive size bytes from the 
                    serial port. If it never receives the bytes, it will eventually time out. Since the serial 
                    port only outputs single bytes at a time, the max integer that can be acquired is 255 and 
                    the min is 0. If you wish to use signed numbers, a fourth parameter can be entered into the 
                    function to specify. To see notes on usage and other baud rates, ports, signed data, etc type:
                     

        GetSerialData('help'); 
                    
 
                    This will bring up a help screen with the full set of options. 
                
Example 3.7. 
 
                        This example shows what type of vector would be aquired if the DSP was constantly counting up and
                        outputting these numbers. We are taking in vector of size 6 at some random point in the operation of the DSP: 
                     

%In the MATLAB terminal: 

y = GetSerialData('com2', 38400, 6) 

y = 
    
        7 8 9 10 11 12 
                    

                    The numbers are counting up as written in the C DSP code. We can also specify signed numbers 
                    and if we catch the counting at the right moment we get an output like this: 
                     

y = getSerialData('com2', 38400, 6, 1) 

y = 

        125 126 127 0 -1 -2                     
                    

                    



Other Notes



 
                    Other functionality can be added to this code. This may include other serial port issues 
                    (such as handshaking or parity) or even the formatting of the data coming out of the dsp. 
                    For instance, to get numbers larger than bytes in each vector index, you can modify how data 
                    is written to the MATLAB vector when it is acquired in the Receive function (in the code). 
                    Code for modifying serial port abilities is commented in the main() function where the serial
                    port handle is initialized. 
                



Using MATLAB GUI Features



 
            MATLAB has some nice Graphical User Interface (GUI) features which can be used to control the flow of data to and from the 
            serial port.  The basic implementation consits of a blank window (figure) which can have different
            interface elemnts palced on it.  These elements can be sliders, buttons, text boxes, etc...
        
 
            When an element is accessed (for instance, a slider is moved, or a button is pushed), MATLAB will
            execute a "callback routine" which is a MATLAB function defined by the user.  Desgining these interfaces
            is simple.
        
Creating a User Interface with Sliders



 Download These Files
	ser_set.m - User Interface

	wrt_slid.m - Callback File



Example 3.8. 
 
1   % ser_set: Initialize serial port and create three sliders 
2 
3   % Set serial port mode 
4   !mode com2:38400,n,8,1 
5 
6   % open a blank figure for the slider 
7   Fig = figure(1); 
8 
9   % open sliders 
10 
11  % first slider 
12  sld1 = uicontrol(Fig,'units','normal','pos',[.2,.7,.5,.05],... 
13  'style','slider','value',4,'max',254,'min',0,'callback','wrt_slid'); 
14
15  % second slider 
16  sld2 = uicontrol(Fig,'units','normal','pos',[.2,.5,.5,.05],... 
17  'style','slider','value',4,'max',254,'min',0,'callback','wrt_slid'); 
18 
19  % third slider 
20  sld3 = uicontrol(Fig,'units',normal','pos',[.2,.3,.5,.05],... 
21  'style','slider','value',4,'max',254,'min',0,'callback','wrt_slid');  
                


 
                Lines 12 through the end create the three sliders for the user interface. Several 
                parameters are used to specify the behavior of each slider. The first parameter, 
                Fig, tells the slider to create itself in the window we created in Line 7. The rest 
                of the parameters are property/value pairs: 
                
 	units: Normal tells Matlab to use positioning relative to the window boundaries. 

	pos: Tells Matlab where to place the control.

	style: Tells Matlab what type of control to place. slider creates a slider control.

	value: Tells Matlab the default value for the control. 

	max: Tells Matlab the maximum value for the control.

	min: Tells Matlab the maximum value for the control.

	callback: Tells Matlab what script to call when the control is manipulated. wrt_slid is a Matlab file that writes the values of the controls to the serial port. 




                Every time a slider is moved, the wrt_slid.m file is called: 
            
Example 3.9. 
 
1   % wrt_slid: write values of sliders out to com port 
2 
3   % open com port for data transfer 
4   fid = fopen('com2:','w'); 
5 
6   % send data from each slider 
7   v = round(get(sld1,'value')); 
8   fwrite(fid,v,'int8'); 
9 
10  v = round(get(sld2,'value')); 
11  fwrite(fid,v,'int8'); 
12
13  v = round(get(sld3,'value')); 
14  fwrite(fid,v,'int8'); 
15 
16  % send reset pulse 
17  fwrite(fid,255,'int8'); 
18 
19  % close com port connection 
20  fclose(fid);  
                


 
                Line 7 retrieves the value from the slider using the get function to retrieve 
                the value property. The value is then rounded off to create an integer, and the integer 
                is sent as an 8-bit quantity to the DSP in Line 8. (The number that is sent at this step will 
                appear when the serial port is read with READSER or a C equivalent in your code.) The other 
                two sliders are sent in the same way. Line 17 sends 0xFF (255) to the DSP, which can be used to 
                indicate that the three previously-transmitted values represent a complete set of data points. 
                This can be used to prevent the DSP and Matlab from losing synchronization if a transmitted 
                character is not received by the DSP. 
                


                    Line 20 closes the serial port. Matlab buffers the data being transmitted, 
                    and data is often not sent until the serial port is closed. Make sure you close 
                    the port after sending a data block to the DSP. 
                



            

Advanced features



 
                The slider example shows some basic features of the gui tools.  The file descriptor is generated
                into the workspace so that it can be used for writing.  But other elements, such as text boxes
                cannot be dealt with as easily.  The Parameters from these can be accessed through their returned
                handles.  Some examples:
            
Example 3.10. 
 
%GUI.m
%****Sample GUI, Text and a Button***

%open a blank figure
Fig = figure(1);
set(Fig,'Name','Test GUI');

%Space to enter text
ed2 = uicontrol(Fig,'backgroundcolor','white','units','Normalized','pos',[.1,.6,.4,.05],...
                'string','Default Text','style','edit');

%Button
but1 = uicontrol(Fig,'foregroundcolor','blue','units','Normalized','pos',[.1,.4,.5,.1],...
                'string','Press Me!','style','pushbutton','callback','SampleGUI');
            
 
                A Text box is created with default text in it that says: "Defaul Text".  A button is also created, 
                which when pressed, will execute the callback function SampleGUI.m
            
 
%SampleGUI.m

%Get Text
testText = get(ed2,'string')
            
 
                Now testText holds whatever string was enetered into the text box.  The function get()
                is used to retrieve the data from the 'string; parameter in the ed2 handle.  MATLAB help uicontrol
                gives the full list of options for interface elements.
            





Writing C Functions in MATLAB (MEX-Files)*



Introduction



 
            The MATLAB M-File is very good for putting together functions or scripts that run many of MATLAB's
            fast Built-In functions. One nice thing about these files is that they are never compiled and will run on
            any system that is already running MATLAB. MATLAB achieves this by interpreting each line of the M-File
            every time it is run.  This method of running the code can make processing time very slow for
            large and complicated functions, especially those with many loops because every line within the loop will
            be interpreted as a new line, each time through the loop.  Good MATLAB code avoids these things by using
            as many Built-In features and array operations as possible (because these are fast and efficient).  
            Sometimes this is not enough...
        
 
            MATLAB has the capability of running functions written in C.
            The files which hold the source for these functions are called MEX-Files. The mexFunctions are not intended to be a
            substitue for MATLAB's Built-In operations however if you need to code many loops and
            other things that MATLAB is not very good at, this is a good option.  This feature also allows
            system-specific APIs to be called to extend MATLAB's abilities (see the Serial Port Tutorial for
            an example of this).
        
 
            This document is arranged in the following manner:
            
 	The MEX-Function: Interface to MATLAB

	Getting and Creating Data

	Calling Built-In Functions from a MEX-File

	Compiling

	Useful Functions not Mentioned Here




            These are some of the basic topics that will allow you to create a MEX-file in a short time.  There
            are many other features and abilities that MATLAB has which can be explored in the MATLAB
            documentation.
        

The MEX-Function: Interface to MATLAB



 
            When writing programs in C, it is always assumed that the program will start execution from the main().
            MEX -Files are similar in that they always start execution from a special function called the mexFunction.
            This function has return type void and is the "gateway" between the MATLAB function call, and your C code.
        
Example 3.11. 
 
//You can include any C libraries that you normally use
#include "math.h"
#include "mex.h"   //--This one is required

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
    //All code and internal function calls go in here!
    
    return;
}
        


 
            In order to make a mex-function, you must include the "mex.h" library.  This library contains
            all of the APIs that MATLAB provides.  There are four input parameters to the mexFunction which
            correspond to the way a function is called in MATLAB - (ex: [z0,z1] = jasonsFunction(x,y,z);) 
        
 	nlhs (Type = int): This paramter represents the number of "left hand side" arguments. So in my example
                function call, nlhs = 2 (the outputs are z0 and z1).

	plhs (Type = array of pointers to mxArrays): This parameter is the actual output arguments.  As we will see
                later, an mxArray is MATLAB's structure for holding data and each element in plhs holds an mxArray of data.

	nrhs (Type = int): Similar to nlhs, this paramter holds the number of "right hand side" arguments.

	prhs (Type = const array of pointers to mxArrays): This array hold all of the pointers to the mxArrays of input data
                for instance, prhs[0] holds the mxArray containing x, prhs[1] holds the mxArray containing y, etc).




Getting and Creating Data



 
            The main MATLAB structure used for holding data in MEX-Files is the mxArray.  This structure can hold
            real data, complex data, arrays, matrices, sparse-arrays, strings, and a whole host of other MATLAB data-structures.
            Using data from some of the basic structures is shown here, but refer to the MATLAB help for using 
            other data structures.
        
Get that Data



 
                Lets use my example from above (if you forgot: [z0,z1] = jasonsFunction(x,y,z);). 
                Assume that x is a 2-D matrix, y is a string, and z is an integer.  Here we wills ee how to extract
                and use these different types of data.
            
 
                We have access to the input paramter x by a pointer held in the array prhs.  In C, when referencing
                an array by index, the variable is automatically dereferenced (ie: you dont need to use a star).
                For clarity, I will copy the variable x over to an mxArray pointer named xData (This does not need
                to be done for the code to work).
            
Example 3.12. 
 
//---Inside mexFunction---

//Declarations
mxArray *xData;
double *xValues;
int i,j;
int rowLen, colLen;
double avg;

//Copy input pointer x
xData = prhs[0];

//Get matrix x
xValues = mxGetPr(xData);
rowLen = mxGetN(xData);
colLen = mxGetM(xData);

//Print the integer avg of each col to matlab console
for(i=0;i<rowLen;i++)
{
    avg=0;
    for(j=0;j<colLen;j++)
    {
        avg += xValues[(i*colLen)+j];
        //Another Method:
        //
        //avg += *xValues++;
    }
    avg = avg/colLen;
    printf("The average of row %d, is %d",i,(int)avg);
}
                


 
                The function mxGetPr is used to get a pointer to the real data xData.  This function takes a
                pointer to an mxArray as the intput paramter, and returns a pointer array of doubles.  A similar function
                mxGetPi can be used for complex data. mxGetN and mxGetM return
                integers of the lengths of the row and column in the matrix.  If this were an array of data, one of these
                return values would be zero.  MATLAB gives the matrix as rows first, then columns (if you were to traverse
                the matrix linearly) so to jump by position, (x,y) maps to x*colLen+y.  MATLAB organizes
                its arrays this way to reduce cache misses when the row traversal is on the outside loop.  It is good to 
                code it this way if you are working for efficiency.  printf()
                will print out to the MATLAB command prompt.
            
 
                Getting a string is very similar, but has its own method. The example below shows the procedure for getting
                a string.  Again, I will copy the input to a pointer called yData.
            
Example 3.13. 
 
//---Inside mexFunction---

//Declarations
mxArray *yData;
int yLength;
char *TheString;

//Copy input pointer y
yData = prhs[1];

//Make "TheString" point to the string
yLength = mxGetN(yData)+1;
TheString = mxCalloc(yLength, sizeof(char)); //mxCalloc is similar to malloc in C
mxGetString(yData,TheString,yLength);
            


 
                This last example shows how to get a simple integer.  This is the method that has always worked
                for me, but it seems kind of strange so I imagine there is another way to do this.
            
Example 3.14. 
 
//---Inside mexFunction---

//Declarations
mxArray *zData;
int Num;

//Copy input pointer z
zData = prhs[2];

//Get the Integer
Num = (int)(mxGetScalar(zData));

//print it out on the screen
printf("Your favorite integer is: %d",Num);
            


 
                Three data types have been shown here.  There are several others and the MATLAB help as well
                as the MATLAB example code shows how to use them.  Now to export the data....
            

Returning Data to MATLAB



 
                Assigning return values and data to the left hand side parameters is very similar to getting
                the data from the last section.  The difference here is that memory must be allocated for the
                data strucure being used on the output.  Here is an example of how to return a 2-D matrix. This code
                will take the input x and return a copy of the matrix to z0 with every point in x multiplied by 2.
                Note that I am not copying the name of the output mxArray pointer into another variable.
            
Example 3.15. 
 
//---Inside mexFunction---

//Declarations
mxArray *xData;
double *xValues, *outArray;
int i,j;
int rowLen, colLen;

//Copy input pointer x
xData = prhs[0];

//Get matrix x
xValues = mxGetPr(xData);
rowLen = mxGetN(xData);
colLen = mxGetM(xData);

//Allocate memory and assign output pointer
plhs[0] = mxCreateDoubleMatrix(colLen, rowLen, mxREAL); //mxReal is our data-type

//Get a pointer to the data space in our newly allocated memory
outArray = mxGetPr(plhs[0]);

//Copy matrix while multiplying each point by 2
for(i=0;i<rowLen;i++)
{
    for(j=0;j<colLen;j++)
    {
        outArray[(i*colLen)+j] = 2*xValues[(i*colLen)+j];
    }
}
            




Calling Built-In Functions from a MEX-File



 
            While it may be nice to write functions in C, there are so many useful and fast pre-written
            functions in MATLAB that it would be a crime if we could not use them.  Luckily,
            The Mathworks (creators of MATLAB) has provided this capability. Built-In functions have a parameter list
            similar to the mexFunction itself.  This example uses the built-in function z = conv(x,y);
        
Example 3.16. 
 
//---Inside mexFunction---

//Declarations
mxArray *result;
mxArray *arguments[2];

//Fill in the input parameters with some trash
arguments[0] = mxCreateDoubleMatrix(1, 20, mxREAL);
arguments[1] = mxCreateDoubleMatrix(1, 10, mxREAL);

//In the real world I imagine you would want to actually put
//some useful data into the arrays above, but for this example
//it doesnt seem neccesary.

//Call the Function
mexCallMATLAB(1,&result,2,arguments,"conv");

//Now result points to an mxArray and you can extract the data as you please!
        



Compiling



 
            Compiling the MEX-Files is similar to compiling with gcc or any other command line
            compiler.  In the MATLAB command prompt, change your current directory to the 
            location of the MEX source file.  Type: mex filename.c into the MATLAB
            command window.  MATLAB may ask you to choose a compiler.  Choose the compiler with MATLAB in its directory path. 
            Your function will be called with the same name as your file. (ex: mex jasonsFunction.c
            produces a function that can be called from MATLAB as [z0,z1] = jasonsFunction(x,y,z);)
        
 
            After compiling MATLAB produces the actual MEX binary that can be called as a normal MATLAB function.  To call
            this function, you must be in the same directory with the binary.  The binary goes by different names
            depending what system you compiled the source on (ex: Windows=.dll MacOSX=.mexmac Solaris=.mexsol Linux=.mexlx).
            Your MEX-function will have to be compiled on each type of system that you want to run it on because the 
            binaries are operating system specific.
        

Other Useful Functions



 
            Here is a nice list of useful functions in the mex library that make life a lot
            easier.  Most of these work in similar fashion to those functions described above.  The full list can be found in
            the MATLAB help documentation with many examples.  There are also some example files in the MATLAB
            extern directory (MATLAB/extern/examples/mx or mex).
        
 	mxDuplicateArray

	mexErrMsgTxt

	mxMalloc

	mxRealloc

	mxCreateString

	mxDestroyArray

	mxFree

	mxGetCell

	mxGetData

	and many more...






Solutions


Chapter 4. Other Labs



4.1. UIUC DSP Lab Fall 2002 Archive*



About this Module



 
            These are the modules which where contained in the Fall 2002 semester of University of Illinois Urbana-Champaign's DSP LAB
            course.  
        

The Course



 	Lab 0: 
             	Hardware Introduction




        
	Lab 1: 
             	PreLab

	Lab




        
	Lab 2: 
             	Theory

	PreLab

	PreLab

	Lab




        
	Lab 3: 
             	Theory

	PreLab

	PreLab

	Lab




        
	Lab 4: 
             	Theory

	PreLab

	Lab




        
	Lab 5: 
             	Theory

	PreLab

	Lab

	Lab (2)

	Testing




        
	Alternate Lab 5: 
             	Theory

	PreLab

	Lab




        



4.2. UIUC DSP Lab Spring 2003 Archive*



About this Module



 
            These are the modules which where contained in the Spring 2004 semester of University of Illinois Urbana-Champaign's DSP LAB
            course.  
        

The Course



 	Lab 0: 
             	Hardware Introduction




        
	Lab 1: 
             	PreLab

	Lab




        
	Lab 2: 
             	Theory

	PreLab

	PreLab

	Lab




        
	Lab 3: 
             	Theory

	PreLab

	PreLab

	Lab




        
	Lab 4: 
             	Theory

	PreLab

	Lab




        
	Lab 5: 
             	Introduction

	Filter Specification

	PreLab

	Grading




        
	Alternate Lab 5: 
             	Theory

	Prelab

	Lab




        



4.3. UIUC DSP Lab Spring 2004 Archive*



About this Module



 
            These are the modules which where contained in the Spring 2004 semester of University of Illinois Urbana-Champaign's DSP LAB
            course.  
        

The Course



 	Lab 0: 
             	Hardware Introduction




        
	Lab 1: 
             	PreLab

	Lab




        
	Lab 2: 
             	Theory

	PreLab

	PreLab

	Lab




        
	Lab 3: 
             	Theory

	PreLab

	PreLab

	Lab




        
	Lab 4: 
             	Theory

	PreLab

	Lab




        
	Lab 5: 
             	Theory

	PreLab

	Lab




        



4.4. UIUC DSP Lab Fall 2004 Archive*



About this Module



 
            These are the modules which where contained in the Fall 2004 semester of University of Illinois Urbana-Champaign's DSP LAB
            course.  
        

The Course



 	Lab 0: 
             	Hardware Introduction




        
	Lab 1: 
             	PreLab

	Lab




        
	Lab 2: 
             	Theory

	PreLab

	PreLab

	Lab




        
	Lab 3: 
             	Theory

	PreLab

	PreLab

	Lab




        
	Lab 4: 
             	Intro

	PreLab

	Lab




        
	Lab 5: 
             	Optimization Theory

	Lab




        



Solutions


Index

A
ac coupled, Step 4: Verify filter execution
anti-aliasing filter, Step 4: Verify filter execution
anti-imaging filter, Step 4: Verify filter execution
B
bi-quad, Introduction
block repeat counter, Repeating code
butter, Filter-Coefficient Quantization
C
chip support library, Video Processing Setup
conv, Effects of quantization
csl, Video Processing Setup
D
decision statistic, Early/late sampling
delay-locked loop, Early/late sampling
dft, Fast Fourier Transform
difference equations, Exercise
direct addressing, Addressing Modes for TI TMS320C54x, Direct Addressing: Smem and others
discrete fourier transform, Fast Fourier Transform
dll, Early/late sampling
dtft, Fast Fourier Transform
E
early
	  sample, Early/late sampling
elliptic low-pass filter, Implementation
F
fast fourier
	transform, Introduction
fft, Introduction
finite impulse response, Introduction
fir, Introduction
firs, Part 3: Alternative Single-Channel FIR Implementation
fractional arithmetic mode, Assembly Exercise
fractional arithmetic., Fractional arithmetic
freqz, Exercise
G
gain, Exercise
H
hexadecimal, Assembly Exercise
I
idk, Introduction
idm, Video Processing Setup
iir, Introduction, Linear prediction model
image data manager, Video Processing Setup
image developers kit, Introduction
immediate
      addressing, Addressing Modes for TI TMS320C54x, Immediate Addressing: #k3, #k5, K, #k9, #lk
indirect addressing, Addressing Modes for TI TMS320C54x, Indirect Addressing:  Smem, Xmem, Ymem
infinite impulse response, Linear prediction model
infinite
	impulse-response, Introduction
L
late
	  sample, Early/late sampling
levinson-durbin algorithm, Linear prediction model
linear prediction, Linear prediction model
linear predictive coding, Introduction
linear time-invariant, Introduction
lpc, Introduction
lti, Introduction
M
matched
	filter, Introduction
multirate processing, Introduction
N
nco, Numerically controlled oscillator
notch filter, Filter-Coefficient Quantization
numerically-controlled oscillator, Numerically controlled oscillator
O
on-time sample, Early/late sampling
opcode, Addressing Modes for TI TMS320C54x
overflow, Overflow Error, Exercise
P
phase-locked loop, Introduction
pll, Introduction
pmst, Step 4: Verify filter execution
poles, Exercise
power spectral density, Introduction
power spectrum, Fast Fourier Transform
power-cycle, Troubleshooting
processor mode status register, Step 4: Verify filter execution
profiler, Compiler Optimization
psd, Introduction
Q
quantization error, Truncation Error
quantize, Quantizing coefficients in MATLAB
R
rounding, Fixed-Point Quantization
roundoff error, Truncation Error
S
sample-rate
	  compressor, Introduction
sample-rate
	  expander, Introduction
saturation, Fixed-Point Quantization
sign
      bit, Two's-Complement Integer Representation
sign
	extension, Fractional arithmetic
sign-extended, Fractional arithmetic
T
truncation, Fixed-Point Quantization
truncation error, Truncation Error
two's-complement, Two's-complement notation
V
vco, Numerically controlled oscillator
voltage-controlled
	  oscillator, Numerically controlled oscillator
W
wraparound, Fixed-Point Quantization
Z
zeros, Exercise

About Connexions

                    Since 1999, Connexions has been pioneering a global system where anyone can create course materials and make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and learning environment open to anyone interested in education, including students, teachers, professors and lifelong learners. We connect ideas and facilitate educational communities. Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12 schools, distance learners, and lifelong learners. Connexions materials are in many languages, including English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. 
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