

 [image: An Introduction to MATLAB]

 An Introduction to MATLAB
Collection edited by: Anders Gjendemsjø
Content authors: Anders Gjendemsjø and Jason Laska
Online: <http://cnx.org/content/col10323/1.3>
This selection and arrangement of content as a collection is copyrighted by Anders Gjendemsjø.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/2.0/
Collection structure revised: 2006/01/20
For copyright and attribution information for the modules contained in this collection, see the "Attributions" section at the end of the collection.

An Introduction to MATLAB
Table of Contents
	Chapter 1. An Introduction to MATLAB	1.1.

	Chapter 2. Using MATLAB	2.1. 	Matlab Help
	Matrices, vectors and scalars
	Indexing matrices and vectors
	Basic operations
	Complex numbers
	Other Useful Details

	Chapter 3. Graphical representation of data in MATLAB	3.1. 	Graphical representation of data in MATLAB
	Tools for plotting
	Printing and exporting graphics
	3D Graphics

	Chapter 4. Scripts and Functions in MATLAB	4.1. 	Script files
	Program flow
	User Defined Functions
	Learn From Existing Code

	Chapter 5. Vectorizing loops in MATLAB	5.1. 	

	Chapter 6. Writing C Functions in MATLAB (MEX-Files)	6.1. 	Introduction
	The MEX-Function: Interface to MATLAB
	Getting and Creating Data	Get that Data
	Returning Data to MATLAB

	Calling Built-In Functions from a MEX-File
	Compiling
	Other Useful Functions

	Chapter 7. Introductory Computer Assignment for MATLAB	7.1.

	Index

An Introduction to MATLAB
Collection edited by: Anders Gjendemsjø
Content authors: Anders Gjendemsjø and Jason Laska
Online: <http://cnx.org/content/col10323/1.3>
This selection and arrangement of content as a collection is copyrighted by Anders Gjendemsjø.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/2.0/
Collection structure revised: 2006/01/20
For copyright and attribution information for the modules contained in this collection, see the "Attributions" section at the end of the collection.

Chapter 1. An Introduction to MATLAB

 MATLAB, short for Matrix Laboratory, is a simple and flexible
		programming environment for a wide range of problems such as signal
		processing, optimization, linear programming and so on. The basic
		MATLAB software package can be extended by using add-on toolboxes.
		Examples of such toolboxes are: Signal Processing, Filter Design, Statistics
		and Symbolic Math.

		Comprehensive documentation for MATLAB is available at Mathworks.com.
		In particular, an excellent (extensive) getting started guide is available at
		Getting started with MATLAB.
		There is also a very active newsgroup for MATLAB related questions,
		comp.soft-sys.matlab

		MATLAB is an interpreted language. This implies that the source code is
		not compiled but interpreted on the fly. This is both an advantage and a
		disadvantage. MATLAB allows for easy numerical calculation and
		visualization of the results without the need for advanced and time
		consuming programming. The disadvantage is that it can be slow,
		especially when bad programming practices are applied.
	

Solutions

Chapter 2. Using MATLAB

Matlab Help

 MATLAB has a great on-line help system
accessible using the help command. Typing

help <function>

 will return text information about the chosen
function. For example to get information about the built-in
function sum type:

help sum

 To list the contents of a toolbox type help
<toolbox>, e.g. to show all the functions of the signal
processing toolbox enter

help signal processing

 If you don't know the name of the function
but a suitable keyword use the
lookfor followed by a keyword string, e.g.

lookfor 'discrete fourier'

 To explore the extensive help system use the
"Help menu" or try the commands
helpdesk or
demo.

Matrices, vectors and scalars

 MATLAB uses matrices as the basic variable
type. Scalars and vectors are special cases of matrices having size 1x1,
1xN or Nx1. In MATLAB, there are a few conventions for entering data:
 	Elements of a row are separated with blanks or commas.

	Each row is ended by a semicolon, ;.

	A list of elements must be surrounded by square brackets, [
]

Example 2.1.
 It is easy to create basic variables.
 x = 1 (scalar)
 y = [2 4 6 8 10] (row vector)
 z = [2; 4; 6; 8; 10] (column vector)
 A = [4 3 2 1 0; 1 3 5 7 9] (2 x 5 matrix)

 Regularly spaced values of a vector can be
entered using the following compact notation

start:skip:end

Example 2.2.
 A more compact way of entering
		variables than in Example 1 is shown here:
 y= 2 : 2 : 10
 A=[4:-1:0;1:2:9]

 If the skip is omitted it will be set to 1,
i.e., the following are equivalent

start:1:end and
start:end
 To create a string use the single quotation
mark " ' ", e.g. by entering x = 'This is a string'.

Indexing matrices and vectors

 Indexing variables is straightforward. Given
a matrix M the element in the i'th row, j'th column is given by
M(i,j). For a vector v the i'th element is given by v(i). Note that
the lowest allowed index in MATLAB is 1. This is in contrast with
many other programming languages (e.g. JAVA and C), as well as the
common notation used in signal processing, where indexing starts at
0. The colon operator is also of great help when accessing specific
parts of matrices and vectors, as shown below.
Example 2.3.
 This example shows the use of the colon operator for
indexing matrices and vectors.
 A(1,:) returns the first row of the matrix A.
 A(:,3) returns the third column of the matrix A.
 A(2,1:5) returns the first five elements of the second row.
 x(1:2:10) returns the first five odd-indexed elements of the vector x.

Basic operations

 MATLAB has built-in functions for a number of
arithmetic operations and functions. Most of them are
straightforward to use. The Table below lists the some commonly used
functions. Let x and y be scalars, M and N matrices.

	
Table 2.1. Common mathematical operations in MATLAB	 	MATLAB
	xy	x*y
	xy	x^y
	ex	exp(x)
	log(x)	log10(x)
	ln(x)	log(x)
	log2(x)	log2(x)
	MN	M*N
	M-1	inv(M)
	MT	M'
	det(M)	det(M)

 	Dimensions - MATLAB functions length and size are used to
find the dimensions of vectors and matrices, respectively.

	Elementwise operations - If an arithmetic operation should be
done on each component in a vector (or matrix), rather than on the
vector (matrix) itself, then the operator should be preceded by
".", e.g .*, .^ and ./.

Example 2.4.
 Elementwise operations, part I

	Let .
Then A^2 will return
			,
while A.^2 will return
.

Example 2.5.
 Elementwise operations, part II

Given a vector x, and a vector y having elements
.

This can be easily be done in MATLAB by typing y=1./sin(x)
Note that using / in place of ./ would result in the (common) error
Matrix dimensions must agree.

Complex numbers

 MATLAB has excellent support for complex
numbers with several built-in functions available. The imaginary
unit is denoted by i or (as preferred in electrical engineering) j.
To create complex variables

	z1=7+ⅈ

and

	z2=2eⅈπ

simply enter
z1 = 7 + j and z2 = 2*exp(j*pi)
 The Table below gives an overview of the basic
functions for manipulating complex numbers, where z is a complex number.
Table 2.2. Manipulating complex numbers in MATLAB	 	MATLAB
	Re(z)	real(z)
	Im(z)	imag(z)
	|z|	abs(z)
	Angle(z)	angle(z)
	z*	conj(z)

Other Useful Details

 	A semicolon added at the end of a line tells MATLAB to suppress
				the command output to the display.

	MATLAB and case sensitivity. For variables MATLAB is case
				sensitive, i.e., b and B are different. For functions it is case insensitive,
				i.e., sum and SUM refer to the same function.

	Often it is useful to split a statement over multiple lines. To split a
				statement across multiple lines, enter three periods "..." at the end of
				the line to indicate that it continues on the next line.

Example 2.6.
 Splitting

	y=a+b+c		
 over multiple lines.

y = a...
+ b...
+ c;

Solutions

Chapter 3. Graphical representation of data in MATLAB

Graphical representation of data in MATLAB

 MATLAB provides a great variety of functions
and techniques for graphical display of data. The flexibility and
ease of use of MATLAB's plotting tools is one of its key strengths.
In MATLAB graphs are shown in a figure window. Several figure
windows can be displayed simultaneously, but only one is active.
All graphing commands are applied to the active figure. The command

figure(n)will activate figure number
n or create a new figure indexed by
n.

Tools for plotting

 In this section we present some of the most
commonly used functions for plotting in MATLAB.
 	
plot- The plot and stem functions can take a large
number of arguments, see help plot and help stem. For example the
line type and color can easily be changed.
plot(y) plots the values in vector
yversus their index.
plot(x,y) plots the values in vector
yversus
x. The
plot function produces a piecewise linear graph between
its data values. With enough data points it looks
continuous.

	
stem- Using
stem(y)the data sequence
yis plotted as stems from the x-axis terminated with
circles for the data values.
stem is the natural way of plotting sequences.
stem(x,y) plots the data sequence
y at the values specified in
x.

	
xlabel('string')- Labels the x-axis with
string.

	
ylabel('string')- Labels the y-axis with
string.

	
title('string')- Gives the plot the title
string.

To illustrate this consider the following example.
Example 3.1.
 In this example we plot the function y = x2
		for x 2 [-2; 2].

		x = -2:0.2:2;
	

	
	

		y = x.^2;
	

		
	

		figure(1);
	

		
	

		plot(x,y);
	

		
	

		xlabel('x');
	

		
	

		ylabel('y=x^2');
	

		
	

		title('Simple plot');
	

		
	

		figure(2);
	

		
	

	stem(x,y);
		

		
	

		xlabel('x');
	

		
	

		ylabel('y=x^2');
	

		
	

		title('Simple stem plot');
	
 This code produces the following two figures.
 [image: Figure (plotteEksempel1_1.png)]

Figure 3.1.

 [image: Figure (plotteEksempel1_2.png)]

Figure 3.2.

 Some more commands that can be helpful when
working with plots:
 	hold on / off - Normally hold is off. This means that the
plot command replaces the current plot with the new one. To add a
new plot to an existing graph use
hold on. If you want to overwrite the current plot
again, use
hold off.

	
legend('plot1','plot2',...,'plot N')- The
legend command provides an easy way to identify
individual plots when there are more than one per figure. A legend
box will be added with strings matched to the plots.

	
axis([xmin xmax ymin ymax])- Use the
axis command to set the axis as you wish. Use
axis on/off to toggle the axis on and off
respectively.

	
subplot(m,n,p) -Divides the figure window into
m rows,
n columns and selects the
pp'th subplot as the current plot, e.g
subplot(2,1,1) divides the figure in two and selects
the upper part.
subplot(2,1,2) selects the lower part.

	
grid on/off - This command adds or removes a
rectangular grid to your plot.

Example 3.2.
 This example illustrates
	hold, legend and axis.

		x = -3:0.1:3; y1 = -x.^2; y2 = x.^2;
	

		
	

		figure(1);
	

plot(x,y1);

hold on;

plot(x,y2,'--');

hold off;

xlabel('x');

ylabel('y_1=-x^2 and y_2=x^2');

legend('y_1=-x^2','y_2=x^2');

figure(2);

plot(x,y1);

hold on;

plot(x,y2,'--');

hold off;

xlabel('x');

ylabel('y_1=-x^2 and y_2=x^2');

legend('y_1=-x^2','y_2=x^2');

axis([-1 1 -10 10]);

 The result is shown below.
	 [image: Subfigure (a) (plotteEksempel2_1.png)](a)

	 [image: Subfigure (b) (plotteEksempel2_2.png)](b)

Figure 3.3.

Example 3.3.
 In this example we illustrate
subplot and grid.

x = -3:0.2:3; y1 = -x.^2; y2 = x.^2;

subplot(2,1,1);

plot(x,y1);

xlabel('x'); ylabel('y_1=-x^2');

grid on;

subplot(2,1,2);

plot(x,y2);

xlabel('x');

ylabel('y_2=x^2');

 Now, the result is shown below.
 [image: Figure (plotteEksempel3.png)]

Figure 3.4.

Printing and exporting graphics

 After you have created your figures you may
want to print them or export them to graphic files. In the "File"
menu use "Print" to print the figure or "Save As" to save your
figure to one of the many available graphics formats. Using these
options should be sufficient in most cases, but there are also a
large number of adjustments available by using "Export setup",
"Page Setup" and "Print Setup".
 To streamline the graphics exportation, take
a look at exportfig package at Mathworks.com, URL:

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=727.

3D Graphics

We end this module on graphics with a sneak
peek into 3D plots. The new functions here are
meshgrid and
mesh. In the example below we see that
meshgridproduces
xand
yvectors suitable for 3D plotting and that
mesh(x,y,z) plots
z as a function of both
x and
y.
Example 3.4.
 Example: Creating our first 3D plot.
 [x,y] = meshgrid(-3:.1:3);

 z = x.^2+y.^2;

 mesh(x,y,z);

 xlabel('x');

 ylabel('y');

 zlabel('z=x^2+y^2');
 This code gives us the following 3D plot.
 [image: Figure (plotteEksempel3D.png)]

Figure 3.5.

Solutions

Chapter 4. Scripts and Functions in MATLAB

Script files

 Script files, also called M- files as they
have extension
.m, make MATLAB programming much more efficient than
entering individual commands at the command prompt. A script file
consists of MATLAB commands that together perform a specific task.
The M-file is a text file which can be created and edited by any
plain text editor like Notepad, emacs or the built-in MATLAB
editor. To create a script in MATLAB use:
File - New - M -File from the menu. An example script
is shown below.
Example 4.1.
 Our first script.

n = 0:pi/100:2*pi; %create an index vector
y = cos(2*pi*n); %create a vector y
plot(n,y); %plot y versus n

 As shown above the %-sign allows for comments. Saving the script as
foo.m it can be executed as foo from the command prompt or by clicking the run
button in the MATLAB editor. Script files are very practical and should be the preferred alternative compared to the command prompt
in most cases.

Program flow

 As in most programming languages program flow can be controlled by using statements such as
for, while, if, else, elseif, and switch.
These statements can be used both in M-files and at the command prompt, the latter being highly
inconvenient. Below we show some examples. Use help to get more details.
 	
		for- To print "Hello World" 10 times write

for n=1:10
 disp('Hello World')
end

for loops can in many cases be avoided by
vectorizing your code, more about that later.
	

	
		if, elseand elseif - Classics that never go out of style.

if a == b
 a = b + 1
elseif a > b
 a = b - 1
else
 a = b
end

User Defined Functions

 Sometimes it is convenient to create your own
functions for use in MATLAB. Functions are program routines,
usually implemented in M-files. Functions can take input arguments
and return output arguments. They operate on variables within their
own workspace, separate from the workspace you access at the MATLAB
command prompt.
Example 4.2.
 Create a function for calculating the sum of
	the N+1 first terms of geometric series.
	Assume
	
		N<∞
	.
	
 Solution: The sum of the N + 1 terms of a geometric
	series is given by
	.
	 An implementation of this sum as a 	function accepting the input arguments a and N is shown below.

function ssum = geom(a,N)
 n=0:N;
 ssum = sum(a.^n);
end

 The function
geomcan then be called, e.g from the command prompt.
The function call geom(0.9,10)returns 6.8619.

 To illustrate some more MATLAB programming we take on the task of
creating a MATLAB function that will compute the sum of an arbitrary geometric series,
	.

Example 4.3.
 Create a function to calculate the sum of an
arbitrary geometric series.
 Solution: For

		N<∞
	
	we know that the sum converges regardless of a.
	As N goes to ∞ the sum converges only for
	a<1, and the sum is given by the formula
	.
A possible implementation is given as:

function ssum = geomInf(a,N)
 if(N==inf)
 if(abs(a)>=1)
 error('This geometric series will diverge.');
 else
 ssum=1/(1-a);
 end
 else
 n=0:N;
 ssum = sum(a.^n);
 end
end

Note that in the two examples above we could have used the formula for the sum of a finite geometric series. However we chose to create a vector and use the function sum to illustrate MATLAB concepts.

Learn From Existing Code

Wouldn't it be great to learn from the best? Using the command type
followed by a function name the source code of the function is displayed.
As the built in functions are written by people with excellent knowledge of
MATLAB, this is a great feature for anyone interested in learning more
about MATLAB.

Solutions

Chapter 5. Vectorizing loops in MATLAB

 In MATLAB one should try to avoid loops. This can be done by vectorizing your code. The idea is that MATLAB is very fast
on vector and matrix operations and correspondingly slow with loops. We illustrate this by an example.
Example 5.1.
 Given
	
		an=n
	,
	and
	
		bn=1000−n
	
	for
	
		n=1,...,1000
	.
	Calculate
	,
	 and store in the variable ssum.
 Solution:
	 It might be tempting to implement the above calculation as

a = 1:1000;
b = 1000 - a;
ssum=0;
for n=1:1000 %poor style...
 ssum = ssum +a(n)*b(n);
end

Recognizing that the sum is the inner product of the vectors a and b,

	abT
, we can do better:

ssum = a*b' %Vectorized, better!

For more detailed information on vectorization, please take a look at MathWorks'
Code Vectorization Guide.

Solutions

Chapter 6. Writing C Functions in MATLAB (MEX-Files)

Introduction

 The MATLAB M-File is very good for putting together functions or scripts that run many of MATLAB's
 fast Built-In functions. One nice thing about these files is that they are never compiled and will run on
 any system that is already running MATLAB. MATLAB achieves this by interpreting each line of the M-File
 every time it is run. This method of running the code can make processing time very slow for
 large and complicated functions, especially those with many loops because every line within the loop will
 be interpreted as a new line, each time through the loop. Good MATLAB code avoids these things by using
 as many Built-In features and array operations as possible (because these are fast and efficient).
 Sometimes this is not enough...

 MATLAB has the capability of running functions written in C.
 The files which hold the source for these functions are called MEX-Files. The mexFunctions are not intended to be a
 substitue for MATLAB's Built-In operations however if you need to code many loops and
 other things that MATLAB is not very good at, this is a good option. This feature also allows
 system-specific APIs to be called to extend MATLAB's abilities (see the Serial Port Tutorial for
 an example of this).

 This document is arranged in the following manner:

 	The MEX-Function: Interface to MATLAB

	Getting and Creating Data

	Calling Built-In Functions from a MEX-File

	Compiling

	Useful Functions not Mentioned Here

 These are some of the basic topics that will allow you to create a MEX-file in a short time. There
 are many other features and abilities that MATLAB has which can be explored in the MATLAB
 documentation.

The MEX-Function: Interface to MATLAB

 When writing programs in C, it is always assumed that the program will start execution from the main().
 MEX -Files are similar in that they always start execution from a special function called the mexFunction.
 This function has return type void and is the "gateway" between the MATLAB function call, and your C code.

Example 6.1.

//You can include any C libraries that you normally use
#include "math.h"
#include "mex.h" //--This one is required

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
 //All code and internal function calls go in here!

 return;
}

 In order to make a mex-function, you must include the "mex.h" library. This library contains
 all of the APIs that MATLAB provides. There are four input parameters to the mexFunction which
 correspond to the way a function is called in MATLAB - (ex: [z0,z1] = jasonsFunction(x,y,z);)

 	nlhs (Type = int): This paramter represents the number of "left hand side" arguments. So in my example
 function call, nlhs = 2 (the outputs are z0 and z1).

	plhs (Type = array of pointers to mxArrays): This parameter is the actual output arguments. As we will see
 later, an mxArray is MATLAB's structure for holding data and each element in plhs holds an mxArray of data.

	nrhs (Type = int): Similar to nlhs, this paramter holds the number of "right hand side" arguments.

	prhs (Type = const array of pointers to mxArrays): This array hold all of the pointers to the mxArrays of input data
 for instance, prhs[0] holds the mxArray containing x, prhs[1] holds the mxArray containing y, etc).

Getting and Creating Data

 The main MATLAB structure used for holding data in MEX-Files is the mxArray. This structure can hold
 real data, complex data, arrays, matrices, sparse-arrays, strings, and a whole host of other MATLAB data-structures.
 Using data from some of the basic structures is shown here, but refer to the MATLAB help for using
 other data structures.

Get that Data

 Lets use my example from above (if you forgot: [z0,z1] = jasonsFunction(x,y,z);).
 Assume that x is a 2-D matrix, y is a string, and z is an integer. Here we wills ee how to extract
 and use these different types of data.

 We have access to the input paramter x by a pointer held in the array prhs. In C, when referencing
 an array by index, the variable is automatically dereferenced (ie: you dont need to use a star).
 For clarity, I will copy the variable x over to an mxArray pointer named xData (This does not need
 to be done for the code to work).

Example 6.2.

//---Inside mexFunction---

//Declarations
mxArray *xData;
double *xValues;
int i,j;
int rowLen, colLen;
double avg;

//Copy input pointer x
xData = prhs[0];

//Get matrix x
xValues = mxGetPr(xData);
rowLen = mxGetN(xData);
colLen = mxGetM(xData);

//Print the integer avg of each col to matlab console
for(i=0;i<rowLen;i++)
{
 avg=0;
 for(j=0;j<colLen;j++)
 {
 avg += xValues[(i*colLen)+j];
 //Another Method:
 //
 //avg += *xValues++;
 }
 avg = avg/colLen;
 printf("The average of row %d, is %d",i,(int)avg);
}

 The function mxGetPr is used to get a pointer to the real data xData. This function takes a
 pointer to an mxArray as the intput paramter, and returns a pointer array of doubles. A similar function
 mxGetPi can be used for complex data. mxGetN and mxGetM return
 integers of the lengths of the row and column in the matrix. If this were an array of data, one of these
 return values would be zero. MATLAB gives the matrix as rows first, then columns (if you were to traverse
 the matrix linearly) so to jump by position, (x,y) maps to x*colLen+y. MATLAB organizes
 its arrays this way to reduce cache misses when the row traversal is on the outside loop. It is good to
 code it this way if you are working for efficiency. printf()
 will print out to the MATLAB command prompt.

 Getting a string is very similar, but has its own method. The example below shows the procedure for getting
 a string. Again, I will copy the input to a pointer called yData.

Example 6.3.

//---Inside mexFunction---

//Declarations
mxArray *yData;
int yLength;
char *TheString;

//Copy input pointer y
yData = prhs[1];

//Make "TheString" point to the string
yLength = mxGetN(yData)+1;
TheString = mxCalloc(yLength, sizeof(char)); //mxCalloc is similar to malloc in C
mxGetString(yData,TheString,yLength);

 This last example shows how to get a simple integer. This is the method that has always worked
 for me, but it seems kind of strange so I imagine there is another way to do this.

Example 6.4.

//---Inside mexFunction---

//Declarations
mxArray *zData;
int Num;

//Copy input pointer z
zData = prhs[2];

//Get the Integer
Num = (int)(mxGetScalar(zData));

//print it out on the screen
printf("Your favorite integer is: %d",Num);

 Three data types have been shown here. There are several others and the MATLAB help as well
 as the MATLAB example code shows how to use them. Now to export the data....

Returning Data to MATLAB

 Assigning return values and data to the left hand side parameters is very similar to getting
 the data from the last section. The difference here is that memory must be allocated for the
 data strucure being used on the output. Here is an example of how to return a 2-D matrix. This code
 will take the input x and return a copy of the matrix to z0 with every point in x multiplied by 2.
 Note that I am not copying the name of the output mxArray pointer into another variable.

Example 6.5.

//---Inside mexFunction---

//Declarations
mxArray *xData;
double *xValues, *outArray;
int i,j;
int rowLen, colLen;

//Copy input pointer x
xData = prhs[0];

//Get matrix x
xValues = mxGetPr(xData);
rowLen = mxGetN(xData);
colLen = mxGetM(xData);

//Allocate memory and assign output pointer
plhs[0] = mxCreateDoubleMatrix(colLen, rowLen, mxREAL); //mxReal is our data-type

//Get a pointer to the data space in our newly allocated memory
outArray = mxGetPr(plhs[0]);

//Copy matrix while multiplying each point by 2
for(i=0;i<rowLen;i++)
{
 for(j=0;j<colLen;j++)
 {
 outArray[(i*colLen)+j] = 2*xValues[(i*colLen)+j];
 }
}

Calling Built-In Functions from a MEX-File

 While it may be nice to write functions in C, there are so many useful and fast pre-written
 functions in MATLAB that it would be a crime if we could not use them. Luckily,
 The Mathworks (creators of MATLAB) has provided this capability. Built-In functions have a parameter list
 similar to the mexFunction itself. This example uses the built-in function z = conv(x,y);

Example 6.6.

//---Inside mexFunction---

//Declarations
mxArray *result;
mxArray *arguments[2];

//Fill in the input parameters with some trash
arguments[0] = mxCreateDoubleMatrix(1, 20, mxREAL);
arguments[1] = mxCreateDoubleMatrix(1, 10, mxREAL);

//In the real world I imagine you would want to actually put
//some useful data into the arrays above, but for this example
//it doesnt seem neccesary.

//Call the Function
mexCallMATLAB(1,&result,2,arguments,"conv");

//Now result points to an mxArray and you can extract the data as you please!

Compiling

 Compiling the MEX-Files is similar to compiling with gcc or any other command line
 compiler. In the MATLAB command prompt, change your current directory to the
 location of the MEX source file. Type: mex filename.c into the MATLAB
 command window. MATLAB may ask you to choose a compiler. Choose the compiler with MATLAB in its directory path.
 Your function will be called with the same name as your file. (ex: mex jasonsFunction.c
 produces a function that can be called from MATLAB as [z0,z1] = jasonsFunction(x,y,z);)

 After compiling MATLAB produces the actual MEX binary that can be called as a normal MATLAB function. To call
 this function, you must be in the same directory with the binary. The binary goes by different names
 depending what system you compiled the source on (ex: Windows=.dll MacOSX=.mexmac Solaris=.mexsol Linux=.mexlx).
 Your MEX-function will have to be compiled on each type of system that you want to run it on because the
 binaries are operating system specific.

Other Useful Functions

 Here is a nice list of useful functions in the mex library that make life a lot
 easier. Most of these work in similar fashion to those functions described above. The full list can be found in
 the MATLAB help documentation with many examples. There are also some example files in the MATLAB
 extern directory (MATLAB/extern/examples/mx or mex).

 	mxDuplicateArray

	mexErrMsgTxt

	mxMalloc

	mxRealloc

	mxCreateString

	mxDestroyArray

	mxFree

	mxGetCell

	mxGetData

	and many more...

Solutions

Chapter 7. Introductory Computer Assignment for MATLAB

 The Introductory assignment is currently only available in
pdf format.
Solution in pdf format.

Solutions

Index

Attributions

	Collection: An Introduction to MATLAB
	Edited by: Anders Gjendemsjø
	URL: http://cnx.org/content/col10323/1.3/
	Copyright: Anders Gjendemsjø
	License: http://creativecommons.org/licenses/by/2.0/

	Module: An Introduction to MATLAB
	By: Anders Gjendemsjø
	URL: http://cnx.org/content/m13255/1.1/
	Copyright: Anders Gjendemsjø
	License: http://creativecommons.org/licenses/by/2.0/

	Module: Using MATLAB
	By: Anders Gjendemsjø
	URL: http://cnx.org/content/m13254/1.5/
	Copyright: Anders Gjendemsjø
	License: http://creativecommons.org/licenses/by/2.0/

	Module: Graphical representation of data in MATLAB
	By: Anders Gjendemsjø
	URL: http://cnx.org/content/m13252/1.1/
	Copyright: Anders Gjendemsjø
	License: http://creativecommons.org/licenses/by/2.0/

	Module: Scripts and Functions in MATLAB
	By: Anders Gjendemsjø
	URL: http://cnx.org/content/m13253/1.1/
	Copyright: Anders Gjendemsjø
	License: http://creativecommons.org/licenses/by/2.0/

	Module: Vectorizing loops in MATLAB
	By: Anders Gjendemsjø
	URL: http://cnx.org/content/m13251/1.4/
	Copyright: Anders Gjendemsjø
	License: http://creativecommons.org/licenses/by/2.0/

	Module: Writing C Functions in MATLAB (MEX-Files)
	By: Jason Laska
	URL: http://cnx.org/content/m12348/1.2/
	Copyright: Jason Laska
	License: http://creativecommons.org/licenses/by/1.0

	Module: Introductory Computer Assignment for MATLAB
	By: Anders Gjendemsjø
	URL: http://cnx.org/content/m13256/1.5/
	Copyright: Anders Gjendemsjø
	License: http://creativecommons.org/licenses/by/2.0/

About Connexions

 Since 1999, Connexions has been pioneering a global system where anyone can create course materials and make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and learning environment open to anyone interested in education, including students, teachers, professors and lifelong learners. We connect ideas and facilitate educational communities. Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12 schools, distance learners, and lifelong learners. Connexions materials are in many languages, including English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai.

content/m13254/_autogen-svg2png-0013.png

content/m13254/_autogen-svg2png-0005.png

content/m13253/_autogen-svg2png-0006.png
sm= 3 @
‘

content/m13253/_autogen-svg2png-0010.png

content/m13251/_autogen-svg2png-0006.png

content/m13251/_autogen-svg2png-0005.png

content/m13252/plotteEksempel3.png
2

content/m13253/_autogen-svg2png-0009.png

content/m13251/_autogen-svg2png-0003.png
n=1,..,1000

content/m13254/_autogen-svg2png-0019.png

content/m13252/plotteEksempel2_2.png
0

5

< pue et

05

ES

content/m13252/plotteEksempel2_1.png
E)

xFhpue et

content/m13254/_autogen-svg2png-0002.png

content/m13254/_autogen-svg2png-0016.png

content/m13251/_autogen-svg2png-0007.png

content/m13254/_autogen-svg2png-0018.png

content/m13254/_autogen-svg2png-0001.png

content/m13254/_autogen-svg2png-0011.png

content/m13254/_autogen-svg2png-0010.png

content/m13253/_autogen-svg2png-0004.png

content/cover.png
An Introduction
to MATLAB

content/m13253/_autogen-svg2png-0005.png

content/m13254/_autogen-svg2png-0022.png

content/m13253/_autogen-svg2png-0002.png
N<oo

content/m13253/_autogen-svg2png-0001.png
N+1

content/m13254/_autogen-svg2png-0015.png

content/m13254/_autogen-svg2png-0004.png

content/m13254/_autogen-svg2png-0017.png

content/m13253/_autogen-svg2png-0008.png

content/m13254/_autogen-svg2png-0006.png

content/m13254/_autogen-svg2png-0012.png

content/m13254/_autogen-svg2png-0014.png
yin)

e
0

content/m13251/_autogen-svg2png-0002.png
000 —n

content/m13254/_autogen-svg2png-0003.png

content/m13254/_autogen-svg2png-0007.png

content/m13252/plotteEksempel1_2.png
‘‘‘‘‘‘‘‘‘‘‘‘‘‘

content/m13253/_autogen-svg2png-0007.png
N<oo

content/m13254/_autogen-svg2png-0020.png

content/m13254/_autogen-svg2png-0023.png
y=a+b+c

content/m13253/_autogen-svg2png-0003.png
sm= 3 @
‘

content/m13252/plotteEksempel3D.png

content/m13253/_autogen-svg2png-0012.png

content/m13254/_autogen-svg2png-0008.png

content/m13251/_autogen-svg2png-0004.png
R
X)

content/m13253/_autogen-svg2png-0011.png
a<l

content/m13252/plotteEksempel1_1.png
Simple plot

content/m13254/_autogen-svg2png-0009.png

content/m13251/_autogen-svg2png-0001.png

content/m13254/_autogen-svg2png-0021.png

