
Freshman Engineering Problem Solving
with MATLAB

Collection Editor:
Darryl Morrell

Freshman Engineering Problem Solving
with MATLAB

Collection Editor:
Darryl Morrell

Authors:
Anders Gjendemsjø

Darryl Morrell

Online:
< http://cnx.org/content/col10325/1.18/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Darryl Morrell. It is licensed under the

Creative Commons Attribution 2.0 license (http://creativecommons.org/licenses/by/2.0/).

Collection structure revised: April 23, 2007

PDF generated: February 4, 2011

For copyright and attribution information for the modules contained in this collection, see p. 75.

Table of Contents

1 Introduction
1.1 Introduction to the M-�le Connexions Modules . 1
1.2 Finding Help for M-�le Environments . 1

2 Problem Solving

2.1 Problem Solving Using M-�le Environments . 3
2.2 Exercise for Problem Solving with M-Files . 4
2.3 Visual Tools for Problem Solving with M-Files . 4

3 Basic Mathematical Computations

3.1 Basic Mathematical Operations . 9
3.2 Variables in M-�le Environments . 10
3.3 Exercises for Basic Mathematical Operations . 12
3.4 Vectors and Arrays in M-File Environments . 13
3.5 Basic Complex and Matrix Operations 16
Solutions . 18

4 Graphing

4.1 Introduction to Graphing in M-File Environments . 19
4.2 Graphical representation of data in MATLAB . 24
Solutions . 30

5 Programming with M-�le Scripts

5.1 A Very Brief Introduction to Programming with M-Files . 31
5.2 For Loops . 32
5.3 Conditionals . 42
5.4 While Loops . 50
Solutions . 54

Bibliography . 72
Index . 74
Attributions . 75

iv

Chapter 1

Introduction

1.1 Introduction to the M-�le Connexions Modules1

MATLAB has emerged as a widely used computational tool in many �elds of engineering. MATLAB consists
of a programming language used in an interactive computing environment that supports the development of
programs to solve complex problems. The MATLAB language has become a defacto standard that is also
used by several other computational packages, including LabVIEW MathScript and Octave. Generically,
we refer to these packages as m-�le environments because the program �les typically are identi�ed by an
extension of "m".

The Connexions modules in this course2 are intended to introduce freshman engineering students to
problem solving using an m-�le environment. Most of the information in these modules applies to any
m-�le environment (MATLAB, LabVIEW MathScript, Octave, etc.). There are some di�erences between
environments, and occasionally some material will be speci�c to a given environment. This material is o�set
from the surrounding text and labeled with the appropriate environment. For example:

note: Matlab is a commercial product of The MathWorks3 .

note: LabVIEW MathScript is a commercial product of National Instruments4 .

note: Octave is an open source environment that is available without charge. Information about
Octave is available at the Octave home page5 .

1.2 Finding Help for M-�le Environments6

There is a wealth of information available about using most m-�le environments. In fact, the amount of
information may overwhelm someone who is beginning.

The help command can be used to get information about a speci�c command or function. For example,
typing help cos will give information about the cosine function. Typing help will give general information.

A signi�cant amount of information is available on the World Wide Web:

note: Useful information is available at the MATLAB Helpdesk page7 , including reference
material for MATLAB's functions8 .

1This content is available online at <http://cnx.org/content/m13749/1.1/>.
2Freshman Engineering Problem Solving with MATLAB <http://cnx.org/content/col10325/latest/>
3http://www.mathworks.com/
4http://www.ni.com/
5http://www.octave.org/
6This content is available online at <http://cnx.org/content/m13750/1.3/>.
7http://www.mathworks.com/access/helpdesk/help/helpdesk.html
8http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ref.html

1

2 CHAPTER 1. INTRODUCTION

note: Useful information is available at the National Instruments LabVIEW MathScript Portal9

, including an interactive demonstration of MathScript10 .

note: The de�nitive source for information is The o�cial GNU Octave Manual11 . Also, here12

is one of many good tutorials.

9http://zone.ni.com/devzone/conceptd.nsf/webmain/255092BA939E491686257090006794D0?opendocument&node=13106_US
10http://www.ni.com/swf/demos/us/labview/mscriptwindow/default.htm
11http://www.gnu.org/software/octave/doc/interpreter/index.html#Top
12http://www.aims.ac.za/resources/tutorials/octave/

Chapter 2

Problem Solving

2.1 Problem Solving Using M-�le Environments1

The purpose of this module is to introduce the engineering problem solving process in the context of using
m-�le environments to solve problems. Many variations of this process exist and no single variation is best
for solving all problems. In this module we describe a variation of the engineering problem solving process
that applies to m-�le environments problem solving. Other variations are described in the reference at the
end of this module.

The following problem solving process is fairly involved and may be an excessive amount of work for
simple problems. For problems where the solution is straight forward, simply solve the problem; for more
complex problems, the solution will usually not be obvious and this process will aid in development of an
appropriate solution.

This speci�c process is divided into a set of seven steps. Each step includes questions that help move you
successfully through the problem solving process.

1. De�ne the Problem

• What problem are you trying to solve?
• "What would success look like?"
• What should the program output? Computed values? A plot or series of plots?

2. Identify given information.

• What constants or data are supplied?
• What theory, principles, models and equations have you been given?

3. Identify other available information.

• What theory, principles, models and equations can you �nd in other sources (text books, lecture
notes, etc.)?

4. Identify further needed information.

• What other information do you need?
• Where will you �nd it?

5. Design and implement your solution to the problem.

• How can you break the larger problem into smaller problems?
• Look at the problem from the top down or bottom up?
• What programming techniques might you use to convert input to output?
• What variables do you need? Vectors? Arrays?

1This content is available online at <http://cnx.org/content/m13694/1.4/>.

3

4 CHAPTER 2. PROBLEM SOLVING

• What principles and equations apply to convert input to output?

6. Verify your solution.

• How do you know your solution is correct?

7. Re�ect on your solution.

• What worked?
• What didn't?

When solving simple problems you may be able to follow these steps in order. For more complex problems,
you may be working on step 5 and realize you need more information. You might then go back to steps 3 or
4 to re-evaluate and �nd missing information.

Reference: H. Scott Fogler, Steven E. LeBlanc. Strategies for Creative Problem Solving, Prentice Hall,
1995.

2.2 Exercise for Problem Solving with M-Files2

Exercise 2.1
You are part of a design team that is developing a commercial aluminum can crusher. Your
preliminary crusher design includes a collection chamber in which cans are collected until a desired
weight of cans has accumulated; the cans are then crushed by a hydraulic ram. In preliminary
research, you determine that the typical aluminum can is a cylinder with diameter 2.5" and height
4.8" and weighs approximately 15 grams. You have been assigned to model the relationship between
the size of the chamber and the weight of (uncrushed) cans it would hold.

2.3 Visual Tools for Problem Solving with M-Files3

Using an abstract visual representation while developing a program structure is often a useful technique.
Several di�erent visual representations have been developed; one of the most comprehensive is UML4 . Two
of the simplest are introduced in this module: �ow charts and pseudo code. In both �ow charts and pseudo
code, elements of the problem solution are described using natural language statements that are visually
arranged to show the structure of the program.

A �ow chart represents elements of the solution to a problem as statements enclosed in boxes; the sequence
in which use elements are performed is identi�ed by arrows connecting the boxes. Figure 2.1 (First Flow
Chart) shows an example �ow chart.

Pseudo code represents the elements of the solution to a problem as a sequence of statements. The
statements are formatted to show the logical structure of the solution. Figure 2.2 (First Pseudo Code) shows
an example of pseudo code.

The following example demonstrates the use of �ow charts and pseudo code to develop the structure of
a program that solves an engineering problem.

Example 2.1
The ACME Manufacturing Company is planning to manufacture widgets5 . There are two di�erent
manufacturing processes: one cost $10,000 to implement and can manufacture up to 1000 widgets,
while the other cost $100,000 to implement and can manufacture up to one million widgets. In
addition to the manufacturing cost, there is a �xed cost of $1 per widget (for packing and shipping

2This content is available online at <http://cnx.org/content/m13865/1.1/>.
3This content is available online at <http://cnx.org/content/m13820/1.3/>.
4http://www.uml.org/
5http://en.wiktionary.org/wiki/widget

5

each widget to the customer). Consider the problem of calculating the cost per unit to manufacture
and ship a given number of widgets.

One way to solve the problem is to complete the following steps:

• Get the number of widgets to be produced.
• Determine the total manufacturing costs.
• Determine the total �xed costs.
• Determine the total cost.
• Compute the cost per unit.

Figure 2.1 (First Flow Chart) shows a �ow chart that represents these steps. Figure 2.2 (First
Pseudo Code) shows the pseudo code that represents these steps.

First Flow Chart

Get the number of widgets to

be produced.

Determine the manufacturing

costs.

Determine the total fixed

costs.

Determine the total cost.

Compute the cost per unit.

Figure 2.1: A �ow chart for the widget production problem.

First Pseudo Code

Get the number of widgets to be produced.

Determine the manufacturing costs.

Determine the total fixed costs.

Determine the total cost.

Compute the cost per unit.

Figure 2.2: Pseudo code for the widget production problem.

Having developed an initial solution, we can re�ne those elements whose implementation may
not yet be fully de�ned. In this example, the manufacturing cost depend on the number of widgets
to be made; if this number is less than or equal to 1000, the cost is $10,000, while if the number
is greater than 1000, the cost is $100,000. We can represent this using the �ow chart blocks in
Figure 2.3 (Flow Chart for Manufacturing Costs). The diamond is a conditional; the branch of the
�ow chart that is actually executed depends on whether the conditional is true or false.

6 CHAPTER 2. PROBLEM SOLVING

Flow Chart for Manufacturing Costs

Determine the

manufacturing costs. manufacturing costs =

$10,000

manufacturing costs =

$100,000

of widgets >

1000?

False True

Figure 2.3: A �ow chart for the manufacturing costs.

Putting this conditional into the complete �ow chart gives the �ow chart in Figure 2.4 (Complete
Flow Chart). The conditional is incorporated in the the pseudo code to give the pseudo code in
Figure 2.5 (Complete Pseudo Code).

Complete Flow Chart

manufacturing costs =

$10,000

manufacturing costs =

$100,000

of widgets >

1000?

False True

Get the number of widgets to

be produced.

Determine the total fixed

costs.

Determine the total cost.

Compute the cost per unit.

Figure 2.4: The complete �ow chart for the problem.

7

Complete Pseudo Code

Get the number of widgets to be produced.

if number of widgets > 1000

manufacturing costs are $100,000

else

manufacturing costs are $10,000

Determine the total fixed costs.

Determine the total cost.

Compute the cost per unit.

Figure 2.5: Pseudo code for the widget production problem.

There are advantages and disadvantages for both �ow charts and pseudo code. Advantages of using a �ow
chart include that it provides a strong visual representation of the program and that it is straightforward for
novice programmers to use. The primary disadvantage of using a �ow chart is that it is possible to create a
�ow chart that can only be implemented by "spaghetti code"6 . Spaghetti code is considered extremely bad
form for many reasons; in particular, it is hard to understand, debug and modify. The primary advantage
of pseudo code is that its structure is clearly related to the available control structures in modern computer
languages. Pseudo code has several disadvantages: it is not a very strong visual representation, and it is less
straightforward for novice programmers.

6http://en.wikipedia.org/wiki/Spaghetti_code

8 CHAPTER 2. PROBLEM SOLVING

Chapter 3

Basic Mathematical Computations

3.1 Basic Mathematical Operations1

3.1.1 Operations and Expressions

An m-�le environment has all of the standard arithmetic operations (addition, subtraction, etc.) and func-
tions (sine, cosine, logarithm, etc.). The table (Table 3.1: Some Common Scalar Mathematical Operations)
lists the most commonly used operations; in this table, x and y are scalars. (A scalar is a single value, as
opposed to a vector or matrix which consists of many values.)

Some Common Scalar Mathematical Operations

Operation m-�le

x− y x-y

x+ y x+y

xy x*y

x
y x/y

xy x^y

ex exp(x)

log10 (x) log10(x)

ln (x) log(x)

log2 (x) log2(x)

cos (x) cos(x)

sin (x) sin(x)

continued on next page

1This content is available online at <http://cnx.org/content/m13439/1.7/>.

9

10 CHAPTER 3. BASIC MATHEMATICAL COMPUTATIONS

√
x sqrt(x)

Table 3.1

Expressions are formed from numbers, variables, and these operations. The operations have di�erent
precedences. The ^ operation has the highest precedence; ^ operations are evaluated before any other
operations. Multiplication and division have the next highest precedence, and addition and subtraction have
the lowest precedence. Precedence is altered by parentheses; expressions within parentheses are evaluated
before expressions outside parentheses.

Example 3.1
The Table (Table 3.2: Example Expressions) below shows several mathematical formulas, the
corresponding expressions, and the values that are computed for the expressions.

Example Expressions

formula MATLAB Expression Computed Value

52 + 42 5^2+4^2 41

(5 + 4)2 (5+4)^2 81

2+3
4−5 (2 + 3)/(4 - 5) -5

log10 (100) log10(100) 2

ln (4× (2 + 3)) log(4*(2+3)) 2.9957

Table 3.2

3.1.2 Useful Tricks

These tricks are occasionally useful, especially when you begin programming with m-�les.

• A semicolon added at the end of a line suppresses the output.
• Often it is useful to split input over multiple lines. To split a statement across multiple lines, enter

three periods ... at the end of the line to indicate it continues on the next line.

Example 3.2
Splitting the expression 2+3

4−5 over multiple lines.

(2+3)...

/(4-5)

3.2 Variables in M-�le Environments2

3.2.1 Variables

A variable is a named storage location that can be set to a particular value which can be used in subsequent
computations. For example, we store a value of 5 in the variable a with the statement a=5. This value
remains in a until we store a di�erent value (for example, using the command a=100) or we clear a using the

2This content is available online at <http://cnx.org/content/m13354/1.3/>.

11

command clear a. Once a variable is set to a particular value, we can get this value by using the variable
name in an expression (e.g. a/2).

Example 3.3
Suppose we wish to compute the circumference of a circle of diameter 5 units using the formula
c = πd . We could �rst set the variable d to a value of 5:

� d = 5

d =

5.000

Then we could compute the circumference and assign its value to the variable c:

� c = pi*d

c =

15.708

In this command, the product of the value of d (which is known because we earlier set it to 5) and
the value of pi (which is a pre de�ned variable) is computed and the value of the product is stored
in the variable c.

Variable names must begin with an upper- or lower-case letter. They may contain letters, digits, and
underscores; they may not contain spaces or punctuation characters. Variable names are case sensitive, so A

and a are di�erent variables.

Exercise 3.1 (Solution on p. 18.)

Valid variable names
Which of the following are valid variable names?

1. a
2. B
3. ecky_ecky_ecky_ecky_ptang_zoo_boing
4. ecky ecky ecky ecky ptang zoo boing

5. 2nd
6. John-Bigboote

There are several prede�ned variables. The most commonly used include

• ans - the default variable in which computation results are stored.
• pi - π.
• i or j -

√
−1 .

Once assigned, variable names remain until they are reassigned or eliminated by the clear command.
Variables can contain several types of numerical values. These types include the following:

• Scalar - a scalar is a single value (i.e. a number). c and d in Example 3.3 are scalar variables.
• Vector - a vector is an ordered series of numbers.
• Matrices - a matrix is a rectangular array of numbers. The ability to do computations on vectors and

matrices gives MATLAB its name (MATrix LABoratory).
• strings - variables may also contain strings of characters.

12 CHAPTER 3. BASIC MATHEMATICAL COMPUTATIONS

3.3 Exercises for Basic Mathematical Operations3

Exercise 3.2
Figure 3.1 (Distance Sensor and Processor) shows a Sharp GP2D12 infrared distance sensor4 and
a BasicX-24 microprocessor5 .

Distance Sensor and Processor

BasicX

Processor

Infrared Distance

Sensor

V
o
lt
ag
e

D
is
ta
n
ce

Figure 3.1: The infrared distance sensor and microprocessor.

The distance sensor uses a beam of infrared light to measure the distance from the sensor to
an object; the sensor provides an output voltage that has a fairly complicated relationship to this
distance. The BasicX processor converts the voltage from the sensor into a number between zero
and one. Let us denote this number as x, and the distance (measured in inches) between the sensor
and object as d. The relationship between x and d is

d =
34.63
x − 5.162

2.54
(3.1)

Compute the value of d for the following values of x:

• x = 0.10
• x = 0.15
• x = 0.20

Exercise 3.3
The terminal velocity reached by a sky diver depends on many factors, including their weight,
their body position as they fall, and the density of the air through which they fall. The terminal
velocity is given by6

Vt =
√

2mg
rACd

(3.2)

where

• m is the sky diver's mass
• g is Earth's gravitational constant

3This content is available online at <http://cnx.org/content/m13832/1.4/>.
4http://www.acroname.com/robotics/info/articles/sharp/sharp.html
5http://www.basicx.com/
6http://en.wikipedia.org/wiki/Terminal_velocity

13

• r is the atmospheric density
• A is the sky diver's e�ective area
• Cd is the sky diver's coe�cient of drag

Compute the terminal velocity of the sky diver for each of the following values of m:

• m = 40kg
• m = 80kg
• m = 120kg

Use the following values for the other variables:

• g = 9.8
• r = 1.2
• A = 0.5
• Cd = 1

3.4 Vectors and Arrays in M-File Environments7

3.4.1 Vectors and Arrays in M-File Environments

One signi�cant capability of environments accounts for much of their popularity among engineers: their
ability to do vector and matrix computations. M-�le environments can operate on the following types of
values:

Scalar - a scalar is a single value (i.e. a number).
Vector - a vector is an ordered series of numbers.
Matrix - a matrix is a rectangular array of numbers.

note: The ability to do computations on vectors and matrices gives MATLAB its name
(MATrix LABoratory).

String - variables may also contain strings of characters.

3.4.2 Vector Basics

There are several ways to create a vector of values. One is to enclose the values in square brackets. For
example, the command [9 7 5 3 1] creates the vector of values 9, 7, 5, 3, and 1. This vector can be
assigned to a variable v:

� v = [9 7 5 3 1]

v =

9 7 5 3 1

A second way to create a vector of values is with the sequence notation start:end or start:inc:end.
For example, 1:10 creates the vector of integers from 1 to 10:

7This content is available online at <http://cnx.org/content/m13355/1.2/>.

14 CHAPTER 3. BASIC MATHEMATICAL COMPUTATIONS

� 1:10

ans =

1 2 3 4 5 6 7 8 9 10

The command 1:0.1:2 creates the vector

� 1:0.1:2

ans =

1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000 1.8000 1.9000 2.0000

The command 10:-1:1 creates the vector

� 10:-1:1

ans =

10 9 8 7 6 5 4 3 2 1

Vector elements are accessed using numbers in parentheses. For example if the vector v is de�ned as v =

[9 7 5 3 1], the second element of v can be accessed as

� v(2)

ans = 7

The fourth element of v can be changed as follows:

� v(4) = 100

v =

9 7 5 100 1

3.4.3 Element by Element Operations on Vectors

In addition to vector and matrix arithmetic, many operations can be performed on each element of the
vector. The following examples use the vector v = [9 7 5 3 1].

Addition - the command v+val adds val to each element of v:

� v+5

ans =

14 12 10 8 6

Subtraction - the command v-val subtracts val from each element of v:

15

� v-5

ans =

4 2 0 -2 -4

Multiplication - the command v*val multiplies each element of v by val:

� v*5

ans =

45 35 25 15 5

Division - the command v/val divides each element of v by val:

� v/5

ans =

1.80000 1.40000 1.00000 0.60000 0.20000

The command val./v divides val by each element of v:

� 5./v

ans =

0.55556 0.71429 1.00000 1.66667 5.00000

Exponentiation - the command v.^val raises each element of v to the val power:

� v.^2

ans =

81 49 25 9 1

3.4.4 More Information on Vectors and Matrices

An excellent tutorial on how to use MATLAB's vector and array capabilities is at the Mathworks MATLAB
tutorial page.8

One useful method of accessing entire rows or entire columns of the matrix is not mentioned in the
tutorial. Suppose that the matrix A is de�ned as

� A = [1 2 3 4 5

6 7 8 9 10

8http://www.mathworks.com/academia/student_center/tutorials/performing_calculations.html

16 CHAPTER 3. BASIC MATHEMATICAL COMPUTATIONS

11 12 13 14 15

16 17 18 19 20]

A =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

An entire row of A can be obtained by specifying a single ":" as the column index:

� A(2,:)

ans =

6 7 8 9 10

Similarly, an entire column of A can be obtained by specifying a single ":" as the row index:

� A(:,3)

ans =

3

8

13

18

3.5 Basic Complex and Matrix Operations9

3.5.1 Complex numbers

m-�le environments have excellent support for complex numbers. The imaginary unit is denoted by i or (as
preferred in Electrical Engineering) j. To create complex variables z1 = 7 + i and z2 = 2eiπ simply enter z1
= 7 + j and z2 = 2*exp(j*pi)

The table (Table 3.3: Manipulating complex numbers) gives an overview of the basic functions for
manipulating complex numbers, where z is a complex number.

Manipulating complex numbers

m-�le

continued on next page

9This content is available online at <http://cnx.org/content/m13751/1.2/>.

17

Re(z) real(z)

Im(z) imag(z)

|z| abs(z)

Angle(z) angle(z)

z∗ conj(z)

Table 3.3

3.5.2 Operations on Matrices

In addition to scalars, m-�le environments can operate on matrices. Some common matrix operations are
shown in the Table (Table 3.4: Common matrix operations) below; in this table, M and N are matrices.

Common matrix operations

Operation m-�le

MN M*N

M−1 inv(M)

MT M'

det(M) det(M)

Table 3.4

Some useful facts:

• The functions length and size are used to �nd the dimensions of vectors and matrices, respectively.
• Operations can also be performed on each element of a vector or matrix by proceeding the operator

by ".", e.g .*, .^ and ./.

Example 3.4

Let A =

 1 1

1 1

. Then A^2 will return AA =

 2 2

2 2

, while A.^2 will return
 12 12

12 12

 = 1 1

1 1

.
Example 3.5
Given a vector x, compute a vector y having elements y (n) = 1

sin(x(n)) . This can be easily be done

the command y=1./sin(x) Note that using / in place of ./ would result in the (common) error
"Matrix dimensions must agree".

18 CHAPTER 3. BASIC MATHEMATICAL COMPUTATIONS

Solutions to Exercises in Chapter 3

Solution to Exercise 3.1 (p. 11)

1. Valid.
2. Valid.
3. Valid.
4. Invalid, because the variable name contains spaces.
5. Invalid, because the variable name begins with a number.
6. Invalid, because the variable name contains a dash.

Chapter 4

Graphing

4.1 Introduction to Graphing in M-File Environments1

One of the reasons that m-�le environments are extensively used by engineers is their capability to provide
graphical representations of data and computed values. In this module, we introduced the basics of graphing
data in m-�le environments through a series of examples. This module uses some fundamental operations
on vectors that are explained in Vectors and Arrays in M-File Environments (Section 3.4).

Example 4.1
The table below shows speed as a function of distance for a braking Dodge Viper decelerating from
70MPH to 0MPH.

note: This data was not measured; it was computed using the stopping distance reported for a
Dodge Viper2 and assuming constant deceleration. Thus, it may not accurately re�ect the braking
characteristics of a real Dodge Viper.

Dodge Viper Stopping Data

Distance (ft) Velocity (ft/s)

0 102.7

29.1 92.4

55.1 82.1

78.0 71.9

97.9 61.6

114.7 51.3

128.5 41.1

139.2 30.8

146.9 20.5

151.5 10.3

153.0 0.0

Table 4.1

1This content is available online at <http://cnx.org/content/m13836/1.6/>.
2http://www.caranddriver.com/article.asp?section_id=33&article_id=2420&page_number=2

19

20 CHAPTER 4. GRAPHING

The following commands will create a graph of velocity as a function of distance:

dist = [0 29.1 55.1 78.0 97.9 114.7 128.5 139.2 146.9 151.5 153.0]

vel = [102.7 92.4 82.1 71.9 61.6 51.3 41.1 30.8 20.5 10.3 0.0]

plot(dist,vel)

Figure 4.1 shows the graph created by these commands.

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

Figure 4.1: Graph of the Viper's velocity as a function of distance.

This graph shows the data, but violates several important conventions of engineering practice.
The axes are not labeled with quantity and units, and the graph does not have a title. The following
commands, when executed after the plot command, will label the axes and place a title on the graph.

xlabel('Distance (ft)')

ylabel('Velocity (ft/s)')

title('Velocity vs Distance for the Dodge Viper')

The results of these commands are shown in Figure 4.2.

21

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

Distance (ft)

V
el

oc
ity

 (
ft/

s)
Velocity vs Distance for the Dodge Viper

Figure 4.2: Graph of the Viper's velocity as a function of distance. The graph has a title and labels
on the axes.

After creating a �gure, you may wish to insert it into a document. The method to do this depends on the
m-�le environment, the document editor and the operating system you are using.

note: To paste a �gure into a Word document on Windows, pull down the Edit menu of the
window of the MATLAB �gure you wish to paste, and select Copy Figure. Then go to the Word
document into which you wish to insert the �gure and use the paste command.

Exercise 4.1 (Solution on p. 30.)

Repeat Example 4.1 using the following data for a Hummer H2:

note: As in Example 4.1, this data was not measured; it was computed using the stopping distance
reported for a Hummer H23 and assuming constant deceleration.

3http://www.caranddriver.com/article.asp?section_id=33&article_id=2420&page_number=2

22 CHAPTER 4. GRAPHING

Hummer H2 Stopping Data

Distance (ft) Velocity (ft/s)

0 102.7

46.3 92.4

87.8 82.1

124.4 71.9

156.1 61.6

182.9 51.3

204.9 41.1

222.0 30.8

234.2 20.5

241.5 10.3

244.0 0.0

Table 4.2

Example 4.2
An m-�le environment can also be used to plot functions. For example, the following commands
plot cos (x) over one period.

x = 0:0.1:2*pi;

y=cos(x)

plot(x,y)

xlabel('x')

ylabel('cos(x)')

title('Plot of cos(x)')

Figure 4.3 shows the graph created by these commands.

23

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

co
s(

x)
Plot of cos(x)

Figure 4.3: Graph of one period of the cosine function.

Exercise 4.2
The module Exercises for Basic Mathematical Operations (Section 3.3) describes how to compute
the terminal velocity of a falling sky diver. Plot the terminal velocity as a function of the sky diver's
weight; use weights from 40kg to 500kg.

Exercise 4.3
In electrical circuit analysis, the equivalent resistance Req of the parallel combination of two
resistors R1 and R2 is given by the equation

Req =
1

1
R1

+ 1
R2

(4.1)

Set R2 = 1000Ohms and plot Req for values of R1 from 100 Ohms to 3000 Ohms.

Exercise 4.4
In an experiment, a small steel ball is dropped and videoed against a checkered background. The
video sequence is analyzed to determine the height of the ball as a function of time to give the data
in the following table:

24 CHAPTER 4. GRAPHING

Height and Time Data

Time (s) Height (in)

0.0300 22.0

0.0633 21.5

0.0967 20.5

0.1300 18.8

0.1633 17.0

0.1967 14.5

0.2300 12.0

0.2633 8.0

0.2967 3.0

Table 4.3

This experimental data is to be compared to the theoretically expected values given by the
following equation:

h = 22in− 1
2
gt2 (4.2)

where h is in inches, t is in seconds, and g = 386.4 in
s2 . Create a graph that compares the measured

data with the theoretically expected values; your graph should conform to good conventions for
engineering graphics. Plot the measured data using red circles, and plot the theoretically expected
values using a blue line.

4.2 Graphical representation of data in MATLAB4

4.2.1 Graphical representation of data in MATLAB

MATLAB provides a great variety of functions and techniques for graphical display of data. The �exibility
and ease of use of MATLAB's plotting tools is one of its key strengths. In MATLAB graphs are shown in a
�gure window. Several �gure windows can be displayed simultaneously, but only one is active. All graphing
commands are applied to the active �gure. The command figure(n)will activate �gure number n or create
a new �gure indexed by n.

4.2.2 Tools for plotting

In this section we present some of the most commonly used functions for plotting in MATLAB.

• plot- The plot and stem functions can take a large number of arguments, see help plot and help stem.
For example the line type and color can easily be changed. plot(y) plots the values in vector yversus
their index. plot(x,y) plots the values in vector yversus x. The plot function produces a piecewise
linear graph between its data values. With enough data points it looks continuous.

• stem- Using stem(y)the data sequence yis plotted as stems from the x-axis terminated with circles for
the data values. stem is the natural way of plotting sequences. stem(x,y) plots the data sequence y

at the values speci�ed in x.

4This content is available online at <http://cnx.org/content/m13252/1.1/>.

25

• xlabel('string')- Labels the x-axis with string.
• ylabel('string')- Labels the y-axis with string.
• title('string')- Gives the plot the title string.

To illustrate this consider the following example.

Example 4.3
In this example we plot the function y = x2 for x 2 [-2; 2].

x = -2:0.2:2;

y = x.^2;

figure(1);

plot(x,y);

xlabel('x');

ylabel('y=x^2');

title('Simple plot');

figure(2);

stem(x,y);

xlabel('x');

ylabel('y=x^2');

title('Simple stem plot');

This code produces the following two �gures.

Figure 4.4

26 CHAPTER 4. GRAPHING

Figure 4.5

Some more commands that can be helpful when working with plots:

• hold on / o� - Normally hold is o�. This means that the plot command replaces the current plot with
the new one. To add a new plot to an existing graph use hold on. If you want to overwrite the current
plot again, use hold off.

• legend('plot1','plot2',...,'plot N')- The legend command provides an easy way to identify
individual plots when there are more than one per �gure. A legend box will be added with strings
matched to the plots.

• axis([xmin xmax ymin ymax])- Use the axis command to set the axis as you wish. Use axis on/off

to toggle the axis on and o� respectively.
• subplot(m,n,p) -Divides the �gure window into m rows, n columns and selects the pp'th subplot as the

current plot, e.g subplot(2,1,1) divides the �gure in two and selects the upper part. subplot(2,1,2)
selects the lower part.

• grid on/off - This command adds or removes a rectangular grid to your plot.

Example 4.4
This example illustrates hold, legend and axis.

x = -3:0.1:3; y1 = -x.^2; y2 = x.^2;

figure(1);

plot(x,y1);

hold on;

plot(x,y2,'�');

hold off;

xlabel('x');

ylabel('y_1=-x^2 and y_2=x^2');

legend('y_1=-x^2','y_2=x^2');

27

figure(2);

plot(x,y1);

hold on;

plot(x,y2,'�');

hold off;

xlabel('x');

ylabel('y_1=-x^2 and y_2=x^2');

legend('y_1=-x^2','y_2=x^2');

axis([-1 1 -10 10]);

The result is shown below.

(a) (b)

Figure 4.6

Example 4.5
In this example we illustrate subplot and grid.

x = -3:0.2:3; y1 = -x.^2; y2 = x.^2;

subplot(2,1,1);

plot(x,y1);

xlabel('x'); ylabel('y_1=-x^2');

grid on;

subplot(2,1,2);

28 CHAPTER 4. GRAPHING

plot(x,y2);

xlabel('x');

ylabel('y_2=x^2');

Now, the result is shown below.

Figure 4.7

4.2.3 Printing and exporting graphics

After you have created your �gures you may want to print them or export them to graphic �les. In the
"File" menu use "Print" to print the �gure or "Save As" to save your �gure to one of the many available
graphics formats. Using these options should be su�cient in most cases, but there are also a large number
of adjustments available by using "Export setup", "Page Setup" and "Print Setup".

To streamline the graphics exportation, take a look at export�g package at Mathworks.com, URL:
http://www.mathworks.com/matlabcentral/�leexchange/loadFile.do?objectId=7275 .

4.2.4 3D Graphics

We end this module on graphics with a sneak peek into 3D plots. The new functions here are meshgrid and
mesh. In the example below we see that meshgridproduces xand yvectors suitable for 3D plotting and that
mesh(x,y,z) plots z as a function of both x and y.

Example 4.6
Example: Creating our �rst 3D plot.

[x,y] = meshgrid(-3:.1:3);

z = x.^2+y.^2;

mesh(x,y,z);

5http://www.mathworks.com/matlabcentral/�leexchange/loadFile.do?objectId=727

29

xlabel('x');

ylabel('y');

zlabel('z=x^2+y^2');

This code gives us the following 3D plot.

Figure 4.8

30 CHAPTER 4. GRAPHING

Solutions to Exercises in Chapter 4

Solution to Exercise 4.1 (p. 21)
Figure 4.9 shows the graph of the Hummer H2 stopping data.

0 50 100 150 200 250
0

20

40

60

80

100

120

Distance (ft)

V
el

oc
ity

 (
ft/

s)

Velocity vs Distance for the Hummer H2

Figure 4.9: Graph of the H2 velocity as a function of distance.

Chapter 5

Programming with M-�le Scripts

5.1 A Very Brief Introduction to Programming with M-Files1

You can use m-�le scripts to automate computations. Almost anything typed at the command line can
also be included in a m-�le script. Lines in a m-�le script are interpreted sequentially and the instructions
are executed in turn. M-�le scripts allow you to implement complex computations that cannot be readily
achieved using commands at the command line. You can also create computational capabilities for other
people to use.

There are some di�erences between MATLAB, MathScript, and Octave script �les; these di�erences are
typically not that signi�cant. M-�le scripts are text �les and can be edited by any text editor. The script
�le must have an extension of ".m" and be in a directory that MATLAB knows about. M-�le names should
begin with a letter and only contain letters and numbers. Any other characters (space, dash, star, slash,
etc.) will be interpreted as operations on variables and will cause errors. Also, M-�le names should not be
the same as variables in the workspace to di�erentiate between �le names and variables.

note: Both MATLAB and LABVIEW MathScript have built-in editors with features that make
editing m-�le scripts easier. In both envrionments, the editor is integrated with a debugger which
makes �nding and correcting errors in your scripts easier. More detailed information about using
the MATLAB editor be found at Mathworks Matlab Tutorial-Creating Scripts with MATLAB
Editor/Debugger2 . More detailed information about using the LABVIEW MathScript editor
be found at National Instruments LabVIEW MathScript Tutorial-Inside LabVIEW MathScript
Tutorial.3 .

M-�le scripts interact with the current executing environment. Variables set before the script is executed
can a�ect what happens in the script. Variables set in the script remain after the script has �nished execution.

Comments document your code and help other users (and yourself several months down the road) under-
stand how you have implemented your program. Comments begin with the character %; any text in a line
after the % is ignored by the script interpreter.

To correctly execute a script, the script �le environment must know the directory in which the script
resides.

note: To instruct the MATLAB environment where to search for the m-�le script, you can set
the current working directory or set the search path. More detailed information can be found at
Mathworks Matlab Tutorial-Working with Files, Directories and Paths4 .

1This content is available online at <http://cnx.org/content/m13259/1.6/>.
2http://www.mathworks.com/academia/student_center/tutorials/creating_scripts.html
3http://zone.ni.com/devzone/conceptd.nsf/webmain/76529B03846251A58625709600631C80
4http://www.mathworks.com/academia/student_center/tutorials/working_�les.html

31

32 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

note: To set the current working directory for LABVIEW MATHSCRIPT, use the menu
File>MathScript Preferences in the MathScript interactive window. More detailed information
can be found at National Instrument's LabVIEW MathScript Preferences Dialog Box.5

5.2 For Loops

5.2.1 Programming with M-�les: For Loops
6

5.2.1.1 The For Loop

The for loop is one way to repeat a series of computations using di�erent values. The for loop has the
following syntax:

for d = array

% Command 1

% Command 2

% and so on

end

In the for loop, array can be any vector or array of values. The for loop works like this: d is set to the
�rst value in array, and the sequence of commands (Command 1, Command 2, and so on) in the body of the
for loop is executed with this value of d. Then d is set to the second value in array, and the sequence of
commands in the body of the for loop is executed with this value of d. This process continues through all of
the values in array. So a for loop that performs computations for values of d from 1.0 to 2.0 is:

for d = 1.0:0.05:2.0

% Command 1

% Command 2

% and so on

end

(Recall that 1.0:0.05:2.0 creates a vector of values from 1.0 to 2.0.)
Note that in all of the examples in this module, the commands inside the for loop are indented relative

to the for and end statements. This is not required, but is common practice and makes the code much more
readable.

The �ow of control through a for loop is represented by the �ow chart in Figure 5.1. This �ow chart
graphically shows how the sequence of commands in the for loop is executed once for each value. The �ow
of control through the for loop is also represented by the pseudo code in Figure 5.2; note that the pseudo
code looks very similar to the actual m-�le code.

5http://zone.ni.com/reference/en-XX/help/371361A-01/lvdialog/mathscript_preferences_db/
6This content is available online at <http://cnx.org/content/m13258/1.5/>.

33

Set d to the next number in

the vector

Command 1

Command 2.

More elements in

vector?

...

Y

N

Figure 5.1: A �ow chart containing a for loop.

for each element of the vector

Do Command 1

Do Command 2

and so on

Figure 5.2: Pseudo code for a for loop.

A useful type of for loop is one that steps a counter variable from 1 to some upper value:

for j = 1:10

% Commands

end

For example, this type of loop can be used to compute a sequence of values that are stored in the elements
of a vector. An example of this type of loop is

% Store the results of this loop computation in the vector v

for j = 1:10

% Commands

% More Commands to compute a complicated result

v(j) = result;

end

34 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

Using a for loop to access and manipulate elements of a vector (as in this example) may be the most
natural approach, particularly when one has previous experience with other programming languages such as
C or Java. However, many problems can be solved without for loops by using the built-in vector capabilities.
Using these capabilities almost always improves computational speed and reduces the size of the program.
Some would also claim that it is more elegant.

For loops can also contain other for loops. For example, the following code performs the commands for
each combination of d and c:

for d=1:0.05:2

for c=5:0.1:6

% Commands

end

end

5.2.2 Programming with M-�les: For-Loop Drill Exercises
7

5.2.2.1 Some For Loop Exercises

Exercise 5.1 (Solution on p. 54.)

Loop Indices
How many times will this program print "Hello World"?

for a=0:50

disp('Hello World')

end

Exercise 5.2 (Solution on p. 54.)

Loop Indices II
How many times will this program print "Guten Tag Welt"?

for a=-1:-1:-50

disp('Guten Tag Welt')

end

Exercise 5.3 (Solution on p. 54.)

Loop Indices III
How many times will this program print "Bonjour Monde"?

for a=-1:1:-50

disp('Bonjour Monde')

end

Exercise 5.4 (Solution on p. 54.)

Nested Loops
How many times will this program print "Hola Mundo"?

for a=10:10:50

for b=0:0.1:1

disp('Hola Mundo')

end

end

7This content is available online at <http://cnx.org/content/m13276/1.6/>.

35

Exercise 5.5 (Solution on p. 54.)

A tricky loop
What sequence of numbers will the following for loop print?

n = 10;

for j = 1:n

n = n-1;

j

end

Explain why this code does what it does.

Exercise 5.6 (Solution on p. 54.)

Nested Loops II
What value will the following program print?

count = 0;

for d = 1:7

for h = 1:24

for m = 1:60

for s = 1:60

count = count + 1;

end

end

end

end

count

What is a simpler way to achieve the same results?

5.2.3 Programming With M-Files: For-Loop Exercises
8

Exercise 5.7
Frequency is a de�ning characteristic of many physical phenomena including sound and light. For
sound, frequency is perceived as the pitch of the sound. For light, frequency is perceived as color.

The equation of a cosine wave with frequency f cycles/second is

y = cos (2πft) (5.1)

Create an m-�le script to plot the cosine waveform with frequency f = 2 cycles/s for values of t
between 0 and 4.

Exercise 5.8 (Solutions on p. 55.)

Suppose that we wish to plot (on the same graph) the cosine waveform in Exercise 5.7 for the
following frequencies: 0.7, 1, 1.5, and 2. Modify your solution to Exercise 5.7 to use a for-loop to
create this plot.

Exercise 5.9
Suppose that you are building a mobile robot, and are designing the size of the wheels on the robot
to achieve a given travel speed. Denote the radius of the wheel (in inches) as r, and the rotations
per second of the wheel as w. The robot speed s (in inches/s) is related to r and w by the equation

s = 2πrw (5.2)

8This content is available online at <http://cnx.org/content/m14013/1.4/>.

36 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

On one graph, create plots of the relationship between s and w for values of r of 0.5in, 0.7in, 1.6in,
3.2in, and 4.0in.

Exercise 5.10 (Solution on p. 56.)

Multiple Hypotenuses

a
c

b

Figure 5.3: Sides of a right triangle.

Consider the right triangle shown in Figure 5.3. Suppose you wish to �nd the length of the hy-
potenuse c of this triangle for several combinations of side lengths a and b; the speci�c combinations
of a and b are given in Table 5.1: Side Lengths. Write an m-�le to do this.

Side Lengths

a b

1 1

1 2

2 3

4 1

2 2

Table 5.1

5.2.4 Programming with M-�les: A Modeling Example Using For Loops
9

5.2.4.1 A Modeling Problem: Counting Ping Pong Balls

Suppose you have a cylinder of height h with base diameter b (perhaps an empty pretzel jar), and you wish
to know how many ping-pong balls of diameter d have been placed inside the cylinder. How could you
determine this?

note: This problem, along with the strategy for computing the lower bound on the number of
ping-pong balls, is adapted from (Star�eld 1994). [1]

A lower bound for this problem is found as follows:

• NL -Lower bound on the number of balls that �t into the cylinder.

9This content is available online at <http://cnx.org/content/m13275/1.4/>.

37

• Vcyl -The volume of the cylinder.

Vcyl = hπ

(
b

2

)2

(5.3)

• Vcube -The volume of a cube that encloses a single ball.

Vcube = d3 (5.4)

The lower bound is found by dividing the volume of the cylinder by the volume of the cube enclosing a single
ball.

NL =
Vcyl

Vcube
(5.5)

Exercise 5.11 (Solution on p. 56.)

The interactive approach
You are given the following values:

• d = 1.54in
• b = 8in
• h = 14in

Type commands at the command line prompt to compute NL .

Exercise 5.12 (Solution on p. 57.)

Using an M-File
Create an m-�le to solve Problem 5.11 (The interactive approach).

To complicate your problem, suppose that you have not been given values for d, b, and h. Instead you
are required to estimate the number of ping pong balls for many di�erent possible combinations of these
variables (perhaps 50 or more combinations). How can you automate this computation?

One way to automate the computation of NL for many di�erent combinations of parameter values is to
use a for loop. (Read Programming with M-Files: For Loops (Section 5.2.1) if you are not familiar with the
use of for loops.) The following problems ask you to develop several di�erent ways that for loops can be
used to automate these computations.

Exercise 5.13 (Solution on p. 57.)

Use a for loop
Add a for loop to your m-�le from Problem 5.12 (Using an M-File) to compute NL for b = 8in,
h = 14in, and values of d ranging from 1.0 in to 2.0 in.

Exercise 5.14 (Solution on p. 58.)

Can you still use a for loop?
Modify your m-�le from Problem 5.13 (Use a for loop) to plot NL as a function of d for b = 8in
and h = 14in.
Exercise 5.15 (Solution on p. 60.)

More loops?
Modify your m-�le from Problem 5.13 (Use a for loop) to compute NL for d = 1.54in and various
values of b and h.

5.2.5 Programming with M-Files: A Rocket Trajectory Analysis Using For

Loops
10

note: This example requires an understanding of the relationships between position, velocity,
and acceleration of an object moving in a straight line. The Wikipedia article Motion Graphs and

10This content is available online at <http://cnx.org/content/m13277/1.7/>.

38 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

Derivatives11 has a clear explanation of these relationships, as well as a discussion of average and
instantaneous velocity and acceleration and the role derivatives play in these relationships. Also,
in this example, we will approximate derivatives with forward, backward, and central di�erences;
Lecture 4.1 by Dr. Dmitry Pelinovsky at McMaster University 12 contains useful information about
this approximation. We will also approximate integrals using the trapezoidal rule; The Wikipedia
article Trapezium rule13 has an explanation of the trapezoidal rule.

5.2.5.1 Trajectory Analysis of an Experimental Homebuilt Rocket

On his web page Richard Nakka's Experimental Rocketry Web Site: Launch Report - Frost�re Two Rocket14

, Richard Nakka provides a very detailed narrative of the test �ring of his Frost�re Two homebuilt rocket and
subsequent data analysis. (His site15 provides many detailed accounts of tests of rockets and rocket motors.
Some rocket launches were not as successful as the Frost�re Two launch; his site provides very interesting
post-�ight analysis of all launches.)

5.2.5.2 Computation of Velocity and Acceleration from Altitude Data

In this section, we will use m-�les to analyze the altitude data extracted from the plot "Altitude and
Acceleration Data from R-DAS" on Richard Nakk's web page. This data is in the �le Altitude.txt16 . We
will use this data to estimate velocity and acceleration of the Frost�re Two rocket during its �ight.

Exercise 5.16
Get the data
Download the altitude data set in the �le Altitude.txt17 onto your computer (right click on this
link18). The �le is formatted as two columns: the �rst column is time in seconds, and the second
column is altitude in feet. Load the data and plot the altitude as a function of time.

The following sequence of commands will load the data, create a vector t of time values, create a vector s
of altitude values, and plot the altitude as a function of time.

load Altitude.txt -ascii

t = Altitude(:,1);

s = Altitude(:,2);

plot(t,s)

The plot should be similar to that in Figure 5.4.

11http://en.wikipedia.org/wiki/Motion_graphs_and_derivatives
12http://dmpeli.math.mcmaster.ca/Matlab/Math1J03/LectureNotes/Lecture4_1.htm
13http://en.wikipedia.org/wiki/Trapezoidal_rule
14http://www.nakka-rocketry.net/�-2.html
15http://www.nakka-rocketry.net/
16http://cnx.org/content/m13277/latest/Altitude.txt
17http://cnx.org/content/m13277/latest/Altitude.txt
18http://cnx.org/content/m13277/latest/Altitude.txt

39

0 50 100 150
0

1000

2000

3000

4000

5000

6000

Figure 5.4: Plot of altitude versus time.

Exercise 5.17 (Solution on p. 60.)

Forward Di�erences
Write a script that uses a for loop to compute velocity and acceleration from the altitude data
using forward di�erences. Your script should also plot the computed velocity and acceleration as
function of time.

Exercise 5.18 (Solution on p. 61.)

Backward Di�erences
Modify your script from Problem 5.17 (Forward Di�erences) to compute velocity and acceleration
using backward di�erences. Remember to save your modi�ed script with a di�erent name than
your script from Problem 5.17 (Forward Di�erences).

Exercise 5.19 (Solution on p. 62.)

Central Di�erences
Modify your script from Problem 5.17 (Forward Di�erences) to compute velocity and acceleration
using central di�erences. Remember to save your modi�ed script with a di�erent name than your
script from Problem 5.17 (Forward Di�erences) and Problem 5.18 (Backward Di�erences).

Compare the velocity and acceleration values computed by the di�erent approximations. What can you say
about their accuracy?

Exercise 5.20 (Solution on p. 63.)

Can it be done without loops?
Modify your script from Problem 5.17 (Forward Di�erences) to compute velocity and acceleration
without using a for loop.

5.2.5.3 Computation of Velocity and Altitude from Acceleration Data

In this section, we will use m-�les to analyze the acceleration data extracted from the plot "Altitude and
Acceleration Data from R-DAS" on Richard Nakk's web page. Download the acceleration data set in the �le

40 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

Acceleration.txt19 onto your computer (right click on this link20). The �rst column is time in seconds, and
the second column is acceleration in g's. The following commands load the data and plot the acceleration
as a function of time.

load Acceleration.txt -ascii

t = Acceleration(:,1);

a = Acceleration(:,2);

plot(t,a)

The plot should be similar to that in Figure 5.5.

0 50 100 150
−10

−5

0

5

10

Figure 5.5: Plot of acceleration versus time.

Exercise 5.21 (Solution on p. 64.)

Trapezoidal Rule
Write a script that uses a for loop to compute velocity and altitude from the acceleration data using
the trapezoidal rule. Your script should also plot the computed velocity and altitude as function of
time.

Exercise 5.22 (Solution on p. 66.)

Can it be done without loops?
Modify your script from Problem 5.21 (Trapezoidal Rule) to compute velocity and altitude without
using a for loop.

5.2.6 Programming with M-�les: Analyzing Railgun Data Using For Loops
21

note: This example requires an understanding of the relationships between acceleration and
velocity of an object moving in a straight line. A clear discussion of this relationship can be found

19http://cnx.org/content/m13277/latest/Acceleration.txt
20http://cnx.org/content/m13277/latest/Acceleration.txt
21This content is available online at <http://cnx.org/content/m14031/1.3/>.

41

in Acceleration22; the Wikipedia article Motion Graphs and Derivatives23 also has an explanation
of this relationship, as well as a discussion of average and instantaneous velocity and acceleration
and the role derivatives play. Also, in this example, we will compute approximate integrals using
the trapezoidal rule; The Wikipedia article Trapezium rule24 has an explanation of the trapezoidal
rule.

5.2.6.1 Velocity Analysis of an Experimental Rail Gun

A railgun is a device that uses electrical energy to accelerate a projectile; information about railguns can
be found at the Wikipedia article Railgun25 . The paper E�ect of Railgun Electrodynamics on Projectile
Launch Dynamics[2] shows the current pro�le of a railgun launch. The acelleration a of the projectile (in
units of m

s2) is a function of the current c through the projectile (in units of kAmp). This function is given
by the equation

a = 0.0036c2sgn (c) (5.6)

where sgn (c) is 1 if c > 0 and -1 if c < 0.
Exercise 5.23
Get the data
Download the current data set in the �le Current.txt26 onto your computer (right click on this
link27). The �le is formatted as two columns: the �rst column is time in mili-seconds, and the
second column is current in kA.

The following sequence of commands will load the data, create a vector t of time values, create a vector c
of current values, and plot the current as a function of time.

load Current.txt -ascii

t = Current(:,1);

c = Current(:,2);

plot(t,c)

xlabel('time (msec)')

ylabel('current (kA)')

The plot should be similar to that in Figure 5.6.

22"Acceleration" <http://cnx.org/content/m13769/latest/>
23http://en.wikipedia.org/wiki/Motion_graphs_and_derivatives
24http://en.wikipedia.org/wiki/Trapezoidal_rule
25http://en.wikipedia.org/wiki/Railgun
26http://cnx.org/content/m14031/latest/Current.txt
27http://cnx.org/content/m14031/latest/Current.txt

42 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

0 1 2 3 4
−200

−100

0

100

200

300

400

500

600

time (msec)

cu
rr

en
t (

kA
)

Figure 5.6: Plot of railgun current versus time.

Exercise 5.24
Compute the projectile velocity as a function of time. Note that velocity is the integral of accel-
eration.

5.3 Conditionals

5.3.1 Programming with M-Files: If Statements
28

5.3.1.1 The If Statement

The if statement is one way to make the sequence of computations executed by in an m-�le script depend
on variable values. The if statement has several di�erent forms. The simplest form is

if expression

% Commands to execute if expression is true

end

where expression is a logical expression that is either true or false. (Information about logical expressions
is available in Programming with M-Files: Logical Expressions (Section 5.3.2).) For example, the following
if statement will print "v is negative" if the variable v is in fact negative:

if v < 0

disp('v is negative')

end

A more complicated form of the if statement is

28This content is available online at <http://cnx.org/content/m13356/1.3/>.

43

if expression

% Commands to execute if expression is true

else

% Commands to execute if expression is false

end

For example, the following if statement will print "v is negative" if the variable v is negative and "v is not
negative" if v is not negative:

if v < 0

disp('v is negative')

else

disp('v is not negative')

end

The most general form of the if statement is

if expression1

% Commands to execute if expression1 is true

elseif expression2

% Commands to execute if expression2 is true

elseif expression3

% Commands to execute if expression3 is true

...

else

% Commands to execute if all expressions are false

end

The following if statement is an example of this most general statement:

if v < 0

disp('v is negative')

elseif v > 0

disp('v is positive')

else

disp('v is zero')

end

Note that in all of the examples in this module, the commands inside the if statement are indented
relative to the if, else, elseif, and end statements. This is not required, but is common practice and
makes the code much more readable.

5.3.2 Programming with M-Files: Logical Expressions
29

5.3.2.1 Logical Expressions

Logical expressions are used in if statements (Section 5.3.1), switch case statements, and while loops (Sec-
tion 5.4.1) to change the sequence of execution of commands in response to variable values. A logical
expression is one that evaluates to either true or false. For example, v > 0 is a logical expression that will
be true if the variable v is greater than zero and false otherwise.

29This content is available online at <http://cnx.org/content/m13357/1.5/>.

44 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

note: In m-�le scripts, logical values (true and false) are actually represented by numerical values.
The numerical value of zero represents false, and any nonzero numerical value represents true.

Logical expression are typically formed using the following relational operators:

Relational Operators

Symbol Relation

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

∼= Not equal to

Table 5.2

note: == is not the same as =; they are treated very di�erently in m-�le scripting environments.
== compares two values, while = assigns a value to a variable.

Complex logical expressions can be created by combining simpler logical expressions using the following
logical operators:

Logical Operators

Symbol Relation

∼ Not

&& And

|| Or

Table 5.3

5.3.3 Programming with M-Files: If-Statement Drill Exercises
30

5.3.3.1 Some If Statement Exercises

Exercise 5.25 (Solution on p. 66.)

What will the following code print?

a = 10;

if a ∼= 0

disp('a is not equal to 0')

end

Exercise 5.26 (Solution on p. 66.)

What will the following code print?

30This content is available online at <http://cnx.org/content/m13432/1.4/>.

45

a = 10;

if a > 0

disp('a is positive')

else

disp('a is not positive')

end

Exercise 5.27 (Solution on p. 66.)

What will the following code print?

a = 5;

b = 3;

c = 2;

if a < b*c

disp('Hello world')

else

disp('Goodbye world')

end

Exercise 5.28 (Solution on p. 66.)

Suppose the code in Problem 5.26 is modi�ed by adding parentheses around a > 0. What will it
print?

a = 10;

if (a > 0)

disp('a is positive')

else

disp('a is not positive')

end

Exercise 5.29 (Solution on p. 66.)

Suppose the code in Problem 5.27 is modi�ed by adding the parentheses shown below. What will
it print?

a = 5;

b = 3;

c = 2;

if (a < b)*c

disp('Hello world')

else

disp('Goodbye world')

end

Exercise 5.30 (Solution on p. 66.)

What will the following code print?

p1 = 3.14;

p2 = 3.14159;

46 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

if p1 == p2

disp('p1 and p2 are equal')

else

disp('p1 and p2 are not equal')

end

Exercise 5.31 (Solution on p. 66.)

What will the following code print?

a = 5;

b = 10;

if a = b

disp('a and b are equal')

else

disp('a and b are not equal')

end

Exercise 5.32 (Solution on p. 67.)

For what values of the variable a will the following MATLAB code print 'Hello world'?

if ∼ a == 0

disp('Hello world')

else

disp('Goodbye world')

end

Exercise 5.33 (Solution on p. 67.)

For what values of the variable a will the following code print 'Hello world'?

if a >= 0 && a < 7

disp('Hello world')

else

disp('Goodbye world')

end

Exercise 5.34 (Solution on p. 67.)

For what values of the variable a will the following code print 'Hello world'?

if a < 3 || a > 10

disp('Hello world')

else

disp('Goodbye world')

end

Exercise 5.35 (Solution on p. 67.)

For what values of the variable a will the following code print 'Hello world'?

if a < 7 || a >= 3

disp('Hello world')

47

else

disp('Goodbye world')

end

Exercise 5.36 (Solution on p. 67.)

Write an if statement that will print 'a is very close to zero' if the value of the variable a
is between -0.01 and 0.01.

5.3.4 Programming with M-Files: An Engineering Cost Analysis Example Using

If Statements
31

5.3.4.1 An Engineering Cost Analysis Example

Suppose you are a design engineer for a company that manufactures consumer electronic devices and you
are estimating the cost of producing a new product. The product has four components that are purchased
from electronic parts suppliers and assembled in your factory. You have received cost information from your
suppliers for each of the parts; as is typical in the electronics industry, the cost of a part depends on the
number of parts you order from the supplier.

Your assembly cost for each unit include the cost of labor and your assembly plant. You have estimated
that these costs are C0=$45.00/unit.

The cost of each part depends on the number of parts purchased; we will use the variable n to represent
the number of parts, and the variables CA, CB, CC, and CD to represent the unit cost of each type of part.
These cost are given in the following tables.

Unit cost of Part A

n CA

1-4 $16.00

5-24 $14.00

25-99 $12.70

100 or more $11.00

Table 5.4

Unit cost of Part B

n CB

1-9 $24.64

10-49 $24.32

50-99 $24.07

100 or more $23.33

Table 5.5

Unit cost of Part C

31This content is available online at <http://cnx.org/content/m13433/1.6/>.

48 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

n CC

1-24 $17.98

25-49 $16.78

50 or more $15.78

Table 5.6

Unit cost of Part D

n CD

1-9 $12.50

10-99 $10.42

100 or more $9.62

Table 5.7

The unit cost is Cunit = C0 + CA + CB + CC + CD. To �nd the unit cost to build one unit, we look in
the above tables with a value of n=1; the unit cost is

$45.00+$16.00+$24.64+$17.98+$12.50 = $116.12

To �nd the unit cost to build 20 units, we look in the above tables with a value of n=20 and get

$45.00+$14.00+$24.32+$17.98+$10.42 = $109.72

As expected, the unit cost for 20 units is lower than the unit cost for one unit.

Exercise 5.37 (Solution on p. 67.)

Create an if statement that will assign the proper cost to the variable CA based on the value of
the variable n.

Exercise 5.38 (Solution on p. 67.)

Create a script that will compute the total unit cost Cunit for a given value of the variable n.

Exercise 5.39 (Solution on p. 68.)

Create a m-�le script that will compute and plot the total unit cost as a function of n for values
of n from 1 to 150.

Exercise 5.40
Suppose that you decide to �re your workers, close down your plant, and have the assembly done
o�shore; in this arrangement, C0 = Cx + Cs, where Cx is the cost of o�shore assembly and Cs is the
cost of shipping assembled units from the assembler to your warehouse. After some investigation,
you �nd an o�shore assembler that gives you the following assembly costs as a function of the
number of units to assemble:

Unit cost of Assembly

n Cx

continued on next page

49

1-29 $40.00

30-59 $30.00

60 or more $22.00

Table 5.8

You also �nd a shipping company that will ship the units from the assembler to your warehouse
and whose freight charges are the following function of the number of units shipped :

Unit cost of Shipping

n Cs

1-9 $20.00

10-24 $18.00

25-74 $16.00

75 or more $15.00

Table 5.9

Update the m-�le script in Exercise 5.39 to account for the changes in cost due to o�shoring.

5.4 While Loops

5.4.1 Programming with M-Files: While Loops
32

5.4.1.1 The While Loop

The while loop is similar to the for loop in that it allows the repeated execution of statements. Unlike
the for loop, the number of times that the statements in the body of the loop are executed can depend on
variable values that are computed in the loop. The syntax of the while loop has the following form:

while expression

% Command 1

% Command 2

% More commands to execute repeatedly until expression is not true

end

where expression is a logical expression that is either true or false. (Information about logical expressions
is available in Programming with M-Files: Logical Expressions (Section 5.3.2).) For example, consider the
following while loop:

n = 1

while n < 3

n = n+1

end

This code creates the following output:

32This content is available online at <http://cnx.org/content/m13456/1.2/>.

50 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

n =

1

n =

2

n =

3

Note that in all of this example, the commands inside the while loop are indented relative to the while
and end statements. This is not required, but is common practice and makes the code much more readable.

5.4.2 Programming with M-Files: While-Loop Drill Exercises
33

5.4.2.1 Some While Loop Exercises

Exercise 5.41 (Solution on p. 70.)

How many times will this loop print 'Hello World'?

n = 10;

while n > 0

disp('Hello World')

n = n - 1;

end

Exercise 5.42 (Solution on p. 70.)

How many times will this loop print 'Hello World'?

n = 1;

while n > 0

disp('Hello World')

n = n + 1;

end

Exercise 5.43 (Solution on p. 70.)

What values will the following code print?

a = 1

while a < 100

a = a*2

end

Exercise 5.44 (Solution on p. 71.)

What values will the following code print?

33This content is available online at <http://cnx.org/content/m13457/1.4/>.

51

a = 1;

n = 1;

while a < 100

a = a*n

n = n + 1;

end

5.4.3 Programming with M-Files: A Personal Finance Example Using While

Loops
34

5.4.3.1 A Personal Finance Example

A student decides to �nance their college education using a credit card. They charge one semester's tuition
and then make the minimum monthly payment until the credit card balance is zero. How many months will
it take to pay o� the semester's tuition? How much will the student have spent to pay o� the tuition?

We can solve this problem using an m-�le script. We de�ne the following variables:

• bn - Balance at month n.
• pn - Payment in month n.
• fn - Finance charge (interest) in month n.

The �nance charge fnis the interest that is paid on the balance each month. The �nance charge is
computed using the monthly interest rate r:

fn = rbn (5.7)

Credit card interest rates are typically given as an annual percentage rate (APR). To convert the APR to
a monthly interest rate, use the following formula:

r =
(

1 +
APR
100

) 1
12

− 1 (5.8)

More information on how to compute monthly rates can be found here35 .
Credit cards usually have a minimum monthly payment. The minimum monthly payment is usually

a �xed percentage of the balance; the percentage is required by federal regulations to be at least 1% higher
than the monthly interest rate. If this minimum payment would be below a given threshold (usually $10 to
$20), the minimum payment is instead set to the threshold. For a threshold of $10, the relationship between
the balance and the minimum payment can be shown in an equation as follows:

pn = max ((r + 0.01) bn, 10) (5.9)

To compute the balance for one month (month n+ 1) from the balance for the previous month (month
n), we compute the �nance charge on the balance in the previous month and add it to the previous balance,
then subtract the payment for the previous month:

bn+1 = bn + fn − pn (5.10)

34This content is available online at <http://cnx.org/content/m13461/1.4/>.
35http://en.wikipedia.org/wiki/Credit_card_interest

52 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

In the following exercises, we will develop the program to compute the number of months necessary to
pay the debt. We will assume that the card APR is 14.9% (the average rate on a student credit card36 in
mid February 2006) and that the initial balance charged to the card is $2203 (the in-state tuition at Arizona
State University at the Polytechnic Campus for Spring 2006 semester37).

Exercise 5.45 (Solution on p. 71.)

Write code to compute the monthly interest rate r from the APR using (5.8).

Exercise 5.46 (Solution on p. 71.)

Write code to compute the minimum monthly payment pn using (5.9).

Exercise 5.47 (Solution on p. 71.)

Write code to compute the balance at month n + 1 in terms of the balance at month n using
(5.10).

Exercise 5.48 (Solution on p. 71.)

Place the code developed for Exercise 5.47 into a while loop to determine how many months will
be required to pay o� the card.

Exercise 5.49 (Solution on p. 71.)

Modify your code from Exercise 5.48 to plot the monthly balance, monthly payment, and total
cost-to-date for each month until the card is paid o�.

36http://money.cnn.com/pf/informa/index.html
37http://www.asu.edu/sbs/FallUndergradEastWest.htm

53

Solutions to Exercises in Chapter 5

Solution to Exercise 5.1 (p. 34)
The code 0:50 creates a vector of integers starting at 0 and going to 50; this vector has 51 elements. "Hello
World" will be printed once for each element in the vector (51 times).
Solution to Exercise 5.2 (p. 34)
The code -1:-1:-50 creates a vector of integers starting at -1 and going backward to -50; this vector has
50 elements. "Guten Tag Welt" will be printed once for each element in the vector (50 times).
Solution to Exercise 5.3 (p. 34)
The code -1:1:-50 creates an empty vector with no elements. "Bonjour Monde" would be printed once for
each element in the vector, but since the vector is empty, it is never printed.
Solution to Exercise 5.4 (p. 34)
The outer loop (the loop with a) will be executed �ve times. Each time the outer loop is executed, the
inner loop (the loop with b) will be executed eleven times, since 0:0.1:1 creates a vector with 11 elements.
"Hola Mundo" will be printed 55 times.
Solution to Exercise 5.5 (p. 35)
In the �rst line, the value of n is set to 10. The code 1:n creates a vector of integers from 1 to 10. Each
iteration through the loop sets j to the next element of this vector, so j will be sent to each value 1 through
10 in succession, and this sequence of values will be printed. Note that each time through the loop, the value
of n is decreased by 1; the �nal value of n will be 0. Even though the value of n is changed in the loop, the
number of iterations through the loop is not a�ected, because the vector of integers is computed once before
the loop is executed and does not depend on subsequent values of n.
Solution to Exercise 5.6 (p. 35)
The d loop will be executed seven times. In each iteration of the d loop, the h loop will be executed 24
times. In each iteration of the h loop, the m loop will be executed 60 times. In each iteration of the m loop,
the s loop will be executed 60 times. So the variable count will be incremented 7× 24× 60× 60 = 604800
times.

A simpler way to achieve the same results is the command

7*24*60*60

Solution A to Exercise 5.8 (p. 35)
The following for-loop is designed to solve this problem:

t=0:.01:4;

hold on

for f=[0.7 1 1.5 2]

y=cos(2*pi*f*t);

plot(t,y);

end

When this code is run, it plots all of the cosine waveforms using the same line style and color, as shown in
Figure 5.7. The next solution shows one rather complicated way to change the line style and color.

54 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

0 1 2 3 4
−1

−0.5

0

0.5

1

Figure 5.7: Plot of cosines at di�erent frequencies.

Solution B to Exercise 5.8 (p. 35)
The following code changes the line style of each of the cosine plots.

fs = ['r-';'b.';'go';'y*']; %Create an array of line style strings

x=1; %Initialize the counter variable x

t=0:.01:4;

hold on

for f=[0.7 1 1.5 2]

y=cos(2*pi*f*t);

plot(t,y,fs(x,1:end)); %Plot t vs y with the line style string indexed by x

x=x+1; %Increment x by one

end

xlabel('t');

ylabel('cos(2 pi f t)')

title('plots of cos(t)')

legend('f=0.7','f=1','f=1.5','f=2')

This code produces the plot in Figure 5.8. Note that this plot follows appropriate engineering graphics
conventions-axes are labeled, there is a title, and there is a legend to identify each plot.

55

0 1 2 3 4
−1

−0.5

0

0.5

1

t

co
s(

2
pi

 f
t)

plots of cos(2 pi f t)

f=0.7
f=1
f=1.5
f=2

Figure 5.8: Plot of cosines at di�erent frequencies.

Solution to Exercise 5.10 (p. 36)
This solution was created by Heidi Zipperian:

a=[1 1 2 4 2]

b=[1 2 3 1 2]

for j=1:5

c=sqrt(a(j)^2+b(j)^2)

end

A solution that does not use a for loop was also created by Heidi:

a=[1 1 2 4 2]

b=[1 2 3 1 2]

c=sqrt(a.^2+b.^2)

Solution to Exercise 5.11 (p. 37)
The following shows the commands typed at the � prompt and the output produced:

� d = 1.54

d =

1.5400

� b = 8

b =

8

56 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

� h = 14

h =

14

� vcyl = h*pi*(b/2)^2

vcyl =

703.7168

� vcube = d^3

vcube =

3.6523

� nl = vcyl/vcube

nl =

192.6796

Solution to Exercise 5.12 (p. 37)
We created the following �le named PingPong.m:

% PingPong.m - computes a lower bound on the number of

% ping pong balls that fit into a cylinder

% Note that most lines end with a ";", so they don't print

% intermediate results

d = 1.54;

h = 14;

b = 8;

vcyl = h*pi*(b/2)^2;

vcube = d^3;

nl = vcyl/vcube

When run from the command line, this program produces the following output:

� PingPong

nl =

192.6796

Solution to Exercise 5.13 (p. 37)
This solution is by BrieAnne Davis.

57

for d=1.0:.05:2.0

b=8;

h=14;

vcyl=h*pi*(b/2)^2

vcube=d^3

nl=vcyl/vcube

end

Solution to Exercise 5.14 (p. 37)
This solution is by Wade Stevens. Note that it uses the command hold on to plot each point individually
in the for loop.

clear all

hold on

for d=1.0:0.1:2.0;

b=8;

h=14;

C=h*pi*(b/2)^2; %volume of cylinder

c=d^3; %volume of cube

N=C/c; %Lower bound

floor(N)

plot (d,N,'g*')

end

This solution creates the plot in Figure 5.9.

1 1.2 1.4 1.6 1.8 2
0

100

200

300

400

500

600

700

800

Figure 5.9: Plot of NL as a function of d; each point plotted individually.

This di�erent solution is by Christopher Embrey. It uses the index variable j to step through the dv

array to compute elements of the nlv array; the complete nlv array is computed, and then plotted outside
the for loop.

58 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

clear

dv=1.0:.05:2.0;

[junk,dvsize] = size(dv)

for j=1:dvsize

d=dv(j)

b=8; %in

h=14; %in

vcyl=h*pi*(b/2)^2;

vcube=d^3;

nl=vcyl/vcube;

nlv(j)=nl;

end

plot (dv,nlv)

This solution creates the plot in Figure 5.10.

1 1.2 1.4 1.6 1.8 2
0

100

200

300

400

500

600

700

800

Figure 5.10: Plot of NL as a function of d; points plotted as vectors.

And �nally, this solution by Travis Venson uses vector computations to perform the computation without
a for loop.

%creates a vector for diameter

dv=1:.02:2;

b=5.5;

h=12;

%computes volume of cylinder

vcyl=h*pi*(b/2)^2;

%computes volume of cube

59

vcube=dv.^3;

%computes lower bound

lowerboundv=vcyl./vcube;

%plots results

plot(dv,lowerboundv)

Solution to Exercise 5.15 (p. 37)
This solution is by AJ Smith. The height, h, ranges from 12 to 15 and the base, b, ranges from 8 to 12.

for h=12:15; %ranges of height

for b=8:12; %ranges of the base

d=1.54; %diameter of ping pong ball.

Vcyl=h*pi*(b/2)^2; %Volume of cylinder

Vcube=d^3; %volume of a cube that encloses a single ball

Nl=Vcyl/Vcube %lower bound on the number of balls that fit in the cylinder

end

end

Solution to Exercise 5.17 (p. 39)
This solution is by Scott Jenne; it computes and plots the velocity:

load Altitude.txt -ascii

t=Altitude(:,1);

s=Altitude(:,2);

for n=1:180;

v=((s(n+1))-s(n))/((t(n+1))-t(n))

hold on

plot(t(n),v,'o')

end

The plot produced by this code is shown in Figure 5.11.

60 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

0 50 100 150
−200

0

200

400

600

800

Figure 5.11: Plot of velocity computed with the forward di�erence method versus time.

Solution to Exercise 5.18 (p. 39)
This solution by Bryson Hinton:

load altitude.txt -ascii

t=altitude(:,1);

s=altitude(:,2);

hold on

for x=2:181

v(x)=(s(x)-s(x-1))/(t(x)-t(x-1));

plot(t(x),v(x),'b.')

end

The plot produced by this code is shown in Figure 5.12.

61

0 50 100 150
−200

0

200

400

600

800

Figure 5.12: Plot of velocity computed with the backward di�erence method versus time.

Solution to Exercise 5.19 (p. 39)
This code computes the velocity using the central di�erence formula.

load Altitude.txt -ascii

t=Altitude(:,1);

s=Altitude(:,2);

for n=2:180

v(n-1)=(s(n+1)-s(n-1))/(t(n+1)-t(n-1));

end

plot(t(2:180),v)

The plot produced by this code is shown in Figure 5.13.

62 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

0 50 100 150
−100

0

100

200

300

400

500

600

700

Figure 5.13: Plot of velocity computed with the central di�erence method versus time.

Solution to Exercise 5.20 (p. 39)
This code uses the diff function to compute the di�erence between adjacient elements of t and s, and the
./ function to divide each element of the altitude di�erences with the corresponding element of the time
di�erences:

load Altitude.txt -ascii

t=Altitude(:,1);

s=Altitude(:,2);

v=diff(s)./diff(t);

plot(t(1:180),v)

The plot produced by this code is shown in Figure 5.14.

63

0 50 100 150
−200

0

200

400

600

800

Figure 5.14: Plot of velocity computed with the forward di�erence method versus time. The values
in this plot are the same as in Figure 5.11.

Solution to Exercise 5.21 (p. 40)
This solution is by Jonathan Selby:

load Acceleration.txt -ascii

t=Acceleration (:,1);

a=Acceleration (:,2);

v(1)=0;

for n=1:181

v(n+1)=(t(n+1)-t(n))*(a(n+1)+a(n))/2+v(n);

end

plot(t,v)

This code creates the plot in Figure 5.15.

64 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

0 50 100 150
−100

−80

−60

−40

−20

0

20

40

Figure 5.15: Plot of velocity versus time. The velocity is computed by numerically integrating the
measured acceleration.

This code can be easily extended to also compute altitude while it is computing velocity:

load Acceleration.txt -ascii

t=Acceleration (:,1);

a=Acceleration (:,2);

v(1)=0; % Initial velocity

s(1)=0; % Initial altitude

for n=1:181

v(n+1)=(t(n+1)-t(n))*(a(n+1)+a(n))/2+v(n);

s(n+1)=(t(n+1)-t(n))*(v(n+1)+v(n))/2+s(n);

end

plot(t,s)

This code creates the plot in Figure 5.16.

65

0 50 100 150
−5000

−4000

−3000

−2000

−1000

0

1000

Figure 5.16: Plot of altitude versus time.

Solution to Exercise 5.22 (p. 40)
This solution by Nicholas Gruman uses the cumtrapz function to compute velocity with the trapezoidal
rule:

load Acceleration.txt -ascii

t=Acceleration(:,1);

A=Acceleration(:,2);

v=cumtrapz(t,A);

Altitude could also be computed by adding the following line to the end of the previous code:

s=cumtrapz(t,v);

Solution to Exercise 5.25 (p. 44)
' a is not equal to 0'
Solution to Exercise 5.26 (p. 44)
' a is positive'
Solution to Exercise 5.27 (p. 45)
b*c gives a value of 6, and 5 < 6, so this code will print 'Hello world'.

Solution to Exercise 5.28 (p. 45)
The parentheses around the relational expression a > 0 will not change its validity, so this code will print
'a is positive'.
Solution to Exercise 5.29 (p. 45)
The parentheses in this expression change its meaning completely. First, a < b is evaluated, and since it
is false for the given values of a and b, it evaluates to zero. The zero is than multiplied by c, giving a value
of zero which is interpreted as false. So this code prints 'Goodbye world'.
Solution to Exercise 5.30 (p. 45)
' p1 and p2 are not equal'

66 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

Solution to Exercise 5.31 (p. 46)
This code will generate an error message, since a = b assigns the value of b to a. To check if a and b are
equal, use a == b.
Solution to Exercise 5.32 (p. 46)
Any value that is not zero.
Solution to Exercise 5.33 (p. 46)
Any value greater than or equal to 0 and less than 7.
Solution to Exercise 5.34 (p. 46)
Any value less than 3 or greater than 10.
Solution to Exercise 5.35 (p. 46)
Every value of a will print 'Hello world'.
Solution to Exercise 5.36 (p. 47)

if a >= -0.01 && a <= 0.01

disp('a is very close to zero')

end

Solution to Exercise 5.37 (p. 48)

if n >= 1 && n <= 4

CA = 16.00;

elseif n >= 5 && n <= 24

CA = 14.00;

elseif n >= 25 && n <= 99

CA = 12.70;

else

CA = 11.00;

end

Solution to Exercise 5.38 (p. 48)
This code by BrieAnne Davis:

if n>=1 && n<=4; %if n=1 to 4, CA is $16.00

CA=16.00;

elseif n>=5 && n<=24; %if n=5 to 24, CA is $14.00

CA=14.00;

elseif n>=25 && n<=99; %if n=25 to 99, CA is $12.70

CA=12.70;

elseif n>=100; %if n=100 or more, CA is $11.00

CA=11.00;

end %this ends the if statement for CA

if n>=1 && n<=9; %if n=1 to 9, CB is $24.64

CB=24.64;

elseif n>=10 && n<=49; %if n=10 to 49, CB is $24.32

CB=24.32;

elseif n>=50 && n<=99; %if n=50 to 99, CB is $24.07

CB=24.07;

elseif n>=100; %if n=100 or more, CB is $23.33

67

CB=23.33;

end %this ends the if statement for CB

if n>=1 && n<=24; %if n=1 to 24, CC is $17.98

CC=17.98;

elseif n>=25 && n<=49; %if n=25 to 49, CC is $16.78

CC=16.78;

elseif n>=50; %if n=50 or more, CC is $15.78

CC=15.78;

end %this ends the if statement for CC

if n>=1 && n<=9; %if n=1 to 9, CD is $12.50

CD=12.50;

elseif n>=10 && n<=99; %if n=10 to 99, CD is $10.42

CD=10.42;

elseif n>=100; %if n=100 or more, CD is $9.62

CD=9.62;

end %this ends the if statement

CO=45.00;

Cunit=CO + CA + CB + CC + CD;

Solution to Exercise 5.39 (p. 48)
This code was originally written by Bryson Hinton and then modi�ed:

cunit = zeros(1,150);

c0 = 45;

for n=1:150

%compute price for part A

if n >= 1 && n <= 4

ca=16;

elseif n >= 5 && n <= 24

ca=14;

elseif n >= 25 && n <= 99

ca=12.7;

else

ca=11;

end

%compute price for part B

if n >= 1 && n <= 9

cb=24.64;

elseif n >= 10 && n <= 49

cb=24.32;

elseif n >= 50 && n <= 99

cb=24.07;

else

cb=23.33;

end

%compute price for part C

if n >= 1 && n <= 24

cc=17.98;

elseif n >= 25 && n <= 49

68 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

cc=16.78;

else

cc=15.78;

end

%compute price for part D

if n >= 1 && n <= 9

cd=12.50;

elseif n >= 10 && n <= 99

cd=10.42;

else

cd=9.62;

end

%sum cost for all parts

cunit(n)= c0+ca+cb+cc+cd;

end

% Plot cost as a function of n

plot(1:150,cunit);

xlabel('n (units)');

ylabel('cost (dollars)');

title('Cost/unit as a function of number of units');

This code produces the plot in Figure 5.17.

69

0 50 100 150
104

106

108

110

112

114

116

118

n (units)

co
st

 (
do

lla
rs

)
Cost/unit as a function of number of units

Figure 5.17: Cost as a function of number of units produced.

Solution to Exercise 5.41 (p. 51)
10 times.
Solution to Exercise 5.42 (p. 51)
This loop will continue to print 'Hello World' until the user stops the program. You can stop a program by
holding down the 'Ctrl' key and simultaneously pressing the 'c' key.
Solution to Exercise 5.43 (p. 51)

a =

1

a =

2

a =

4

a =

8

a =

16

a =

32

a =

70 CHAPTER 5. PROGRAMMING WITH M-FILE SCRIPTS

64

a =

128

Solution to Exercise 5.44 (p. 51)

a =

1

a =

2

a =

6

a =

24

a =

120

Solution to Exercise 5.45 (p. 52)

APR = 14.9;

r = (1+APR/100)^(1/12)-1;

Solution to Exercise 5.46 (p. 52)

bn = 2203;

pn = max((r+0.01)*bn,10);

Solution to Exercise 5.47 (p. 53)

fn = r*bn;

bn = bn + fn - pn;

Solution to Exercise 5.48 (p. 53)
This space intentionally left blank.
Solution to Exercise 5.49 (p. 53)
This space intentionally left blank.

Bibliography

[1] Anthony M. Star�eld; Karl A. Smith; Andrew L. Bleloch. How To Model It: Problem Solving for the

Computer Age. Interaction Book Company, Edina, MN, 1994.

[2] Alexander E. Zielinski; Paul Weinacht. E�ect of railgun electrodynamics on projectile launch dynamics.
IEEE Transactions on Magnetics, 35(1):118�123, 1999.

71

72 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A Array, � 3.4(13)

C Complex operations, � 3.5(16)
Credit Card Debt, � 5.4.3(51)

E Engineering cost analysis, � 5.3.4(47)
Engineering data analysis, � 5.2.5(37)
Engineering modeling, � 5.2.4(36), � 5.2.6(40)
Exercise, � 2.2(4), � 5.2.3(35)
Exercises, � 3.3(12), � 5.2.2(34), � 5.3.3(44),
� 5.4.2(51)

F Flow Chart, � 2.3(4)
for loop, � 5.2.1(32), � 5.2.2(34), � 5.2.3(35),
� 5.2.4(36), � 5.2.5(37), � 5.2.6(40)

G Graphing, � 4.1(19)

H Help resources, � 1.2(1)

I if statement, � 5.3.1(42), � 5.3.3(44),
� 5.3.4(47)
Introduction, � 1.1(1)

L LabVIEW MathScript, � 1.1(1), � 1.2(1),
� 2.1(3), � 3.1(9), � 3.2(10), � 3.5(16), � 5.1(31)
logical expression, � 5.3.2(43)
logical operator, � 5.3.2(43)

M M-File, � 3.4(13), � 4.1(19), � 5.2.1(32),
� 5.2.2(34), � 5.2.3(35), � 5.2.4(36), � 5.3.1(42),
� 5.3.2(43), � 5.3.3(44), � 5.3.4(47), � 5.4.1(50),
� 5.4.2(51), � 5.4.3(51)
M-�les, � 2.3(4), � 5.1(31)
mathematical operations, � 3.1(9), � 3.3(12)
MathScript, � 2.2(4), � 2.3(4), � 3.3(12),

� 3.4(13), � 4.1(19), � 5.2.1(32), � 5.2.2(34),
� 5.2.3(35), � 5.2.4(36), � 5.2.5(37), � 5.2.6(40),
� 5.3.1(42), � 5.3.2(43), � 5.3.3(44), � 5.3.4(47),
� 5.4.1(50), � 5.4.2(51), � 5.4.3(51)
MATLAB, � 1.1(1), � 1.2(1), � 2.1(3), � 2.2(4),
� 2.3(4), � 3.1(9), � 3.2(10), � 3.3(12),
� 3.4(13), � 3.5(16), � 4.1(19), � 5.1(31),
� 5.2.1(32), � 5.2.2(34), � 5.2.3(35), � 5.2.4(36),
� 5.2.5(37), � 5.2.6(40), � 5.3.1(42), � 5.3.2(43),
� 5.3.3(44), � 5.3.4(47), � 5.4.1(50), � 5.4.2(51),
� 5.4.3(51)
Matrix operations, � 3.5(16)

O Octave, � 1.1(1), � 1.2(1), � 2.1(3), � 2.2(4),
� 2.3(4), � 3.1(9), � 3.2(10), � 3.3(12),
� 3.4(13), � 3.5(16), � 4.1(19), � 5.1(31),
� 5.2.1(32), � 5.2.2(34), � 5.2.3(35), � 5.2.4(36),
� 5.2.5(37), � 5.2.6(40), � 5.3.1(42), � 5.3.2(43),
� 5.3.3(44), � 5.3.4(47), � 5.4.1(50), � 5.4.2(51),
� 5.4.3(51)

P Personal Finance, � 5.4.3(51)
problem solving, � 2.1(3), � 2.2(4)
Programming, � 5.1(31)
Pseudocode, � 2.3(4)

R relational operator, � 5.3.2(43)

S Scripts, � 5.1(31)

V Variables, � 3.2(10)
Vector, � 3.4(13)

W While Loop, � 5.4.2(51), � 5.4.3(51)
While Loops, � 5.4.1(50)

ATTRIBUTIONS 73

Attributions

Collection: Freshman Engineering Problem Solving with MATLAB
Edited by: Darryl Morrell
URL: http://cnx.org/content/col10325/1.18/
License: http://creativecommons.org/licenses/by/2.0/

Module: "Introduction to the M-�le Connexions Modules"
By: Darryl Morrell
URL: http://cnx.org/content/m13749/1.1/
Page: 1
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Finding Help for M-�le Environments"
By: Darryl Morrell
URL: http://cnx.org/content/m13750/1.3/
Pages: 1-2
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Problem Solving Using M-�le Environments"
By: Darryl Morrell
URL: http://cnx.org/content/m13694/1.4/
Pages: 3-4
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Exercise for Problem Solving with M-Files"
By: Darryl Morrell
URL: http://cnx.org/content/m13865/1.1/
Page: 4
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Visual Tools for Problem Solving with M-Files"
By: Darryl Morrell
URL: http://cnx.org/content/m13820/1.3/
Pages: 4-7
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Basic Mathematical Operations"
By: Anders Gjendemsjø, Darryl Morrell
URL: http://cnx.org/content/m13439/1.7/
Pages: 9-10
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/
Based on: Using MATLAB
By: Anders Gjendemsjø
URL: http://cnx.org/content/m13254/1.1/

74 ATTRIBUTIONS

Module: "Variables in M-�le Environments"
By: Darryl Morrell
URL: http://cnx.org/content/m13354/1.3/
Pages: 10-11
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Exercises for Basic Mathematical Operations"
By: Darryl Morrell
URL: http://cnx.org/content/m13832/1.4/
Pages: 12-13
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Vectors and Arrays in M-File Environments"
By: Darryl Morrell
URL: http://cnx.org/content/m13355/1.2/
Pages: 13-16
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Basic Complex and Matrix Operations"
By: Darryl Morrell
URL: http://cnx.org/content/m13751/1.2/
Pages: 16-17
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/
Based on: Basic operations in MATLAB
By: Anders Gjendemsjø, Darryl Morrell
URL: http://cnx.org/content/m13439/1.3/

Module: "Introduction to Graphing in M-File Environments"
By: Darryl Morrell
URL: http://cnx.org/content/m13836/1.6/
Pages: 19-24
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Graphical representation of data in MATLAB"
By: Anders Gjendemsjø
URL: http://cnx.org/content/m13252/1.1/
Pages: 24-29
Copyright: Anders Gjendemsjø
License: http://creativecommons.org/licenses/by/2.0/

Module: "A Very Brief Introduction to Programming with M-Files"
By: Darryl Morrell
URL: http://cnx.org/content/m13259/1.6/
Pages: 31-32
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

ATTRIBUTIONS 75

Module: "Programming with M-�les: For Loops"
By: Darryl Morrell
URL: http://cnx.org/content/m13258/1.5/
Pages: 32-34
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Programming with M-�les: For-Loop Drill Exercises"
By: Darryl Morrell
URL: http://cnx.org/content/m13276/1.6/
Pages: 34-35
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Programming With M-Files: For-Loop Exercises"
By: Darryl Morrell
URL: http://cnx.org/content/m14013/1.4/
Pages: 35-36
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Programming with M-�les: A Modeling Example Using For Loops"
By: Darryl Morrell
URL: http://cnx.org/content/m13275/1.4/
Pages: 36-37
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Programming with M-Files: A Rocket Trajectory Analysis Using For Loops"
By: Darryl Morrell
URL: http://cnx.org/content/m13277/1.7/
Pages: 37-40
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Programming with M-�les: Analyzing Railgun Data Using For Loops"
By: Darryl Morrell
URL: http://cnx.org/content/m14031/1.3/
Pages: 40-42
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Programming with M-Files: If Statements"
By: Darryl Morrell
URL: http://cnx.org/content/m13356/1.3/
Pages: 42-43
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Programming with M-Files: Logical Expressions"
By: Darryl Morrell
URL: http://cnx.org/content/m13357/1.5/
Pages: 43-44
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

76 ATTRIBUTIONS

Module: "Programming with M-Files: If-Statement Drill Exercises"
By: Darryl Morrell
URL: http://cnx.org/content/m13432/1.4/
Pages: 44-47
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Programming with M-Files: An Engineering Cost Analysis Example Using If Statements"
By: Darryl Morrell
URL: http://cnx.org/content/m13433/1.6/
Pages: 47-50
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Programming with M-Files: While Loops"
By: Darryl Morrell
URL: http://cnx.org/content/m13456/1.2/
Pages: 50-51
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Programming with M-Files: While-Loop Drill Exercises"
By: Darryl Morrell
URL: http://cnx.org/content/m13457/1.4/
Page: 51
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Module: "Programming with M-Files: A Personal Finance Example Using While Loops"
By: Darryl Morrell
URL: http://cnx.org/content/m13461/1.4/
Pages: 51-53
Copyright: Darryl Morrell
License: http://creativecommons.org/licenses/by/2.0/

Freshman Engineering Problem Solving with MATLAB
The objective of this course is that students can use an m-�le scripting environment (MATLAB, MathScript,
Octave, etc.) to solve freshman engineering problems. This course is designed for the novice programmer.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

