
Introduction to the Texas Instruments
ez430

By:
Naren Anand

Introduction to the Texas Instruments
ez430

By:
Naren Anand

Online:
< http://cnx.org/content/col10354/1.6/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Naren Anand. It is licensed under the

Creative Commons Attribution 2.0 license (http://creativecommons.org/licenses/by/2.0/).

Collection structure revised: June 19, 2006

PDF generated: October 26, 2012

For copyright and attribution information for the modules contained in this collection, see p. 48.

Table of Contents

1 Lab 1: Introduction to embedded C programming

1.1 1.1 - What is a program? . 1
1.2 1.2 - Introduction to the IAR Workbench IDE . 1
1.3 1.3 - Introduction to Programming the ez430 . 8
1.4 1.4 - Setting Breakpoints in Workbench . 10
1.5 1.5 - Lab 1: C and Macros with Texas Instruments' ez430 . 11
Solutions . 14

2 Lab 2: Introduction to embedded Assembly programming

2.1 2.1 - Introduction to Assembly Language . 15
2.2 2.2 - Structure of an Assembly Program . 16
2.3 2.3 - Lab 2: Introduction to Assembly Language . 18

3 Lab 3: Clocking

3.1 3.1 - What is a digital clock? . 19
3.2 3.2 - Clock System on the ez430 . 19
3.3 3.3 - Lab 3: Clocking on MSP430 . 21

4 Lab 4: Interrupts and Timers

4.1 4.1 - Interrupts . 23
4.2 4.2 - Timers . 25
4.3 4.3 - Watchdog Timer . 27
4.4 4.4 - Lab 4: Timers and Interrupts . 28

5 Lab 5: Optimization and Low Power Modes

5.1 5.1 - Memory Conservation . 29
5.2 5.2 - Improving Speed and Performance . 31
5.3 5.3 - Reducing Power Consumption . 32
5.4 5.4 - Lab 5: Optimization and Low Power Modes . 36

6 Lab 6: Programming the Flash

7 Lab 7: Analog to Digital Conversion

7.1 7.1 - Introduction to Sampling . 41
7.2 7.2 - Analog-to-Digital Converter on the MSP430 . 42
7.3 7.3 - Lab 7: The ADC . 44

Index . 46
Attributions . 48

iv

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

Chapter 1

Lab 1: Introduction to embedded C

programming

1.1 1.1 - What is a program?1

A program is a set of instructions that are grouped together to accomplish a task or tasks. The instructions,
called machine code or assembly code consist of things like reading and writing to memory, arithmetic
operations, and comparisons. While these instructions sound simple, it is actually possible to solve a huge
group problems with them. The di�culty in doing so is that you must specify in exact detail precisely how.
Good programming is both an art and a science, and what you will learn today is a beginning of the craft.

As mentioned above, the individual instructions that the machine actually quite simple or low-level in
computer parlance. Writing complex programs in assembly code took such a long time that eventually better
programming languages were invented. A programming language, like C, is a formal set of grammar and
syntax like assembly code; but the instructions in high-level languages encompass hundreds of assembly
instructions. Programs called compilers translate a program written in a higher level language into assembly
so that the computer can actually execute the instructions. Compilers let the programmer write programs
so that humans can read them relatively easily while the computer can still execute the instructions.

Generally programming code is organized into text �les with su�xes that indicate the programming
language. In the case of C these �les are appended with ".c", and a C program is made up of at least one
of these �les. Many C programs also use header �les that contain frequently used segments of code so that
it does not need to be written multiple times. A ".h" is appended to the end of these �les.

1.2 1.2 - Introduction to the IAR Workbench IDE2

1.2.1 Goals

To develop applications to run on the ez430 chip, we use the IAR Embedded Workbench IDE (integrated
development environment). Not only does this application provide a powerful code editor, but it also
allows a simple one-click deployment of the source code onto the MSP chip using USB as well as hardware
debugging capabilities that allow you to trace through actual stack calls. This module is intended to give
you an introduction to the IAR Workbench application so that you may create and develop your own ez430
applications.

1This content is available online at <http://cnx.org/content/m13620/1.2/>.
2This content is available online at <http://cnx.org/content/m13622/1.3/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

1

2 CHAPTER 1. LAB 1: INTRODUCTION TO EMBEDDED C PROGRAMMING

1.2.2 Create a Project

The very �rst thing you must do before you can start downloading any code onto the MSP, is to create a
project in Workbench that will contain all of the relevant �les for your application. When you open Work-
bench you should see the following window (This window is equivalent to selecting File->New->Workspace
and then Project->Create New Project. This window may also be reached through Help->Startup
Screen):

Startup Screen

Figure 1.1: Select "Create new project in current workspace" to begin.

Next, the following window will appear:

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

3

Project Template Selection

Figure 1.2: Here we select the language in which we shall write our code. Select the 'C' �le and then
the 'main' option. In one lab, we will program in assembly; for that lab, select the "asm" option.

Now a Windows Save dialog should appear. Give your project a name and save it in its own seperate
folder. A project is not only a C �le that contains your code but also several other �les (a project �le with
the ".eww" extention, a project settings folder, a debug folder which contains compiled code outputted by
Workbench etc). Keeping the �les for your current project in their own folder will help you stay organized.
If you save and close your project, opening it again is as simple as opening this folder, and doubleclicking
on the Workbench project �le, which has a ".eww" extention.

1.2.3 Con�gure Project Options

Now, we must con�gure the project options. Make sure the project is selected in the "Files" pane to the left
of the screen (the project is the top of the workspace's �le tree). Then select Project->Options to get the
following screen and make the indicated selections:

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

4 CHAPTER 1. LAB 1: INTRODUCTION TO EMBEDDED C PROGRAMMING

Project Options Setup: General Options

Figure 1.3: Make sure you choose the right processor for your application! Here, I've selected the
MSP4302013 (a member of the ez430 series) since that is the chip I plan to use.

Now select the "Debugger" option and make the following selections:

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

5

Project Options Setup: Debugger

Figure 1.4: Here we must select to use the FET (Flash Emulation Tool) Debugger to run our code.

Finally select the "FET Debugger" option and make the following selections:

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

6 CHAPTER 1. LAB 1: INTRODUCTION TO EMBEDDED C PROGRAMMING

Project Options Setup: FET Debugger

Figure 1.5: Now we select the "Verify Download" check box and the "TI USB FET" radio button
(while leaving other options as they are) so that our program is properly transferred to the chip.

Your project is created, saved, and now you may write your code. Only one project may be open at a
time.

1.2.4 Adding Files to the Project

If your project consists of more than one �le, you will need to add it to the current project. To add a �le to
your project, choose Project->Add Files.

1.2.5 Run Your Program!

This is the part you've been waiting for: actually testing your program! Use the Project->Debug menu
item to load the currently active project and set your program running. You can also set any breakpoints
beforehand; by default, the very �rst line of executed code is set as a breakpoint. Now that you have
started the debug process, the layout of the Workbench program changes slightly. A Debug menu and the
"Disassembly", the assembly/machine code instructions at their speci�c memory addresses on the ez430,
appear. To continue the execution of the program, select Debug->Go. If you would like to set breakpoints

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

7

(in order to view the "path" of program execution or the values of speci�c variables or registers at a certain
point during the program execution) click to the left of a line of code such that a red 'X' appears.

You can pause the debugger when the target is running if you would like to look at the value of certain
variables. Select Debug->Break and open a watch window to examine the value of certain variables. It
is suggested that you copy the variables you are interested in to temporary global variables. Because local
variables go out of scope, it is uncertain if their correct value is maintained when the debugger is paused.

Debugging can be stopped using Debug->Stop. At this point, the watch window will not display your
variable values. At this point, you may make any modi�cations to your program as necessary and restart
the debugger from the beginning.

All of the necessary commands have shortcut icons as the following diagram shows:

Workbench: Debug View

Figure 1.6: The program layout during debugging

Legend:

1. Make/Debug- This button will compile, load, and run the code onto the chip. This process happens
rather rapidly so if the execution of this seems to hang, then something is wrong. Usually disconnecting
the tool and/or restarting Workbench solves this problem. Don't forget to save �rst!

2. Go- This button is for the Go command in the debug menu; it tells the program to continue execution
until the next breakpoint. The buttons to its left are other ways of traversing through breakpoints
that you may experiment with.

3. Stop Debug- Selecting this will end the debugging process. If you want to modify your code then
you must stop debugging �rst.

4. Dissassembly- This is a map of the memory space of the ez430 and where your code has been placed
(in its compiled form).

5. Current Location- The Green Arrow/Green Highlighting indicates the current instruction being
executed.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

8 CHAPTER 1. LAB 1: INTRODUCTION TO EMBEDDED C PROGRAMMING

1.2.6 Good luck!

You're all set to start using the CrossStudio compiler to write embedded microcontroller code. Save often
and remember that disconnecting and reconnecting or restarting the program will solve almost all interface
problems that you encounter. Don't worry if breakpoints seem a little confusing now. We will go into more
depth shortly and a good bit of practice is necessary to use them e�ectively.

1.3 1.3 - Introduction to Programming the ez4303

1.3.1 Con�guring Digital I/O: Introduction

Digital I/O, such as the LED, is con�gured by modifying several registers pertaining to the port that they
are attached to. Check the datasheet to �nd the respective port number of the peripheral you which to
control. For more detailed information about Digital I/O on the MSP430 check Chapter 6: Digital I/O
of the ez430's user guide. The basic logic behind seemingly trivial process of turning the LED on and o� is
the same behind the operation of every peripherial on the tool.

First, we must assign the direction of the corresponding I/O pins. This is done by setting the direction
register, PxDIR, with the appropriate bit. By default, all I/O pins are assigned to be inputs.

• Bit = 0: The port pin is switched to input direction.
• Bit = 1: The port pin is switched to output direction.

On the ez430 the LED is located on port 1. The port number will correspond the to x value in registers
such as PxIN, PxOUT, or PxDIR. Therefore, if we wanted to de�ne the direction of a pin on port 1 we
would write to P1DIR.

1.3.2 A Useful Tangent: Common Bitwise C Operations

In order to modify values of registers you must �rst understand the following commonly used C logic oper-
ations:

∼A
A | B

A & B

A ^ B

A |= B

A &= ∼B
A ^=B

In C, the NOT: ∼, OR: |, AND: & and XOR: ^ operators are all bitwise. This means that the operations
are done bit by bit to the binary values of the two operands.

note: The pre�x "0b" to a number means that that number is binary. Similarly an "0x" pre�x
means that the number is hexadecimal.

Here are examples of the bitwise operations:

int A = 0b1101;

int B = 0b0101;

int C;

/*

The results of these operations are very straightforward. If we are dealing with the "|"

3This content is available online at <http://cnx.org/content/m13623/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

9

operator then we OR together each bit to make the result. This means 0b1101 | 0b0101 is

computed as [1 OR 0, 1 OR 1, 0 OR 0, 1 OR 1] which is [1,1,1,1] thus the result is 0b1101;

*/

C = ∼A; // The value of C is 0b0010

C = A | B; // The value of C is 0b1101

C = A & B; // The value of C is 0b0101

C = A ^ B; // The value of C is 0b1000

Operators such as += or -=, implemented as A += B, are short forms for A = A + B. This is translated
to "take the current value of A, add it to B, and �nally store that result back into A." For -= it similarly
translates to "subtract B from A and store the result back to A." If "@" is some operator, than A @= B

would be "@ together A and B and store the result back into variable A."
If we combine the use of these two aspects of C then the aformentioned logic operations that are listed

at the top of this section begin to make sense. The following examples will help you �gure out why they
are useful to us when we attempt to con�gure any register on our microcontroller. It is imperative that
you understand how these function. You will use them in every program you write because these operations
allow you to modify single bits of a register to modify a speci�c register and change a peripheral's settings.

1.3.3 Con�guring Digital I/O: Examples

Exercise 1.3.1 (Solution on p. 14.)

How do we switch the pin (P1.0) corresponding to the LED to be an output?

Output pins may be toggled using the PxOUT register. The LED is turned on by setting its corresponding
register bit high.

Exercise 1.3.2 (Solution on p. 14.)

What code would turn on the LED without modifying any other bits in the register? What would
turn it back o�?

Exercise 1.3.3 (Solution on p. 14.)

What would be the proper syntax for toggling the value of P1.0 so that we can turn the light on
if it is o� or vice versa?

Exercise 1.3.4 (Solution on p. 14.)

Now, write the full C program to turn on the LED. Do the following:

1. Create a new project in Workbench as previosuly described
2. Do not delete the default code in the main.c �le except for the return 0;, which is not

necessary. All of your programs will use this as a skeleton
3. Include the correct header �le by adding the following line at the top of the main.c �le:

#include "msp430x20x3.h";

4. Consider de�ning macros for commonly used register values. For example, if we add #define

led_on ∼0x01 to the top of the �le (after the #include) we may call led_on every time
we wanted the value ∼0x01. Similarly we may add #define led_off 0x01 to use when we
wanted 0x01.

5. Complete the program. It is as simple as it seems; no more than two lines of code in the main
function are necessary

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

10 CHAPTER 1. LAB 1: INTRODUCTION TO EMBEDDED C PROGRAMMING

1.4 1.4 - Setting Breakpoints in Workbench4

C with an embedded controller does not have as many input-output (IO) features as a regular computer.
To help you debug, it will sometimes be necessary to stop the processor while it is running and examine the
state of the system. To accomplish this we will use breakpoints. A breakpoint is a speci�c command to
the development environment to stop execution of the processor when a certain condition happens. These
conditions range from when a certain instruction is reached to when certain data is written or read. The
advanced options are broad.

To set a basic breakpoint, one which will stop execution when a certain line is reached, just click on
the left margin of the C �le on the line you want to trigger. A red 'X' should appear to indicate you have
set a break point. Click once more to make it go away. Workbench keeps track of all of the breakpoints
for you. To see this information go to Window->Breakpoints. This will pop up a list of all of the
breakpoints you currently have enabled. Right clicking in the window will allow us to create, delete, and
modify breakpoints. We will use the same terminology for breakpoints as the IAR environment does, but
the usage is not standardized.

The most useful and important breakpoint is the the code breakpoint. It triggers on arrival at a certain
instruction in the source code. This kind of breakpoint can be created simply by left clicking on the left
margin of the line in question. The breakpoint should then appear in the breakpoint window. Right clicking
on the entry for a breakpoint allows you to edit it. For all breakpoints, you may select that they only trigger
on a certain iteration by editing the skip count �eld. If left as 0, the breakpoint will trigger each time it
occurs. Entering a number into the skip count �eld will trigger the breakpoint on that numbered time the
event occurs.

In tandem with breakpoints, we can use the Locals and Watch windows. To access either of these
windows select View->Locals or View->Watch. Whenever the program pauses at a breakpoint, these
windows will be updated with the proper current values. The locals window displays the values for all local
variables, variables within the function being processed, that are currently being used. The watch window
displays values for variables that you add to it. Right click any variable or macro directly in your code and
select "Add to Watch." Now, whenever your code pauses at a breakpoint, you can see the current value of
that variable.

Alternate explanations of breakpoints can be found in the help contents of the Workbench IDE.

4This content is available online at <http://cnx.org/content/m13624/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

11

1.5 1.5 - Lab 1: C and Macros with Texas Instruments' ez4305

The primary di�erence between "normal" and embedded C programming is that you will need to write
directly to registers to control the operation of the processor. Fortunately, the groundwork has already been
laid for you to make this easier. All of the registers in the ez430 have been mapped to macros by Texas
Instruments. Additionally, the important bit combinations for each of these registers have macros that use
the same naming convention as the user's guide. Other di�erences from the C used on most platforms
include:

• Most registers in the ez430 are 16 bits long, so an int value is 2 bytes (16 bits) long.
• Writing to registers is not always like writing to a variable because the register may change without

your speci�c orders. It is always important to read the register description to see what the register
does.

• The watchdog timer will automatically reset the ez430 unless you set the register not to.
• There is only a limited "standard out" system. Standard out will typically print results to your

computer screen.
• Floating-point operations cannot be e�ciently performed. In general, you should avoid �oating point

decimal calculations on the ez430 because it does not have special hardware to support the complicated
algorithms used.

Exercise 1.5.1
Code Review
In this exercise, you may want to use some of the debugging tools (Breakpoints, Watch Window,
Locals Window) to help you understand what the code is doing. Start a new project. Cut and
paste the following code into main.c:

#include "msp430x20x3.h"

void main(void){

int i,j,tmp;

int a[20]={0x000C,0x0C62,0x0180,0x0D4A,0x00F0,0x0CCF,0x0C35,0x096E,0x02E4,

0x0BDB,0x0788,0x0AD7,0x0AC9,0x0D06,0x00EB,0x05CC,0x0AE3,0x05B7,0x001D,0x0000};

for (i=0; i<19; i++){

for (j=0; j<9-i; j++){

if (a[j+1] < a[j]) {

tmp = a[j];

a[j] = a[j+1];

a[j+1] = tmp;

}

}

}

while(1);

}

1. Explain what this program is doing. Why is the while(1) statement at the end of the code
necessary for all programs we write at this point?

2. Use any of the methods listed above to show the updated array. What is the �nal result?

5This content is available online at <http://cnx.org/content/m13625/1.5/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

12 CHAPTER 1. LAB 1: INTRODUCTION TO EMBEDDED C PROGRAMMING

3. Modify the code so that it prints the �nal version of the array to standard out (you will
have to use a loop of your choice to cycle through each element of the array). What are the
drawbacks and bene�ts of using printf over setting a breakpoint?

note: To use the standard out, add the following line to the top of your code:

#include "stdio.h";

Then, select Project->Options, the Library Options tab in General Options, and �nally
select Tiny in the Printf formatter drop down menu. The printf() function will print to stan-
dard out (when the debugger is running, select View->Terminal I/O). For example, printf("x
equals %d\n", x); will print out the value of x to the window. The %d means that x is a number,
and \n will produce a line break.

Exercise 1.5.2
Functions
Multiplications and division are very complex operations to do on any microprocessor. The op-
erations should be avoided if possible or should be replaced with simpler, equivalent operations.

1. What do the operators � and � do?
2. How could you use these operators to perform multiplication and division?
3. Write the function multiply(int x, int y) that takes parameter x and multiplies it by y

by using a bit shift. It must return an int. For symplicity, it is OK to assume that y is a
power of 2.

4. Next, write the function divide(int x, int y) that takes parameter x and divides it by y

by using a bit shift. It must also return an int.

Exercise 1.5.3
Digital I/O Registers
Open the header �le msp430x20x3.h by right clicking the name in your code and selecting
Open "msp430x20x3.h" This �le contains the macros and register de�nitions for the ez430 we
are using. Using the ez430 schematic, this header �le, and ez430's User Guide please answer the
following questions.

1. The Watchdog Timer will automatically reset the hardware if it isn't periodically reset or
disabled entirely. Usually, we will simply disable it. It can be disabled by writing to the
WDTPW (watchdog timer password) and WDTHOLD (watchdog timer hold) section of the Watch-
dog Timer Control Register (WDTCTL). Refer to Section 7.3 of the User's Guide for more
information. Find the macros for this register in the header �le. How are they di�erent from
their description in the User's Guide? Finally, write the C code required to disable it.

2. What are the di�erences among P1DIR, P1SEL, P1OUT, P1IN?
3. Some port pins have multiple functions to output and it is up to the user to select the

appropriate signal. Write some code that would select the alternate function of P2.2 (pin 2
of port 2). What will the result be on our hardware?

Exercise 1.5.4
Programming Digital I/O
Write a program to blink SOS in Morse code repeatedly. In Morse code SOS is S:"..." O:"�"
S:"..." where each '.' is a shorter blink and a '-' is a longer blink. According to The International
Morse Code Standard (on Wikipedia)6 the relative lengths of times between dots and dashes are
as follows:

6http://en.wikipedia.org/wiki/Morse_code

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

13

• The amount of time of a dash is equivalent in length to 3 dots.
• The amount of time between parts of a letter is equivalent in length to one dot.
• The amount of time between letters is equivalent in length to 3 dots.
• The amount of time between words (assume each SOS is a word) is equivalent to 5 dots.

Make the delays (time length of a dot) by using a for-loop that counts to a large enough value.

note: Make sure you disable the watchdog timer at the very beginning of the program.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

14 CHAPTER 1. LAB 1: INTRODUCTION TO EMBEDDED C PROGRAMMING

Solutions to Exercises in Chapter 1

Solution to Exercise 1.3.1 (p. 9)

P1DIR |= 0x01;

0x01 in hex is equivalent to 0b00000001 in binary. You may refer to the module about Binary and Hex-
adecimal Notation7 to learn how to do this conversion or you could use the Windows Calculator (Start-
>Run...->'Calc') to do it quickly. We can now easily see that P1.0 is set to 1 which makes it an output.

note: Remember to use |= instead of just = because it won't overwrite bits that are not set to 1
in the mask.

Solution to Exercise 1.3.2 (p. 9)

P1OUT |= 0x01; //Turns LED On

P1OUT &= ∼0x01; //Turns LED Off

This will turn on and turn o� the LED assuming it had already been set to be an output.

note: ∼0x01 = 0xFE = 0b11111110

Solution to Exercise 1.3.3 (p. 9)

P1OUT ^= 0x01;

The XOR operation will invert the bit in question so that we may toggle it regardless of its current state. If
this doesn't make sense, do the computation by hand to see how that single bit is �ipped.
Solution to Exercise 1.3.4 (p. 9)

#include "msp430x20x3.h"

void main(void)

{

P1DIR |= 0x01; // Set P1.0 as output

P1OUT |= 0x01; // Set P1.0's output value as high (turns the LED on)

}

7"The MSP430F16x Lite Development Board" <http://cnx.org/content/m12796/latest/>

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

Chapter 2

Lab 2: Introduction to embedded

Assembly programming

2.1 2.1 - Introduction to Assembly Language1

2.1.1 Assembly Language

Assembly language, commonly referred to as assembly, is a more human readable form of machine lan-
guage. Every computer architecture uses its own assembly language thus processors using an architecture
based on the x86, PowerPC, or TI DSP will each use their own language. Machine language is the pattern
of bits encoding a processor's operations. Assembly will replace those raw bits with a more readable symbols
call mnemonics.

For example, the following code is a single operation in machine language.

0001110010000110

For practical reasons, a programmer would rather use the equivalent assembly representation for the previous
operation.

ADD R6,R2,R6 ; Add $R2 to $R6 store in $R6

This is a typical line of assembly. The op code ADD instructs the processor to add the operands R2 and R6,
which are the contents of register R2 to register R6, and store the results in register R6. The ";" indicates
that everything after that point is a comment, and is not used by the system.

Assembly has a one-to-one mapping to machine language. Therefore, each line of assembly corresponds
to an operation that can be completed by the processor. This is not the case with high-level languages. The
assembler is responsible for the translation from assembly to machine language. The reverse operation is
completed by the dissasembler.

Assembly instructions are very simple, unlike high-level languages. Often they only accomplish a single
operation. Functions that are more complex must be built up out of smaller ones.

The following are common types of instructions:

• Moves:

1This content is available online at <http://cnx.org/content/m13626/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

15

16
CHAPTER 2. LAB 2: INTRODUCTION TO EMBEDDED ASSEMBLY

PROGRAMMING

· Set a register to a �xed constant value
· Move data from a memory location to a register (a load) or move data from a register to a
memory location (a store). All data must be fetched from memory before a computation may be
performed. Similarly, results must be stored in memory after results have been calculated.

· Read and write data from hardware devices and peripherals

• Computation:

· Add, subtract, multiply, or divide. Typically, the values of two registers are used as parameters
and results are placed in a register

· Perform bitwise operations, taking the conjunction/disjunction (and/or) of corresponding bits in
a pair of registers, or the negation (not) of each bit in a register

· Compare two values in registers (>, < , >=, or <=)

• Control Flow:

· Jump to another location in the program and execute instructions there
· Jump (branch) to another location if a certain condition holds
· Jump to another location, but save the location of the next instruction as a point to return to (a
call)

2.1.2 Advantages of Assembly

The greatest advantage of assembly programming is raw speed. A diligent programmer should be able to
optimize a piece of code to the minimum number of operations required. Less waste will be produced by
extraneous instructions. However, in most cases, it takes an in-depth knowledge of the processor's instruction
set in order to produce better code than the compiler writer does. Compilers are written in order to optimized
your code as much as possible, and in general, it is hard to write more e�cient code than it.

Low-level programming is simply easier to do with assembly. Some system-dependent tasks performed
by operating systems simply cannot be expressed in high-level languages. Assembly is often used in writing
device drivers, the low level code that is responsible for the interaction between the operating system and
the hardware.

Processors in embedded space, such as the ez430, have the potential for the greatest gain in using assembly.
These systems have very limited computational resources and assembly allows the maximum functionality
from these processors. However, as technology advances, even the lowest power microcontroller is able to
become more powerful for the same low cost.

2.2 2.2 - Structure of an Assembly Program2

The assembly program begins execution at the reset interrupt. The reset interrupt is the �rst thing that
occurs when power is given to the processor. By default in the Workbench �les, the reset interrupt is loaded
to send the execution of the program to the start of the written code. Until a branch is reached, the processor
will execute each instruction in turn. If the program does not loop back to an earlier point to keep going,
eventually the execution will reach the end of the valid instructions in memory and attempt to execute the
"instructions" in the following memory addresses (which are invalid and possibly gibberish). You should
never let this happen.

The control of a programs execution is called control �ow, and it is accomplished through branching,
jumping, function calls, and interrupts. Interrupts are the subject of future labs. Branching and jumping
refer to changing the next instruction from the next one sequentially to an instruction elsewhere in the

2This content is available online at <http://cnx.org/content/m13627/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

17

program. By branching to an instruction above the branch itself you can cause the program to repeat itself.
This is a basic loop in assembly. Branches can also be conditional. In the MSP architecture conditional
branches are generally dependent on the status register (SR) bits to decide whether to execute the next
instruction after the branch or the instruction the branch speci�es. Many arithmetic and logical operations
can set the relevant bits in the status register; check the ez430's User's Guide for which ones you will need.
A full description of each of the Assembly instructions for the ez430 can be found in Section 3.4.

To store values to perform operations, you must use the ez430's registers to store values. The ez430 has
16 CPU registers. Of these 16, the upper 12 are general purpose 16 bit registers (R4-R15). The lower four
are:

• R0 Program Counter(PC) � This register controls the next instruction to be executed by the MSP core.
In general, this register is incremented automatically during execution. It can be used as a source in
operations normally.

• R1 Stack pointer (SP) � The stack pointer is used to keep track of previous execution modes and to
return from interrupts. Can be read as a normal register.

• R2 Status Register (SR) � The status register can be written to change the operating mode of the
MSP as speci�ed in the User's Guide. When read it can act as a constant generator. Depending on
the instruction code options this register will be read as: a normal register, 0x0000, 0x0004, or 0x0008
depending on the As bits.

• R3 Constant Generator II � This register cannot be written to, and when read produces: 0x0000,
0x0001, 0x0002, or 0x�� depending on the As bits.

The rest of the registers on the ez430 behave as if they were memory. In most cases, these special purpose
registers can be read and written to normally but they a�ect the behavior of their respective systems.

Once you understand the basics of assembly you should be able to write some simple routines. Once you
create a new Assembly project in Workbench, replace the default code with the following. You'll see that the
Watchdog timer has already been deactivated. Put your assembly code in the place indicated. Also, notice
the di�erence in location of instructions and labels. Labels, which mark the begining of certain blocks of
code, are left aligned such as the "RESET" seen below. Instructions, however, are tabbed over. Remember
to follow this convention because the compiler will assume anything left aligned is a label.

#include "msp430x20x1.h"

;---

ORG 0xF800 ; Begining PsuedoOP

;---

RESET mov.w #0x280,SP ; Set stackpointer

mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop watchdog timer

;; **YOUR CODE GOES HERE**

;---

; Interrupt Vectors

;---

ORG 0xFFFE ; MSP430 RESET Vector

DW RESET ;

END

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

18
CHAPTER 2. LAB 2: INTRODUCTION TO EMBEDDED ASSEMBLY

PROGRAMMING

2.3 2.3 - Lab 2: Introduction to Assembly Language3

In this lab you will be asked to write simple assembly statements, follow already written assembly statements,
and �nally to reproduce the SOS light blinking program from Lab 1 in assembly.

Exercise 2.3.1
Formulate instructions to do the following things:

1. Set bit 3 to 1 at the memory address 0xd640 while leave bits 0-2 and 4-16 una�ected.
2. Jump to the instruction labeled POINT if the carry bit is set.
3. Shift register R6 right one place while preserving the sign.

Exercise 2.3.2
Examine this loop:

... more instructions...

Mov.w &I, R4

Cmp.w #0x0000, R4

JZ After_loop

Start_loop:

Dec.w #0x0001, R4

JZ After_loop

BR #Start_loop

After_loop:

...more instructions...

1. How many times will this loop execute?
2. Why do we use the BR instruction with a #Start_loop, but with the JZ we use a plain

After_loop?
3. What does the �rst JZ instruction do? If we did not have this initial Cmp and JZ, what

(possibly) inadvertent e�ect might occur?

Exercise 2.3.3
Re-write the blinking light program from Lab 1 using assembly code instead. As you may recall,
the program must blink "SOS" (which is "... � ...") and conform to the following Morse Code
standards:

• The ammount of time of a dash is equivalent in length to 3 dots.
• The ammount of time between parts of a letter is equivalent in length to one dot.
• The ammount of time between letters is equivalent in length to 3 dots.
• The ammount of time between words (assume each SOS is a word) is equivalent to 5 dots.

3This content is available online at <http://cnx.org/content/m13628/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

Chapter 3

Lab 3: Clocking

3.1 3.1 - What is a digital clock?1

The clock of a digital system is a periodic signal, usually a square wave, used to trigger memory latches
simultaneously throughout the system. While no part of this de�nition is strictly true, it does convey the
basic idea (think �ipping a light switch on and o� at a certain speed). Square waves are used because the
quick transitions between high and low voltages minimize the time spent at uncertain digital levels. The
clock ideally reaches all parts of the system at the same time in order to prevent sections from getting out
of sync. Clock signals are generally periodic because the user wants to run the system as fast as possible,
but this is often not a necessary attribute.

Figure 3.1

Clock signals are used to synchronize digital transmitters and receivers during data transfer. For example,
a transmitter can use each rising edge of the clock signal of Figure 1 to send a chunk of data.

A faster clock rate all means that you can process more instructions in a given amount of time at the
cost of an increased power consumption.

3.2 3.2 - Clock System on the ez4302

The clock system on the ez430 is designed to be �exible and low powered. The implementation of these goals
is largely based on the ability to select di�erent clock speeds for di�erent parts of the chip. By choosing

1This content is available online at <http://cnx.org/content/m13658/1.1/>.
2This content is available online at <http://cnx.org/content/m13659/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

19

20 CHAPTER 3. LAB 3: CLOCKING

the minimum clock speed necessary for a given module, power consumption is reduced and the particular
synchronization needs of the module can be met.

Our ez430 technically has two main clock sources for the clocking system, and three clock lines that chip
systems can choose between. The clock sources are used as the basis for the clock lines, and this allows for
a mix of slow and fast clocks to be used around the system. Currently, without modi�cation, our tool only
supports one.

Clock Sources

1. Low Frequency Crystal Clock (LFXTCLK) � This clock is sourced from an external crystal (with
an intended oscillation of ∼32kHz) that does not exist by default on the ez430. Theoretically, we could
attach the crystal to the XIN/XOUT pins and be able to use this as a clock source although such a
procedure is not necessary for this course. This crystal would be the source of the Auxiliary Clock
(ACLK), one of the three clock lines discussed below

2. Digitally Controlled Oscillator Clock (DCOCLK) � this is the only internally generated clock
input, and it is the default clock source for the master clock upon reset. By default this clock runs at
about 1MHz, but the RSELx, MODx, and DCOx bits allow this to be divided down or even blended
to achieve a lower clock frequency on average. Chapter 4 of the User's Guide outlines speci�c ways
to con�gure the DCOCLK to operate at the desired frequency.

Clock Lines

1. Master Clock (MCLK) � This clock is the source for the MSP CPU core; this clock must be working
properly for the processor to execute instructions. This clock has the most selection for its source. The
source is selected with the SELMx bits of the Basic Clock System Control Register 2 (BCSCTL2). The
divider is controlled with the DIVMx of the BCSCTL2. Finally, the CPU can be turned o� with the
CPUOFF bit of the Status Register (SR), but to recover from this state an interrupt must occur.

2. Submaster Clock (SMCLK) - This clock is the source for most peripherals, and its source can
either be the DCO or Crystal 2. The source clock is controlled with the SELS and SCG bits of the
BCSCTL2 and SR. The divider is controlled by the DIVSx bits of the BCSCTL2.

3. Auxiliary Clock (ACLK) - this clock line's source is always LFXTCLK. It is an option for slower
subsystems to use in order to conserve power. This clock can be divided as controlled by the DIVAx
bits of the Basic Clock System Control Register 1 (BCSCTL1).

The MSP clock system has dividers at the beginning of its clocks, and at most peripheral destinations.
This allows for each module to keep a separate timing scheme from other modules by dividing the input
frequency and then outputting it. The simplest dividers are multiples of two, thus the output might be a
square wave of one half, quarter, or eighth the input square wave's frequency. This is often necessary for
o� chip buses because these systems have to meet a variety of speed requirements from the outside. For
educational purposes the fastest clocks are usually the most useful, but remember that power consumption
is the primary cost of high speed clocks.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

21

3.3 3.3 - Lab 3: Clocking on MSP4303

The following exercise will show you how to manipulate the clocking system on the ez430. You will need to
refer to the ez430's Schematic and User's Guide to correctly con�gure the clock as speci�ed.

Exercise 3.3.1
Clock Setup
In order to easily check the state of the clock, output MCLK/SMCLK (they are both defaulted
to the same source) from a pin header (HINT: Output the SMCLK from P1.4 on pin 6). Use the
oscilloscope to observe the frequency of the clock, and to see the impact of the changes you will
make.

1. Without modifying the clock registers any further, at what clock rate is the processor running
at? How is the clock currently con�gured in order to produce this built-in clock signal? In
other words, what is the clock's source and how is the source con�gured?

2. Write code that sets the DCOCLK to operate at 8MHz. You should be able to do it in just
two lines of code. We will use this clock setup for all future programs unless otherwise noted.

3. Using your new (8MHz) timer settings and your SOS light system from Lab 1, modify the
code so that each "dot" and "dash" delay is for approximately the same ammount of time.
Basically, generate the same behavior as the original version but using the new clock settings.
What were the original (much slower) settings for the clock? What was changed in order to
keep the original blink rate?

Exercise 3.3.2
VLO Clock Setup
The following is code to set the MSP430 to operate o� of the VLO clock. The only problem is
that it doesn't work. Macro de�nitions and logic operations are incorrectly used (although the
comments are correct). Without adding or removing any lines of code, properly source the MSP430
o� the VLO clock.

WDTCTL & ∼WDTPW + WDTHOLD; // Stop watchdog timer

BCSCTL1 |= LFXT1S_2; // LFXT1 = VLO

IFG1 = OFIFG; // Clear OSCFault flag

__bis_SR_register(SCG1 + SCG0); // Stop DCO

Now using these timer settings, repeat number 3 from this lab's problem 1.

3This content is available online at <http://cnx.org/content/m13661/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

22 CHAPTER 3. LAB 3: CLOCKING

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

Chapter 4

Lab 4: Interrupts and Timers

4.1 4.1 - Interrupts1

An interrupt is an event in hardware that triggers the processor to jump from its current program counter
to a speci�c point in the code. Interrupts are designed to be special events whose occurrence cannot be
predicted precisely (or at all). The MSP has many di�erent kinds of events that can trigger interrupts, and
for each one the processor will send the execution to a unique, speci�c point in memory. Each interrupt
is assigned a word long segment at the upper end of memory. This is enough memory for a jump to the
location in memory where the interrupt will actually be handled. Interrupts in general can be divided into
two kinds- maskable and non-maskable. A maskable interrupt is an interrupt whose trigger event is not
always important, so the programmer can decide that the event should not cause the program to jump.
A non-maskable interrupt (like the reset button) is so important that it should never be ignored. The
processor will always jump to this interrupt when it happens. Often, maskable interrupts are turned o�
by default to simplify the default behavior of the device. Special control registers allow non-maskable and
speci�c non-maskable interrupts to be turned on. Interrupts generally have a "priority;" when two interrupts
happen at the same time, the higher priority interrupt will take precedence over the lower priority one. Thus
if a peripheral timer goes o� at the same time as the reset button is pushed, the processor will ignore the
peripheral timer because the reset is more important (higher priority).

The function that is called or the particular assembly code that is executed when the interrupt happens
is called the Interrupt Service Routine (ISR). Other terms of note are: An interrupt �ag (IFG) this is the
bit that is set that triggers the interrupt, leaving the interrupt resets this �ag to the normal state. An
interrupt enable (IE) is the control bit that tells the processor that a particular maskable interrupt should
or should not be ignored. There is usually one such bit per interrupt, and they are often found together in
a register with other interrupt enable bits. The most important interrupt on MSP430 is the reset interrupt.
When the processor detects a reset or powers up for the �rst time, it jumps to the beginning of memory and
executes the instructions there. The highest priority interrupt vector begins at the address 0xFFFE. The
lowest priority interrupt begins at 0xFFE0. The complete set of interrupts is ranked by priority:

• 8 - non-maskable : External Reset, Power-up, Watchdog Timer Reset, Flash Key Violation, NMI
• 7 - non-maskable : Oscillator Fault, Flash Memory Access Violation
• 6 - maskable : Watchdog Timer
• 5 - maskable : Timer A Capture Compare Register 0 (CCR0) Interrupt
• 4 - maskable : Timer A Capture Compare Register 1 (CCR1) Interrupt
• 3 - maskable : Sigma/Delta 16 bit (SD16) Converter Interrupt
• 2 - maskable : Universal Serial Interface (USI) Interrupts
• 1 - maskable : Port 2 I/O Interrupts

1This content is available online at <http://cnx.org/content/m13650/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

23

24 CHAPTER 4. LAB 4: INTERRUPTS AND TIMERS

• 0 - maskable : Port 1 I/O Interrupts

When the interrupt �rst occurs on the MSP there is a precise order of events that will occur. This process
takes 6 instruction cycles AFTER the current instruction completes.

1. The program counter as it is after the above instruction is pushed onto the stack. The stack is memory
whose contents are kept in last in �rst out order. The stack pointer is always updated to point to
the most recent element added to the stack. This allows the processor to call functions and track
interrupts. When something is pushed onto the stack, the stack pointer is incremented and the pushed
data is written to that location. When you copy out of the stack and decrement the stack pointer, this
is called popping something o� the stack.

2. The status register is pushed onto the stack.
3. The highest priority interrupt waiting to occur is selected.
4. Single source interrupts have their interrupt request �ags reset automatically. Multiple source interrupt

�ags do not do this so that the interrupt service routine can determine what the precise cause was.
5. The status register with the exception of the SCG0 bit is cleared. This will bring the processor out of

any low-power modes. This also disables interrupts (the GIE bit) during the interrupt.
6. The content of the interrupt vector is loaded into the program counter. Speci�cally the processor

executes the instruction at the particular memory location (the interrupt vector) for that interrupt.
This should always be a jump to the interrupt service routine.

The interrupt service routine is the code that the programmer writes to take care of the work that needs
to be done when a particular interrupt happens. This can be anything you need it to be. Because entering
the interrupt turned o� the GIE bit, you will not receive any interrupts that happen while you are still in the
interrupt service routine. You can turn the interrupts back on if you need to receive interrupts during your
interrupt, but usually it is a better idea to make interrupt service routines shorter instead. In C interrupts
are simply functions with special declarations. You never call these functions; the compiler simply sets up
the interrupt vector table to call your function when the particular interrupt occurs.

This example interrupt is pulled from the msp430x20x3_wdt_01.c example �le by Mark Buccini. The
complete �le can be found on the Ti-ez430 homepage.

// Watchdog Timer interrupt service routine

#pragma vector=WDT_VECTOR

__interrupt void watchdog_timer(void)

{

P1OUT ^= 0x01; // Toggle P1.0 using exclusive-OR

}

Interrupt functions should always be void and accept no arguments. This particular interrupt service
routine (ISR) is called watchdog_timer, but the name does not matter. The way the compiler knows that
this function should handle the watchdog timer interrupt is what follows the function name. the #pragma

vector = indicates that this is an interrupt and WDT_VECTOR is a macro from the MSP header �le that
indicates the interrupt vector being used. Every interrupt vector in the processor has a macro de�ned for it
(which can be found in the header �le). To attach this interrupt service routine to a di�erent interrupt, all
you need to do is change the WDT_VECTOR to one of the other macros de�ned in the ez430 header �le.

When the end of the ISR is reached the MSP executes a precise set of steps to pick up the execution of
the program where it left o� before the interrupt occurred. This process takes 5 cycles.

1. The status register and all previous settings pops from the stack. Any alterations to the status register
made during the interrupt are wiped away.

2. The program counter pops from the stack and execution continues from where it left o�.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

25

4.1.1 Interrupt Enable Registers

Using interrupts successfully is not as simple as just writing an interrupt service routine and waiting for the
event to occur. Because you do not necessairly want to activate every interrupt in the processor at once, the
MSP allows you to mask out certain interrupts. When the triggering event �rst occurs, the processor checks
whether the interrupt is enabled before jumping to the interrupt service routine. For most interrupts, the
MSP checks the general interrupt enable bit in the status register and the particular interrupt's enable in the
interrupt enable registers. If both of these have been con�gured to allow the interrupt, then the processor
enters the interrupt service routine if the event in question has occurred.

By default most interrupts are turned o� upon reset. To use most peripheral modules you will need
to set the enable bits in the interrupt enable registers and turn on the general interrupt enable. Enabling
sometimes causes the interrupt �ag to be set, so you should consult the User's guide on the best order to
handle the enabling. Usually to properly con�gure the interrupt, you will also need to have set up the
peripheral module in question before enabling the interrupt.

There are three categories of interrupts for the purpose of masking in the ez430. Reset interrupts,
non-maskable non-reset interrupts, and maskable interrupts.

Maskable interrupts are the lowest priority interrupts and can be turned o� individually with the various
interrupt enable registers or turned o� as a group by setting the general interrupt enable bit (GIE) in the
status register (SR).

Non-maskable interrupts are not subject to the general interrupt enable (GIE). However each non-
maskable interrupt source can be controlled by a bit to speci�cally turn it on or o�. These are the �ash
access violation interrupt enable (ADDVIE), external NMI interrupt enable (NMIIE), and the oscillator fault
interrupt enable (OFIE). All three of these bits are located in the interrupt enable register 1 (IE1).

Reset interrupts have the highest priority and will always reset the execution of the device. The external
reset can be con�gured to trigger either the reset interrupt or an NMI interrupt.

The interrupt enable registers (IE1 and IE2) are used to individually enable the interrupts. Refer to
the ez430's User's Guide and Data sheet for the speci�cs of each peripheral. The example code on Ti's
website are also very helpful when learning how to use interrupts. The procedures followed are drawn from
the instructions and notes in the documentation. Often the relevant information may not be in one chapter
or section of the guides. This is part of the reason working examples are essential to developing a working
knowledge of the processor.

More detailed information on the operation of interrupts can be found in the MSP User's Guide. Unfor-
tunately the material is generally found in the chapter for each subsystem. The general interrupt information
is found in chapter 2.

4.2 4.2 - Timers2

The Timer systems on the ez430 are a versatile means to measure time intervals. The timer (called Timer
A) can measure the timing on incoming signals or control the timing on outgoing signals. This function
is necessary to meet arbitrary timing requirements from outside components, and the ability is useful in
phase locking scenarios etc. The Timer system is one system (and the most common system) to make use of
interrupts Interrupts and Timers are bing introduced in tandem to illustrate this operation although they
are seperate entities.

The most basic operation of the timer systems is that the counter in the module increments for each clock
cycle. The timer clocks can be sourced from any of the clock lines discussed in Lab 3. The incoming source
can be divided down by multiples of two before entering the counter. The user's guide for the MSP has good
diagrams on the architecture of the system in the respective sections for the timer. Below the features and
uses of Timer A are outlined.

2This content is available online at <http://cnx.org/content/m13651/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

26 CHAPTER 4. LAB 4: INTERRUPTS AND TIMERS

4.2.1 Timer A Modes

Timer A is a �exible system; the main counter can vary its counting pattern among several options with the
MCx bits of the Timer A Control Register TACTL. These modes are:

1. Stop: the counter is not running
2. Up: the counter counts upward from zero to the value in Timer A Compare Latch 0 (TACL0). When

it gets to this value, it resets to zero. If the TACL0 value is larger than the maximum value of the
Timer A counter, the counter behaves as if it were in Continuous mode.

3. Continuous: the counter counts from zero to the maximum value of the Timer (0xFFFF). When the
counter reaches this value, it resets to zero.

4. Up/down mode: the counter counts up to the value in TACL0 then counts back down to zero (as
opposed to resetting directly to zero). If the TACL0 value is larger than the maximum value of the
Timer A counter, the counter behaves as if it were in Continuous mode.

Please note that the word count is used above- if the timer is set to a certain number it will not trigger
anything. The timer must count from the number below to the target number to trigger e�ects.

4.2.2 Timer A Capture Compare Register 0

There are 2 capture compare registers in Timer A. While there is only one counter for both modules, they
can each interpret the count independently. The most important module is module 0 because it controls the
timer with its TACL0 register. Primarily it controls rollovers, but it also has its own dedicated interrupt.
Setting this module up correctly is essential for desired operation of Timer A.

4.2.3 What is Capture/Compare?

A capture is a record of the timer count when a speci�c event occurs. The capture modules of the timers are
tied to external pins of the ez430. When the control registers of Timer A and the speci�c capture compare
module have been properly con�gured, then the capture will record the count in the timer when the pin in
question makes a speci�c transition (either from low to high or any transition). This capturing event can be
used to trigger an interrupt so that the data can be processed before the next event. In combination with
the rollover interrupt on Capture module 0, you can measure intervals longer than 1 cycle.

A compare operation is less intuitive than the capture, but it is basically the inverse of a capture. While
capture mode is used to measure the time of an incoming pulse width modulation signal (a signal whose
information is encoded by the time variation between signal edges), compare mode is used to generate a
pulse width modulation (PWM) signal. When the timer reaches the value in a compare register, the module
will give an interrupt and change the state of an output according to the other mode bits. By updating the
compare register numbers, you change the timing of the signal level transitions.

This may sound somewhat complicated, but the basic concept of measuring (input) or controlling (output)
the time interval between high to low and low to high transitions is all you need to know to start with. The
MSP capture/compare modules have many di�erent ways to perform each operation. This can be somewhat
overwhelming, but it allows the microprocessor to handle inputs from a greater variety of other components.
Capturing and comparing are done with the same modules, and each one can be con�gured individually.
They can also be grouped using the TACTL to trigger the capture compare registers to load simultaneously
(useful for compare mode). The ez430 User's Guide fully details the behavior of the modules and the registers
that control them.

4.2.4 Timer Interrupts

There are two interrupts related to timer A. One interrupt is dedicated to capture compare module 0; and,
depending on con�guration, it �res when the counter rolls back to zero. The second interrupt handles all
of the modules except for the �rst one, and �res to indicate that the module has captured or compared

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

27

as explained above. Here this simply means the interrupt handles the second module. However, in other
devices that have more capture/control registers, this interrupt would handle this entire set of modules.
Each module can be individually masked or enabled, and a special register stores which module caused the
interrupt. As with all maskable interrupts, setting the general interrupt enable is necessary to receive them.
The interrupts are important in being able to perform complex operations as new data arrives.

4.3 4.3 - Watchdog Timer3

4.3.1 What is the Watchdog Timer?

Software stability is a major issue on any platform. Anyone who uses software has probably experienced
problems that crash the computer or program in question. This is also true of embedded programs, and in
most cases there is no user around to reset the computer when things go wrong. That job is occupied by the
watchdog timer. The watchdog timer is a 16 bit counter that resets the processor when it rolls over to zero.
The processor can reset the counter or turn it o�, but, correctly used, it will reset the processor in case of a
code crash. To avoid getting reset, the program must reset the timer every so often. A program which has
crashed will not do so, and the system will reset. To improve its e�cacy, the watchdog timer register also
requires a password. In order to change the lower part of the watchdog control register, the upper part of
the register must be written with a speci�c value. This value is speci�ed by the alias WDTPW in the MSP
header �les. This password reduces the likelihood that a random crashed instruction could prevent the reset.

4.3.2 Other uses for the Watchdog Timer

In situations where a system crash is not a concern, the watchdog timer can also act as an additional timer.
The watchdog timer can be con�gured to give an interrupt when it rolls over; this interrupt could also be
used to handle system crashes. While the watchdog timer is not as versatile as the other MSP430 timers,
the watchdog control register, WDTCTL still allows selection of the timer's divider and clock source. Often
the watchdog timer is simply turned o� by setting the hold bit in the control register. Any changes to this
register require writing the password to the upper bits.

3This content is available online at <http://cnx.org/content/m13652/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

28 CHAPTER 4. LAB 4: INTERRUPTS AND TIMERS

4.4 4.4 - Lab 4: Timers and Interrupts4

In this lab, we will cover the timing options for the ez430. The �rst part explains the clocking system of the
processor and the options it allows while the second part covers the timers and timer interrupts available
on the ez430. Each of these sections is strongly related to real time programming, but that topic will be
dealt with separately in another lab. In general, a real-time application is one which responds to its inputs
as fast as they happen. The microprocessor is generally expected to take less time to handle an interrupt
or stimulus than the time before the next event will happen. The timer system is broken into two primary
parts on the ez430 Timer A and the Watchdog timer.

Exercise 4.4.1
Timer A
Refer to Chapter 8: Timer_A User's Guide to get a detailed description of all the options in
Timer A. Basically, setting up the timers requires that you de�ne a source for the timer and to
specify a direction for the count. It may also be helpful to clear the timer register before you begin
to guarantee and accurate count from the �rst instance. Set up Timer A in Continuous Mode and
sourced from SMCLK. Set TACCR0 and TACCR1 to have two di�erent values. Output TA0 and
TA1 from Pins 3 and 4 (o� of P1.1 and P1.2) of the board so that you may directly observe the
output of Timer A.

Using two di�erent channels of the Oscilloscope try to recreate parts of Figure 8-13. Output
Example- Timer in Continuous Mode. On Channel 1 show Output Mode 4: Toggle and
on Channel 2 show Output Mode 6: Toggle/Set. Vary the TACCTLx in order to get as close
to the orginal �gure as possible. Take a screenshot of the scope and include it in your lab report.

Exercise 4.4.2
Timer
Set up the timers to �re interrupts to calculate time intervals and redo the SOS problem from
Lab 1 (Section 1.5) using the timer to simulate the "dot" and "dash" time intervals. There should
be NO COUNTING LOOPS in your program, and your program should be entirely interrupt
driven. It is possible to have each Capture Control Register to �re an interrupt once it reaches its
max value. Explain how you setup Timer A to simulate each time interval.

Exercise 4.4.3
Duty Cycle
We have discussed earlier that the Duty Cycle is related to the width of a pulse. If we trigger an
LED with a relatively high frequency square wave, it will appear to be lit constantly even though
it is actually switching on and o� quickly. As we vary the duty cycle of our trigger signal, the LED
may appear to get dimmer or brighter depending on which way we vary it.

Set up the timer to toggle the LED. Without changing the frequency of your timing pulse,
change the duty cycle so that the LED appears to fade in and out. The time it takes to go from
completely o� to max brightness shouldn't take more than a second, then it should repeat. Once
again, there should be no counting loops in your program, and you can use Timer A in any way
you wish.

Once you get a single light to fade in and out, create another program with a function to set
the LED at a certian brightness level when given atleast a 12 bit integer. For example, if I were
to call LED_level(0x111), the LED should appear very dim; if I were to call LED_level(0xFA0),
the LED should appear very bright. It may be helpful to have an extra function that initializes the
Timer settings so that the use of this application is self contained. In the future, we will use this
function to provide visual feedback when using other components.

4This content is available online at <http://cnx.org/content/m13653/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

Chapter 5

Lab 5: Optimization and Low Power

Modes

5.1 5.1 - Memory Conservation1

In the early days of computers, the instruction memories of main frames were incredibly small by today's
standards, only in the hundreds or thousands of bytes. This small capacity emphasized making each instruc-
tion count and each value saved necessary. Fortunately, just as processors have exponentially increased in
speed, program memory has similarly increased in capacity. Even though it seeme like there is an abun-
dance, there are still general practices that must be kept in mind when using program memory. Also, smaller
platforms, like microcontrollers, are still limited to memory capacities in the kilobytes. This module explains
the kinds of memory, common memory organizations, and the basics of conserving memory.

5.1.1 How memory is organized

In most memory architectures there is some categorization of memory into parts. The basic principle behind
this is that seperate sections of memory can serve speci�c purposes while each section can be more e�ciently
accessed. Types of memory include the following:

• Instruction Memory is a region of memory reserved for the actual assembly code of the program.
This memory may have restrictions on how it can be written to or accessed because frequent changes
to an application's instruction are not expected. Because the size of instruction memory is known
when the program compiles, this section of memory can be segmented by hardware, software, or a
combination of the two.

• Data Memory is a region of memory where temporary variables, arrays, and information used by a
program can be stored without using long term memory (such as a hard disk). This section of memory
is allocated during the course of the program when more memory for data structures is needed.

• Heap Memory is an internal memory pool that tasks dynamically allocate as needed. As functions
call other functions, it is necessary that the new (callee) function's data be loaded into the CPU. The
previous (caller) function's data must be stored in the heap memory so that it may be restored when
the callee function is �nished executing. The deeper function calls go, the larger the heap portion of
memory needs to be.

Often, the heap memory and the data memory compete directly for space while the program is running.
This is because both the depth of the function calls and the size of the data memory can �uctuate based
upon the situation. This is why it is important to return the heap memory the task uses to the memory
pool when the task �nishes.

1This content is available online at <http://cnx.org/content/m13666/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

29

30 CHAPTER 5. LAB 5: OPTIMIZATION AND LOW POWER MODES

5.1.2 Memory Allocation in Languages

The organization of memory can vary among compilers and programming languages. In most cases, the goal
of memory management systems is to make the limited resource of memory appear in�nite (or at least more
abundant) than it really is. The goal is to free the application programmer from having to worry about where
his memory will come from. In the oldest days of mainframes, when each byte of memory was precious,
a programmer might account each address in memory himself to ensure that there was enough room for
the instructions, heap, and data. As programming languages and compilers were developed, algorithms to
handle this task were developed so that the computer could handle its own memory issues.

Today, even assembly programmers do not have to worry about memory allocation because current
assemblers can handle that task. Memory allocation algorithms are good enough at their job that it isn't
worth a programmer's time to manually allocate memory. There are a few di�erent ways that languages
solve the problem of memory allocation. In general, it is simply a matter of providing the programmer with
memory that is known to be required at compile time including space for global data values and the code
itself. The more di�cult problem is how to provide �exible data memory that may or may not be needed
when the program actually executes.

The approach that C takes is to make available to the the programmer special functions that man-
age memory allocation. These methods are called malloc(int) (memory allocate) and free(void *) .
The basic idea is that whenever the programmer needs a speci�c amount of additional memory, he calls
malloc(int) with the integer being the number of bytes of memory needed. The function returns a pointer
to a block of memory of the requested size. When the programmer is done with a particular block of memory,
he may call free(void*) to let the memory management library know that the particular block of memory
isn't needed anymore by passing the pointer to that block to the function. If the programmer is diligent
about returning (freeing) memory that isn't needed anymore, then he will enjoy an abundant supply of
memory without having to count individual bytes. On the other hand, if a programmer repeatedly requests
memory but does not free the memory back to the system, the memory allocator will eventually run out
of memory and program will then crash. Thus, it is essential for passages of code that frequently request
memory allocations to free these allocations as quickly as they can. Un-freed memory blocks are not fatal in
very infrequently executed parts of code; however, the longer a program runs, the more potential there is for
a problem. In general, a program that allocates but does not free memory, is said to have a memory leak.

Other languages handle the problem of memory allocation automatically. Java allocates the memory for
new data on the �y using the keyword new instead of the function malloc, but the more important di�erence
is that freeing takes place automatically. Part of the Java system called the garbage collector detects
memory that can be safely freed and does so. In this manner, Java programs do not su�er memory leaks in
the way a C program might.

5.1.3 Memory and the MSP

In the ez430 there is no inherent di�erence between instruction memory, data memory, and heap memory.
The only subdivisions in memory are the blocks of �ash and the sections of RAM. Any of these sections
can hold any type of memory; however, because it is problematic to erase and rewrite �ash in the middle
of program execution, the �ash memory is best saved for instructions and constants. The remaining RAM
must be shared then between the heap, the dynamically allocated memory, and the global variables. On the
ez430, there is only 2KB of RAM, so no memory leaks are tolerable.

5.1.4 How memory is wasted or conserved

The most notable way to waste memory, memory leaks, have already been discussed, but there are several
others. While memory leaks abuse the dynamically allocated portion of data memory, many layers of function
calls abuse the heap. Above, it was explained that each time a function calls another function, the caller's
registers and data are moved onto the heap. If each called function calls another function in turn, then the
heap portion of the memory will grow signi�cantly. For high power computing systems, this is not usually a

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

31

great threat to the overall supply of memory compared to other memory leaks. Embedded systems, however,
must avoid deep layers of function calling or risk exhausting the overall supply of memory.

There is a programming technique called recursion, which uses deep layers of function calling, where a
function calls itself repeatedly on progressively smaller or simpler versions of the data until the answer is
trivial (a base case). While this technique leads to some very clever solutions to some complex problems, it
is uses large amounts of memory to achieve this end. Therefore, recursion is generally a poor choice when
dealing with microcontrollers.

Another way to waste memory is to create too many global variables. Speci�cally, variables whose scope
could be local to a function or that could be allocated dynamically waste memory because they take up
space even when not in use.

5.2 5.2 - Improving Speed and Performance2

So far in this course, programming assignments have focused on functionality. In most applications of
embedded programming, speed and power performance are equally important. Long battery life is won
through judicious hardware and software design. Skillful programming will allow the same job to be done
with cheaper parts to improve the bottom line. This lab will introduce the basic concepts behind power and
speed performance improvement.

5.2.1 Speed Performance

It is well known from the consumer PC market that the speed of computers can be measured in hertz. It is
less well known that the frequency of the computer's processor does not adequately indicate a computer's
performance or even the performance of the processor itself. By using the ez430, the choice of processor and
maximum speed has been made, but the question of speed is a di�erent one in embedded programming. While
the dominant paradigm in consumer personal computing is to increase the performance of the computer to
allow the system to do more with each generation, embedded processors are chosen to be able to perform
speci�c tasks. The cheapest processor that can meet the speci�cations for the design will be chosen. While
the issue and business conditions make the situation much more complicated than just price, the pressure is
still toward choosing a part with less performance, not more.

In order to improve the performance of a software application, it is necessary to understand the way
performance is measured. Measuring performance between platforms and software packages is a problematic
endeavor; improving the performance of a single program on a single platform is much simpler. Although a
detailed explanation of the nuances of performance measurement in computing is beyond the scope of this
lab, a simple way to gauge the amount of time a program will take to perform a task is to count the number
of processor cycles that the code will take. On the MSP430, each CPU instruction, jump, and interrupt
takes a �xed number of cycles as explained in the MSP430 User's Guide. Taking into account branching,
function calls, and interrupts the assembly code of a program can be used to calculate the time needed for
a section of code.

5.2.2 Performance Tips

As mentioned above, embedded programming has di�erent priorities from personal computing. Because the
embedded programmer is usually trying to accomplish a speci�c task within a certain amount of time, the
most important test of performance is whether the program is performing calculations on the inputs as fast
as the inputs can enter the system. The goal is to make applications "real time3." When the �rst draft of a
program is unable to keep up with the required sampling, it is necessary to reduce execution time. Often,
changing the hardware con�guration is not easily doable; and software speed gains are usually more cost
e�ective.

2This content is available online at <http://cnx.org/content/m13667/1.1/>.
3"Real Time" <http://cnx.org/content/m11994/latest/>

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

32 CHAPTER 5. LAB 5: OPTIMIZATION AND LOW POWER MODES

There are many approaches to improving speed performance. Incredible amounts of research go into new
algorithms for common problems to improve the way that problem is solved. However, simply eliminating
unnecessary instructions is a good start to improving performance. Test code left in a �nal version, any
unnecessary instructions in a loop, and can all signi�cantly increase the time in a section of code.

• In C, unnecessary code takes the form of too many method calls inside of a loop (because each method
call adds a layer to the heap). While this is only a slight e�ciency loss for code that is only executed
once per sample, the loss can be very damaging if multiplied by a large loop. When trying to reduce
execution time, it is best to start with the regions of the code where the processor spends the most time.
Parts of the program that are only executed rarely have only a small e�ect on the speed compared to
a loop that might run 100 times per sample. For example, if something can be done once, outside of
the loop, do not do it many times inside of the loop.

• Remember to make judicious use of timers and other instruction saving interrupts. The timer interrupts
allow the processor to periodically check on the status of the program without the use of slow while(1)

or for(;;) loops (polling). However, for correct program behavior, it is important to do the minimum
possible work in an interrupt. This is most important with interrupts that happen frequently because
the control �ow of the program can be thrown o� when interrupts happen faster than the system
can handle. If the same interrupt occurs a second time before the �rst occurrence of the interrupt
has completed, program behavior is much more di�cult to control (essentially we have a recursive
interrupt call). It is much easier to simply ensure that the interrupt is short enough to avoid the
danger all together.

• Also, avoid recalculating values. If a piece of information is reusable, save it rather than recalculating
it to save time. Sometimes memory is so scarce that this may not be possible.

• Don't output to the console while debugging unless you absolutely must. Program �ow is hampered
immensley and program behavior might not re�ect the behavior without the debug statement. Use
breakpoints instead because the execution of the program is paused and the processor does not have
to use any extra resources.

• Don't leave legacy code from previous revisions. If you believe you may no longer need a part of
the program, comment it out and note what you did in the comments. Even seemingly innocuous
statements here and there in your code can slow overall performance.

5.3 5.3 - Reducing Power Consumption4

One of the most important quality standards for battery powered devices is battery life. Handheld medical
tools, electricity meters, personal digital assistants, and a goal of the designer and programmer is to lower
the power use of the embedded system to negligible levels. This portion of the lab will give an overview of
how power can be conserved using hardware and software. In designing battery powered devices, savings can
be gained from the choice of electronic components, the arrangement of components, and the software on
the design. The exercises will integrate the low power modes of the MSP into existing labs, so that examples
of software power savings can be shown.

5.3.1 Measuring power on the ez430

Measuring the current consumption of the ez430 is a slightly tricky task. To do so we must insert an ammeter
in serial with the ground pin between the Spy-Bi-Wire programming interface and the target board. Since
the program is loaded into �ash on the tool, we can run our code, cease debugging, and the tool will run
our program whenever it is powered. Thus, the following diagram shows how we can insert an ammeter in
serial with the ez430 while the program runs even though we cannot debug it at this point (the two middle
data pins aren't connected).

4This content is available online at <http://cnx.org/content/m13668/1.4/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

33

Connection Diagram

Figure 5.1: Connecting the Ammeter in serial as shown will allow for you to measure current con-
sumption.

The following is what it would look like if we actually connected everything together. (Notice that I have
added sockets (DigiKey Product ID: **********) to the "fully accessible" pins to make them more fully
accessible.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

34 CHAPTER 5. LAB 5: OPTIMIZATION AND LOW POWER MODES

Connection Picture

Figure 5.2: Here, I have created the setup using parts from around the lab.

5.3.2 Shutting o� parts in general

Most parts have a shutdown or sleep mode available that will reduce the current consumption of the compo-
nent considerably. In general, digital parts consume signi�cant current when their transistors switch because
of the charging and discharging of the internal capacitances of the transistors. Analog integrated circuits also
support shutdown modes to reduce power consumption. Datasheets will specify the current consumption in
both on and shutdown modes of the component. It is important to note that when a device is in shutdown
mode, power and ground voltages are still powered and connected to the device.

In order to shutdown most integrated circuits, all that is required is a shutdown or sleep pin to be asserted
properly. Other devices require a shutdown command to be issued over the bus. The primary disadvantages
of shutdown modes, apart from the fact that the device is inoperative is that recovering back into normal
operating modes can impose a signi�cant delay. A useful property of the MSP is that its recovery time from
some low-power modes is fast enough to meet the response times of interrupts.

Parts without built-in shutdown modes must be shutdown by having its current supply controlled through
a transistor or other switching device.

5.3.3 Using the Low Power Modes

The MSP430 was designed with the low power modes in mind from its beginnings. In lower power mode, the
processor can achieve current in the microamps while still monitoring its inputs. The principles of utilizing
the MSP power modes are described in detail in the second chapter of the MSP User's Guide. The modes

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

35

vary the degree to which the processor is aware of its surroundings and the clocks that the processor keeps
running. The processor lowers power consumption partly by shutting o� external and internal oscillators.

There are four low power modes in addition to regular operating mode on the MSP430:

• Active Mode is the fully powered mode when the processor executes code and all clocks and peripherals
are active. The chip consumes about 340 µA with 1 MHz clock at 3.3V in this mode.

• Low Power Mode 1 (LPM1) disables the CPU and MCLK while leaving the ACLK and SMCLK
enabled. This allows timers, peripherals, and analog systems to continue operation while dropping
current consumption to about 70 µA with 1MHz clock at 3.3V. Because the timers and other internal
interrupt systems still operate, the processor will be able to wake itself.

• Low Power Mode 2 (LPM2) disables the CPU, MCLK, and the DCO are disabled but the SMCLK and
ACLK are active. The DC is disabled if the DCO is not used for MCLK or SMCLK in active mode.
Internal interrupts can still operate. Current consumption drops to about 17 µA.

• Low Power Mode 3 (LPM3) disables the CPU, MCLK, SMCLK, and DCO. The DC and ACLK remain
active. This allows some peripherals and internal interrupts to continue. Current consumption drops
to about 2 µA.

• Low Power Mode 4 (LPM4) Current consumption drops to about .1 µA, but all clocks and the CPU
are disabled. This prevents any of the on-chip modules from operating, and only o�-chip interrupts
can wake the device.

To enter a low power mode the status register in the CPU must be set to indicate the desired mode.
Speci�cally the bits SCG1, SCG0, OSCOFF, and CPUOFF. The User's Guide details the speci�c bits
needed. Also provided in the chapter is some example code on changing power modes. To exit low power
mode, an interrupt is needed. In the interrupt, the previous status register state can be altered so that
exiting the interrupt will leave the processor awake. The User's Guide explains in detail the speci�cs of
entering and leaving low power mode. Example code with the compiler also demonstrates the low power
modes.

5.3.4 Principles of low power operation on the MSP

The User's Guide for the MSP also explains the principles needed to lower the power consumption of a design.
Be sure to minimize wasteful code execution. This is the same idea as improving speed performance because
every unnecessary instruction wastes a little bit of battery power. All of the techniques that improve code
e�ciency will improve power e�ciency. Increasing clock speed will not yield similar power savings because
faster execution increases power consumption. Similarly, unused peripheral modules on the processor should
be de-activated to save power. Use interrupts to handle events to allow the processor to stay in Low Power
Mode 3 as much as possible. By reducing the awake time of the processor, the average current consumption
of the MSP can be reduced to levels approximately as low as LPM3 while maintaining the same functionality.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

36 CHAPTER 5. LAB 5: OPTIMIZATION AND LOW POWER MODES

5.4 5.4 - Lab 5: Optimization and Low Power Modes5

5.4.1 Low Power Modes and Code Optimization

Exercise 5.4.1
Fibonacci Optimization
The Reducing Power Consumption module discusses why it is important to keep power in
mind when programming embedded devices. We have yet to consider this while programming the
previous labs. Writing e�cient code is the �rst step in improving power consumption, next we can
disable all parts of the board that aren't currently being used.

Take the following piece of code:

long fibo(int n)

{

if (n < 2)

return n;

else

return fibo(n-1) + fibo(n-2);

}

It recursively calculate the nth number in a Fibonacci sequence recursively. Recursion makes this
piece of code easier to read, however, it is very ine�cient and consumes far more memory than it
has to. If you try to compute a large number, say fibo(50), then it will take much longer and will
consume more power than it should.

The original program is very ine�cient and wastes memory in several of the ways described
in the ine�cient Memory Conservation6 module. Modify the code to eliminate the memory waste
and improve the speed of the program. Note that there is a tradeo� between speed and memory
(though at �rst the program is simply gratuitously wasteful). What is the nature of the tradeo�?
Assuming the one addition takes one cycle to complete, how long would it take the original code
to complete fibo(50)? How long would it take your new, improved version? Assume that you are
only considering the addition operations.

Exercise 5.4.2
Low Power Modes
Modify your project so that the processor remains in one of the low power modes whenever it is
not doing any calculations. Wake up from the low power mode using a timer interrupt (change the
timer settings so that there is a substantial time period between interrupts) and have your program
compute fibo(50). You may want to make the program compute �bo(50) more than once so that
the MSP is in the ISR performing an intensive task for longer and thus make it easier to read the
current consumption value. Output the result to the standard out display. What is the result?
(Hint: 12,586,269,025) Make sure the result is correct number. As soon as the calculation is done,
return to low power mode. Perform the same process to calculate the current consumption during
the use of your Fibonacci function. You should have measured three current consumption values: 1)
in the low power mode, 2) while processing fibo(50), and 3) while processing the 50th Fibonacci
number using your function.

note: A number must be small enough to �t in its given type. If it is too large, you may get
unpredictable results. Try using a long long for extra huge numbers. Because of our printf

settings, we cannot output such large data types. You must use bit-wise operations to separate the
number into smaller chunks suitable for printing.

5This content is available online at <http://cnx.org/content/m13669/1.2/>.
6"Memory Conservation" <http://cnx.org/content/m12006/latest/>

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

37

From now on, instead of while(1) at the end of programs, simply place the tool into a low power
mode. This will allow future applications to more closely resemble and operate as real-world
embedded programming.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

38 CHAPTER 5. LAB 5: OPTIMIZATION AND LOW POWER MODES

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

Chapter 6

Lab 6: Programming the Flash

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

39

40 CHAPTER 6. LAB 6: PROGRAMMING THE FLASH

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

Chapter 7

Lab 7: Analog to Digital Conversion

7.1 7.1 - Introduction to Sampling1

Sampling refers to the process of converting a continuous, analog signal to discrete digital numbers. Typ-
ically, an Analog to Digital Converter (ADC) would be used to convert voltages to a digital number
corresponding to a certain voltage level.

Figure 7.1: This shows the way that a given analog signal might be sampled. The frequency at which
the signal is sampled is known as the sampling rate.

7.1.1 Resolution

The number of bits used to represent a sampled, analog signal is known as the resolution of the converter.
This number is also related to the total number of unique digital values that can be used to represent a
signal.

For example, if a given ADC has a resolution of 12 bits, then it can represent 4,096 discrete values, since
2^12 = 4,096; if the resolution is 16 bits, it can represent 65,536 discrete values.

1This content is available online at <http://cnx.org/content/m13671/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

41

42 CHAPTER 7. LAB 7: ANALOG TO DIGITAL CONVERSION

We may also think about resolution from an electrical standpoint, which is expressed in volts. In that
case, the resolution the ADC is equal to the entire range of possible voltage measurements divided by the
number of quantization levels. Voltage levels that fall outside the ADC's possible measurement range will
saturate the ADC. They will be sampled at the highest or lowest possible level the ADC can represent.

For example, ADC speci�cations could be as follows:

• Full scale measurement range: -5 to 5 volts
• ADC resolution 12 bits: 212 = 4, 096 quantization levels
• ADC voltage resolution is: 5V−−5V

4096 = 0.0024V = 2.4mV

Large ranges of voltages will fall into in a single quantization level, so it is bene�cial to increase the
resolution of the ADC in order to make the levels smaller. The accuracy of an ADC is strongly correlated
with its resolution however; it is ultimately determined by the Signal to Noise Ratio (SNR) of the signal.
If the noise is much greater relative to the strength in the signal, then it doesn't really matter how good or
bad the ADC is. In general, adding 1 more bit of resolution is equal to a 6 dB gain in SNR.

7.1.2 Sampling Rate

Analog signals are continuous in time. In order to convert them into their digital representation we must
sampled them at discrete intervals in time. The interval at which the signal is captured is known as the
sampling rate of the converter.

If the sampling rate is fast enough, then the stored, sampled data points may be used to reconstruct the
original signal exactly from the discrete data by interpolating the data points. Ultimately, the accuracy of the
reconstructed signal is limited by the quantization error, and is only possible if the sampling rate is higher
than twice the highest frequency of the signal. This is the basis for the Shannon-Nyquist Sampling
Theorem. If the signal is not sampled at baseband then it must be sampled at greater than twice the
bandwidth.

Aliasing will occur if an input signal has a higher frequency than the sampling rate. The frequency of
an aliased signal is the di�erence between the signal's frequency and the sampling rate. For example, a 5
kHz signal sampled at 2 kHz will result in a 3 kHz. This can be easily avoided by adding a low pass �lter
that removes all frequency higher than the sampling rate.

7.2 7.2 - Analog-to-Digital Converter on the MSP4302

The analog to digital converter (ADC) on the ez430 is a type called a Sigma-Delta (SD) Converter. The
way it operates is slightly di�erent from what was described in the previous section (although the end result
is the same) but those speci�cs are out of the scope of this course. The SD converter on the ez430 has 8
channels and a 16 bit resolution. The module is highly con�gurable and can run largely free of program
involvement. In this portion of the lab, we will broadly explain the features of the module, but the particular
e�ects of each register are listed, as usual, in Chapter 12 of the User's Guide.

7.2.1 Range of Measurement

The result of each conversion will be 16 bits long in the form of an unsigned integer whose value is:

SD16_MEMx = (65, 536)
V in− V rneg
V rpos− V rneg

(7.1)

Where Vin is the input voltage to be measured, Vrneg is the lower reference voltage, and Vrpos is the
higher reference voltage. The reference voltages are set to power and ground by default, but they can be
changed to an internal reference generator or an externally supplied reference using the SD16CTL register.

2This content is available online at <http://cnx.org/content/m13670/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

43

7.2.2 Input Channels for the ADC

The following is a table of the 8 input channels on the ez430. "Analog signal input" channels will take any
analog source (we will get to the pin mapping's shortly). Other channels perform speci�c tool integrated
tasks. For example, channel A6 is an integrated temperature sensor. For detailed descriptions of the others,
see the User's Guide.

SD16 Input Channels

1. A0: Analog signal input
2. A1: Analog signal input
3. A2: Analog signal input
4. A3: Analog signal input
5. A4: Analog signal input
6. A5: V cc−V ss

11
7. A6: Integrated temperature sensor
8. A7: Short for PGA o�set measurement

Here is a pin diagram corresponding to the 14 accessible pins showing which pins correspond to which input
channels. Notice that each channel has a "+" and a "-" input. Although with other ADC's, we would
simply have one input pin and connect the other to the ground, the SD converter requires us to connect the
positive and negative inputs to the corresponding input channels. Note that the numbers from 1-14 on the
chip correspond to pins 1-14 on the target board.

Pin Map

Figure 7.2: Shows which pins correspond to speci�c SD converter inputs. Also shows which pins
correspond to speci�c ports (i.e pin 4 is connected to P1.2).

7.2.3 Operation Reminders for the ADC

Remember the following when attempting to use the ADC:

• Be sure to enable SD16 interrupts (on SD16CCTL0) and to select the speci�c channel which you are
using (on SD16INCTL)

• After con�guring the ADC, you must enable the SD16SC bit to start conversion.
• All ADC values will be stored in the SD16MEMx variable where "x" is the number of the channel

The User's Guide will be very useful for this lab because of the complexity of this part of the MSP430.
Be sure to go over the chapter atleast brie�y before jumping into programming.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

44 CHAPTER 7. LAB 7: ANALOG TO DIGITAL CONVERSION

7.3 7.3 - Lab 7: The ADC3

7.3.1

Exercise 7.3.1 Background Questions

1. The ez430 has a 16 bit SD Converter. The number of bits used by the ADC is known as
its resolution. What are the number of possible values that the 16 bit SD Converter can
represent?

2. Extreme voltages, either too high or too low, cannot be measured correctly. What is the
range of analog voltages that can be accurately represented on the ez430? You may want to
check the User's Guide or experiment with the hardware.

3. In the real world, signals are polluted by "noise" that alters the quality of the original signal.
Signal to Noise Ratio, SNR, is often used as a measure of the quality of a signal. Before a
signal is sampled through the ADC, it is helpful to condition the signal in order to improve
its SNR. What can be done to condition the signal? Where would it be ideal to condition it
and why? (i.e. at the ADC, near the source, at the processor?)

4. The Nyquist Theorem states that a signal must be sampled at least twice as fast as the
highest frequency in order to be decoded without error. The minimum sampling frequency is
therefore known as the Nyquist Sampling Rate. Typical, audio CDs are sampled at a rate of
44.1 kHz, and can be decoded to 65,536 unique voltage levels. What is the highest frequency
that can be represented without error? How many bits per sample are used? What is the
total data rate for a stereo CD?

Exercise 7.3.2 ADC Setup

1. Figure out what the following codes is doing. Set up the hardware so that it functions
correctly, and comment each line of code. What is the code's function?

#include "msp430x20x3.h"

void main(void)

{

WDTCTL |= WDTPW + WDTHOLD;

DCOCTL = CALDCO_8MHZ;

BCSCTL1 = CALBC1_8MHZ;

P1DIR |= 0x01;

SD16CTL |= SD16REFON + SD16SSEL_1;

SD16INCTL0 |= SD16INCH_6;

SD16CCTL0 |= SD16SC;

while (1) {

while ((SD16IV & SD16IFG)==0);

if (SD16MEM6 >= 0xD6D8)

P1OUT |= 0x01;

else

P1OUT &= ∼0x01;
_NOP();

3This content is available online at <http://cnx.org/content/m13672/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

45

}

}

note: Most modern compilers intended for use with embedded processors, such as the IAR
Workbench, allow the user to check the status of the registers while the program is halted.
This is extremely helpful in debugging code. For example, if the program is halted with a
_NOP() after a sample is taken from the ADC, the user may check the SD16MEMx register (by
setting a breakpoint at the _NOP() command) to see the new value that has been stored. If
a value has changed since the last time the processor was halted, it will turn red in the watch
window.

2. Create a version of the program that is completely interrupt driven. The original program
uses a while-loop to poll for the interrupt �ag. What is the sampling rate? Remember to put
the processor into a low power mode and enable interrupts after con�guring the SD Converter
as discussed in Lab 5

Exercise 7.3.3
LED Dimmer
Add the �le containing the LED dimmer function you wrote in Lab 4 to a new project in which
you con�gure the SD Converter. Attach a Photo Diode (DigiKey# ********), a diode that outputs
a voltage depending on the ammount of light that hits it, to any one of the SD16 inputs. Input
the SD16MEMx value into the LED dimmer function in such a way that the LED's brigtness is
indirectly propotional to the ammount of light that hits the Photo Diode. In other words, if we
block the light to the diode, the LED should appear brighter; if we shine light on the diode, the
LED should appear dimmer. If you do not have access to a Photo Diode, simply set the input to
the integrated temperature sensor and perform the same exercise.

Exercise 7.3.4
Flash Storage
Now, chose any analog source (temperature sensor, Photo Diode, function generator etc.) on any
input channel and store the values in �ash using what you learned in Lab 6. After a speci�c number
(that you select) of samples are stored, have your program output the values using the printf with
the help of a for or while loop. Then take the values and plot them on a graph. You may want
to store every 10th (or 20th or 50th etc.) sample in �ash to be able to see the analog signal over a
longer period of time.

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

46 INDEX

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A A0, 43
A1, 43
A2, 43
A3, 43
A4, 43
A5, 43
A6, 43
A7, 43
adc, � 7.1(41), � 7.2(42), � 7.3(44)
Aliasing, 42
Analog to Digital Converter (ADC), 41
analog-to-digital converter, � 7.2(42)
asm, � 2.1(15)
assembler, 15
assembly, � 2.2(16), � 2.3(18)
assembly code, 1
assembly language, � 2.1(15), 15
Auxiliary Clock (ACLK), 20, 20

B breakpoints, � 1.4(10), 10

C C, � 1.5(11)
Chapter 12, 42
Chapter 4, 20
Chapter 6: Digital I/O, 8
Chapter 8: Timer_A, 28
clock, � 3.1(19)
clock system, � 3.2(19)
clocks, � 3.3(21)
code, 10
compilers, 1
conservation, � 5.1(29)
Continuous:, 26
control �ow, � 2.2(16), 16
Current Location, 7

D Data Memory, 29
device drivers, 16
digital, � 3.1(19)
digital clock, � 3.2(19)
Digitally Controlled Oscillator Clock
(DCOCLK), 20

dissasembler, 15
Dissassembly, 7

E ez430, � 1.1(1), � 1.2(1), � 1.3(8), � 1.4(10),
� 1.5(11), � 2.1(15), � 2.2(16), � 2.3(18),
� 3.1(19), � 3.2(19), � 3.3(21), � 4.1(23),
� 4.2(25), � 4.3(27), � 4.4(28), � 5.1(29),
� 5.2(31), � 5.3(32), � 5.4(36), � 7.1(41),
� 7.3(44)

F Figure 8-13. Output Example- Timer in
Continuous Mode, 28

G garbage collector, 30
Go, 7

H header, 1
Heap Memory, 29
high-level, 1

I IAR, � 1.2(1)
IAR Workbench, 45
IDE, � 1.2(1)
Instruction Memory, 29
interrupt, 23
Interrupts, � 4.1(23)

L Lab 4, 45
Lab 5, 45
Lab 6, 45
labels, 17
Legend:, 7
Locals, 10
Low Frequency Crystal Clock (LFXTCLK), 20
low power, � 5.3(32), � 5.4(36)
low-level, 1

M machine code, 1
machine language, � 2.1(15), 15
macros, � 1.5(11)
Make/Debug, 7
maskable, 23
Master Clock (MCLK), 20

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

INDEX 47

memory, � 5.1(29)
memory leak, � 5.1(29), 30
mnemonics, 15
msp, � 5.1(29)
MSP architecture, � 2.2(16)
MSP430, � 1.1(1), � 1.2(1), � 1.3(8), � 1.5(11),
� 2.3(18), � 3.1(19), � 3.2(19), � 3.3(21),
� 4.1(23), � 5.2(31), � 5.3(32), � 5.4(36),
� 7.1(41), � 7.2(42), � 7.3(44)
msp430x20x3.h, 12

N non-maskable, 23

O op code, 15
operands, 15
optimization, � 5.4(36)
Output Mode 4: Toggle, 28
Output Mode 6: Toggle/Set, 28

P P1DIR, 8
performance, � 5.2(31)
power, � 5.3(32)
program, � 1.1(1), 1
programming languages, 1
PxDIR, 8, 8
PxIN, 8
PxOUT, 8, 9

R Reducing Power Consumption, 36

S sampling, � 7.1(41)
sampling rate, 41, 42
Section 3.4, 17
Section 7.3, 12
Shannon-Nyquist Sampling Theorem, 42
Sigma-Delta (SD), 42
Signal to Noise Ratio, 42
skip count, 10
speed, � 5.2(31)
Stop Debug, 7
Stop:, 26
Submaster Clock (SMCLK), 20

T Texas Instruments, � 1.5(11), � 7.2(42)
TI, � 1.5(11), � 7.2(42)
timers, � 4.2(25), � 4.4(28)

U Up/down mode:, 26
Up:, 26
User's Guide, 43, 43, 44
User's Guide, 42

V Vin, 42
Vrneg, 42
Vrpos, 42

W Watch, 10
watchdog, � 4.3(27)
watchdog timer, � 4.3(27)
Workbench, � 1.2(1), � 1.4(10)

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

48 ATTRIBUTIONS

Attributions

Collection: Introduction to the Texas Instruments ez430
Edited by: Naren Anand
URL: http://cnx.org/content/col10354/1.6/
License: http://creativecommons.org/licenses/by/2.0/

Module: "1.1 - What is a program?"
By: Naren Anand
URL: http://cnx.org/content/m13620/1.2/
Page: 1
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: What is a program?
By: CJ Ganier
URL: http://cnx.org/content/m11863/1.2/

Module: "1.2 - Introduction to the IAR Workbench IDE"
By: Naren Anand
URL: http://cnx.org/content/m13622/1.3/
Pages: 1-8
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Introduction to CrossStudio MSP430 IDE
By: Kileen Cheng
URL: http://cnx.org/content/m11692/1.2/

Module: "1.3 - Introduction to Programming the ez430"
By: Naren Anand
URL: http://cnx.org/content/m13623/1.2/
Pages: 8-9
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Introduction to Programming the MSP430
By: adrian valenzuela
URL: http://cnx.org/content/m12145/1.3/

Module: "1.4 - Setting Breakpoints in Workbench"
By: Naren Anand
URL: http://cnx.org/content/m13624/1.1/
Page: 10
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Setting Breakpoints in Crossworks
By: CJ Ganier
URL: http://cnx.org/content/m11859/1.3/

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

ATTRIBUTIONS 49

Module: "1.5 - Lab 1: C and Macros with Texas Instruments' ez430"
By: Naren Anand
URL: http://cnx.org/content/m13625/1.5/
Pages: 11-13
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Lab 2: C and Macros with Texas Instruments' MSP430
By: CJ Ganier, adrian valenzuela
URL: http://cnx.org/content/m11852/1.14/

Module: "2.1 - Introduction to Assembly Language"
By: Naren Anand
URL: http://cnx.org/content/m13626/1.1/
Pages: 15-16
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Introduction to Assembly Language
By: adrian valenzuela
URL: http://cnx.org/content/m12821/1.2/

Module: "2.2 - Structure of an Assembly Program"
By: Naren Anand
URL: http://cnx.org/content/m13627/1.2/
Pages: 16-17
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Structure of an Assembly Program
By: CJ Ganier
URL: http://cnx.org/content/m11860/1.2/

Module: "2.3 - Lab 2: Introduction to Assembly Language"
By: Naren Anand
URL: http://cnx.org/content/m13628/1.1/
Page: 18
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Lab 3: Introduction to Assembly Language
By: CJ Ganier
URL: http://cnx.org/content/m11858/1.4/

Module: "3.1 - What is a digital clock?"
By: Naren Anand
URL: http://cnx.org/content/m13658/1.1/
Page: 19
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: What is a digital clock?
By: CJ Ganier, adrian valenzuela
URL: http://cnx.org/content/m11862/1.3/

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

50 ATTRIBUTIONS

Module: "3.2 - Clock System on the ez430"
By: Naren Anand
URL: http://cnx.org/content/m13659/1.1/
Pages: 19-20
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Clock System on the MSP430
By: CJ Ganier
URL: http://cnx.org/content/m11854/1.2/

Module: "3.3 - Lab 3: Clocking on MSP430"
By: Naren Anand
URL: http://cnx.org/content/m13661/1.1/
Page: 21
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Lab 4: Clocking on MSP430
By: adrian valenzuela
URL: http://cnx.org/content/m12354/1.12/

Module: "4.1 - Interrupts"
By: Naren Anand
URL: http://cnx.org/content/m13650/1.1/
Pages: 23-25
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Interrupts
By: adrian valenzuela
URL: http://cnx.org/content/m12321/1.2/

Module: "4.2 - Timers"
By: Naren Anand
URL: http://cnx.org/content/m13651/1.1/
Pages: 25-27
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Timers on the MSP430
By: adrian valenzuela, CJ Ganier
URL: http://cnx.org/content/m11997/1.2/

Module: "4.3 - Watchdog Timer"
By: Naren Anand
URL: http://cnx.org/content/m13652/1.2/
Page: 27
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Watchdog Timer
By: CJ Ganier
URL: http://cnx.org/content/m11998/1.2/

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

ATTRIBUTIONS 51

Module: "4.4 - Lab 4: Timers and Interrupts"
By: Naren Anand
URL: http://cnx.org/content/m13653/1.2/
Page: 28
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Lab 6: Timers on the MSP430
By: adrian valenzuela, CJ Ganier
URL: http://cnx.org/content/m11996/1.6/

Module: "5.1 - Memory Conservation"
By: Naren Anand
URL: http://cnx.org/content/m13666/1.1/
Pages: 29-31
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Memory Conservation
By: CJ Ganier
URL: http://cnx.org/content/m12006/1.3/

Module: "5.2 - Improving Speed and Performance"
By: Naren Anand
URL: http://cnx.org/content/m13667/1.1/
Pages: 31-32
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Improving Speed and Performance
By: CJ Ganier
URL: http://cnx.org/content/m12004/1.5/

Module: "5.3 - Reducing Power Consumption"
By: Naren Anand
URL: http://cnx.org/content/m13668/1.4/
Pages: 32-35
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Reducing Power Consumption
By: CJ Ganier
URL: http://cnx.org/content/m12005/1.3/

Module: "5.4 - Lab 5: Optimization and Low Power Modes"
By: Naren Anand
URL: http://cnx.org/content/m13669/1.2/
Pages: 36-37
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Lab 9: Optimization and Low Power Modes
By: adrian valenzuela
URL: http://cnx.org/content/m12356/1.4/

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

52 ATTRIBUTIONS

Module: "7.1 - Introduction to Sampling"
By: Naren Anand
URL: http://cnx.org/content/m13671/1.1/
Pages: 41-42
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Introduction to Sampling
By: adrian valenzuela
URL: http://cnx.org/content/m12835/1.2/

Module: "7.2 - Analog-to-Digital Converter on the MSP430"
By: Naren Anand
URL: http://cnx.org/content/m13670/1.1/
Pages: 42-43
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Analog-to-Digital Converter on the MSP430
By: CJ Ganier
URL: http://cnx.org/content/m11850/1.3/

Module: "7.3 - Lab 7: The ADC"
By: Naren Anand
URL: http://cnx.org/content/m13672/1.2/
Pages: 44-45
Copyright: Naren Anand
License: http://creativecommons.org/licenses/by/2.0/
Based on: Lab 7: ADC, DAC, and Mixed Signals
By: adrian valenzuela
URL: http://cnx.org/content/m11865/1.6/

Available for free at Connexions <http://cnx.org/content/col10354/1.6>

Introduction to the Texas Instruments ez430
An introduction to the programming of the MSP430 Ultra-Low-Power Microcontroller with the ez430. If
you have stumbled upon this course, please stumble back later. It is still under construction

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

