
Audio Localization

By:
Elizabeth Gregory

Joseph Cole

Audio Localization

By:
Elizabeth Gregory

Joseph Cole

Online:
< http://cnx.org/content/col10250/1.2/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Elizabeth Gregory, Joseph Cole. It is

licensed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).

Collection structure revised: June 6, 2011

PDF generated: October 25, 2012

For copyright and attribution information for the modules contained in this collection, see p. 33.

Table of Contents

1 Audio Localization Problem Motivation and Goal . 1
2 Beamforming Theory . 3
3 Design Decisions for Audio Localization Implementation . 9
4 MATLAB Simulation of Audio Localization . 11
5 Hardware Implementation for Audio Localization . 13
6 Software Implementation of Audio Localization . 17
7 Results and Discussion on Audio Localization . 19
8 Conclusions on Audio Localization Project . 23
9 Appendix for Audio Localization Project . 25
Index . 32
Attributions . 33

iv

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

Chapter 1

Audio Localization Problem Motivation

and Goal1

1.1 Possible Application Areas

Audio localization has quite a few applications in the real world. In particular, such as system can be used
in a home automation system to identify a person's location. Also, this project has applications in sonar
and radar systems.

1.2 Objective

In this project we would like to:

• Accurately determine the origin of a sine wave to within 22.5 ◦

• Adjust to real-time change in the signal location

However, �rst we need to set a few parameters. Firstly, our �eld-of-view is the half plane in front of the
array and only deals with the azimuth, not the elevation. Secondly, as we will learn in Beamforming Theory,
the signal will have to originate in the far-�eld. Figure 1.1 (The Setup) shows how our set-up will work.

1This content is available online at <http://cnx.org/content/m12512/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

1

2
CHAPTER 1. AUDIO LOCALIZATION PROBLEM MOTIVATION AND

GOAL

The Setup

Figure 1.1: The star represents our far-�eld source. The black circles represent microphones. The area
shaded in green represents the correct region. The areas shaded in yellow represent our margin of error.
The areas shaded in red represent the incorrect areas.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

Chapter 2

Beamforming Theory1

The Geometry

Figure 2.1

We used delay-and-sum beamforming in order to determine the direction of origin for our 500 Hz test signal.
Beamforming takes advantage of the fact that the distance from the source to each microphone in the array
is di�erent, which means that the signal recorded by each microphone will be phase-shifted replicas of each
other. The amount of phase-shift at each microphone in the array can be calculated by thinking about the
geometry of the situation, shown in Figure 2.1 (The Geometry). In our case, we are assuming that the source
is in the far-�eld, which means that the source is far enough away that its spherical wavefront appears planar
at our array. The geometry is much simplier with that assumption, and (2.1) shows the calculation for the
extra time it takes to reach each microphone in the array relative to the array center. Figure 2.2 (Out of

1This content is available online at <http://cnx.org/content/m12516/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

3

4 CHAPTER 2. BEAMFORMING THEORY

Phase Signals As Seen by a 3-Microphone Array) shows an example of the out of phase signals that might
be recorded by a three microphone array.

∆m =
xmcos (θ)

c
(2.1)

Out of Phase Signals As Seen by a 3-Microphone Array

Figure 2.2

In order to determine the direction of origin of a signal, we have to add a time delay to the recorded
signal from microphone that is equal and opposite of the delay caused by the extra travel time. That will
result in signals that are perfectly in-phase with each other. Summing these in-phase signals will result
in constructive interference that will amplify the result by the number of microphones in the array. The
question is how to know what time delay to add that will produce the desired constructive interference. The
only solution is to iteritively test time delays for all possible directions. If the guess is wrong, the signal will
destructively interfere resulting in an diminished output signal, but the correct guess will result in the signal
ampli�cation described above.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

5

Figure 2.3: The beampattern for a signal arrive from pi/2, as seen by a two-microphone array.

We can plot the resulting output amplitudes as a function of test angles to produce a beampattern for
the array. A typical beampattern for a signal arriving from the π

2 direction is shown in Figure 2.3 for a two
microphone array. Naturally, the peak is located at π

2 because time delays from that region produced the
most constructive interference. Test values further from the true angle resulted in diminished output signals.
If the source originates from a di�erent direction, such as π

3 as shown in Figure 2.4, the peak moves to the
new location.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

6 CHAPTER 2. BEAMFORMING THEORY

Figure 2.4: The comparison of a beampattern for a two-microphone array when at pi/3.

The peak width is partially determined by the spacing of the microphones in the array. Figure 2.5 shows
that as the spacing is increased, the peak width decreases. That trend will continue until the array length
reaches the optimal length for the source frequency used. This length is half the wavelength of the source
signal as shown in the Design Decisions section.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

7

Figure 2.5: Beampattern with an increased array spacing.

Figure 2.6 shows the a�ect of adding more microphones to the array. The most interesting feature is
the appearance of side lobes in the beampattern. However, the global peak value is still located at the true
origination angle.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

8 CHAPTER 2. BEAMFORMING THEORY

Figure 2.6: Beampattern with more microphones

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

Chapter 3

Design Decisions for Audio Localization

Implementation1

With the theory out of the way, we have to face the real world and set more constraints.

3.1 The Number of Microphones

In this project, we are using the TI TMS320C6211 DSK board. This board has two channels that sample
at 48 kHz and another channel that samples at 8 kHz. Since we are not interpolating our signals, the
sampling frequency is increasingly critical, so we can only use two microphones. Figure 3.1 (Beampattern
with Reduced Sampling Frequency) shows what happens to the beampattern when we use reduced sampling
frequency.

1This content is available online at <http://cnx.org/content/m12513/1.4/>.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

9

10
CHAPTER 3. DESIGN DECISIONS FOR AUDIO LOCALIZATION

IMPLEMENTATION

Beampattern with Reduced Sampling Frequency

Figure 3.1

3.2 Array Spacing

In order to �nd the best array spacing (theoretically), we have to go through a few calculations. In our most
extreme case, the signals will be hitting our array from 180 ◦. This gives us perfect destructive interference,
as our phase di�erence will be π. Therefore, we only need half of the wavelength:

d =
λ

2
(3.1)

We can �nd λ by dividing the frequency of our sine wave (500 Hz) by the speed of sound (346.287 m/s):

λ = c
f

= 346.287
500

= 0.69

(3.2)

and our array spacing d ends up being 0.345 m.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

Chapter 4

MATLAB Simulation of Audio

Localization1

sin (ω (t− τ2) + φ2) + sin (ω (t− τ1) + φ1) = 2sin
(
ωt+

φ1 + φ2 − ω (τ1 + τ2)
2

)
cos

(
φ1 − φ2 − ω (τ1 + τ2)

2

)
(4.1)

(4.1) shows that the sum of two sinusoids that are out of phase is just another sinusoid with an amplitude
directly related to the phase di�erence. Our goal is to adjust the phase di�erence by adding time delays to
the incoming signals so as to maximize the amplitude of the output. The maximum occurs when the phase
di�erence is zero, because the signals will add constructively. Once the maximum is found, the time delays
used to achieve it tell us from which direction the signals originated.

Since we are working with discrete-time signals, the time delays we tried were limited by the sampling
frequency of the DSP boards, which is 48 kHz. By dividing the desired time delay by that sampling period
and rounding to the nearest integer, we converted our trial time delays into indices that could be used to
select the correct sample out of the bu�er.

So, the algorithm for delay-and-sum beamforming is straightforward, but there is room for a little bit of
creativity in �nding the amplitude of the summed sinusoids. We experimented with two methods to accom-
plish that task. We will call the �rst method "amplitude extraction," and the second "signal integration."

1This content is available online at <http://cnx.org/content/m12510/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

11

12 CHAPTER 4. MATLAB SIMULATION OF AUDIO LOCALIZATION

Amplitude Extraction Flow Diagram

Figure 4.1

A �ow diagram for the amplitude extraction method is shown in Figure 4.1 (Amplitude Extraction Flow
Diagram). We split the signal into two parts and multiply one part by sin (ωt) and the other by cos (ωt). By
low-pass �ltering the results, we obtain the DC part of the signal which contains the amplitude information.
This algorithm has the obvious disadvantage that it is dependent on knowing the frequency of the incoming
signal so that the correct w is used in the multiplication step. In spite of that, we were originally selected
it for implementation on the DSP board because it showed extremely robust performance in the presence of
loud noise. Adding gaussian white noise with a variance of 1 to a signal in the range [−1, 1] had no a�ect
on the performance of the beamformer in our Matlab simulation. Unfortunently, the algorithm is too slow
to be used in real time. Evaluating two low-pass �lters for every time delay combination tried was simply
not practical.

The signal integration method is much simpler computationally, which made it a better choice for our
�nal implementation. We only had to square the beamformer output to make all the numbers positive, and
sum the results over approximately one cycle of the incoming signal. The sum is similar to an integral over
one period of the signal, except that the samples aren't multiplied by the sampling period to make an "area."
Our matlab simulation showed that the algorithm should work, but that it is somewhat more sensitive to
noise than amplitude extraction.

We were unable to try either of our Matlab simulations with real signals recorded from our microphone
array because we had di�culty making stereo recordings. The computers we used defaulted to recording
from the microphone input (which is mono) instead of the line-in input, and we didn't have administrator
access to change the settings.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

Chapter 5

Hardware Implementation for Audio

Localization1

5.1 TI TMS320C6211 DSK Board

You can �nd a description of the board on the TI website2 .
To receive the signals, we decided to use the McBSP1 receive interrupt so we could read the values from

our two 16 bit channels simultaneously.

1This content is available online at <http://cnx.org/content/m12514/1.3/>.
2http://www.ti.com

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

13

14
CHAPTER 5. HARDWARE IMPLEMENTATION FOR AUDIO

LOCALIZATION

5.2 Microphone Array

The Microphones and the Circuit

Figure 5.1

As shown in Figure 5.1 (The Microphones and the Circuit), we used two electret microphones spaced 10 cm
apart. Each microphone was ampli�ed with identical non-inverting op-amp circuits (LM3863), as shown in
Figure 5.2 (The Microphone Ampli�er Circuit). This circuit includes a low-voltage audio power ampli�er
and internal feedback with �xed gain.

3http://www.njr.co.jp/pdf/de/de05001.pdf

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

15

The Microphone Ampli�er Circuit

Figure 5.2

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

16
CHAPTER 5. HARDWARE IMPLEMENTATION FOR AUDIO

LOCALIZATION

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

Chapter 6

Software Implementation of Audio

Localization1

6.1 Code Description

Our �nal implementation for the DSP board is written in C, and consists of two major functions, the interrupt
service routine and the main function. The samples arrive and are put into a bu�er for each microphone
channel by the McBSP1 receive interrupt routine. This function keeps track of how full the bu�ers are, and
sets a �ag when they are full. The main function waits for the bu�er full �ag, and processes the contents
of the bu�ers when the �ag is set. The algorithm is the same as the signal integration method described in
the Matlab Simulation section. The code keeps an average of the last 128 region codes selected, which is the
value that is output on the DSP board's LEDs.

6.2 Signal Input Options

For our signal input, we have two options:

1. Ideal Signal generated in Matlab
2. Real signal from the microphone array.

To thoroughly test this algorithm, we tried both options, starting with the ideal signal, since this would
help us in debugging. Later, we tried using a real signal, generated from a computer across the room.
Unfortunately, within this option lies the danger of acoustics; the answer the algorithm gives us will even
depend on the number of people in the room!

1This content is available online at <http://cnx.org/content/m12519/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

17

18 CHAPTER 6. SOFTWARE IMPLEMENTATION OF AUDIO LOCALIZATION

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

Chapter 7

Results and Discussion on Audio

Localization1

7.1 Matlab Simulation Results

In running our simulation, we discovered that while our region output was not always correct, we maintained
accuracy within 22.5 ◦. Tha algorithm seemed to have the most di�cultly on the edges of the �eld of view.
Our exact results can be found in Table 7.1: Without Noise and Table 7.2: With Noise, SNR=2.

Without Noise

True Region True Angle Estimated Region

0 π
16 0

1 3π
16 0

2 5π
16 2

3 7π
16 3

4 9π
16 4

5 11π
16 5

6 13π
16 6

7 15π
16 7

Table 7.1

1This content is available online at <http://cnx.org/content/m12520/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

19

20 CHAPTER 7. RESULTS AND DISCUSSION ON AUDIO LOCALIZATION

With Noise, SNR=2

True Region True Angle Estimated Region

0 π
16 1

1 3π
16 2

2 5π
16 2

3 7π
16 2

4 9π
16 6

5 11π
16 7

6 13π
16 6

7 15π
16 6

Table 7.2

7.2 Results with the DSK

In testing our DSK algorithm, we started with the ideal signal, generated using Matlab. The results had
more error than in Matlab, but seemed reasonable at the time. However, in multiple trials of the same ideal
signal, the DSK responded di�erently each time, indicating that our algorithm still needed a bit of work.

When we tried to implement the same algorithm using a real signal, generated from a computer across
the room, we received very poor results. In the end, the DSK could tell whether the signal came from the left
or the right, but only when the lab was quiet and empty. Also, the program was very sensitive to alternate
signal paths and the general acoustics of the room. All in all, our program was not very reliable, as shown
in Table 7.3: C Results.

C Results

True Region True Angle Estimated Region

0 π
16 4

1 3π
16 3

2 5π
16 6

3 7π
16 3

4 9π
16 5

5 11π
16 3

6 13π
16 4

7 15π
16 6

Table 7.3

7.3 Areas of Improvement

All in all, we need to start the improvement by doing a better job designing and checking the array beampat-
tern. Also, we need a better algorithm for integration. For this algorithm, we need to know how much of a
cycle is needed, how integration length a�ects accuracy, and how to deal with non-periodic signals. Finally,

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

21

we need a better understanding and control over the room acoustics, as well as more time to fully test the
algorithm.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

22 CHAPTER 7. RESULTS AND DISCUSSION ON AUDIO LOCALIZATION

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

Chapter 8

Conclusions on Audio Localization

Project1

While in Matlab, our Objectives seemed pretty reasonable, in the end, this project seems to be far beyond the
scope of an end-of-the semester project. While we were able to determine while side the signal was coming
from, we did not get anything near the resolution we were expecting. From here, we need to re-analyze
our algorithms, and go through the theory again, perhaps. Also, we would need to look into acquiring a
"control" room, whose acoustics we would be able to account for.

However, in the end, we learned quite a few lessons:

• Always double-check your math.
• Don't try to simply your equations too soon.
• Sometimes, you really do need to just shut down the program and restart.

1This content is available online at <http://cnx.org/content/m12515/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

23

24 CHAPTER 8. CONCLUSIONS ON AUDIO LOCALIZATION PROJECT

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

Appendix for Audio Localization Project1

9.1 Matlab Code

• new_sim2:

function new_sim2(theta_true)

% Values, Vectors, and a Matrix

%theta_true = pi./2;

degree = 32;

c = 346.287; % speed of sound in air

N = 150; % length of the sample buffer

Fs = 48000; % sampling frequency

f = 500; % frequency of sine wave

M = 2; % number of microphones

dist = .1;

t = [0:N-1]./Fs; % time axis

m = (M-1)./2; % array center

x = dist.*[-m:m]; % microphone location on the x axis

omega = 2*pi*f; % commonly used value

theta_test = [1:2:2*degree-1]*pi/(2*degree); % test vector of theta values

%theta_test = pi./2;

divisor = degree/8; % region divisor

length_t = length(theta_test); % length of the delay vector

A = zeros(1,length_t); % initialize A vector

delay_true = x.*cos(theta_true)./c; % actual delay

delay_test = x'*cos(theta_test)./c; % test matrix of delay values

samples = round(2.*delay_test*Fs)./2; % number of samples to shift in testing

index = samples - ones(M,1)*min(samples) + 1;

% Signal Simulation

for j = 1:M

y(j,:) = sin(omega*(t-delay_true(j)));

end

1This content is available online at <http://cnx.org/content/m12517/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

25

26 APPENDIX

% Region Approximation

for i = [1:length_t]

for j = [1:M]

y_delay(j,:) = y(j,[index(j,i)+50:index(j,i)+100]); %delay y1 by the 1,i value using index

end

z = sum(y_delay);

A(i) = sum(z.^2);

end

aa = find(A == max(A));

region = floor(aa(1)./divisor)

theta_range = [region-1 region]*pi/8;

if(0)

figure

plot(theta_test/pi,A)

end

• sim_input3:

function [region,theta_range] = sim_input3(theta_true,degree)

% Values, Vectors, and a Matrix

c = 346.287; % speed of sound in air

N = 150; % length of the sample buffer

Fs = 44100; % sampling frequency

f = 500; % frequency of sine wave

M = 2; % number of microphones

%dist = .32; % distance between microphones

dist = .5;

t = [0:N-1]./Fs; % time axis

m = (M-1)./2; % array center

x = dist.*[-m:m]; % microphone location on the x axis

cutoff = 50; % cutoff frequency of filter

omega = 2*pi*f; % commonly used value

theta_test = [1:2:2*degree-1]*pi/(2*degree); % test vector of theta values

divisor = degree/8; % region divisor

length_t = length(theta_test); % length of the delay vector

A = zeros(1,length_t); % initialize A vector

B = fir1(40,cutoff/Fs,'low'); % lowpass filter

delay_true = x.*cos(theta_true)./c; % actual delay

delay_test = x'*cos(theta_test)./c; % test matrix of delay values

samples = round(2.*delay_test*Fs)./2; % number of samples to shift in testing

index = samples - ones(M,1)*min(samples) + 1;

cos_base = cos(omega*t(1:N));

sin_base = sin(omega*t(1:N));

SNR = 1000;

noise1 = randn(1,N)/SNR;

noise2 = randn(1,N)/SNR;

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

APPENDIX 27

% Signal Simulation

y1 = sin(omega*(t-delay_true(1))) + noise1;

y2 = sin(omega*(t-delay_true(2))) + noise2;

% Region Approximation

for i = [1:length_t]

y1_sample = y1(index(1,i):index(1,i)+40); %delay y1 by the 1,i value using index

y2_sample = y2(index(2,i):index(2,i)+40);

z = y1_sample + y2_sample;

z_cos = z.*cos_base(1:41);

z_sin = z.*sin_base(1:41);

z_cos_filter = sum(fliplr(z_cos).*B);

z_sin_filter = sum(fliplr(z_sin).*B);

A(i) = z_sin_filter^2 + z_cos_filter^2;

end

% figure

% plot(theta_test,A);

% title(theta_true)

aa = find(A == max(A));

region = floor(aa(1)./divisor);

if(0)

theta_range = [region-1 region]*pi/8;

figure

plot(theta_test/pi,A)

end

9.2 C Code

• index.h:

short index[2][32] = {

{0x0001, 0x0001, 0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0002,0x0003,0x0004,0x0005,0x0006,0x0008,0x0009,0x000A,0x000A,0x000B,0x000C,0x000D,0x000D,0x000D,0x000E,0x000E},

{0x000E, 0x000E, 0x000D,0x000D,0x000D,0x000C,0x000B,0x000A,0x000A,0x0009,0x0008,0x0006,0x0005,0x0004,0x0003,0x0002,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001,0x0001}

};

• loop_intr_pcm2.c:

#include "index.h"

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

28 APPENDIX

#define N 100 //sample buffer length

#define N2 128 //averaging buffer length

#define DEGREE 32 //number of theta test values to try

#define SUMSAMP 70 //number of theta test values to try

float Fs = 16000.0; //irrelevant since jumper in 3-4

int* lights = (int*)0x90080000;

short buffer1[N] = {0};

short buffer2[N] = {0};

int buffer3[N2] = {0};

int buf_full = 0;

int buf_index = 0;

interrupt void c_int12() //McBSP1 receive ISR

{

int sample = input_leftright_sample();

buffer1[buf_index] = (short)(sample � 16);

buffer2[buf_index] = (short)sample;

buf_index++;

if(buf_index == N) {

buf_index = 0;

buf_full = 1;

}

return; //return from interrupt

}

void main()

{

int i;

int j;

int k = 0;

int z, test_amp;

int region;

int out;

int sum = 0;

int max_theta_index = 0;

int max_amplitude = -1;

for(k=0;k<N2;k++) buffer3[k] = 0;

k = 0;

comm_intr(); //init DSK, codec, McBSP

while(1) {

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

APPENDIX 29

if(buf_full) {

buf_full = 0;

max_amplitude = -1;

for(i=0; i<DEGREE; i++) {

test_amp = 0;

for(j=0; j<SUMSAMP; j++) {

z = buffer1[index[0][i]+j] + buffer2[index[1][i]+j];

test_amp += (z * z) � 15;

}

if(test_amp > max_amplitude) {

max_amplitude = test_amp;

max_theta_index = i;

}

}

region = max_theta_index � 2;

sum -= buffer3[k];

buffer3[k++] = region;

sum += region;

if(k == N2) {

k = 0;

out = sum � 7;

/*if(out > 3)

out = 0;

else

out = 7;*/

*lights = out � 24;

}

}

}

}

• vectors_11.asm:

*Vectors_11.asm Vector file for interrupt-driven program

.ref _c_int12 ;ISR used in C program

.ref _c_int00 ;entry address

.sect "vectors" ;section for vectors

RESET_RST: mvkl .S2 _c_int00,B0 ;lower 16 bits --> B0

mvkh .S2 _c_int00,B0 ;upper 16 bits --> B0

B .S2 B0 ;branch to entry address

NOP ;NOPs for remainder of FP

NOP ;to fill 0x20 Bytes

NOP

NOP

NOP

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

30 APPENDIX

NMI_RST: .loop 8

NOP ;fill with 8 NOPs

.endloop

RESV1: .loop 8

NOP

.endloop

RESV2: .loop 8

NOP

.endloop

INT4: .loop 8

NOP

.endloop

INT5: .loop 8

NOP

.endloop

INT6: .loop 8

NOP

.endloop

INT7: .loop 8

NOP

.endloop

INT8: .loop 8

NOP

.endloop

INT9: .loop 8

NOP

.endloop

INT10: .loop 8

NOP

.endloop

INT11: .loop 8

NOP

.endloop

INT12: b _c_int12 ;branch to ISR

.loop 7

NOP

.endloop

INT13: .loop 8

NOP

.endloop

INT14: .loop 8

NOP

.endloop

INT15: .loop 8

NOP

.endloop

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

APPENDIX 31

9.3 Project Executable Files

• project.out2

• project.paf3

• project.pjt4

2http://cnx.org/content/m12517/latest/project.out
3http://cnx.org/content/m12517/latest/project.paf
4http://cnx.org/content/m12517/latest/project.pjt

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

32 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A appendix, � 9(25)

B beamforming, � 1(1), � 2(3), � 3(9), � 4(11),
� 5(13), � 6(17), � 7(19), � 8(23), � 9(25)

C C, � 6(17)
code, � 9(25)

D design, � 3(9)
digital signal processing, � 2(3)
digital single processing, � 1(1)
DSP, � 2(3), � 7(19), � 8(23)

F far-�eld, � 1(1)

H hardware, � 5(13)

L LM386D, � 9(25)

M Matlab, � 4(11)
microphone, � 5(13)

R real-time, � 2(3), � 6(17)
results, � 7(19)

S simulation, � 4(11)
software, � 6(17)

T TMS320C6211, � 5(13)
trigonometric identities, � 9(25)

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

ATTRIBUTIONS 33

Attributions

Collection: Audio Localization
Edited by: Elizabeth Gregory, Joseph Cole
URL: http://cnx.org/content/col10250/1.2/
License: http://creativecommons.org/licenses/by/3.0/

Module: "Audio Localization Problem Motivation and Goal"
By: Elizabeth Gregory, Joseph Cole
URL: http://cnx.org/content/m12512/1.2/
Pages: 1-2
Copyright: Elizabeth Gregory, Joseph Cole
License: http://creativecommons.org/licenses/by/1.0

Module: "Beamforming Theory"
By: Elizabeth Gregory, Joseph Cole
URL: http://cnx.org/content/m12516/1.1/
Pages: 3-8
Copyright: Elizabeth Gregory, Joseph Cole
License: http://creativecommons.org/licenses/by/1.0

Module: "Design Decisions for Audio Localization Implementation"
By: Elizabeth Gregory, Joseph Cole
URL: http://cnx.org/content/m12513/1.4/
Pages: 9-10
Copyright: Elizabeth Gregory, Joseph Cole
License: http://creativecommons.org/licenses/by/1.0

Module: "MATLAB Simulation of Audio Localization"
By: Elizabeth Gregory, Joseph Cole
URL: http://cnx.org/content/m12510/1.2/
Pages: 11-12
Copyright: Elizabeth Gregory, Joseph Cole
License: http://creativecommons.org/licenses/by/1.0

Module: "Hardware Implementation for Audio Localization"
By: Elizabeth Gregory, Joseph Cole
URL: http://cnx.org/content/m12514/1.3/
Pages: 13-15
Copyright: Elizabeth Gregory, Joseph Cole
License: http://creativecommons.org/licenses/by/1.0

Module: "Software Implementation of Audio Localization"
By: Elizabeth Gregory, Joseph Cole
URL: http://cnx.org/content/m12519/1.1/
Page: 17
Copyright: Elizabeth Gregory, Joseph Cole
License: http://creativecommons.org/licenses/by/1.0

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

34 ATTRIBUTIONS

Module: "Results and Discussion on Audio Localization"
By: Elizabeth Gregory, Joseph Cole
URL: http://cnx.org/content/m12520/1.1/
Pages: 19-21
Copyright: Elizabeth Gregory, Joseph Cole
License: http://creativecommons.org/licenses/by/1.0

Module: "Conclusions on Audio Localization Project"
By: Elizabeth Gregory, Joseph Cole
URL: http://cnx.org/content/m12515/1.2/
Page: 23
Copyright: Elizabeth Gregory, Joseph Cole
License: http://creativecommons.org/licenses/by/1.0

Module: "Appendix for Audio Localization Project"
By: Elizabeth Gregory, Joseph Cole
URL: http://cnx.org/content/m12517/1.1/
Pages: 25-31
Copyright: Elizabeth Gregory, Joseph Cole
License: http://creativecommons.org/licenses/by/1.0

Available for free at Connexions <http://cnx.org/content/col10250/1.2>

Audio Localization

This course has been created as an introduction to audio localization, and how beamforming can be applied
in a real-time environment.

About Connexions

Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

