

Chapter 8. Exploring High Dynamic Range Imaging

8.1. Exploring High Dynamic Range Imaging*

 Sections:
 I. Introduction
 II. Background
 III. Approach
 IV. Results and Aside
 V. Conclusions
 VI. The Team
 VII. References

8.2. Exploring High Dynamic Range Imaging: §1 Introduction to HDRI*

 The advent of digital photography has been
marked by numerous and significant technical gains in terms of
resolution, noise, and convenience in post processing. However, one
area in which digital media still trails its analogue counterpart
is dynamic range. A capturing media’s dynamic range is its ability
to maintain a wide range of information, from dark to bright
values; traditional silver halide camera film excels in its ability
to capture a wide range of brightness levels over even that of the
priciest digital cameras.
 Almost anyone with photography experience may
have noticed that, in certain conditions, something they had
intended to capture was either too bright or too dark to see
clearly in the actual print, often becoming completely white or
black and devoid of any useful information. To propose a couple of
scenarios in which this phenomenon may occur: One may imagine
himself taking a picture of a subject adorned with jewelry on a
sunny day; while the camera meters for the subject’s face, the
luster of the silver necklace may cause it adopt a white glow
against the skin of the subject, particularly if the subject has
darker skin (since the camera “thinks” that the average brightness
is lower than you or I would perceive it to be). Likewise, taking a
picture of a subject with a sunset in the background may cause the
subject to lose any three-dimensionality and become a silhouette.
The capturing media, in these cases, cannot cope with the extreme
contrast of the scene, which, in real-life cases, may often exceed
a 50,000:1ratio.
 Traditionally, this problem was dealt with in
the darkroom by techniques such as dodging and burning. Although
image editing software such as Adobe’s Photoshop offer similar
tools, the limited color depth of 8-bit file formats and even
proprietary 12-bit RAW formats constrains their efficacy. Along
with the myriad performance gains of digital photography in most
other technical areas over traditional media and the relative ease
in processing of digital images, there has been great impetus to
increase the amount of captured information digitally. This is
usually done by taking several images at different exposure levels
and then combining them to form a high color depth result, usually
32-bits. However, a major problem surfaces with this approach; with
a few exceptions, current technology in display technology,
printing devices and print media simply cannot handle 32-bit files,
severely limiting the usefulness of these formats. One solution is
to compress the high color-depth file to one with lower color
depth, such as an 8 bit JPEG or TIFF format, while maintaining the
visual perception of increased color depth. In other words, one may
attempt to map the extreme highlight and shadow detail present in
the high color depth image into one with lower depth. This type of
transformation is often termed “tone mapping”, and the conversion
of multiple images into a high color depth image and “tone mapping”
forms the two major bodies of “high dynamic range” imaging
(HDRI).

8.3. Exploring High Dynamic Range Imaging: §2 Background*

 There has been much research being done in the
area of HDRI, and the vast majority of this research is focused on
tone mapping. Most of these tone mapping algorithms (often called
“operators”) can be divided into two categories. Global operators
determine how the image is mapped by taking into account all the
values in the high color depth image. Local operators map each
pixel or group of pixels by taking into account a subset of the
information in the high bit depth image.
 Global operators are generally fast and often
don’t cause the image to lose detail. Local operators tend to
perform the tone mapping better, compressing contrast to a greater
degree at the expense of slower operation and, in some cases,
blurring of the details or halos around high contrast regions.
Let’s explore both types of operators in MATLAB; the following sections will
introduce algorithms in existence today as well as our own unique
functions and modifications to them.
 One thing to take note of before we start is that images in MATLAB are represented as matrices. Color images are made up of three matrices, each describing the intensity of a red, blue, and green component. The brightness values of the elements in these matrices may either be represented in double form in a range from 0 to 1, or with integer values from 0 to 255.
 The Stanford Memorial Church image used
throughout this report has been adopted as a standard test image in
many other HDR research articles, and was authored by Paul Debevec.
It is available as a .HDR radiance map for download
here.
 The .HDR file has been divided into 20 images
for use in this report and can be found in section 8, along with the source code.

8.4. Exploring High Dynamic Range Imaging: §3 Approach*

 §3 Approach
 Two main cores must first be implemented
before any further developments can occur; the image creation
algorithm that would produce a high bit depth image from a set of
low bit depth images, and a simple tone mapping algorithm that we
can build upon.

8.5. Exploring High Dynamic Range Imaging: §3.1 HDR Image Creation*

 Since no consumer-grade digital cameras can produce HDR images (of say 32-bits per color channel), how can one get an HDR image to manipulate?
 One can estimate an HDR image by combining multiple images across a wide dynamic range.

For example, by averaging an overexposed and an underexposed image of the exact same scene, one gets a low-contrast image containing more data of the scene than either of the previous images. This is because each image added information to the scene--the overexposed image adds details in the shadows, while the underexposed image adds details in the highlights.
Example 8.1.

These example images would be combined to generate the HDR image by some method, as described below:

 [image: Figure (memorial004s.jpg)]

Figure 8.1.
LDR Image to be Used in Composition of HDR Image

 [image: Figure (memorial009s.jpg)]

Figure 8.2.
LDR Image to be Used in Composition of HDR Image

 [image: Figure (memorial012s.jpg)]

Figure 8.3.
LDR Image to be Used in Composition of HDR Image

 [image: Figure (memorial017s.jpg)]

Figure 8.4.
LDR Image to be Used in Composition of HDR Image

 [image: Figure (memorial020s.jpg)]

Figure 8.5.
LDR Image to be Used in Composition of HDR Image

 So, the development of the simplest algorithm to generate an HDR image was rather simple--it is just a straight average of all the source LDR images multiplied by the factor difference between the LDR bitrate and the HDR bitrate. This can be viewed as a straight averaging function, like:
(8.1)

 where
 Ai

is the ith input color matrix, H is the HDR bitrate (say
 2
 32

), L is the LDR bitrate (say
 28
),
 and N is the number of input images. Please also note that bringing the division factor inside the summation is necessary in the real algorithm, as otherwise the resulting value could have overflow and produce inaccurate results.
 Now, while we cannot view this directly since we can't visualize the HDR image on conventional displays, we can use a simple tone-mapping operator to view the HDR image mapped back down to LDR. Using the Quantizing Operator, we get this result for using averaging of the input images:
 [image: Figure (average.jpg)]

Figure 8.6.
HDR Creation via Averaging (tone-mapped using Quantizing Operator)

 While this produces decent results given the input images, we think we could help the tone-mapping operators by generating the HDR image with the largest possible dynamic range, and thus most information. The next consideration was an upsampling technique, where randomly determined ranges were interpolated differently. That is, a similar averaging technique was used, but instead of using the raw input color data, it was shifted in a random manner, to be either higher or lower in brightness. So after multiplying by the difference of the ranges given by the HDR and LDR bitrates, a random number was added on the same order. This could be thought of something like:
(8.2)

 where
 Ai

is the ith input color matrix, H is the HDR bitrate (say
 2
 32

), L is the LDR bitrate (say
 28
), x is a lower bound coefficient (0.75), y is an upper bound coefficient (1.25), rand generates a random integer between the two inputs,
 and N is the number of input images.
 Again using the Quantizing Operator, we get this result for using upsampling of the input images:
 [image: Figure (upsample.jpg)]

Figure 8.7.
HDR Creation via Upsampling (tone-mapped using Quantizing Operator)

 This lead to the final algorithm, a weighted average, that put more emphasis on certain input images if their average luminances fell into certain ranges (with the upsampling from above also included). For example, if an image is pure white, it probably doesn't contain much useful information, so that image should have less of an impact on the final HDR image. Another thought was also that the middle-tone images probably contain the most overall information, so they should be weighted more highly. This algorithm is piecewise and thus harder to write in a standard form, so please look in the source code section for how this works.
 Again using the Quantizing Operator, we get this result for using a weighted average of the input images:
 [image: Figure (weighted.jpg)]

Figure 8.8.
HDR Creation via Weighting (tone-mapped using Quantizing Operator)

 While these images all look very similar, the weighted average does produce the best results in terms of the histogram. The weighted average generally seemed to perform better for the shadows and blow out more highlights than the others, but a histogram comparison clearly shows it is superior. Despite this, given how similar the results of each creation algorithm are, it did not play much in actually tone-mapping the HDR image back down to a displayable LDR range. So, while the goal was to try to help the tone-mapping algorithms by producing the best HDR image possible, it did not have much of a visible effect for any resulting algorithm.
 Now, we should explore how the real work happens, in pulling more information from the HDR image to create the best LDR image possible; that is, the one with the highest dynamic range.

8.6. Exploring High Dynamic Range Imaging: §3.2 Simple Operator*

 Now that one has an HDR image, to be able to display it on conventional displays, one must map it back down to the range of an LDR image. This results from current display technologies, be CRT, LCD, or printer, can only display at most about 8-bits per color channel, around the LDR range. So, to be able to see the results of adding all this information together, one must map the high-dynamic range of 32-bits back to 8-bits.
 The simplest way to perform this calculation is using a quantizer, to directly map ranges in the
 232

 space back to single values in

 28

space. That is, the range
 would all be mapped to 0 in the
 28

space. This can be realized by:
(8.3)

 where A is the HDR color matrix, H is the HDR (source) bitrate, and L is the LDR (destination) bitrate.
Example 8.2.

		So in the case of 32-bit to 8-bit transformation, we would have:

	
 Using this approach, we have the following result:
 [image: Figure (quantizing.jpg)]

Figure 8.9.
Quantizing Operator

 Now that we have explored the most basic operator that just takes the HDR image straight back down to the LDR range without any intelligent methods to preserve the most information and dynamic range, we can explore more advanced operators in the following modules. For example, one way to improve upon this is to "move" the average brightness around of the entire image, so that if it is overexposed, we can correct to some extent to preserve the most amount of detail in the resulting LDR image. Beyond that, we can look at regions of the HDR image and map them down in an intelligent manner as to preserve the most amount of information in small areas of the resultant LDR image.

8.7. Exploring High Dynamic Range Imaging: §3.3 Global Operator*

 The term “global” in this case refers to
operators that use one average luminance for the entire image. This
algorithm was taken from Erik Reinhard’s Photographic Tone
Reproduction for Digital Images. In his paper, the average
luminance Lw is taken as
 [image: Figure (equation1.PNG)]

Figure 8.10.

 where Lw(x,y) is the luminance in the scene, N
is the number of pixels, and D is some small value to prevent you
from taking the log of zero. The luminance at each pixel is then
scaled by the key value a and the average luminance Lw.
[1]
 [image: Figure (equation2.PNG)]

Figure 8.11.

 The key value of a scene is a value between
zero and one that indicates whether it is very light, very dark, or
around middle grey. For example, the key value of a scene of a
white painted room is very close to one. However, most scenes have
a wide range of brightness, so the key value is usually set to
middle grey, or 0.18.
[2]
 Finally, the luminances are scaled down to a
displayable range between 0 and 1.
 [image: Figure (equation3.PNG)]

Figure 8.12.

 where Lwhite is mapped to the maximum
luminance in the scene. For low dynamic ranges, this will also
enhance the contrast in the image. For the majority of high dynamic
ranges, the algorithm preserves the contrast for low luminance
areas while mapping high luminances to a displayable range.
However, detail is lost in scenes that have very high dynamic
ranges.
[3]
 [image: Figure (memorialGlobal.PNG)]

Figure 8.13.
Global Operator

8.8. Exploring High Dynamic Range Imaging: §3.4 Adaptive Gain Control Local Operator*

 Would a local operator perform luminance
compression better than a global one? One thing to take note of
when working with a local operator is that, when looking at a small
window of values in an image, if that window happens to encompass
an edge between two surfaces with greatly varying intensities, and
one weights the values only with respect to their positions, then
values across this edge may have a negative effect on the mapped
pixel. For example, if one wishes to map a bright pixel close to
such an edge with dark pixels on the other side, and a window used
takes into account the values across that edge, then the influence
of the dark pixels on the averaging of the local area would be
disproportionate, causing the bright pixel to appear much darker
than one might expect it to be. The same thing would happen to the
dark pixels across the edge when they are mapped, causing them to
be mapped much brighter than one might expect. This effect is
usually manifested as halos across sharp boundaries of intensity.
However, if values with extreme deviations can be ignored from the
averaging, then the final mapping would more accurately replicate
the original scene in reducing the advent of halos, caused by
averages influenced by extreme values. This is the motivation for a
gain controlled mapping method that attempts to weight only those
neighboring pixels with similar intensities to the pixel we wish to
map, as suggested by Pattanaik [1].
 The idea is that surrounding values which are
too much brighter or darker than the pixel being mapped should be
ignored from the weighing function in mapping a pixel. For example,
if one defines “too bright” or “too dark” to be a factor of 5 from
the current pixel being analyzed, then neighbors whose values are
not within the range can be ignored:
 [image: Figure (image001.png)]

Figure 8.14.

 Where Ic is the intensity of every pixel and I
the intensity of neighboring pixels.
 Since such edges in nature have a smoother
profile than just an edge, a smoother profile was suggested with
the formula:
 [image: Figure (image003.png)]

Figure 8.15.

 We made the contrast threshold (the “how
bright is too bright?” parameter) adjustable to test the effects of
different values. Below is an example used to test the effect of
this parameter. For cases where the contrast threshold is less than
the contrast ratio between two areas across an edge, the filtered
result is a sharp boundary between the two surfaces. For cases
where the threshold parameter is greater than the contrast ratio
between the surfaces across a sharp boundary, the filtered image
produces blurred versions of the boundary. For the image with
threshold level 2, there are obvious “clipping” effects around
areas with fairly sharp boundaries, such as the ceiling structures.
These effects quickly disappear with increasing threshold values up
to 5. Beyond that, there is little difference in the final image
with respect to the threshold value, which seems to suggest that
white is about 5 times the intensity of mid gray while black is 1/5
the intensity of mid gray. Another tunable parameter is the radius
used in the local averaging. The actual size of the local window is
a square with sides of length 2*radius+1. Increasing the radius
produced blurrier and more homogenous images, while decreasing it
sharpened the image while reducing the effect of the averager. Why
is this case? More values are averaged with larger radii and thus a
more homogenous mapping is assigned, which makes the mapped pixel
closer in intensity to its neighbors.
 For mostly continuous surfaces with little
change in intensity throughout its range, the adaptive gain control
operator averages out these low contrast areas, which explains the
blur in the output images However, this type of blur is undesirable
for most photographic applications, since a significant amount of
detail is sacrificed.

 [image: Figure (Graphic1.png)]
Figure 8.16.
Threshold = 2, Radius = 2

 [image: Figure (Graphic2.png)]

Figure 8.17.
Threshold = 5, Radius = 2

 [image: Figure (Graphic3.png)]
Figure 8.18.
Threshold = 10000, Radius = 2

 [image: Figure (Graphic4.png)]
Figure 8.19.
Threshold = 5, Radius = 10

 [image: Figure (Graphic5.png)]

Figure 8.20.
Threshold = 5, Radius = 1

8.9. Exploring High Dynamic Range Imaging: §3.5 Adaptive Gain Control Local Operator with Edge Detection*

 To lessen the blurring effect on the adaptive
gain control operator, we modified Pattanaik’s algorithm so that
edges can be detected. In the case where a neighbor pixel is “too
different” in intensity from the pixel being mapped, a counter is
incremented and counts the maximum number of pixels that can be
“too different” before the inspected pixel is not mapped at all
using the averaged obtained from its neighbors. In this case, the
old luminance value is simply assigned to this pixel, which is
mapped down to a lower color depth linearly by dividing by the
brightest value in the image. In the following examples, the “max
difference” parameter refers to the maximum contrast ratio between
a neighboring pixel and the pixel being mapped, above which a
counter is incremented. The “number different” parameter refers to
the maximum value of said counter, above which the local average
can be ignored when mapping a pixel. As expected, increasing the
“max difference” parameter increases the threshold at which edges
are preserved, thereby producing a blurrier image. A small value
for “max difference” keeps finer details intact as slighter changes
would prompt the mapping algorithm to ignore local values.
Increasing the “number different” parameter has a similar effect as
increasing the “max difference” parameter; as more values must
reach the threshold before the local average is ignored, the local
average is used more often to map image pixels, causing the image
to become more homogenous. Blurring the image by increasing the
“number different” parameter, however, seems to keep the details in
harsher edges more intact compared to blurring with the “max
difference” parameter. This should make sense (pixels at the edge
of a harsh transition encounter a greater number of neighboring
pixels with very different luminance values).

 [image: Figure (Graphic1.png)]
Figure 8.21.
Threshold = 5, Radius = 2, Max Difference = 1.1, Number Different = 1

 [image: Figure (Graphic2.png)]

Figure 8.22.
Threshold = 5, Radius = 2, Max Difference = 1.35, Number Different = 1

 [image: Figure (Graphic3.png)]
Figure 8.23.
Threshold = 5, Radius = 2, Max Difference = 1.75, Number Different = 1

 [image: Figure (Graphic4.png)]
Figure 8.24.
Threshold = 5, Radius = 2, Max Difference = 1.1, Number Different = 3

 [image: Figure (Graphic5.png)]

Figure 8.25.
Threshold = 5, Radius = 2, Max Difference = 1.1, Number Different = 10

8.10. Exploring High Dynamic Range Imaging: §3.6 Reinhard’s Gaussian Convolution Method*

 An implementation suggested by Reinhard in
“Photographic Tone Reproduction for Digital Images,” involves
constructing circularly symmetric Gaussians of eight varying scales
and convolving them (via multiplication in the frequency domain for
speed improvement) with the image luminance values, which results
in the production of eight Gaussain-blurred versions of the image
with different degrees of blurring.
 The equation used for the Gaussians
is:

 [image: Figure (Graphic1.png)]
Figure 8.26.

 (Reinhard et al., 4)
 The normalized error function for the
difference between the image at one scale of blurriness and the
next is iteratively evaluated at successive scale values, sm, where
s = 1.6^Sm, until its absolute value exceeds the threshold of 0.05.
The scale value one less than that causing the threshold to be
exceeded (if sm=1 exceeds the threshold, the 1 is still kept) is
then stored in the scale matrix, Sm(x,y). The paper provided a
suggested threshold value of 0.05 that seemed to work well for most
images although others were tried. The function below is evaluated
at every pixel in the image, and a scale value is determined for
each pixel, ranging from 1 to 8. The value for alpha1 is taken to
be 0.3536 (approximation of 1/(2*sqrt(2))) par recommendation from
the paper, and alpha2 is set to 1.6*alpha1 = 0.5657.
 The equation used to construct the Sm
matrix:
 [image: Figure (Graphic2.png)]

Figure 8.27.

 where |V| < 0.05 (Reinhard et al.,
4).
 Phi = 8.0 and a is the key value, set to 0.18
for most images. These values were suggested by the paper and
adjusted to understand their effects, but phi = 8.0 was used for
all final test images. The average luminance of the image tends to
suggest the key value, a. In practice, it should be varied from
about 0.09 to 0.36 (or sometimes more) for some darker or lighter
photographs, respectively. The Vi values for i=1 and i=2, as used
above, are calculated via convolution of the luminance values with
the Ri Gaussians defined in the R(x,y,z) equation above. The
equation representing this convolution is: Vi(x,y,s) = L(x,y) *
Ri(x,y,s) (Reinhard et al., 4).
 To produce the final image, the
formula,
 [image: Figure (Graphic3.png)]

Figure 8.28.

 is evaluated over all x and y values of
possible image positions (Reinhard et al., 4). The algorithm
ultimately accomplishes a greater reduction in brightness for
regions especially bright and a greater increase in brightness for
regions that are especially dark. For example, for a dark pixel in
a relatively luminescent region, L(x,y) < V1(x,y), therefore
Ld(x,y) will decrease, increasing the contrast at that point. On
the other hand, a bright pixel in a darker region will cause L(x,y)
> V1(x,y), therefore Ld(x,y) will increase, subsequently
increasing the contrast for this case as well.
 In an effort to improve the algorithm, we
changed the Ld equation above to
 [image: Figure (Graphic4.png)]

Figure 8.29.

 where C are scaling coefficients that can
give more weight to the brightening or darkening effect for V1
because, with some images, the effects are not strong enough with
our original implementation of the algorithm. This is very
effective on some images where regions with similar sm values have
similar brightness, and the coefficients could be determined by
hand or by another algorithm from the sm(x,y) matrix. On more
complex images, Sm values correlate with similar brightness only on
local regions so C(sm(x,y)) would have to also depend on x and y
independent of sm and therefore become, C(sm(x,y),x,y).
 Examples:
 (Photo from nine-image set in “IRIS TUTORIAL:
Comet High Dynamic Range imagery Application to total eclipse
processing” --

http://www.astrosurf.com/buil/iris/tutorial19/doc41_us.htm)
 Fig. 1: Global Linear Operator:
 [image: Figure (Graphic5.png)]

Figure 8.30.

 Fig. 2: Using original operator based on
Reinhard paper (equivalent to C = {1,1,1,1,1,1,1,1}):
 [image: Figure (Graphic6.png)]

Figure 8.31.

 Fig. 3: Using final equation with C =
{-2,-2,-1,4,4,4,4,4}:
 [image: Figure (Graphic7.png)]

Figure 8.32.

 Here, setting C to something different that
{1,1,1,1,1,1,1,1} is rather effective at pulling down the extremely
bright window even more. It works pretty well since the high-valued
region of Sm(x,y) corresponds to a similar sm value in the same
(x,y) rectangular-bounded region in all color channels.
 Scale Matrix Examples (Longer wavelength
color corresponds to higher Sm(x,y) value):
 The images below show an example of how an HDR image
of a window scene was broken into different scale regions by the
algorithm: dark blue = 1, light blue = 2, cyan = 3, yellow = 4,
orange = 5, and dark red = 6.
 The Sm matrix values show how the overly
bright window region was easily isolated with the C vector:
 Fig. 4: Red:

 [image: Figure (Graphic8.png)]
Figure 8.33.

 Fig. 5: Green:
 [image: Figure (Graphic9.png)]

Figure 8.34.

 Fig. 6: Blue:
 [image: Figure (Graphic10.png)]

Figure 8.35.

 Example 2:
 (Photo from three-image set taken by Robert
Ortman in Banff National Park, Canada)
 Fig. 7: Global Linear Operator:
 [image: Figure (Graphic11.png)]

Figure 8.36.

 Fig. 8: Using original operator based on
Reinhard paper (equivalent to C = {1,1,1,1,1,1,1,1}):
 [image: Figure (Graphic12.png)]

Figure 8.37.

 Fig. 9: Using final equation with C = {1 1 1
1.5 4 4 4 4}:
 [image: Figure (Graphic13.png)]

Figure 8.38.

 In this case, the operator based on the paper
renders the grass and trees part better since it increases the
luminance in those regions relatively well, but it does worse than
the global linear operator on the clouds: it has not decreased
luminance nearly enough in that region. Attempting to use the C
vector to help reduce extra cloud luminance also fails here because
the Sm regions computed for the clouds do not correspond very well
for across color channels. In particular, the blue channel had a
clearly high-valued region that could have it’s brightness
selectively reduced, but applying this equally across all color
channels results in discoloration. Applying the increased weight of
luminance reduction to the regions represented in yellow and orange
below across all color channels darkens blue (the most) and red
much more than green, leaving the green and yellow (red+green)
patches showed above.
 The Sm matrix values clearly explain the
discoloration:
 Red:

 [image: Figure (Graphic14.png)]
Figure 8.39.

 Green:

 [image: Figure (Graphic15.png)]
Figure 8.40.

 Blue:
 [image: Figure (Graphic16.png)]

Figure 8.41.

 In both example photos above, the operator
based on the Reinhard paper tended to outperform the global linear
operator in some parts and fail in others. In some cases, it can be
easy to fix with the introduction of the C vector, but ultimately,
there must be a better way.

8.11. Exploring High Dynamic Range Imaging: §3.7 Stochastic Gain Control*

 In computer graphics, ray tracing is a technique
used to project three dimensional space onto a two dimensional
plane as seen from an eye point. The basic ray tracing algorithm is
to fire a ray from the eye point through every pixel in the
display. If the ray intersects something in the scene, keep the
closest intersection point and calculate the intensity at that
point. The following novel algorithm which we designed, the Stochastic Gain Control operator, was
inspired by distributed ray tracing.
[4]One problem though is that,
since each pixel really represents a fixed area of the scene
instead of a fixed point, one sample for the whole pixel may not
capture all of the information in that area. This leads to jagged
edges often called aliasing.
[5]Therefore,
anti-aliasing techniques are used to soften the edges in a ray
tracer.
 One such technique is called supersampling. By
firing multiple, evenly spaced rays over the pixel area, the
intensities calculated for each ray are averaged to find the
overall intensity in the pixel.
[6]This is similar to the Pattanaik-Yee Adaptive Gain
Control operator. Unfortunately, by uniformly sampling each pixel,
the image may appear blurry in some parts or have rigid variations
in other parts. This can be solved by using distributed ray
tracing.
 In distributed ray tracing, rays are randomly
fired over a finite pixel area and then averaged together. Surface
lighting is usually defined as multiple integrals, so using a Monte
Carlo method to sample the integrand at randomly chosen points
results in a better approximation. While the aliasing is removed,
it will lead to a small amount of noise in the picture, but overall
the picture quality will be improved.
[7]
 Using this idea, modifications can be made to
the averaging local operator. As the window sweeps across the
image, randomly selected pixels are averaged together. Since the
pixels are randomly selected, the same pixel may be selected more
than once. Thus, some pixels are weighted more than others. This
acts as a weighted pixel mask or pseudo Gaussian filter.
 [image: Figure (Graphic1.png)]

Figure 8.42.

 If only one pixel is randomly selected inside
the window, the resulting image will be very blurry. This makes
sense because while sliding the window the same pixel may have
sampled repeatedly and at the same time failed to sample others. As
the number of pixels selected increases, the image becomes sharper
and sharper compared to the image produced by the Pattanaik-Yee
Adaptive Gain Control operator. However, if more than 125% of the
pixels in the window are selected, there will be no noticeable
change.
 [image: Figure (memorialStochastic1.PNG)]

Figure 8.43.
1 pixel sampled from a 3-by3 pixel window

 [image: Figure (memorialStochastic5.PNG)]

Figure 8.44.
5 pixels sampled from a 3-by3 pixel window

 [image: Figure (memorialStochastic10.PNG)]

Figure 8.45.
10 pixels sampled from a 3-by3 pixel window

8.12. Exploring High Dynamic Range Imaging: §3.8 Local Gaussian Convolution*

 Using the experience we have gained so far,
and the knowledge gained in introductory DSP courses, let’s
formulate another local operator. The goal is to compress luminance
as well as the adaptive gain control had done while maintaining
fine detail and sharpness. Recall that averaging can be done
through convolution with a filter, and we can manipulate the weight
of the average by changing the shape of the filter. It seems
natural that the pixel being mapped should be weighted most
heavily, so we may decide to use a Gaussian to convolve a small
local area around the pixel being mapped to find a weighted average
to map the pixel. You may be concerned with the production of halos
without the adaptive gain control explored in sections 3.4, but
let’s see if the natural shape of the Gaussian will be able to
prevent them without extra control.
 Example Gaussian:
 0.0035 0.0114 0.0183 0.0114 0.0035
 0.0114 0.0591 0.1353 0.0591 0.0114
 0.0183 0.1353 1.0000 0.1353 0.0183
 0.0114 0.0591 0.1353 0.0591 0.0114
 0.0035 0.0114 0.0183 0.0114 0.0035
 Think back to your DSP class again, and
recall that convolution in the time domain is equivalent to
multiplication in the frequency domain. To speed up the process,
convolution can be done using the DFTs of the Gaussian and the
small local area. Using MATLAB’s efficient FFT algorithm, the whole
image conversion and tone mapping process is on the order of
seconds. The algorithm does not blur the image to the degree that
adaptive gain control does, but since it does still blur the image
slightly, it also employs the edge preservation technique used in
the later version of the adaptive gain control method.
 Comparing the local convolution mapping with
the adaptive gain control method, the former clearly retains more
detail in the wall artwork and the stained-glass window to the
right.

 [image: Figure (Graphic1.png)]
Figure 8.46.
Local Operator with Convolution

 [image: Figure (Graphic2.png)]

Figure 8.47.
Adaptive Gain Control with Edge Preservation;
Radius = 2, Threshold = 5, Max Difference = 1.1, Number Different = 1

8.13. Exploring High Dynamic Range Imaging: §4 Results*

 Every algorithm produces significantly
different results at different speed expenses and different levels
of detail degradation. The global algorithm is quick and does not
seem to blur fine detail, but it is also the weakest at tone
mapping, and produces images with the highest contrast or all of
our algorithms. The adaptive gain filter has stronger compression
of brightness values but destroys fine details in the image. The stochastic gain control sharpens the edges in the image but adds some noise as well. The adaptive gain filter with edge detection also sharpens the edges but still destroys some of the finer details. The convolution mapping combines the speed and detail preservation of the global mapping with the brightness compression of the adaptive gain mapping.
 However, the algorithms presented are still no
match for some of the more successful tone mapping methods present
today. The Gradient Domain High Dynamic Range Compression by
Fattal, Lischinski, and Werman, and the Low Curvature Image
Simplifier by Tumblin and Turk prove to have better representation
of local contrast and overall “punch” in terms of local tonality
and color saturation compared to our methods. Although it is
possible to make our images look similar to the results produced by
these methods through the use of tools such as curves and manual
saturation adjustments in image editing software, it is impossible
to get exactly the same visual effect of both local contrast and
luminance compression.

8.14. Exploring High Dynamic Range Imaging: §5.1 Conclusion*

 Although the algorithms introduced in this
report for tone mapping are not among the best, they do fulfill
their goal of preserving highlight and shadow information and the
values in-between by using information from multiple images taken
at different exposures and combining them into a lower color depth
file. To review, we implemented a couple of simple existing
algorithms in MATLAB to see how they worked. We added modifications
to these algorithms as necessary, before finally attempting our own
unique algorithms. We used what we had learned from previous
courses in DSP and computer graphics to create these
algorithms.
 A natural step in advancing the algorithms
presented in this report would be the creation of a tone mapping
technique which produces images that not only hold the most amount
of detail possible, but are also visually appealing to the eye.
Although beauty is a subjective entity, producing images with high
local contrast combined with good color reproduction and saturation
is a good place to start. One way to do this might be to identify
areas where large luminance changes occur and to weight the image according to these areas
before mapping it.

8.15. Exploring High Dynamic Range Imaging: §5.2 Wavelets and HDR*

 After implementing numerous tone operators, we
were curious as to whether or not there were any applications for
wavelets in HDR. After researching, we found that while wavelets
are more often used for data compression and noise reduction in
HDR, wavelets can also be used to create an unsharp mask to adjust
the sharpness of an image.
[8]
 The unsharp mask works by increasing the
contrast at the edges. In photography, unsharp masks are created by
making a blurred version of the original image in a wet darkroom
and then overlays the two images. In most cases, the blurred
version is created by applying a Gaussian blur to a copy of the
image. The two matrices are then subtracted. If the value in the
difference matrix is greater than a specified threshold, the darker
colors are made darker and the lighter colors are made lighter in
the sharpened image.
[9]
 In our unsharp mask, instead of using a
Gaussian blur, we use wavelets to generate the blurred mask. While
the Fourier representation only retains the frequency information,
the wavelet representation contains both frequency and time
information. Since it is impossible to compute all of the wavelet
coefficients, we will use the discrete wavelet transform to analyze
our signal.
[10]The Haar DWT is
generated using filter banks.
 The filter bank splits the image into various
frequency bands. To create a level one 2D filter bank, make two
copies of the image matrix. Run a low pass filter on one copy and a
high pass filter on the other copy. Next downsample each copy of
the image matrix by removing all of the even columns. Then
recombine the two downsampled copies so that the new matrix has the
same matrix dimensions as the original. As a result, one half of
the new matrix has been low passed while the other half has been
high passed. Now that you have filtered the column vectors, you
need to do the same thing for the row vectors. The resulting matrix
should have four sections: a low passed section that was low passed
again (approximation matrix), a low passed section that was then
high passed (horizontal details), a high passed section that was
then low passed (vertical details), and a high passed section that
was high passed again (diagonal details). The section that looks
most like the original image is the one that was low passed twice.
However, it is still blurrier than the original because the high
frequencies were removed from the image. To create multi-level
filter banks, continue to high pass, low pass, and then downsample
the section of the matrix that is always low passed. To create a
blurred image, zero out all of the matrices except for the
approximation matrix, then apply the IDWT for the Haar wavelet.
[11]
 We have found that the image is sharpened if
you use a level 1 filter bank and even more so with a level 2
filter bank. However, there is visually no difference between
sharpening with a level 2 filter bank and a level 3 filter bank.
Also if the amount you sharpen by is too great, then the sharpened
image will have halos. However, as opposed to diffuse halos that
are produced by sharpening with a Gaussian blur, the filter banks
produce a somewhat blockier halo effect. While no information is
gained by applying an unsharp mask, it can be used to enhance the
images produced by some of our own images.
 [image: Figure (memorialGlobal.PNG)]

Figure 8.48.
Original Image

 [image: Figure (waveletMbefore.PNG)]

Figure 8.49.
Spliting the image into 3 levels of filter banks

 [image: Figure (waveletMafter.PNG)]

Figure 8.50.
Zeroing out everything except the approximation matrix

 [image: Figure (memorialBlur3.PNG)]

Figure 8.51.
Reconstructing the image using the zeroed-out filter banks to create a blurred image

8.16. Exploring High Dynamic Range Imaging: §6 Team Members*

Taylor Johnson

 [image: Figure (Graphic1.jpg)]

Figure 8.52.
Taylor Johnson

 Class of 2008/Wiess College/Electrical Engineering, Computer Engineering

While I have only been photographing for a few years, I have come to love the medium, and enjoyed expanding my knowledge of digital imaging techniques and theory through this project, and I hope you have been able to do the same.

Sarah McGee

 [image: Figure (snm_p.PNG)]

Figure 8.53.
Sarah McGee

 Class of 2008/Will Rice College/Electrical Engineering

 I really love computer graphics, so I was pleasantly surprised when I was able to draw a connection between electrical engineering and computer graphics while writing the new tone operators.

Robert Ortman

 [image: Figure (Robert%20-%20Cnx.png)]

Figure 8.54.
Robert Ortman

 Class of 2008/Wiess College/Electrical Engineering

 I am a junior ECE student specializing in signal processing and have been interested in photography since I was 12 so I really enjoyed being able to apply DSP techniques to HDR imaging. The project demonstates just one of the endless useful and powerful applications of signal processing. Apart from using signal processing for photography, I also hope to work on projects applying it to video compression, bioengineering, and linguistics in the future.

Tianhe Yang

 [image: Figure (Graphic2.jpg)]

Figure 8.55.
Tianhe Yang

 Class of 2009/Wiess College/Electrical
Engineering, Physical Electronics

 I am an avid photographer and love to draw in
my free time. I was able to combine my interests in art and digital
signal processing through the design and construction of this project and I
hope that you have learned as much as I have.

8.17. Exploring High Dynamic Range Imaging: §7 References*

 [1] Sumanta Pattanaik and Hector Yee,
2002
 “Adaptive Gain Control for High Dynamic Range
Image Display”

 [2]Raanan Fattal, Dani Lischinski, and Michael
Werman, 2002
 “Gradient Domain High Dynamic Range
Compression”
 [3] Jack Tumblin and Greg Turk, 1999
 “LCIS: A Boundary Hierarchy For
Detail-Preserving Contrast Reduction”
 [4]Goldman, Ron. “Lecture 17: Recursive Ray
Tracing.”, 2006
<http://www.owlnet.rice.edu/~comp360/lectures/RayTracing.pdf>.
 [5]Hearn, Donald, and M. Pauline Baker.
Computer Graphics. 2nd ed. Englewood Cliffs:
 Prentice Hall, 1994.
 [6]Martin, Arnold. “Distributed Ray Tracing.”
1999
<http://web.cs.wpi.edu/~matt/courses/cs563/talks/dist_ray/dist.html>
 [7] Erik Reinhard, Michael Stark, Peter
Shirley, and James Ferwerda
 “Photographic Tone Reproduction for Digital
Images”
 <

http://www.cs.utah.edu/~reinhard/cdrom/tonemap.pdf>
 [8]Christian Buil
 “IRIS TUTORIAL: Comet High Dynamic Range
imagery Application to Total Eclipse Processing”
 <

http://www.astrosurf.com/buil/iris/tutorial19/doc41_us.htm>
 [9]Broughton, S. Allen. “Chapter 7: Filter
Banks and the Discrete Wavelet Transform,” 1998

<http://www.rose-hulman.edu/~brought/Epubs/Imaging/waveimage.html>
 [10]Buil, Christian. “Comet High Dynamic Range
Imagery: Application to Total Eclipse Processing.” ,2006

<http://www.astrosurf.com/buil/iris/tutorial19/doc41_us.htm>
 [11]Cotton, Dale and Brian D. Buck.
“Understanding the Digital Unsharp Mask,” 2006
<http://www.luminous-landscape.com/tutorials/understanding-series/understanding-usm.shtml>
 [12]“Wavelet”, Wikipedia, 2006
<http://en.wikipedia.org/wiki/Wavelet>

8.18. Exploring High Dynamic Range Imaging: §8 Source Code*

 See the Matlab files below for source code of how we implemented these ideas.
 	HDR Imaging Main Interface

	HDR Image Creation

	HDR Imaging Tone-Mapping

	HDR Imaging Tests

	Full HDR Imaging Project Code and Results

Solutions

Chapter 2. Pocket Change

2.1. Pocket Change: Introduction and Background*

Introduction

 Many tedious processes can be automated using computers. Counting and sorting objects, especially in large numbers, is an area where humans are simply less efficient. Applying this knowledge to the problem of identifying and counting coins, a software system can be developed to recognize and tally a handful of change. The following modules describe the challenges associated with building a system that accomplishes these tasks. Good luck on your journey!

Background

 Object recognition and identification are
important aspects of machine vision. Coin recognition in particular
poses a special challenge for two reasons: 1. Coins are notoriously
difficult to photograph. They are reflective, and there are
trade-offs in evenness of lighting vs. visibility of details when
determining lighting. 2. Coins are circular objects. Unlike playing
cards, where long edges can be determined and the original image
can be transformed to a standard angle from which comparisons can
be made, coins can have arbitrary orientations and there is no way
to determine them without knowing the identity of the coin.

Process Overview

 There is a systematic process that the machine
must follow to determine the identity of a coin. The rest of this
course will go into greater detail in each step.
Image Acquisition

 First, an image must be acquired. You might
imagine that this part of the process would be the simplest, but it
actually ended up being one of our steps that was most fraught with
difficulties. Lighting ends up becoming a big issue, leading to
misidentification in systems with uneven lighting and necessitating
the use of diffuse light sources.

Circle Recognition

 Once the image is in the computer, the first
step is to locate the coins in the scene. This can be accomplished
using off-the-shelf code that implements a feature extraction
technique known as the Circular Hough Transform. Feeding the
function the image and a range of radii to detect, it will, with
high accuracy, return the radius and center of every circle (coin,
in this case) in that range in the picture.

Coin FFT Creation

 Radius and center data in hand, now we get to
the meat of the project: recognizing the coins. The key difficulty
in recognizing coins is their very circular nature. As mentioned
previously, they can have any phase. Normally you might use a
matched filter to try to determine identity of an object (the
filter with the greatest resulting magnitude is the filter of the
coin). If you were going to do that in this case, you would need a
separate matched filter not only for each coin surface, but for
each coin surface at every possible rotation. We take a different
approach. Exploiting the properties of Fourier transforms and going
through an “unwrapping process”, we are able to create unique FFTs
that are orientation agnostic.

Coin Identification

 Once we have the FFT of the coin, we have to
determine which coin it is. Beforehand, we create a
database of FFTs of known coins we want to recognize. Then, using
one of many possible comparison algorithms, we compare the FFT of
the current coin to each coin in the database, selecting the
comparison with the closest match as the identity of the
coin.

Output Display

 Once the information about each coin is known,
we can display it in any way we want. Because we record lots of
metadata for each coin, in addition to the sum we can display all
sorts of interesting statistics about the coins in the image. We
also created a way to allow rapid error checking by superimposing
the values of the coins onto the image of the coins.

 [image: Flow chart (flow.png)]

Figure 2.1. Flow chart
This is a pictorial representation of the process described above.

2.2. Pocket Change: Image Acquisition*

Overview

 High quality images are a necessary component
of any object recognition system. Factors such as lighting,
background, and motion all contribute to the instability of any
imaging environment. As soon as one of these factors changes, even
slightly, the ability for a computer to detect an object from an
image may be severely hampered. However, pursuing a controlled
environment is most likely a dead-end. In the context of real world
object recognition, environment is often not controlled and
sometimes is rapidly changing. For this project, though, we need to
create a special imaging environment to minimize the complexity of
image acquisition.

Lighting

 We need to create a
semi-ideal environment in which to image the coins. The apparatus is composed of a tough black plastic milk crate, a semi-reflective
white foam board piece, and a matte black foam board piece for the
imaging base. It is important to create a contained system because
it allows us to remove, to the best of our ability, the environment
variable. Once the box is constructed, we need to determine the
best way to light the coins. Even and consistent lighting is a
necessity. To achieve this we need to sufficiently diffuse the
lighting as to avoid specular highlighting. We hang the lights from
the top of the box at an angle to the outside edges of the box.
Doing so allows the incident light to “bounced” off the walls of
the box thus diffusing the rays. However, we you will find this to be
insufficient. It became apparent that using cloth, or even a milk jug, is a more effective approach. You can use any materials you have lying around. For example, if you cut out small squares of a white undershirt and strategically place them between the lights and the coins, you can achieve a sufficient level of light diffusion. The process may be time intensive but keep tweaking until you find agreeable results.

 [image: Image Acquisition Apparatus (BoxSmall.jpg)]

Figure 2.2. Image Acquisition Apparatus
A picture of the hardware apparatus used to image the coins.

Camera

 The camera, a Canon PowerShot S410, suspended from the top of the
box, is able to image the coins from a fixed distance and location
for each take. Because we must image multiple coins at the same
time, the camera cannot adjust its shutter speed based on the
brightness of just one coin. Thus, if there are specular
highlights on one coin, and not on another, our image would reflect this. Disparities among the coins, due to lighting, are unacceptable. This provides the motivation for
taking great pains to place the lights in a manner provides even
lighting conditions.

While we used a Canon camera, any camera should be sufficient as long as it has the ability to take quality images.

Image Capture Software

 We need to be able to quickly capture images
without any human intervention. Minute changes in the angle or location of the camera might interfere with the settings in our software. It would also remove the consistency in images we obtain by fixing the camera. We can accomplish this easily using Canon’s Remote Capture software on the computer. With the software, you have control
over exposure, white balance, and ISO levels. On the
subject of quality: it needs to be mentioned that any JPEG
compression could result in less reliable results. Because the
algorithms used for this project are dependent on recognizing
the unique details of each coin, throwing out any of that information could
have drastic effects.

The Canon Remote Capture software comes standard with many Canon cameras. It is available on the Canon website free of charge.

2.3. Pocket Change: Circle Recognition*

 Given an image, the first step is locating the
coins in the scene. Only then can you make a comparison.
 Many different methods are available for
finding circles in images. Initially, you might want to try edge detection on the image and then code an algorithm that would, based on the
located edges, determine the center of the circle. However, you will find
that circle recognition is a commonly performed task with
established algorithms. For our project, we found a user friendly circle location Matlab function
that implements the Circular Hough Transform in the MATLAB code repository.
 For more information about the Hough Transform
you can go here.
 Once you have the radii and centers of the
circles, you can then move to coin identification.

2.4. Pocket Change: Coin FFT Creation*

 Now that we've identified all the centers of the coins and their radii using the Hough transform, we can begin processing the data of each coin. The problem with comparing coins is that they can be rotated any amount, and because they're circular, there's no way to tell what the orientation is simply by looking at its general shape. To combat this, we can use the FFT and its special properties.
 We'll start by converting the pixels of the coin into a rectangular matrix. This effectively changes the coordinate system from Cartesian to Polar, but you can think of it more easily as 'unwrapping' the coin. Start by taking a radius from the center of the coin to the top of the coin. We can use Bresenham's Line Drawing algorithm to calculate which pixels belong in the radius.
 [image: Coin Unwrapping Radius (Texas Line Small.jpg)]

Figure 2.3. Coin Unwrapping Radius

A image of a radius from the center to the edge, showing
which pixels would be captured.

 Capture the pixels along this radius by storing them as a row in a matrix, with the center to the left and the outer edge to the right. Then, capture a new radius, this time with the center in the same place, but the outer edge moved slightly. The outer edge coordinate can be computed by calculating the sine and cosine of a circle with a user-defined radius.
 One problem with this approach is that as we compute each radius going around the circle, some radii will take fewer pixels than others. Since MATLAB requires that a matrix must have the same number of columns in each row, we must account for this difference. A simple solution is to remove any data that is too large by always using the minimum possible size for the radius. If the radius that you just took has more pixels than the current matrix length, truncate the outermost pixels from the new radius and store it. On the other hand, if the new radius has fewer pixels than the matrix, this means that the current radius is actually the smallest so far, so we must remove the extra data from the matrix rows before we can insert the new radius. The final product should look like this:
 [image: Unwrapped Coin (TexasUnwrappedSmall.png)]

Figure 2.4. Unwrapped Coin

The unwrapped version of the coin in Fig. 1

 Once radii have been taken for all 2π radians, the matrix contains all the unwrapped data for the coin. If we were to look at this matrix, and then look at the unwrapped version of an identical but rotated coin, the rotated one would be the same, except shifted vertically:
 [image: Unwrapped Rotated Coin (TestTexasShiftedSmall.png)]

Figure 2.5. Unwrapped Rotated Coin

A shifted unwrapped version of the coin.

 You can thus think about the rotation of the coin as a delay in time of a periodic signal. We all know from 301 that a delay in the time domain corresponds to a multiplication by a complex exponential in the frequency domain—a change which only affects the phase. Thus, if we take the FFT, the magnitude of the FFT should be the same between the two coins, and we can ignore the phase.
 We only need to take the FFT along each circumference, not along the radii. Each circumference is a column in the matrix. Fortunately for us, the FFT() command in MATLAB takes the FFT along each column when given a matrix. Simply passing our unwrapped matrix into the FFT command will return the FFT of the coin, which we can then pass into the ABS() command to find the magnitude.

2.5. Pocket Change: Coin Identification*

 So, now we have an FFT of the coin. What are
we going to compare it to? A pre-created database of course! The
database creation steps are pretty straightforward, but there are a
number of reasons for developing a streamlined approach to
it.
Database Creation

 You could create the database manually by
taking subsets of the input picture matrix and performing the
unwrapping on them manually. Manual database editing might be
feasible if you only had 10 coins to recognize. However,
considering that the United States has minted coins for all fifty
states in addition to entries for dirty coins and different
lighting conditions, you’ll probably want to simplify the process.
What we did was basically take our full code and hack it off before
the unwrapping process. The radii and centers go into a function
that displays the image of the coin to the user. The user then
enters in values for the metadata associated with that image. In
our case we used heads/tails, value in USD, coin name, and
abbreviated coin descriptor (for debugging). We created a graphical
interface in Matlab for loading images and loading and saving
database files.
 [image: Coin input GUI (coingui.png)]

Figure 2.6. Coin input GUI
The coin input GUI we developed.

Comparison

 The resulting database should contain the
metadata and the precomputed FFTs of the already unwrapped coins.
The code then takes each input FFT and compares it to each stored
FFT. There are many different algorithms to determine the
“closeness” of two FFTs.
Dot Product

 You can normalize each line of the FFT, and
then do a vector dot product with the corresponding line in the
other FFT. Then you take the average value of the resulting
one-line vector. If the two FFTs are identical, they will return a
value of 1. Depending on how different they are, the number will be
something between 0 and 1.

Sum of Differences

 You can take the FFTs, subtract them from
each other, take the absolute value, and sum all of the resulting
differences. Two identical matrices will return a value of 0. If
the matrices are at all different, the sum will be greater than
zero.

 In our implementation we found the dot
product approach to work best, though any number of matrix
comparison algorithms could work. Once all of the FFTs have been
identified, they should return the metadata to be displayed to the
user.

2.6. Pocket Change: Output Display*

 Now that we have all of the coins matched up to their counterparts in the database, we need to display the results. Since we've extracted metadata from the database, we can display various types of information in addition to simply the name of the coin. For example, since each coin is classified as being either a 'heads' or a 'tails,' we can even run statistics on what percentage of the coins are face up. A simple display mechanism is to output the result strings to the command line using the DISP() command.
 There are two easy ways to form strings. Let's say you want to output the string 'Coin 1 is a US Quarter.' and you know the index of the coin, coinIndex = 1, and the string of the type of coin from the database, name = 'US Quarter'. You can do this using concatenation in Matlab, as you would any other matrix, taking into account the conversion between numbers and ASCII:
 disp(['Coin ' num2str(coinIndex) ' is a ' name '.'])
 Alternatively, if you're familiar with C, you can use the SPRINTF() command:
 disp(sprintf('Coin %d is a %s.', coinIndex, name))
 In addition to the command line, it is useful to display the name of the coin directly on the image of the coin. We can accomplish this with the TEXT() command. Pass in the centers of the coins, the identification string from the database, and some additional optional parameters to get the string to appear better:
 text(circen(N, 1), circen(N, 2), label, 'HorizontalAlignment', 'center', 'FontWeight', 'bold', 'Color', 'red')
 [image: Labeled Coins (Coins Result Small.jpg)]

Figure 2.7. Labeled Coins

Display the identification of the coins graphically.

 From these example displays of results, you should be able to create your own types of output. Be creative!

2.7. Pocket Change: Results*

 We are very pleased with the results of our project. Passing in a composite image where the coins are identical to those in the database but are translated and rotated provides us with a perfect match for every coin. Where the accuracy starts to suffer is when we have to deal with the issues brought on by real world conditions.
We ran a series of tests with various numbers of coins to determine an average accuracy rating of the system. Generally, it seems to be approximately 75% accurate.
 [image: Pocket Change Results (Results Small.png)]

Figure 2.8. Pocket Change Results
Accuracy of coin recognition across multiple trials. Y-axis values are percentages.

 These results are promising. While these do not match the perfect accuracy rates of the composite images, we do approach 90% accuracy in some tests. However, it is important to note that we ran the tests using various amounts of coins to test runtime. The number of coins used should not impact accuracy.

2.8. Pocket Change: Improvements*

Overview

 Originally, the goal for the project was for it to be able to display a dollar value for an amount of change in realtime. Any changes to the amount, adding or removing coins, should be reflected immediately onscreen. Our goal of recognizing and counting coins was a moderate success. However, definite improvements can be made.
 Our accuracy rates range from 50% in worst case case scenarios with poor lighting and dirty or tarnished coins, to 100% with our composite test images. Clearly, the problem does not lie with the algorithm, but rather the system’s ability to capture realtime data and filter out the noise as much as possible. To address these issues, we should look at the flowchart of the system from bottom to top.

Improvements to the Device

 While using a camera would allow us to introduce novel additions like mobile capture and perspective correction, replacing it with a flatbed scanner would eliminate many of the cumbersome lighting issues. In fact, a scanner would provide a large acquisition area and the assurance that all coins are imaged without distortion. Moreover, at the same image quality as the camera, the scanner images the coins at a much smaller distance, resulting in greater detail on the coin face. It would, however, be interesting to see if we could be a piece of software that is robust enough to handle non-ideal conditions, rather than limiting its abilities to compensate for them. A system that could identify overlapping coins, for example, would be more useful.

Resolution Improvements

 The quality at which we capture our data is integral to proper identification of the coins. However, we had to sacrifice image quality for speed. Our testbed was a 3.0GHz Pentium 4 laptop. Moving the software over to a high performance server would yield considerable improvements in processing time. This would allow us to increase the resolution of our images and not worry about prohibitive increases in processing time. Increases in resolution could have a significant impact on the performance of the coin recognition system. This is an area of improvement that should be given serious attention.

The Unwrapping Algorithm

 The next element of the process that we can look at is the unwrapping algorithm. Having studied the output of it on high quality images, it seems that it introduces artifacts that negatively impact the future coin comparisons. Also, we're throwing away information about the outer parts of the coin in order to maintain a square matrix. We could counteract this by using a different line drawing algorithm that always uses the exact number of pixels in the radius, not actually taking the values of the pixels but interpolating what the proper values should be.

Refining the Comparisons

 Next, we turn our attention towards the way in which the coins are compared. We implemented radius matching to cut down on computation time and possible mismatches with other coins in the database, but we could go a step further in refining our results. A good addition to the software would be the ability to deal with full color images as opposed to gray scale ones. This would provide an obvious way of filtering out mismatches and would be done by attributing an average RGB value to each coin. Pennies would only be compared against copper colored coins and quarters would only be compared against other silver coins. Another add-on that we considered was implementing edge detection. This failed miserably with our low resolution images, as the output was too blocky to resemble anything meaningful. However, with higher quality images, there would be enough pixels for an edge detected image to contain the important details of the coin.

Improving the Database

 Lastly, we could increase accuracy by giving the program a bigger database to compare coins against. Basically, this entails adding coins of all conditions to account for the wide variety of coins that people carry. Clearly, this improvement is lacking in finesse, but this is how many recognition programs address the problem of comparing vastly different data.

Conclusions

 These changes range from simple tweaks to more involved rewrites of our code, but all should help bring the system closer to the ideal case of our composite images.

2.9. Pocket Change: Applications*

Applications

 At first glance, the project has no commercial applications whatsoever. We believe that to be the case, but only given its current implementation. There are much easier ways to sort through coins, so it’s unlikely that you will walk into your local grocery store and find a coin counting machine that uses machine vision. These can rely on comparing the physical attributes (size and weight) of the coins, which is much simpler. The problem with these machines is that they are not as open ended as our system. We can add a completely different currency by making new database entries. As such, our system does have some applications in the mobile device industry. For example, a traveler could, at the touch of a button, photograph a handful of coins in a foreign currency and receive a dollar value in a currency that he is familiar with.

Solutions

Chapter 6. Speaker Identification

6.1. Introduction to Speaker Identification*

Introduction

 Modern-day security systems are wide-ranging and usually have multiple layers to get through before they can be properly cracked. Aside from the standard locks and deadbolts and alarm systems, there are very complex methods to protecting important material. Many of these are methods that can allow or disallow a specific individual to access the material – a computer system has to be able to successfully detect a fingerprint, read an individual's eye patterns, or determine the true identity of a speaker. This last point is the focus of our project – speaker identification.

Summary

 Our project aims to determine the true identity of a specific speaker. The speaker will speak a word to the system, and the actual word itself can be any word. The system can accept any word because it is a text-independent system, meaning there is no specified word need. The system will determine the identity of a user by examining the vowel sounds, from the input speech signal. The vowel sounds will be analyzed in the frequency domain, specifically by looking at the peaks, or formants, of the frequency response of the signal. These formants will be compared with the formants of all of the group members previously stored in the database of the system. The group member with the highest resulting value after the comparison is the one identified as the speaker by the system. If no user reaches the set threshold value, then the system responds by saying there is no match for the given speaker.

Terminology

 The task our group performed is called speaker identification, and is often confused with other similar terms. The exact definitions of some of these terms is explained below.
 	Speaker recognition: Determining who is doing the speaking. Generally has two different applications – speaker identification and speaker verification. Also referred to as voice recognition.

	Speaker identification: Identifying the exact person who is speaking. The speaker is initially unknown, and must be determined after being compared to templates. There can often be a very large number of templates that are involved in identifying a speaker, as it is difficult to correctly identify a speaker.

	Speaker verification: Determining if the speaker is who he or she claims to be. The speaker’s voice is compared to only one template – the person who he or she is claiming to be.

	Speech recognition: Recognizing the actual words being said, in other words, recognizing what is being said rather than who is speaking. Often confused with voice recognition, which recognizes an individual speaker.

6.2. Key Problems in Speaker Identification*

The Questions

 The issues with speech recognition in general
are complex and wide-ranging. One of the main problems lies in the
complexity of the actual speech signal itself. In such signals, as in signal 1 below, it is very difficult to interpret the large amounts of information presented to a system.
 [image: Figure (Graphic1.png)]

Figure 6.1.
The word diablo, with DC offset removed.

 One of the more evident problems is the
jaggedness of the signal. A natural speech signal is not smooth;
instead, it fluctuates almost nonstop throughout the signal.
Another naturally occurring property of speech patterns is the
fluctuation in the volume, or amplitude, of the signal. Different
people emphasize different syllables, letters, or words in
different ways. If two signals have different volume levels, they
are very difficult to compare. Speech signals also have a very
large number of peaks in a short period of time. These peaks
correspond to the syllables in the words being spoken. Comparing
two signals becomes much more difficult as the number of peaks
increases, as it is easy for results to be skewed by a higher peak,
and, consequently, for those results to be interpreted incorrectly.
The speed at which the input single is given is also an important
issue. A user saying their name at a speed different from the speed
at which they normally speak can change results, as two versions of
the same pattern are compared. The problem is, the time over which
they are spoken is different, and must be accounted for. Finally,
when examining the signal in terms of speech verification, another
individual may attempt to mimic the speech of another person. If
the speaker has a good imitation, it would be possible for the
speaker to be accepted by the system.

The Answers

 How do you deal with the jaggedness of the
signal and the noise introduced to the signal through the
environment?
 	In order to actually account for this, you have to pass all
the signals through a smoothing filter. The filter will accomplish
two tasks: first, it gets rid of any excess noise. Second, it gets
rid of the high frequency jaggedness in the signal and leaves
behind simply the magnitude of the signal. As a result, you get a
clean signal that is fairly easy to process.

 How do you account for the different volumes
of speakers?
 	The signals must all be normalized to the same volume before
they are examined. Each signal is normalized about zero such that
all of the signals will have the same relative maximum and minimum
values, and so that comparing two signals with different volumes is
the same as comparing the same two signals if they were to have the
same volume.

 How do you examine each of the individual
peaks?
 	Just after the signal is smoothed by the filter, we use an
envelope function to detect all of the peaks of the signal. By
doing this, we can be sure that, if a signal passes a certain
threshold amount, it will be examined and compared with the
corresponding signal in the database. The analysis will not be an
analysis of the entire signal, but rather a formant analysis. The
individual formant, or vowel sounds, in the signal will be examined
and those will be used to verify the speaker.

 How does the system handle varying speeds of
inputs?
 	Both the formant analysis and the envelope functions will be
used to help with varying input speeds. The envelope of the peak
will determine which vowels are available, and the actual formants
themselves will be relatively unchanged. It is difficult to handle
very high speed voices, but most other voices can be handled
effectively.

 How can you account for imitating speech
patterns?
 	Once again, the formants of the individual signals are
analyzed to actually determine if a speaker is who he claims to be.
In most cases, the imitating formants do not match up closely with
those stored in the database, and the imitator will be denied by
the system.

6.3. Envelope Detection in Speech Signals*

Envelopes – Finding Syllables within Words

 Once the system actually reads in the values
from a voice signal, the most important thing to do is figure out
how the signal is broken up. One of the more obvious methods is
breaking a word or series of words into syllables. Although
syllables are somewhat difficult to read, as they still have
consonants, the vowel sounds make up the majority of the syllables,
not to mention the louder part of these signals. As a result,
breaking the words into syllables is a good start.
 After we pass the signal through a smoothing,
boxcar filter, there is a clear definition of the peaks. However,
the question still remains – how do you pick up one of these peaks?
In essence, the goal is to choose a correct threshold amount to
start reading signals. The most important thing is managing to
differentiate the numerous peaks while at the same time being able
to keep the peaks for each and every signal. For example, with a
threshold that is too low, noise may get picked up. More likely,
however, is that with a threshold too high, some syllables may be
ignored (figure 1).
 [image: Low Threshold Envelope Detector (Graphic1.png)]

Figure 6.2. Low Threshold Envelope Detector
An envelope with a low threshold value. The first syllable is not even detected, and will not be used for any analysis of the speech signal.

 As is evident, the first syllable gets
completely ignored. As a result, it does not factor into the actual
determination of who the speaker is. However, through testing, our
group was able to discern a value that will achieve the desired
results. Because the signal is normalized prior to being run
through the enveloping functions, that threshold will not change
for different input volumes. Thus, our desired signal output (with
smoothing) will look something like the signal in figure 2.
 [image: Correct Envelope Detector (Graphic2.png)]

Figure 6.3. Correct Envelope Detector
An envelope detector with the correct threshold value. All the syllables are accepted and cut-off at the proper points.

 This ends up being a fairly nice solution to
our problem, with one problem – the threshold cuts off the signal
at sample values, not time values. We need time values to analyze
the actual frequencies of the results so we can look at the formant
sounds within each syllable. Thus, we go back to our initial timed
signal rather than the sampled signal, and we get our desired
results (figure 3).
 [image: Enveloped Speech Signal (Graphic3.png)]

Figure 6.4. Enveloped Speech Signal
Our initial speech signal with an envelope. In this case, the start point of the envelope to the end point of each envelope correspond to the start and end points of the syllables.

 Most of the signal is preserved, and all of
the vowel sounds are preserved by the signal as well – most of what
is cut off by the signal is a consonant. Now, we have multiple
signals, each of which are almost entirely vowel sounds from our
syllables. However, we have to go back to our initial problem – how
do you analyze the vowel? How do you even interpret a signal like
this?

6.4. The Autoregressive Model and Formant Analysis*

The Autoregressive Model

 Interpreting this signal first begins with
determining an actual equation for the signal. The best way to do
that is by using an autoregressive model. An autoregressive model
is simply a model used to find an estimation of a signal based on
previous input values of the signal. The actual equation for the
model is as follows:
 [image: The Autoregressive Model (Graphic1.png)]

Figure 6.5. The Autoregressive Model
Wikipedia 2006

 The model consists of three parts: a constant
part, an error or noise part, and the autoregressive summation. The
actual summation represents the fact that the current value of the
input depends only on previous values of the input. The variable p
represents the order of the model. The higher the order of the
system, the more accurate a representation it will be. Therefore,
as the order of the system approaches infinity, we get almost an
exact representation of our input system.
 This system looks almost exactly like a
differential equation. In fact, this equation can be used to find
the transfer function for the signal.

Finding the Formants

 Once you have the transfer function, you
merely need to get your enveloped syllables and pass them through
this transfer function. Once you take the frequency response of the
transfer function, you can get a very nice plot as its
output (Figure 1).
 [image: Figure (Graphic2.png)]

Figure 6.6.
A sample frequency response. The formants are the green points at the peaks.

 This gives us something we can actually
interpret. Specifically, you can clearly see the formants of the
vowel – that is, you can see the peak values of the frequency
response. These peaks are what differentiate vowel sounds from one
another. For instance, looking at these vowel sounds, all from the
same person, there is a clear discrepancy in their
appearances (see Sample Formants).

	 [image: Subfigure (a) (Graphic3.png)](a) The "a" vowel sound.

	 [image: Subfigure (b) (Graphic4.png)](b) The "ah" vowel sound.

Figure 6.7. Sample Formants

	 [image: Subfigure (a) (Graphic5.png)](a) The "ee" vowel sound.

	 [image: Subfigure (b) (Graphic6.png)](b) The "ah" vowel sound.

Figure 6.8. Sample Formants

 Examining the first two formants, there are
clear differences between where they occur and their magnitude in
each vowel sound. These peak values will also be different from
person to person, even for the same vowel. For instance, compare
the sound ‘a’ (as in cat) for each member of the group (see Speaker Vowel Comparisons).

	 [image: Subfigure (a) (Graphic7.png)](a) Damen Hattori's "a" sound.

	 [image: Subfigure (b) (Graphic8.png)](b) Chris Pasich's "a" sound.

Figure 6.9. Speaker Vowel Comparisons

	 [image: Subfigure (a) (Graphic9.png)](a) Matt McDonell's "a" sound.

	 [image: Subfigure (b) (Graphic10.png)](b) Josh Long's "a" sound.

Figure 6.10. Speaker Vowel Comparisons

 Even though the structure of the frequency
responses are similar, the vowel sounds each have slightly
different formants, both in the frequency at which they occur and
the height that they attain. So finally, we have some way to
analyze our signal. All that remains is the final step – comparing
these formants to the formants of the whole group.

6.5. The Final Step: Identifying the Speaker*

Formant Comparisons and Identifying the Speaker

 After everything is broken down, all that is
left for the system to do is the easy part – make a simple
comparison between the input formants and the formant in the
database. The first step is in determining which vowel is actually
being spoken. This is simply an examination of the location of the
first two formant peaks. If they both fall within the range of a
specific vowel’s first two formants, they are representing that
vowel. That range is stored within the database. These ranges are
very well defined for each individual vowel and are adjusted to the
members of the group. For example, the first formant of a vowel has
a range that will include formants at frequencies just above the
highest frequency first formant in the group and just below the
lowest frequency first formant. If it does not fall in the range of
the vowel, that vowel is not the correct one, and it continues to
try the next vowel. It repeats this process until either it finds a
vowel or goes through all vowel sounds in the database. If the
formants do not fall within any particular formant range, the vowel
sound will be ignored.
 The second step is the actual comparison. The
frequency response of the input vowel sound is multiplied in a dot
product with each member’s previously stored frequency response for
the vowel. This is the vowel that was determined in the first step.
A resulting score matrix is produced from the dot product. The
score matrix will output a value from 0 to 1, with 1 being a
perfect match and a 0 being an entirely incorrect match.
 This process is repeated for each vowel sound
in the word. The score matrices are then added together, and the
system identifies the speaker as the individual with the highest
score. If, however, that individual does not pass a threshold
value, then the system determines there is no match.

6.6. Speaker Identification System Test and Results*

Identity Checking Results

 For testing purposes, we had five sounds that
the system would test – three vowel sounds, and two words. Each
member of the group tested a each sound 5 times. The possible
results for a test are as follows: match (M), meaning the system
identified the speaker correctly; incorrect match (IM), meaning the
system identified the speaker incorrectly; or no match (NM) meaning
the speaker did not find the correct speaker in the
database.
Table 6.1. Identity Checking Test Results	 	“Ah”	“Oh”	“Ay”	“Avocado”	“Diablo”
	Speaker	M	IM	NM	M	IM	NM	M	IM	NM	M	IM	NM	M	IM	NM
	Damen Hattori	4	1	0	4	1	0	3	2	0	2	3	0	4	1	0
	Josh Long	3	2	0	4	1	0	2	3	0	5	0	0	3	2	0
	Matt McDonell	1	4	0	5	0	0	3	1	1	4	1	0	5	0	0
	Chris Pasich	4	1	0	2	1	2	2	1	2	3	1	1	2	3	0
	Overall	12	8	0	15	3	2	10	7	3	14	5	1	14	6	0
	Overall PercentCorrect	60%	75%	50%	70%	70%

 Overall, the system identified speakers
correctly 67% of the time. On an individual basis, Matt McDonell
was recognized most often (72%), Damen Hattori and Josh Long were
recognized correctly equally as often (68%) and Chris Pasich was
recognized correctly with the least frequency (60%). Overall,
however, all speakers were identified at a fairly good rate, given
the complexity of the system.

Vowel Checking Results

 In addition to testing whether a speaker was
identified correctly, we also tested to see if the system correctly
identified vowel sounds. The vowel sounds were either found or not
found, and were never incorrectly identified. The overall results
are listed in the Vowel Checking Results below.
Table 6.2. Vowel Checking Test Results	 	“Ah”	“Oh”	“Ay”	“Avocado”	“Diablo”
	Vowel Found	20	18	17	71	49
	Vowel Not Found	0	2	3	9	11
	% Vowels Found	100%	90%	85%	88.75%	81.7%

 Overall, the system correctly identified 87.5%
of all vowels correctly, an extremely high rate for a vowel
checking system. As the word became more complicated, the vowels
were not found as frequently. This is a result of the added
syllables and the emphasis on the consonants in the words.

Results Overview

 Overall, our results were acceptable for a
system of this much complexity. A system that correctly identifies
the speaker with 67% accuracy is not good for security purposes,
but with fine tuning and more time, the accuracy could easily
increase. One of the more important results from our testing is
that, as the complexity of a spoken word increased, the accuracy of
the system also slightly increased. There is much more room for
error with longer words than with single-syllable vowels, and this
is reflected in the overall increase in accuracy.

6.7. Speaker Identification MATLAB files*

MATLAB Files

 main.m – The wrapper function, calls the
remaining MATLAB functions after taking in the user’s voice and
outputs the identity of the speaker.
 vocalModel.m – Creates a model of the vocal
system.
 databaseCreationScript.m – Stores the vowel
sounds of the entire group.
 graphFormant.m – Plots the frequency response
of the formants on a logarithmic scale.
 fastconv.m – Calculates the linear convolution
of two input signals.
 zerovect.m – Removes DC offset and microphone
turn on effect.
 formantaverages.m – Stores vowel models and
formant ranges in the database.
 getFormantData.m – Gets formant frequencies
and model for one speaker and one vowel.
 newenvdetect.m – Detects the start and end
points of the envelope.
 formantfind.m – Finds the formant frequencies
and magnitudes for one vocal model.

6.8. Conclusions and Thoughts on Speech Recognition*

Conclusions

 Initially looking at the experiment, the plan
was to have a text-dependent system, or a speaker verification
system, or something that could actually determine what word was
being spoken to the system by the user. It has become painfully
clear that that would be a very difficult task to accomplish, and
would require much more time, effort, and background on the subject
than we could possibly acquire in a short period of time. Our
system was, for what it did, relatively successful – it found
vowels with regularity, and it identified speakers at a rate of
almost 70% - a very good rate for a basic system.
 As obvious, however, is how much more in depth
speech recognition is than the scope of our project. Being able to
determine what is spoken or who a speaker is with near perfect
accuracy is an extremely formidable task. Preventing another
individual from breaking into the system can be just as difficult,
as it requires a system dependent on text and a system that will
not accept anything other than what it specifies. Our initial idea
of being able to determine what word was being spoken is, at best,
naïve, and at worst not at all feasible. With that said, however,
the end results were very acceptable.

6.9. The Team and Thanks*

The Team

 Our group
is:
 	Damen Hattori: A junior ELEC from Will Rice, Damen enjoys
physics, adores linear algebra, and is currently working on proving calculus. He also wrote
the code for the formant analysis and autoregressive model.

	Josh Long: A junior ELEC from Sid, Josh enjoys arts and
crafts, long walks on the beach, and watching train wrecks. Josh
helped create the beautiful poster for the presentation, in
addition to doing background research.

	Matt McDonell: A junior ELEC from Jones College, Matt wrote
the MATLAB language. All of "it". "It", of course, is the envelope
detector used in this project. But he did that just for fun.

	Chris Pasich: A junior ELEC from Lovett, Chris helped start
up connexions along with Richard Baraniuk (Chris 0%, RichB 100%). He also helped the Short
Bus get back on track by writing their connexions modules and
documenting the results from the actual testing.

Thanks and Recognition

 The team would also like to thank
Professor Richard Barniuk and Mark Davenport, who helped teach us
the material that got us started on out project. We also would like
to thank a few groups from previous years, who we looked at for
ideas: the Introduction to Methods for Voice Conversion ELEC 301 group project for a backgroup on speech signals, and the Formant Analysis and Vowel Detection ELEC 431 group project for a background on formants.
 In addition, we also found help online from two other key sources: The Speech Processing Workstation, which helped in pretty much everything, especially envelopes, and HyperPhysics Vowel Sounds site, a huge resource when examining formants.
 Finally, we want to thank MATLAB - without it, the time in lab would have been in vain.

Solutions

