
  
    
  
Chapter 2. Continuous Distributions



2.1. CONTINUOUS DISTRIBUTION*



CONTINUOUS DISTRIBUTION



RANDOM VARIABLES OF THE CONTINUOUS TYPE



 
Random variables whose spaces are not composed of a countable number of points but are intervals or a union of intervals are said to be of the  continuous type. Recall that the relative frequency histogram 
 
   h(
    x
   )
  

 associated with n observations of a random variable of that type is a nonnegative function defined so that the total area between its graph and the x axis equals one. In addition, 
 
   h(
    x
   )
  

 is constructed so that the integral 

(2.1)

 
is an estimate of the probability 
 
   P(
    
a<X<b
    
   )
  

, where the interval 
 
   (
    
     a,b
    
   )
  

 is a subset of the space R of the random variable X.

 
Let now consider what happens to the function 
 
   h(
    x
   )
  

 in the limit, as n increases without bound and as the lengths of the class intervals decrease to zero. It is to be hoped that 
 
   h(
    x
   )
  

 will become closer and closer to some function, say 
 
   f(
    x
   )
  

, that gives the true probabilities , such as 
 
   P(
    
a<X<b
    
   )
  

, through the integral

(2.2)

	 Definition: PROBABILITY DENSITY FUNCTION
	 1. 
Function f(x) is a nonnegative function such that the total area between its graph and the x axis equals one. 


	 2. 
The probability 
 
   P(
    
a<X<b
    
   )
  

 is the area bounded by the graph of 
 
   f(
    x
   )
  

, the x axis, and the lines 
 
   x=a
  

 and 
 
   x=b
  

. 


	 3. 
We say that  the probability density function (p.d.f.) of the random variable X of the continuous type, with space R that is an interval or union of intervals, is an integrable function 
 
   f(
    x
   )
  

 satisfying the following conditions:
          
 	

 
   f(
    x
   )>0
  

, x belongs to R,
            

	



            

	
The probability of the event A belongs to R is 
         








Example 2.1. 
 
Let the random variable X be the distance in feet between bad records on a used computer tape. Suppose that a reasonable probability model for X is given by the p.d.f.

 


Note That

 
   R=(
    
x:0≤x<∞
    
   )
  

 
   f(
    x
   )
  
xR

 
The probability that the distance between bad records is greater than 40 feet
is

 


 
The p.d.f. and the probability of interest are depicted in FIG.1.



 [image: Figure (Fig_ex1.gif)]

Figure 2.1. 

The p.d.f. and the probability of interest.
    

 
We can avoid repeated references to the space R of the random variable X, one shall adopt the same convention when describing probability density function of the continuous type as was in the discrete case.

 
Let extend the definition of the p.d.f. 
 
   f(
    x
   )
  

 to the entire set of real numbers by letting it equal zero when, x belongs to R. For example, 

 


 
has the properties of a p.d.f. of a continuous-type random variable x having support 
 
   (
    
     x:0≤x<∞
    
   )
  

. It will always be understood that 
 
   f(x)=0
  

, when x belongs to R, even when this is not explicitly written out. 


	 Definition: PROBABILITY DENSITY FUNCTION
	 1. 
The  distribution function of a random variable X of the continuous type, is defined in terms of the p.d.f. of X, and is given by 


	 2. 
For the fundamental theorem of calculus we have, for x values for which the derivative 
 
   F'(
    x
   )
  

 exists, that F’(x)=f(x).




Example 2.2. 
 
continuing with Example 1

 
If the p.d.f. of X is

 


 
The distribution function of X is 
 
   F(
    x
   )=0
  

 for 
 
   x≤0
  


 


Note That




 
Also 
 
   F'(
    0
   )
  

 does not exist. Since there are no steps or jumps in a distribution function 
 
   F(
    x
   )
  

, of the continuous type, it must be true that  
 
   P(
    
     X=b
    
   )=0
  

 for all real values of b. This agrees with the fact that the integral

 

 is taken to be zero in calculus. Thus we see that 
 
   P(
    
     a≤X≤b
    
   )=P(
    
     a<X<b
    
   )=P(
    
     a≤X<b
    
   )=P(
    
     a<X≤b
    
   )=F(
    b
   )−F(
    a
   ),
  
 provided that X is a random variable of the continuous type. Moreover, we can change the definition of a p.d.f. of a random variable of the continuous type at a finite (actually countable) number of points without alerting the distribution of probability.

 
For illustration, 
 and 

 
are equivalent in the computation of probabilities involving this random variable. 

Example 2.3. 
 
Let Y be a continuous random variable with the p.d.f. 
 
   g(
    y
)=2y
  

, 
 
0<y<1
  

. The distribution function of Y is defined by 

 


 
Figure 2 gives the graph of the p.d.f. 
 
   g(
    y
   )
  

 and the graph of the distribution function 
 
   G(
    y
   )
  
. 

 [image: Figure (Cont_ex_3.gif)]

Figure 2.2. 

The p.d.f. and the probability of interest.
    



 
For illustration of computations of probabilities, consider 

 


 
  and 

Recall That

The p.d.f. 
 
   f(
    x
   )
  

 of a random variable of the discrete type is bounded by one because 
 
   f(
    x
   )
  

 gives a probability, namely 
 
   f(
    x
   )=P(
    
     X=x
    
   )
  
.



 
For random variables of the continuous type, the p.d.f. does not have to be bounded. The restriction is that the area between the p.d.f. and the x axis must equal one. Furthermore, it should be noted that the p.d.f. of a random variable X of the continuous type does not need to be a continuous function. 

 
 For example,

 


 
enjoys the properties of a p.d.f. of a distribution of the continuous type, and yet 
 
   f(
    x
   )
  

 had discontinuities at 
 
   x=0,1,2,
  

 and 3. However, the distribution function associates with a distribution of the continuous type is always a continuous function. For continuous type random variables, the definitions associated with mathematical expectation are the same as those in the discrete case except that integrals replace summations. 


 
 FOR ILLUSTRATION, let X be a random variable with a p.d.f. 
 
   f(
    x
   )
  

.
The  expected value of X or  mean of X is

 

 The  variance of X is 

 
The  standard deviation of X is 

Example 2.4. 
 
For the random variable Y in the Example 3.

 

 and

 








 
       
    


2.2. THE UNIFORM AND EXPONENTIAL DISTRIBUTIONS*



THE UNIFORM AND EXPONENTIAL DISTRIBUTIONS



The Uniform Distribution



 
Let the random variable X denote the outcome when a point is selected at random from the interval 
 
   [ 
    a,b
    ]
  
, 
 
   −∞<a<b<∞
  
. If the experiment is performed in a fair manner, it is reasonable to assume that the probability that the point is selected from the interval 
 
   [ 
    a,x
    ]
  
, 
 
   a≤x<b
  
 is 
 
   (
    
     x−a
    
   )(
    
     b−a
    
   )
  
. That is, the probability is proportional to the length of the interval so that the distribution function of X is

 


 
Because X is a continuous-type random variable, 
 
   F'(
    x
   )
  
 is equal to the p.d.f. of X whenever 
 
   F'(
    x
   )
  

 exists; thus when 
 
a<x<b
  
, we have 
 
   f(
    x
   )=F'(
    x
   )=1/(
    
     b−a
    
   ).
  


	 Definition: DEFINITION OF UNIFORM DISTRIBUTION
	 
The random variable X has  a uniform distribution if its p.d.f. is equal to a constant on its support. In particular, if the support is the interval 
 
   [ 
    a,b
    ]
  
, then

(2.3)

 




 
Moreover, one shall say that X is 
 
   U(
    
     a,b
    
   )
  
. This distribution is referred to as  rectangular because the graph of 
 
   f(
    x
   )
  
 suggest that name. See Figure1. for the graph of 
 
   f(
    x
   )
  

and the distribution function F(x). 

 [image: Figure (UniformDistPlot.png)]

Figure 2.3. 
 The graph of the p.d.f. of the uniform distriution.


Note that

We could have taken 
 
   f(
    a
   )=0
  
 or 
 
   f(
    b
   )=0
  

without alerting the probabilities, since this is a continuous type distribution, and it can be done in some cases.



 
The  mean and  variance of X are as follows:

 

and 


 
An important uniform distribution is that for which a=0 and b =1, namely 
 
   U(
    
     0,1
    
   )
  
. If X is 
 
   U(
    
     0,1
    
   )
  
, approximate values of X can be simulated on most computers using a random number generator. In fact, it should be called a pseudo-random number generator (see the pseudo-numbers generation) because the programs that produce the random numbers are usually such that if the starting number is known, all subsequent numbers in the sequence may be determined by simple arithmetical operations. 



An Exponential Distribution



 
Let turn to the continuous distribution that is related to the Poisson distribution. When previously observing a process of the approximate Poisson type, we counted the number of changes occurring in a given interval. This number was a discrete-type random variable with a Poisson distribution. But not only is the number of changes a random variable;  the waiting times between successive changes are also random variables. However, the latter are of the continuous type, since each of then can assume any positive value. 

 
Let W denote the waiting time until the first change occurs when observing the Poisson process in which the mean number of changes in the unit interval is 
 λ
. Then W is a continuous-type random variable, and let proceed to find its distribution function.

 
Because this waiting time is nonnegative, the distribution function 
 
   F(
    w
   )=0
  
, 
 
   w<0
  
. For 
 
   w≥0
  
,

 

 
   F(
    w
   )=P(
    
     W≤w
    
   )=1−P(
    
     W>w
    
   )=1−P(
    
     no_changes_in_[ 
      0,w
      ]
    
   )=1−e
     −λw
    
   ,
  


 
since that was previously discovered that 
 
   e
     −λw
    
     

equals the probability of no changes in an interval of length w is proportional to w, namely, 
 λw
. Thus when w >0, the p.d.f. of W is given by

 
   F'(
    w
   )=λe
     −λw
    
   =f(
    w
   ).
  


	 Definition: DEFINITION OF EXPONENTIAL DISTRIBUTION
	 
Let 
 
λ=1/θ
  
, then the random variable X has  an exponential distribution and its p.d.f. id defined by

(2.4)

 
where the parameter 
 
   θ>0
  
.





 
Accordingly, the waiting time W until the first change in a Poisson process has an exponential distribution with 
 
   θ=1/λ
  
. The  mean and  variance for the exponential distribution are as follows:
 
 
   μ=θ
  

and 
 
   σ2
   =θ2
   
  
.

 
So if 
 λ

 is the mean number of changes in the unit interval, then 
 
   θ=1/λ
  

is the mean waiting for the first change. Suppose that 
 λ
=7 is the mean number of changes per minute; then that mean waiting time for the first change is 1/7 of a minute.


 [image: Figure (ExpDistPlot.gif)]

Figure 2.4. 
 The graph of the p.d.f. of the exponential distriution.


Example 2.5. 
 
Let X have an exponential distribution with a mean of 40. The p.d.f. of X is

 


 
The probability that X is less than 36 is 

 




Example 2.6. 
 
Let X have an exponential distribution with mean 
 
   μ=θ
  
. Then the distribution function of X is

 


 
The p.d.f. and distribution function are graphed in the Figure 3 for 
 θ
=5.

 [image: Figure (exp_ex2.gif)]

Figure 2.5. 

The p.d.f. and c.d.f. graphs of the exponential distriution with 
 
   θ=5
  

.




Note That

For an exponential random variable X, we have that






 
       
    


2.3. THE GAMMA AND CHI-SQUARE DISTRIBUTIONS*



GAMMA AND CHI-SQUARE DISTRIBUTIONS



 
In the (approximate) Poisson process with mean 
 λ
, we have seen that the waiting time until the first change has an exponential distribution. Let now W denote the waiting time until the 
 α
th change occurs and let find the distribution of W. The distribution function of W ,when 
 
   w≥0
  
 is given by

 


 
since the number of changes in the interval 
 
   [ 
    0,w
    ]
  
 has a Poisson distribution with mean 
 λw
. Because W is a continuous-type random variable, 
 
   F'(
    w
   )
  
 is equal to the p.d.f. of W whenever this derivative exists. We have, provided w>0, that

 


Gamma Distribution



	 Definition: 
	 1. 
If 
 
   w<0
  
, then 
 
   F(
    w
   )=0
  
 and 
 
   F'(
    w
   )=0
  
, a p.d.f. of this form is said to be one of the  gamma type, and the random variable W is said to have  the gamma distribution.


	 2. 
The  gamma function is defined by 




 
This integral is positive for 
 
   0<t
  
, because the integrand id positive. Values of it are often given in a table of integrals. If 
 
   t>1
  
, integration of gamma fnction of t by parts yields

 


Example 2.7. 
 
Let 
 
   Γ(
    6
   )=5Γ(
    5
   )
  
 and 
 
   Γ(
    3
   )=2Γ(
    2
   )=(
    2
   )(
    1
   )Γ(
    1
   )
  
. Whenever 
 
   t=n
  
, a positive integer, we have, be repeated application of 
 
   Γ(
    t
   )=(
    
     t−1
    
   )Γ(
    
     t−1
    
   )
  
, that 
 
   Γ(
    n
   )=(
    
     n−1
    
   )Γ(
    
     n−1
    
   )=(
    
     n−1
    
   )(
    
     n−2
    
   )...(
    2
   )(
    1
   )Γ(
    1
   ).
  


 
However, 

 
Thus when n is a positive integer, we have that 
 
   Γ(
    n
   )=(
    
     n−1
    
   )!
  
; and, for this reason, the gamma is called  the generalized factorial.



 
Incidentally, 
 
   Γ(
    1
   )
  

 corresponds to 0!, and we have noted that 
 
   Γ(
    1
   )=1
  
, which is consistent with earlier discussions.

SUMMARIZING 



 
The random variable x has  a gamma distribution if its p.d.f. is defined by

(2.5)

 
Hence, w, the waiting time until the 
 α

th change in a Poisson process, has a gamma distribution with parameters 
 α
 and 
 
   θ=1/λ
  
. 

 
Function 
 
   f(
    x
   )
  
 actually has the properties of a p.d.f., because 
 
   f(
    x
   )≥0
  

 and 

 
 which, by the change of variables 
 
   y=x/θ
  
 equals

 


 
The mean and variance are: 
 
   μ=αθ
  
 and 
 
   σ2
   =αθ2
     
.

	 <db:title>Gamma Distribution</db:title> [image: Gamma Distribution (Gamma_pdf_1.gif)](a) The c.d.f. graph.

	  [image: Subfigure (b) (Gamma_cdf_1.gif)](b) The p.d.f. graph.



Figure 2.6. 
The p.d.f. and c.d.f. graphs of the Gamma Distribution.


Example 2.8. 
 
Suppose that an average of 30 customers per hour arrive at a shop in accordance with Poisson process. That is, if a minute is our unit, then 
 
   λ=1/2
  
. What is the probability that the shopkeeper will wait more than 5 minutes before both of the first two customers arrive? If X  denotes the waiting  time in minutes until the second customer arrives, then X has a gamma distribution with 
 
   α=2,θ=1/λ=2.
  

 Hence,

 


 
We could also have used equation with 
 
   λ=1/θ
  
, because 
 α
 is an integer   Thus, with x=5, 
 α
=2, and 
 
   θ=2
  
, this is equal to

 






Chi-Square Distribution



 
Let now consider the special case of the gamma distribution that plays an important role in statistics. 

	 Definition: 
	 
Let X have a gamma distribution with 
 
   θ=2
  
 and 
 
   α=r/2
  
, where r is a positive integer. If the p.d.f. of X is 

(2.6)

 
We say that X has  chi-square distribution with r degrees of freedom, which we abbreviate by saying  is 
 
   χ2
   (
    r
   )
  
.




 
The  mean and the  variance of this chi-square distributions are

 
 and 

 
That is, the mean equals the number of degrees of freedom and the variance equals twice the number of degrees of freedom. 

 
In the fugure 2 the graphs of chi-square p.d.f. for r=2,3,5, and 8 are given. 

 [image: Figure (chi_sq.gif)]

Figure 2.7. 
The p.d.f. of chi-square distribution for degrees of freedom r=2,3,5,8.

Note

the relationship between the mean 
 
   μ=r
  
, and the point at which the p.d.f. obtains its maximum.



 
Because the chi-square distribution is so important in applications, tables have been prepared giving the values of the distribution function for selected value of r and x,

(2.7)

Example 2.9. 
 
Let X have a chi-square distribution with r =5 degrees of freedom. Then, using tabularized values,

 

 
   P(
    
     1.145≤X≤12.83
    
   )=F(
    
     12.83
    
   )−F(
    
     1.145
    
   )=0.975−0.050=0.925
  


 
and 
 
   P(
    
     X>15.09
    
   )=1−F(
    
     15.09
    
   )=1−0.99=0.01.
  




Example 2.10. 
 
If X is 
 
   χ2
   (
    7
   )
  
, two constants, a and b, such that

 
   P(
    
     a<X<b
    
   )=0.95
  
, are a=1.690 and b=16.01.

 
Other constants a and b can be found, this above are only restricted in choices by the limited table. 



 
Probabilities like that in Example 4 are so important in statistical applications that one uses special symbols for a and b. Let 
 α

 be a positive probability (that is usually less than 0.5) and let X have a chi-square distribution with r degrees of freedom. Then 
 
   χα2
   (
    r
   )
  
 is a number such that 

 
That is, 
 
   χα2
   (
    r
   )
  
 is the 100(1-
 α
) percentile (or upper 100a percent point) of the chi-square distribution with r degrees of freedom. Then the 100
 α

 percentile is the number 
 
   χ2
     1−α
    
   (
    r
   )
  
 such that .
This is, the probability to the right of 
 
   χ2
     1−α
    
   (
    r
   )
  

 is 1-
 α
.
SEE fugure 3.


Example 2.11. 
 
Let X have a chi-square distribution with seven degrees of freedom. Then, using tabularized values, 
 
   χ2
     0.05
    
   (
    7
   )=14.07
  
 and 
 
   χ2
     0.95
    
   (
    7
   )=2.167.
  
 These are the points that are indicated on Figure 3.

 

 [image: Figure (chi_2_2.gif)]

Figure 2.8. 

 
   χ2
     0.05
    
   (
    7
   )=14.07
  
 and 
 
   χ2
     0.95
    
   (
    7
   )=2.167.
  






 


 


 



 
       
    

2.4. NORMAL DISTRIBUTION*



NORMAL DISTRIBUTION



 
The normal distribution is perhaps the most important distribution in statistical applications since many measurements have (approximate) normal distributions. One explanation of this fact is the role of the normal distribution in the Central Theorem.

	 Definition: 
	 1. 
The random variable X has a normal distribution if its p.d.f. is defined by

(2.8)

  
where 
 μ

 and 
 
   σ2
     

 are parameters satisfying 
 
   −∞<μ<∞,0<σ<∞
  

, and also where 
 
   exp⁡[ v ]
  

 means 
 
   ev
     
.


	 2. 
Briefly, we say that X is 




Proof of the p.d.f. properties



 
Clearly, 
 
   f(
    x
   )>0
  

. Let now evaluate the integral: 
 showing that it is equal to 1.

In the integral, change the variables of integration by letting  
 
   z=(
    
     x−μ
    
   )/σ
  
. Then,
 
 
 since 
 
   I>0
  

, if 
 
   I2
   =1
  

, then 
 
   I=1
  
.

 
Now 
 or equivalently,

 



 
Letting 
 
x=rcos⁡θ,y=rsin⁡θ
  

 (i.e., using polar coordinates), we have

 



 
The  mean and the  variance of the normal distribution is as follows:

 

 
   E(
    X
   )=μ
  

 and 
 
   Var(
    X
   )=μ2
   +σ2
   −μ2
   =σ2
   .
  



 
That is, the parameters 
 μ

 and 
 
   σ2
     

 in the p.d.f. are the mean and the variance of X. 

	  [image: Subfigure (a) (Normal_distribution_pdf_1.gif)](a) Probability Density Function 

	  [image: Subfigure (b) (Normal_distribution_cdf_1.gif)](b) Cumulative Distribution Function 



Figure 2.9. Normal Distribution
p.d.f. and c.d.f graphs of the Normal Distribution

Example 2.12. 
 
If the p.d.f. of X is 

 

 then X is 
 
   N(
    
     −7,16
    
   )
  


 
That is, X has a normal distribution with a mean 
 μ
 =-7, variance 
 
   σ2
     
 =16, and the moment generating function 

 





 


 


 


 


 




 
       
    

2.5. THE t DISTRIBUTION*



 THE t DISTRIBUTION



 
In probability and statistics, the  t-distribution or  Student's distribution arises in the problem of estimating the mean of a normally distributed population when the sample size is small, as well as when (as in nearly all practical statistical work) the population standard deviation is unknown and has to be estimated from the data. 

 Textbook problems treating the standard deviation as if it were known are of two kinds:
	
those in which the sample size is so large that one may treat a data-based estimate of the variance as if it were certain, 
            

		    
those that illustrate mathematical reasoning, in which the problem of estimating the standard deviation is temporarily ignored because that is not the point that the author or instructor is then explaining.
           



THE t DISTRIBUTION



	 Definition: t Distribution
	 
If Z is a random variable that is 
 
   N(
    
     0,1
    
   )
  
, if U is a random variable that is 
 
   χ2
   (
    r
   )
  
, and if Z and U are independent, then

(2.9)

 
has a t distribution with r degrees of freedom. 




 
Where 
 μ
 is the population mean,  is the sample mean and s is the estimator for population standard deviation (i.e., the sample variance) defined by

(2.10)

 
If 
 
   σ=s
  
, 
 
   t=z
  
, the distribution becomes the normal distribution. As N increases, Student’s t distribution approaches 
the normal distribution. It can be derived by transforming student’s z-distribution using  and then defining 


 
The resulting probability and cumulative distribution functions are:

(2.11)

(2.12)

 
where,

 	

 
   r=n−1
  
 is the number of degrees of freedom,
            

	

 
   −∞<t<∞,
  


            

	

 
   Γ(
    z
   )
  
 is the gamma function, 
            

	

 
   B(
    
     a,b
    
   )
  
 is the bets function,
            

	

 
   I(
    
     z;a,b
    
   )
  
 is the regularized beta function defined by 

            




 
The effect of degree of freedom on the t distribution is illustrated in the four t distributions on the Figure 1.  

 [image: Figure (t_distribution.gif)]

Figure 2.10. 
p.d.f. of the t distribution for degrees of freedom r=3, r=6, r=
 ∞
.


 
In general, it is difficult to evaluate the distribution function of T. Some values are usually given in the tables. Also observe that the graph of the p.d.f. of T is symmetrical with respect to the vertical axis t =0 and is very similar to the graph of the p.d.f. of the standard normal distribution 
 
   N(
    
     0,1
    
   )
  
. However the tails of the t distribution are heavier that those of a normal one; that is, there is more extreme probability in the t distribution than in the standardized normal one. 
Because of the symmetry of the t distribution about t =0, the mean (if it exists) must be equal to zero. That is, it can be shown that 
 
   E(
    T
   )=0
  
 when 
 
   r≥2
  
. When r=1 the t distribution is the  Cauchy distribution, and thus both the variance and mean do not exist.


 





 
       
    

Glossary



	Definition: DEFINITION OF EXPONENTIAL DISTRIBUTION
	
Let simplemath
 
mathml-miitalicsλ=1/mathml-miitalicsθ
  

 
λ=1/θ
  
, then the random variable boldX has an exponential distribution and its p.d.f. id defined by

(2.13)block
 
   f(
    x
   )=
    1
    θ
   
   
    e
    
     −x/θ
    
   
   ,0≤x<∞,
  


 
where the parameter simplemath
 
   mathml-miitalicsθ>0
  

 
   θ>0
  
.


	Definition: DEFINITION OF UNIFORM DISTRIBUTION
	
The random variable boldX has a uniform distribution if its p.d.f. is equal to a constant on its support. In particular, if the support is the interval simplemath
 
   [ 
    mathml-miitalicsa,mathml-miitalicsb
    ]
  

 
   [ 
    a,b
    ]
  
, then

(2.14)block
 
   f(
    x
   )=
    1
    
     b=a
    
   
   ,a≤x≤b.
  


 


	Definition: 
	1. 
If simplemath
 
   mathml-miitalicsw<0
  

 
   w<0
  
, then simplemath
 
   mathml-miitalicsF(
    mathml-miitalicsw
   )=0
  

 
   F(
    w
   )=0
  
 and simplemath
 
   mathml-miitalicsF'(
    mathml-miitalicsw
   )=0
  

 
   F'(
    w
   )=0
  
, a p.d.f. of this form is said to be one of the gamma type, and the random variable boldW is said to have the gamma distribution.


	2. 
The gamma function is defined by block
 
   Γ(
    t
   )=true
    
     ∫
     0
     ∞
    
    
     
      y
      
       t−1
      
     
     
      e
      
       −y
      
     
     dy
    
   
     ,0<t.
 



	Definition: 
	
Let boldX have a gamma distribution with simplemath
 
   mathml-miitalicsθ=2
  

 
   θ=2
  
 and simplemath
 
   mathml-miitalicsα=mathml-miitalicsr/2
  

 
   α=r/2
  
, where boldr is a positive integer. If the p.d.f. of boldX is 

(2.15)block
 
   f(
    x
   )=
    1
    
     Γ(
      
       r/2
      
     )
      2
      
       r/2
      
     
     
    
   
   
    x
    
     r/2−1
    
   
   
    e
    
     −x/2
    
   
   ,0≤x<∞.
  


 
We say that boldX has chi-square distribution with boldr degrees of freedom, which we abbreviate by saying  is simplemath
 
   mathml-miitalicsχ2
   (
    mathml-miitalicsr
   )
  

 
   
    χ
    2
   
   (
    r
   )
  
.


	Definition: 
	1. 
The random variable boldX has a normal distribution if its p.d.f. is defined by

(2.16)block
 
   f(
    x
   )=
    1
    
     σ
      
       2π
      
     
     
    
   
   exp⁡[ 
    −
     
      
       
        (
         
          x−μ
         
        )
       
       2
      
      
     
     
      2
       σ
       2
      
      
     
    
    
    ],−∞<x<∞,
  


  
where simplemath
 mathml-miitalicsμ

 μ

 and simplemath
 
   mathml-miitalicsσ2
     

 
   
    σ
    2
   
     

 are parameters satisfying simplemath
 
   −∞<mathml-miitalicsμ<∞,0<mathml-miitalicsσ<∞
  

 
   −∞<μ<∞,0<σ<∞
  

, and also where simplemath
 
   exp⁡[ mathml-miitalicsv ]
  

 
   exp⁡[ v ]
  

 means simplemath
 
   mathml-miitalicsemathml-miitalicsv
     

 
   
    e
    v
   
     
.


	2. 
Briefly, we say that boldX is 
 
   N(
    
     μ,
      σ
      2
     
     
    
   )
  



	Definition: PROBABILITY DENSITY FUNCTION
	1. 
Function f(x) is a nonnegative function such that the total area between its graph and the x axis equals one. 


	2. 
The probability simplemath
 
   mathml-miitalicsP(
    
mathml-miitalicsa<mathml-miitalicsX<mathml-miitalicsb
    
   )
  

 
   P(
    
a<X<b
    
   )
  

 is the area bounded by the graph of simplemath
 
   mathml-miitalicsf(
    mathml-miitalicsx
   )
  

 
   f(
    x
   )
  

, the x axis, and the lines simplemath
 
   mathml-miitalicsx=mathml-miitalicsa
  

 
   x=a
  

 and simplemath
 
   mathml-miitalicsx=mathml-miitalicsb
  

 
   x=b
  

. 


	3. 
We say that the probability density function (p.d.f.) of the random variable boldX of the continuous type, with space boldR that is an interval or union of intervals, is an integrable function simplemath
 
   mathml-miitalicsf(
    mathml-miitalicsx
   )
  

 
   f(
    x
   )
  

 satisfying the following conditions:
          
	
simplemath
 
   mathml-miitalicsf(
    mathml-miitalicsx
   )>0
  

 
   f(
    x
   )>0
  

, boldx belongs to boldR,
            

	

 
   true
    
     ∫
     R
     
    
    
     ffalse(xfalse)dx
    
   
     =1,
 



            

	
The probability of the event boldA belongs to boldR is 
 
   P(
    X
   )∈Atrue
    
     ∫
     A
     
    
    
     ffalse(xfalse)dx.
    
   
     
 

         






	Definition: PROBABILITY DENSITY FUNCTION
	1. 
The  distribution function of a random variable boldX of the continuous type, is defined in terms of the p.d.f. of boldX, and is given by block
 
   F(
    x
   )=P(
    
     X≤x
    
   )=true
    
     ∫
     
      −∞
     
     x
    
    
     f(
      t
     )dt.
    
   
   
  
 



	2. 
For the fundamental theorem of calculus we have, for boldx values for which the derivative simplemath
 
   mathml-miitalicsF'(
    mathml-miitalicsx
   )
  

 
   F'(
    x
   )
  

 exists, that boldF’(boldx)=boldf(boldx).


	Definition: t Distribution
	
If boldZ is a random variable that is simplemath
 
   mathml-miitalicsN(
    
     0,1
    
   )
  

 
   N(
    
     0,1
    
   )
  
, if boldU is a random variable that is simplemath
 
   mathml-miitalicsχ2
   (
    mathml-miitalicsr
   )
  

 
   
    χ
    2
   
   (
    r
   )
  
, and if boldZ and boldU are independent, then

(2.17)block
 
   T=
    Z
    
     
      
       U/r
      
     
     
    
   
   =
    
     true
      X
      ¯
     
     −μ
    
    
     S/
      n
     
      
   
     


 
has a boldt distribution with boldr degrees of freedom. 




Solutions



    
      [image: Introduction to Statistics]
    

  Chapter 3. Estimation



3.1. Estimation*



ESTIMATION



 
Once a model is specified with its parameters and data have been collected, one is in a position to evaluate the model’s goodness of fit, that is, how well the model fits the observed pattern of data. Finding parameter values of a model that best fits the data —  a procedure called parameter estimation, which assesses goodness of fit.

 
There are two generally accepted methods of parameter estimation. They are  least squares estimation (LSE) and  maximum likelihood estimation (MLE). The former is well known as linear regression, the sum of squares error, and the root means squared deviation is tied to the method. On the other hand, MLE is not widely recognized among modelers in psychology, though it is, by far, the most commonly used method of parameter estimation in the statistics community.
LSE might be useful for obtaining a descriptive measure for the purpose of summarizing observed data, but MLE is more suitable for statistical inference such as model comparison. LSE has no basis for constructing confidence intervals or testing hypotheses whereas both are naturally built into MLE. 

Properties of Estimators



 
 UNBIASED AND BIASED ESTIMATORS

 
Let consider random variables for which the functional form of the p.d.f. is know, but the distribution depends on an unknown parameter 
 θ
, that may have any value in a set 
 θ

, which is called the  parameter space. In estimation the random sample from the distribution is taken to elicit some information about the unknown parameter 
 θ.
 The experiment is repeated n independent times, the sample 
 
   X1
   ,X2
   ,...,Xn
     

 is observed and one try to guess the value of 
 θ
 using the observations 
 
   x1
   ,x2
   ,...xn
   .
  


 
 The function of 
 
   X1
   ,X2
   ,...,Xn
     

 used to guess 
 θ
  is called an estimator of 
 θ
. We want it to be such that the computed estimate 
 is usually close to 
 θ.
 Let 
 be an estimator of 
 θ. If Y to be a good estimator of 
 θ
, a very desirable property is that  it means be equal to 
 θ

, namely 


E(
Y
)=θ


.
 
 

	 Definition: 
	 
If  

 is called  an unbiased estimator of 
θ
. Otherwise, it is said to be  biased.
    






 
It is required not only that an estimator has expectation equal to 
θ
, but also the variance of the estimator should be as small as possible.
If there are two unbiased estimators of 
θ
, it could be probably possible to choose the one with the smaller variance. In general, with a random sample 

X1
,X2
,...,Xn


 of a fixed sample size n, a statistician might like to find the estimator  of an unknown parameter 
θ

 which minimizes the mean (expected) value of the square error (difference)   Y−θ  that is, minimizes 
 
 

 
The statistic Y that minimizes 
 is the one with minimum mean square error. If we restrict our attention to unbiased estimators only, then  and the unbiased statistics Y that minimizes this expression is said to be  the unbiased minimum variance estimator of 
θ

.
 

Method of Moments



 
One of the oldest procedures for estimating parameters is  the method of moments. Another method for finding an estimator of an unknown parameter is called  the method of maximum likelihood.
In general, in the method of moments, if there are k parameters that have to be estimated, the first k sample moments are set equal to the first k population moments that are given in terms of the unknown parameters.

Example 3.1. 
 
Let the distribution of X be 
. Then 

E(
X
)=μ


 and . Given a random sample of size n, the first two moments are given by 
 and 

 
We set 

m1
=E(
X
)


 and  and solve for 
μ
 and 

σ2

,  and 

 
The first equation yields  as the estimate of 
μ

. Replacing 

μ2


 with  in the second equation and solving for 

σ2


,

 


 we obtain  for the solution of 

σ2


.



 
Thus the method of moment estimators for 
μ
 and 

σ2


 are 
 and 
 Of course, 
 is unbiased whereas 
 is biased.


 
At this stage arises the question, which of two different estimators  and , for a parameter 
θ

 one should use. Most statistician select he one that has the smallest mean square error, for example, then  seems to be preferred. This means that if , then one would select the one with the smallest variance.

 
Next, other questions should be considered. Namely, given an estimate for a parameter, how accurate is the estimate? How confident one is about the closeness of the estimate to the unknown parameter? 



See
CONFIDENCE INTERVALS ICONFIDENCE INTERVALS II

 
       
    

3.2. CONFIDENCE INTERVALS I*



CONFIDENCE INTERVALS I



	 Definition: 
	 
Given a random sample 

X1
,X2
,...,Xn

 from a normal distribution , consider the closeness of , the unbiased estimator of 
μ
, to the unknown 
μ
. To do this, the error structure (distribution) of , namely that  is , is used in order to construct what is called  a confidence interval for the unknown parameter  μ, when the variance 

σ2

 is known.





 
For the probability 

1−α


, it is possible to find a number 

z
α/2


, such that 

 
 For example, if 
 
   1−α=0.95
  
, then 
 
   z
     α/2
    
   =z
     0.025
    
   =1.96
  
 and if 
 
   1−α=0.90
  
, then

 
   z
     α/2
    
   =z
     0.05
    
   =1.645.
  




 
Recalling that 
 
   σ>0
  
, the following inequalities are equivalent :
 and 


 
  


 
Thus, since the probability of the first of these is 1-
 
   1−α
  
, the probability of the last must also be 
 
   1−α
  
, because the latter is true if and only if the former is true. That is,  

 
So the probability that the random interval  includes the unknown mean 
μ
 is 
 
   1−α
  

.


	 Definition: 
	 1. 
Once the sample is observed and the sample mean computed equal to 
, the interval  is a known interval. Since the probability that the random interval covers 
μ
 before the sample is drawn is equal to 
 
   1−α
  
, call the computed interval, (for brevity), a 
 
   100(
    
     1−α
    
   )%
  
  confidence interval for the unknown mean 
μ
.


	 2. 
The number 

100(

1−α

)%

, or equivalently, 

1−α

, is called  the confidence coefficient.
 




 
 For illustration,  is a 95% confidence interval for 
μ
.

 
It can be seen that the confidence interval for 
μ
 is centered at the point estimate  and is completed by subtracting and adding the quantity .




Note that

as n increases,  decreases, resulting n a shorter confidence interval with the same confidence coefficient 

1−α





 
A shorter confidence interval indicates that there is more reliance in  as an estimate of 
μ
. For a fixed sample size n, the length of the confidence interval can also be shortened by decreasing the confidence coefficient 

1−α

. But if this is done, shorter confidence is achieved by losing some confidence.

Example 3.2. 
 
Let  be the observed sample mean of 16 items of a random sample from the normal distribution . A 90% confidence interval for the unknown mean 
μ
 is  For a particular sample this interval either does or does not contain the mean 
μ
. However, if many such intervals were calculated, it should be true that about 90% of them contain the mean 
μ
.



 
If one cannot assume that the distribution from which the sample arose is normal, one can still obtain an approximate confidence interval for 
μ
 . By the Central Limit Theorem the ratio  has, provided that n is large enough, the approximate normal distribution 
 
   N(
    
     0,1
    
   )
  
 when the underlying distribution is not normal. In this case  and  is an approximate 

100(

1−α

)%

 confidence interval for 
μ
. The closeness of the approximate probability 

1−α

 to the exact probability depends on both the underlying distribution and the sample size. When the underlying distribution is unimodal (has only one mode) and continuous, the approximation is usually quite good for even small n, such as 
 
   n=5
  
. As the underlying distribution becomes less normal (i.e., badly skewed or discrete), a larger sample size might be required to keep reasonably accurate approximation. But, in all cases, an n of at least 30 is usually quite adequate.  














 


 


 


 


 


 


 




SEE ALSO
Confidence Intervals II
         

 
       
    

3.3. CONFIDENCE INTERVALS II*



CONFIDENCE INTERVALS II



Confidence Intervals for Means



 
In the preceding considerations 
 (Confidence Intervals I), the confidence interval for the mean 
 μ
 of a normal distribution was found, assuming that the value of the standard deviation 
 σ
 is known. However, in most applications, the value of the standard deviation 
 σ
 is rather unknown, although in some cases one might have a very good idea about its value. 

 
Suppose that the underlying distribution is normal and that 
 
   σ2
    
  is unknown. It is shown that given random sample 
 
   X1
   ,X2
   ,...,Xn
     
 from a normal distribution, the statistic  has a  t distribution with 
 
r=n−1
  
 degrees of freedom, where 
 
   S2
     
 is the usual unbiased estimator of 
 
   σ2
    
, (see,  t distribution).

 
Select 
 
   t
     α/2
    
   (
    
     n−1
    
   )
  
 so that 
Then


    
 


    
 
Thus the observations of a random sample provide a  and 
 
   s2
     
 and  is a 
 
   100(
    
     1−α
    
   )%
  
 interval for 
 μ
.


Example 3.3. 
 
Let X equals the amount of butterfat in pound produced by a typical cow during a 305-day milk production period between her first and second claves. Assume the distribution of X is . To estimate 
 μ
 a farmer measures the butterfat production for n-20 cows yielding the following data:

Table 3.1. 	481	537	513	583	453	510	570
	500	487	555	618	327	350	643
	499	421	505	637	599	392	-


 
For these data,  and 
 
   s=89.75
  
. Thus a point estimate of 
 μ
 is . Since 
 
   t
     0.05
    
   (
    
     19
    
   )=1.729
  
 , a 90% confidence interval for 
 μ
 is , or equivalently, [472.80, 542.20].





 
Let T have a t distribution with n-1 degrees of freedom. Then, 
 
   t
     α/2
    
   (
    
     n−1
    
   )>z
     α/2
    
   
  
. Consequently, the interval  is expected to be shorter than the interval . After all, there gives more information, namely the value of 
 σ
, in construction the first interval. However, the length of the second interval is very much dependent on the value of s. If the observed s is smaller than 
 σ
, a shorter confidence interval could result by the second scheme. But on the average, is the shorter of the two confidence intervals. 


 
If it is not possible to assume that the underlying distribution is normal but 
 μ
 and 
 σ
 are both unknown, approximate confidence intervals for 
 μ
 can still be constructed using 
which now only has an approximate t distribution.


 
Generally, this approximation is quite good for many normal distributions, in particular, if the underlying distribution is symmetric, unimodal, and of the continuous type. However, if the distribution is  highly skewed, there is a great danger using this approximation. In such a situation, it would be safer to use certain nonparametric method for finding a confidence interval for the median of the distribution. 
    

Confidence Interval for Variances



 
 The confidence interval for the variance 
 
   σ2
    
 is based on the sample variance 

 
    
 
In order to find a confidence interval for 
 
   σ2
    
, it is used that the distribution of 
 
   (
    
     n−1
    
   )S2
   /σ2
   
  
 is 
 
   χ2
   (
    
     n−1
    
   )
  
. The constants a and b should selected from tabularized   Chi Squared Distribution  with n-1 degrees of freedom such that 



 
That is select a and b so that the probabilities in two tails are equal: 
 
   a=χ2
     1−α/2
    
   (
    
     n−1
    
   )
  
 and 
 
   b=χ2
     α/2
    
   (
    
     n−1
    
   ).
  
 Then, solving the inequalities, we have 


    
 
Thus the probability that the random interval 
 
   
      [(n-1)S
    2
   
     /b, (n-1)S
    2
   /a]
  
 contains the unknown 
 
   σ2
    
 is 1-
 α
. Once the values of 
 
   X1
   ,X2
   ,...,Xn
     
 are observed to be 
 
   x1
   ,x2
   ,...,xn
   
 and 
 
   s2
     
 computed, then the interval 
 
   
      [(n-1)S
    2
   
     /b, (n-1)S
    2
   /a]
  
 is a 
 
   100(
    
     1−α
    
   )%
  
 confidence interval for 
 
   σ2
    
. 

  
 
It follows that  is a 
 
   100(
    
     1−α
    
   )%
  
 confidence interval for 
 σ
, the standard deviation.

 
Example 3.4. 
 
Assume that the time in days required for maturation of seeds of a species of a flowering plant found in Mexico is . A random sample of n=13 seeds, both parents having narrow leaves, yielded =18.97 days and .



 
A confidence interval for 
 
   σ2
    
 is , because 
 
   5.226=χ2
     0.95
    
   (
    
     12
    
   )
  
 and 
 
   21.03=χ2
     0.055
    
   (
    
     12
    
   )
  
, what can be read from the tabularized Chi Squared Distribution. The corresponding 90% confidence interval for 
 σ
 is 





 
Although a and b are generally selected so that the probabilities in the two tails are equal, the resulting 
 
   100(
    
     1−α
    
   )%
  
 confidence interval is not the shortest that can be formed using the available data. The tables and appendixes gives solutions for a and b that yield confidence interval of minimum length for the standard deviation.

    
 

    
 

    


 
       
    

3.4. SAMPLE SIZE*



Size Sample



 
Very frequently asked question in statistical consulting is,  how large should the sample size be to estimate a mean?
    
 
The answer will depend on the variation associated with the random variable under observation. The statistician could correctly respond, only one item is needed, provided that the standard deviation of the distribution is zero. That is, if 
 σ
 is equal zero, then the value of that one item would necessarily equal the unknown mean of the distribution. This is the extreme case and one that is not met in practice. However, the smaller the variance, the smaller the sample size needed to achieve a given degree of accuracy.

    
Example 3.5. 
 
A mathematics department wishes to evaluate a new method of teaching calculus that does mathematics using a computer. At the end of the course, the evaluation will be made on the basis of scores of the participating students on a standard test. Because there is an interest in estimating the mean score    
 μ
, for students taking calculus using computer so there is a desire to determine the number of students, n, who are to be selected at random from a larger group. So, let find the sample size n such that we are fairly confident that  contains the unknown test mean 
 μ
, from past experience it is believed that the standard deviation associated with this type of test is 15. Accordingly, using the fact that the sample mean of the test scores,  , is approximately , it is seen that the interval given by  will serve as an approximate 95% confidence interval for 
 μ
. 

 
That is,  or equivalently  and thus 
 
   n≈864.36
  
 or n=865 because n must be an integer. It is quite likely that it had not been anticipated that as many as 865 students would be needed in this study. If that is the case, the statistician must discuss with those involved in the experiment whether or not the accuracy and the confidence level could be relaxed some. For illustration, rather than requiring  to be a 95% confidence interval for 
 μ
, possibly  would be satisfactory for 80% one. If this modification is acceptable, we now have  or equivalently,  and thus 
 
   n≈92.4
  
. Since n must be an integer = 93 is used in practice. 



 
Most likely, the person involved in this project would find this a more reasonable sample size. Of course, any sample size greater than 93 could be used. Then either the length of the confidence interval could be decreased from that of  or the confidence coefficient could be increased from 80% or a combination of both. Also, since there might be some question of whether the standard deviation 
 σ
 actually equals 15, the sample standard deviations would no doubt be used in the construction of the interval. 


    
 
 For example, suppose that the sample characteristics observed are  then,  or 
 
   77.2±1.41
  
 provides an approximate 80% confidence interval for 
 μ
. 

 
 
In general, if we want the 
 
   100(
    
     1−α
    
   )%
  
 confidence interval for 
 μ
, , to be no longer than that given by , the sample size n is the solution of  where 


 
That is,  where it is assumed that 
 
   σ2
    
 is known. 


    
 
Sometimes  is called  the maximum error of the estimate. If the experimenter has no ideas about the value of 
 
   σ2
    
, it may be necessary to first take a preliminary sample to estimate 
 
   σ2
    
.



 

    

 
The type of statistic we see most often in newspaper and magazines is an estimate of a proportion p. We might, for example, want to know the percentage of the labor force that is unemployed or the percentage of voters favoring a certain candidate. Sometimes extremely important decisions are made on the basis of these estimates. If this is the case, we would most certainly desire short confidence intervals for p with large confidence coefficients. We recognize that these conditions will require a large sample size. On the other hand, if the fraction p being estimated is not too important, an estimate associated with a longer confidence interval with a smaller confidence coefficients is satisfactory; and thus a smaller sample size can be used. 
    
 
 In general, to find the required sample size to estimate p, recall that the point estimate of p is 

    
 
Suppose we want an estimate of p that is within 
 ε
 of the unknown p with 
 
   100(
    
     1−α
    
   )%
  
 confidence where  is  the maximum error of the point estimate . Since  is unknown before the experiment is run, we cannot use the value of  in our determination of n. However, if it is known that p is about equal to 
 
   p*
   
  
, the necessary sample size n is the solution of  That is, 









    
 

    
 

    
 

    

 
       
    

3.5. Maximum Likelihood Estimation (MLE)*



MAXIMUM LIKELIHOOD ESTIMATION (MLE)



Likelihood function



 
From a statistical standpoint, the data vector  as the outcome of an experiment is a random sample from an unknown population.  The goal of data analysis is to identify the population that is most likely to have generated the sample. In statistics, each population is identified by a corresponding probability distribution. Associated with each probability distribution is a unique value of the model’s parameter. As the parameter changes in value, different probability distributions are generated. Formally, a model is defined as the family of probability distributions indexed by the model’s parameters.

	  
 
Let denote the probability distribution function  (PDF) by 
 
   f(
    
     x|θ
    
   )
  
 that specifies the probability of observing data y given the parameter w. The parameter vector  is a vector defined on a multi-dimensional parameter space. If individual observations, 
 
   xi
   's
  
 are statistically independent of one another, then according to the theory of probability, the PDF for the data  can be expressed as a multiplication of PDFs for individual observations, 
	  
 


 


 
 To illustrate the idea of a PDF, consider the simplest case with one observation and one parameter, that is, 
 
   n=k=1
  
. Suppose that the data x represents the number of successes in a sequence of 10 independent binary trials (e.g., coin tossing experiment) and that the probability of a success on any one trial, represented by the parameter, 
 θ
 is 0.2. The PDF in this case is then given by

 



 
which is known as the binomial probability distribution. The shape of this PDF is shown in the top panel of Figure 1. If the parameter value is changed to say w = 0.7, a new PDF is obtained as  whose shape is shown in the bottom panel of Figure 1.  
  The following is the general expression of the binomial PDF for arbitrary values of 
 θ
 and n:
 
 




 
which as a function of y specifies the probability of data y for a given value of the parameter 
 θ

. The collection of all such PDFs generated by varying parameter across its range (0 - 1 in this case) defines a model.
	  
 [image: Figure (MLE.png)]

Figure 3.1. 

Binomial probability distributions of sample size n = 10 and probability parameter 
			θ
		 = 0.2 (top) and 
			θ
		 = 0.7 (bottom).


            


Maximum Likelihood Estimation



 
Once data have been collected and the likelihood function of a model given the data is determined, one is in a position to make statistical inferences about the population, that is, the probability distribution that underlies the data. Given that different parameter values index different probability distributions (Figure 1), we are interested in finding the parameter value that corresponds to the desired PDF.
	  
 
The principle of  maximum likelihood estimation (MLE), originally developed by R. A. Fisher in the 1920s, states that the desired probability distribution be the one that makes the observed data most likely, which is obtained by seeking the value of the parameter vector that maximizes the likelihood function 
 
   L(
    θ
   )
  
. The resulting parameter, which is sought by searching the multidimensional parameter space, is called  the MLE estimate, denoted by 
          
 


	  
 
Let p equal the probability of success in a sequence of Bernoulli trials or the proportion of the large population with a certain characteristic. The method of moments estimate for p is relative frequency of success (having that characteristic). It will be shown below that the maximum likelihood estimate for p is also the relative frequency of success. 
	  
 
Suppose that X is 
 
   b(
    
     1,p
    
   )
  
 so that the p.d.f. of X is 
 
   f(
    
     x;p
    
   )=px
   
     (
      
       1−p
      
     )
    
     1−x
    
   ,x=0,1,0≤p≤1.
  
 Sometimes is written 
 
   p∈Ω=[ 
    p:0≤p≤1
    ]  ,
  
 where 
 Ω
 is used to represent parameter space, that is, the space of all possible values of the parameter. 
A random sample 
 
   X1
   ,X2
   ,...,Xn
     
 is taken, and the problem is to find an estimator  such that  is a good point estimate of p, where 
 
   x1
   ,x2
   ,...,xn
     
 are the observed values of the random sample. Now the probability that 
 
   X1
   ,X2
   ,...,Xn
     
 takes the particular values is
          
 


	  
 
which is the joint p.d.f. of 
 
   X1
   ,X2
   ,...,Xn
     
 evaluated at the observed values. One reasonable way to proceed towards finding a good estimate of p is to regard this probability (or joint p.d.f.)  as a function of p and find the value of p that maximizes it. That is, find the p value most likely to have produced these sample values. The joint p.d.f., when regarded as a function of p, is frequently called  the likelihood function. Thus here the likelihood function is:

	  
 


	  
 
To find the value of p that maximizes 
 
   L(
    p
   )
  
 first take its derivative for 
 
   0<p<1:
  



	  
 


	  
 
Setting this first derivative equal to zero gives 

	  
 
Since 
 
   0<p<1
  
, this equals zero when
 
Or, equivalently, 
	  
 
The corresponding statistics, namely , is called  the maximum likelihood estimator and is denoted by 
,that is, 

           
 
When finding a maximum likelihood estimator, it is often easier to find the value of parameter that minimizes the natural logarithm of the likelihood function rather than the value of the parameter that minimizes the likelihood function itself. Because the natural logarithm function is an increasing function, the solution will be the same. To see this, the example which was considered above gives for 
 
   0<p<1
  
, 

	  
 


	  
 
To find the maximum, set the first derivative equal to zero to obtain
	  
 


	  
 
which is the same as previous equation. Thus the solution is  and the maximum likelihood estimator for p is 


	  
 
Motivated by the preceding illustration, the formal definition of maximum likelihood estimators is presented. This definition is used in both the discrete and continuous cases. 
In many practical cases, these estimators (and estimates) are unique. For many applications there is just one unknown parameter. In this case the likelihood function is given by 


	  
 

	  
 

	  
 

	  
 

	  
 

	  



SEE ALSO
Maximum Likelihood Estimation - Examples 

 
       
    

3.6. Maximum Likelihood Estimation - Examples*



MAXIMUM LIKELIHOOD ESTIMATION - EXAMPLES



EXPONENTIAL DISTRIBUTION



 
Let 
 
   X1
   ,X2
   ,...,Xn
     
 be a random sample from the exponential distribution with p.d.f. 

    
 


    
 
The likelihood function is given by
    
 



    
 
The natural logarithm of 
 
   L(
    θ
   )
  
 is 


    
 
Thus,  The solution of this equation for 
 θ
 is 


 
Note that, 
 
    
 


    
 


    
 
Hence, 
 
   ln⁡L(
    θ
   )
  
 does have a maximum at , and thus the maximum likelihood estimator for 
 θ
 is 


This is both an unbiased estimator and the method of moments estimator for 
 θ
.
      

GEOMETRIC DISTRIBUTION



  
Let 
 
   X1
   ,X2
   ,...,Xn
     
 be a random sample from the geometric distribution with p.d.f. 
 
   f(
    
     x;p
    
   )=
     (
      
       1−p
      
     )
    
     x−1
    
   p,x=1,2,3,....
  




    
 
The likelihood function is given by 

    
 
The natural logarithm of 
 
   L(
    θ
   )
  
 is 
    
 
Thus restricting p to 
 
   0<p<1
  
 so as to be able to take the derivative, we have 
    
 
Solving for p, we obtain 
 So the maximum likelihood estimator of p is 

    
 
Again this estimator is the method of moments estimator, and it agrees with the intuition because, in n observations of a geometric random variable, there are n successes in the  trials. Thus the estimate of p is the number of successes divided by the total number of trials.

    

NORMAL DISTRIBUTION



 
Let 
 
   X1
   ,X2
   ,...,Xn
     
 be a random sample from , where  That is, here let 
 
   θ1
   =μ
  
 and 
 
   θ2
   =σ2
     
. Then 
  or equivalently, 
 The natural logarithm of the likelihood function is 

     
 
The partial derivatives with respect to 
 
   θ1
     
 and 
 
   θ2
     
 are 
  and 
     
 
The equation  has the solution . Setting  and replacing 
 
   θ1
     
 by  yields 

     
 
By considering the usual condition on the second partial derivatives, these solutions do provide a maximum. Thus the maximum likelihood estimators 
 
   μ=θ1
     
 and 
 
   σ2
   =θ2
     
 are  and 


    
 
Where we compare the above example with the introductory one, we see that the method of moments estimators and the maximum likelihood estimators for 
 μ

 and 
 
   σ2
    

 are the same. But this is not always the case. If they are not the same, which is better? Due to the fact that the maximum likelihood estimator of 
 θ

 has an approximate normal distribution with mean 
 θ

 and a variance that is equal to a certain lower bound, thus at least approximately, it is  unbiased minimum variance estimator. Accordingly, most statisticians prefer the maximum likelihood estimators than estimators found using the method of moments.  
     

BINOMIAL DISTRIBUTION



 
 Observations: k successes in n Bernoulli trials.   
 
 



  
 


  
 

    
 


    
 

    
 


    
 


    

POISSON DISTRIBUTION



 
 Observations:  
 
   x1
   ,x2
   ,...,xn
   
, 

 


     
 


     
 


     
 


     
 


     
 

     


 
       
    

3.7. ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMATORS*



ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMATORS        
          



 
Let consider a distribution with p.d.f. 
 
   f(
    
     x;θ
    
   )
  
 such that the parameter 
 θ
 is not involved in the support of the distribution. We want to be able to find the maximum likelihood estimator  by solving  where here the partial derivative was used because 
 
   L(
    θ
   )
  
 involves 
 
   x1
   ,x2
   ,...,xn
   
. 
                 
 
That is,  where now, with  in this expression, 

                 
 
We can approximate the left-hand member of this latter equation by a linear function found from the first two terms of a Taylor’s series expanded about 
 θ

, namely 
 when 
                 
 
Obviously, this approximation is good enough only if  is close to 
 θ
, and an adequate mathematical proof involves those conditions. But a heuristic argument can be made by solving for  to obtain



                 
(3.1)

 
Recall that  and 
                 
(3.2)

 
The expression (2) is the sum of the n independent and identically distributed random variables  and thus the Central Limit Theorem has an approximate normal distribution with mean (in the continuous case) equal to

                 
(3.3)

 
Clearly, the mathematical condition is needed that it is permissible to interchange the operations of integration and differentiation in those last steps. Of course, the integral of  is equal to one because it is a p.d.f.

                 
 
Since we know that the mean of each Y is  let us take derivatives of each member of this equation with respect to 
 θ
 obtaining

                 
 


                 
 
However,  so 




                
 
Since 
 
   E(
    Y
   )=0
  
, this last expression provides the variance of 
 
   Y=∂[ 
    ln⁡f(
     
      X;θ
     
    )
    ]/d∂.
  
 Then the variance of expression (2) is n times this value, namely


                 
 


                 
 
Let us rewrite  (1) as 
                 
(3.4)

 
The numerator of (4) has an approximate 
 
   N(
    
     0,1
    
   )
  
 distribution; and those unstated mathematical condition require, in some sense for  to converge to  . Accordingly, the ratios given in equation (4) must be approximately 
 
   N(
    
     0,1
    
   )
  
 . That is,  has an approximate normal distribution with mean 
 θ
 and standard deviation .
               
Example 3.6. 
 
With the underlying exponential p.d.f. 


  is the maximum likelihood estimator. Since  and  and , we have  because 
 
   E(
    X
   )=θ
  
. That is,  has an approximate distribution with mean 
 θ
 and standard deviation . Thus the random interval  has an approximate probability of 0.95 for covering 
 θ
. Substituting the observed  for 
 θ
 , as well as for  , we say that  is an approximate 95% confidence interval for 
 θ
.
                


Example 3.7. 
 
The maximum likelihood estimator for 
 λ
 in  is  Now 
 
   ln⁡f(
    
     x;λ
    
   )=xln⁡λ−λ−ln⁡x!
  
 and  and . Thus  and  has an approximate normal distribution with mean 
 λ
 and standard deviation . Finally  serves as an approximate 90% confidence interval for 
 λ
. With the data from example(…)  and hence this interval is from 1.887 to 2.563.
                



 
It is interesting that there is another theorem which is somewhat related to the preceding result in that the variance of  serves as a lower bound for the variance of every unbiased estimator of 
 θ
 . Thus we know that if a certain unbiased estimator has a variance equal to that lower bound, we cannot find a better one and hence it is the best in the sense of being  the unbiased minimum variance estimator. 
This is called  the Rao-Cramer Inequality.

                 
 
Let 
 
   X1
   ,X2
   ,...,Xn
     
 be a random sample from a distribution with p.d.f. 
 
   f(
    
     x;θ
    
   ),θ∈Ω={ 
    θ:c<θ<d
    },
  
 where the support X does not depend upon 
 θ
so that we can differentiate, with respect to 
 θ
, under integral signs like that in the following integral:
                
 


                 
 
If  is an unbiased estimator of 
 θ
, then 
                 
 


                 
 
Note that the two integrals in the respective denominators are the expectations  and  sometimes one is easier to compute that the other.


                 
 
Note that above the lower bound of two distributions: exponential and Poisson was computed. Those respective lower bounds were  and . Since in each case, the variance of   equals the lower bound, then  is the unbiased minimum variance estimator.
               

Example 3.8. 
 
The sample arises from a distribution with p.d.f. 
 
   f(
    
     x;θ
    
   )=θx
     θ−1
    
   ,0<x<1,θ∈Ω={ 
    θ:0<θ<∞
    }.
  


                 
 
We have  and 

                
 
Since , the lower bound of the variance of every unbiased estimator of 
 θ
 is 
 
   θ2
   /n
  
. Moreover, the maximum likelihood estimator  has an approximate normal distribution with mean 
 θ
 and variance 
 
   θ2
   /n
  
. Thus, in a limiting sense,  is  the unbiased minimum variance estimator of 
 θ
. 
                 


 
To measure the value of estimators; their variances are compared to the Rao-Cramer lower bound. The ratio of the Rao-Cramer lower bound to the actual variance of any unbiased estimator is called  the efficiency of that estimator. As estimator with efficiency of 50% requires that 1/0.5=2 times as many sample observations are needed to do as well in estimation as can be done with the unbiased minimum variance estimator (then 100% efficient estimator).
                 
 
   
                 
 
   
                 
 
   
                 
 
   
                 
 
   
                 
 
   
                 



 
       
    

Glossary



	Definition: 
	
If  

E[ 
u(


x
1

,
x
2

,...,
x
n



)
 ]=θ



 is called an unbiased estimator of simplemath
mathml-miitalicsθ

θ
. Otherwise, it is said to be biased.
    

	Definition: 
	
Given a random sample simplemath

mathml-miitalicsX1
,mathml-miitalicsX2
,...,mathml-miitalicsXmathml-miitalicsn




X
1

,
X
2

,...,
X
n


 from a normal distribution 

N(

μ,
σ
2



)

, consider the closeness of 
true
X
¯

, the unbiased estimator of simplemath
mathml-miitalicsμ

μ
, to the unknown simplemath
mathml-miitalicsμ

μ
. To do this, the error structure (distribution) of 
true
X
¯

, namely that 
true
X
¯

 is 

N(

μ,
σ
2

/n

)

, is used in order to construct what is called a confidence interval for the unknown parameter simplemath mathml-miitalicsμ μ, when the variance simplemath

mathml-miitalicsσ2




σ
2


 is known.



	Definition: 
	1. 
Once the sample is observed and the sample mean computed equal to 
true
x
¯


, the interval block

true
x
¯

−
z

α/2


(

σ/
n



),true
x
¯

+
z

α/2


(

σ/
n


)

 is a known interval. Since the probability that the random interval covers simplemath
mathml-miitalicsμ

μ
 before the sample is drawn is equal to simplemath
 
   1−mathml-miitalicsα
  

 
   1−α
  
, call the computed interval, 

true
x
¯

±
z

α/2


(

σ/
n


)

(for brevity), a simplemath
 
   100(
    
     1−mathml-miitalicsα
    
   )mathml-miitalics%
  

 
   100(
    
     1−α
    
   )%
  
 confidence interval for the unknown mean simplemath
mathml-miitalicsμ

μ
.


	2. 
The number simplemath

100(

1−mathml-miitalicsα

)mathml-miitalics%



100(

1−α

)%

, or equivalently, simplemath

1−mathml-miitalicsα



1−α

, is called the confidence coefficient.
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