
  
    
  
Chapter 2. Relations



2.1. Relations*



 We encounter different types of relationship in our daily life. Besides human relationship that we are so familiar with, there are numerous other relationships, including those which are purely abstraction of processes and ideas. 

 In essence, any two elements which are paired have potential to possess relationship between them. Now think of the Cartesian product that we have defined for two sets. It consists of ordered pairs of elements - one each from the two sets. The total numbers of ordered pairs in a Cartesian product is equal to the product of numbers of elements in each set. A particular relation, however, may not comprise all ordered pairs. 

 In this module, we shall limit our discussion to binary relations only. A binary relation is a relation as defined between two elements either from the same set of from two different sets.
 Consider a “get together”. Divide the people in two groups comprising of males and females. A certain numbers of ordered pairs will qualify for a relation say “classmate of” – not all. Similarly, a relation such as “brother of” may include some of the ordered pairs of the Cartesian product of two set. 

 

  
    M
    =
    {
    A
    ,
    B
    ,
    C
    ,
    D
    ,
    E
    }
  


 

  
    F
    =
    {
    G
    ,
    H
    ,
    I
    ,
    J
    ,
    K
    }
  


 We can represent the relationship of “classmate of” as shown here :

 

 [image: Relation (r1.gif)]
Figure 2.1.  Relation 
 Relation between elements of two sets 



 From the figure, we can write the collection of relationship “classmate of” as a set of ordered pairs of two sets,

 

  
    R
    (
        classmate of 
      )
    =
    {
    (
        A
        ,
        G
      )
    ,
    (
        A
        ,
        K
      )
    ,
    (
        D
        ,
        G
      )
    ,
    (
        D
        ,
        I
      )
    }
  


 In the nutshell, we can think of relation as a collection (set), which comprises of ordered pairs (instances of relation). Note that it is a specific relation. This is a relation between elements of two sets. Clearly, this relation set can not exceed the Cartesian product of two sets under consideration. Thus, a relation set is a subset of Cartesian product set. 

 

	 Definition:  Relation 
	  A relation “R” from a non-empty set “A” to non-empty set “B” is a subset of Cartesian product “AXB”. 





 We need to note that a relation is defined in a particular order “from” to “to”. It is for this reason, we denoted relation pictorially by an arrow which is directed from the elements of "from" set “A” to "to" set “B”. 

 
Consider few examples,

 

 

  
    R
    =
    {
    (
        x
        ,
        y
      )
    :
    x
    =
    y
    +
    1,
    x
    ∈
    A
    ,
    y
    ∈
    B
    }
  


 In certain circumstance, we are required to work with relation among the elements of the same set. For example, consider the male set defined earlier. Some of the male members may as well be classmates and hence related to each other. Such relation is relation on one set only and is called "relation on A" or "relation on B" etc. Few examples are :

 

  
    R
    =
    {
    (
        x
        ,
        y
      )
    :
    x
    =
    x
    +
    1,
    x
    ∈
    A
    }
  


 


Example



  Problem 1 :  Let 

  
    A
    =
    {
    1,2,
    …
    .
    .
    ,
    10
    }
  

. Write down the relation set in roaster form, which is defined as :

 


  Solution :  We begin with the first element of “A” i.e. x =1. Since other element also belongs to set “A”, it is required that the value of “y” be one of the elements in the set "A". 

 

 


 


 Thus, “x” can assume values “1”,”2” and “3” for which “y” can assume values “3”,”6” and “9” respectively in accordance with the given relation. The relation, therefore, is set of ordered pairs :

 

  
    R
    =
    {
    (
        1,3
      )
    ,
    (
        2,6
      )
    ,
    (
        3,9
      )
    }
  


 We can visualize the relation pictorially as shown in the figure.

 
 [image: Relation on self (r2a.gif)]
Figure 2.2.  Relation on self 
 Relation between elements of the same set 




Domain of the relation



 The domain represents the valid values of the first element of the ordered pairs in the relation. Clearly, the elements of domain of a relation belong to “from” set “A”. But, elements in the domain are only those which are valid for the relation. It means that domain does not consist of all elements of “from” set “A”. Thus, domain set is a subset of “from” set “A”.

 

	 Definition:  Domain 
	  The set of first elements of all ordered pairs in the relation “R” from set “A” to “B” is called the domain of relation “R”. 





 
We can write the domain set of relation “R” from set “A” to set “B” in set builder form as :

 

  
    Domain
    (
        R
      )
    =
    {
    x
    :
    (
        x
        ,
        y
      )
    ∈
    R
    }
  


 Consider the example given earlier. The relation set is :

 

  
    R
    =
    {
    (
        1,3
      )
    ,
    (
        2,6
      )
    ,
    (
        3,9
      )
    }
  


 The domain according to definition is : 

 

  
    Domain
    (
        R
      )
    =
    {
    1,2,3
    }
  


 

  
    ⇒
    Domain
    (
        R
      )
    ⊂
    A
  


Co-domain



 
In a relation “R” from set “A” to “B”, the set “B” is called co-domain. 



Range of the relation



 The range represents the valid values of the second element of the ordered pairs in the relation. 

 

	 Definition:  Range 
	  The set of second elements of all ordered pairs in the relation “R” from set “A” to “B” is called the range of relation “R”.





 
We can write the range set of relation “R” from set “A” to set “B” in set builder form as :

 

  
    Range
    (
        R
      )
    =
    {
    y
    :
    (
        x
        ,
        y
      )
    ∈
    R
    }
  


 Consider the example given earlier. The relation set is :

 

  
    R
    =
    {
    (
        1,3
      )
    ,
    (
        2,6
      )
    ,
    (
        3,9
      )
    }
  


 The range according to definition is : 

 

  
    Range
    (
        R
      )
    =
    {
    3,6,9
    }
  


 Clearly, the elements of range of a relation belong to “to” set “B”. But, elements in the range are only those which are valid for the relation. It means that range does not consist of all elements of “to” set “B”. Thus, range set is a subset of “to” set “B”.

 

  
    Range
    (
        R
      )
    ⊂
    B
  



Example



  Problem 2 : Let 

  
    A
    =
    {
    1,2,3,4,5
    }
  

 and 

  
    B
    =
    {
    1,4,5
    }
  

. Let a relation from “A” to “B” is :

 


 Find R, Domain (R) and Range(R).

  Solution :  Let us find “y” for each value of “x”.

 


 


 


 


 


 Hence,

 

  
    R
    =
    {
    (
        1,4
      )
    ,
    (
        1,5
      )
    ,
    (
        2,4
      )
    ,
    (
        2,5
      )
    ,
    (
        3,4
      )
    ,
    (
        3,5
      )
    ,
    (
        4,5
      )
    }
  


 

  
    Domain
    (
        R
      )
    =
    {
    1,2,3,4
    }
  


 

  
    Range
    (
        R
      )
    =
    {
    4,5
    }
  



Numbers of relations



 Between two sets, the Cartesian product set consists of all possible instances of relation as ordered pair. Here, we need to find the total possible relations that can be generated from these ordered pairs. We have seen that total numbers of ordered pairs in the Cartesian product of sets “A” and “B” is “pq”, where “p” and “q” are the numbers of elements in two sets respectively.

 Now, relation is nothing but a subset of the Cartesian product. It means that total numbers of relation is equal to total numbers of possible subsets of the Cartesian product. Recall that the set formed from all possible subsets is called power set. The numbers of subsets in the power set is given by 

 

  
    n
    =
    2pq
  


 Clearly, this number “n” denotes all possible relations (subsets) that can be generated from two finite sets. We should, however, be careful in interpreting this number as it also contains the mandatory empty set, which is not a meaningful set from the point of view of relation.


Inverse relation



 Inverse relation of a given relation “R” from set “A” to set “B” is set of ordered pairs in which first and second elements exchanges their positions. The inverse set is defined in reference to a given relation. The inverse relation of a given relation “R” from “A” to “B” is denoted as “

  
    R
        –
        1
      
  
”. Clearly,

 


 where,

 

  
    R
    =
    {
    (
        x
        ,
        y
      )
    :
    (
        x
        ,
        y
      )
    ∈
    A
    X
    B
    }
  


 We should be careful to understand that “-1” is not a power, but a part of symbol to represent inverse relation with respect to a given relation. It is also clear that :

 

  
    I
    f
    (
        x
        ,
        y
      )
    ∈
    R
    ⇔
    (
        y
        ,
        x
      )
    ∈
    R
        –
        1
      
    .
  


 As the elements in the ordered pair of the relation exchanges positions, domain and range sets are exchanged across the sets.

 

  
    Domain
    (
        R
            –
            1
          
      )
    =
    Range
    (
        R
      )
  


 

  
    Range
    (
        R
            –
            1
          
      )
    =
    Domain
    (
        R
      )
  


Example



  Problem 3 : Let 

  
    A
    =
    {
    1,2,
    …
    .
    .
    ,
    10
    }
  

. A relation on “A” is defined as 

 


 
Find 

  
    R
        –
        1
      
  

, Domain (

  
    R
        –
        1
      
  

) and Range (

  
    R
        –
        1
      
  

).

  Solution :  In the earlier example, we determined the relation “R” as :

 

  
    R
    =
    {
    (
        1,3
      )
    ,
    (
        2,6
      )
    ,
    (
        3,9
      )
    }
  


 According to the definition of inverse set, the elements of the ordered pair in the relation set are exchanged :

 


 Clearly, inverse relation can be represented in set builder form as :

 

 Now, the domain and range of 

  
    R
        –
        1
      
  

 are : 

 


 

  
    Range
    (
        R
            –
            1
          
      )
    =
    (
        1,2,3
      )
  





2.2. Relation types*



 Relations among elements of a set have wide possibilities. A systematic approach to study them is facilitated by recognizing different relation types. It should be noted that all relation types described here are relation on one set. 

 We describe a relation on set itself as :

 

	 Definition:  Relation on A 
	  A relation “R” from set “A” to “A” is called a “relation on A”. 





 In this module, we shall be using a symbol, “xRy” to denote an instance of relation (ordered pair).  The symbol conveys that the instance of relation denoted by the symbol is an ordered pair (x,y), which follows relation “R”. 

Void relation



 Relation is a subset of Cartesian product of two sets. We have seen that power set of Cartesian product “

  
    A
    ×
    B
  

” is a set of all possible relations among the elements of sets “A” and “B”. In the case of “relation on A”, the power set of Cartesian product “

  
    A
    ×
    A
  

” is a set of all possible relations among the elements of set “A”. 

 One of the subsets of the power set is empty set or void set. This subset without any element is called the void relation.

 

  
    R
    =
    φ
    =
    {
    }
  



Universal relation



 Universal relation is the widest possible relation. This relation consists of all ordered pairs of the Cartesian product “

  
    A
    ×
    A
  

”.

 

  
    R
    =
    A
    ×
    A
  


 Consider a set 

  
    A
    =
    {
    1,2,3
    }
  

. Then, universal relation set is :

 

  
    R
    =
    {
    (
        1,1
      )
    ,
    (
        1,2
      )
    ,
    (
        1,3
      )
    ,
    (
        2,1
      )
    ,
  


 
  
    (
        2,2
      )
    ,
    (
        2,3
      )
    ,
    (
        3,1
      )
    ,
    (
        3,2
      )
    ,
    (
        3,3
      )
    }
  



Identity relation



 An identity relation is defined as :

 

	 Definition:  Identity relation 
	  
In an identity relation "R", every element of the set “A” is related to itself only. 





 Note the conditions conveyed through words “every” and “only”. The word “every” conveys that identity relation consists of ordered pairs of element with itself - all of them. The word “only” conveys that this relation does not consist of any other combination. 

 Consider a set 

  
    A
    =
    {
    1,2,3
    }
  
. Then, its identity relation is :

 
  
    R
    =
    {
    (
        1,1
      )
    ,
    (
        2,2
      )
    ,
    (
        3,3
      )
    }
  


 It is evident that a set has only one such relation. This relation, as we can see, identifies the set - as it identifies each elements of the set, which are related to itself. By looking at the relation, we can identify the set itself. For this reason, the name of this relation is identity relation. In set builder form, we express an identity relation as 

 

 The qualification of the relation is that first and second element of the ordered pair is same element, which belongs to set A.

 The followings are not an identity relation :

 

 


 First one is not an identity relation as it does not include the pairing of remaining element “3”. Second is not an identity relation, because there are other combinations of pairs in the relation.


Reflexive relation



 Reflexive relation is an expansion of identity relation. In the simple word, reflexive relation is plus identity relation. 

 

	 Definition:  Reflexive relation 
	  
In reflexive relation, "R", every element of the set “A” is related to itself.  





 
The definition of reflexive relation is exactly same as that of identity relation except that it misses the word “only” in the end of the sentence. The implication is that this relation includes identity relation and permits other combination of paired elements as well. 

 Consider a set 
  
    A
    =
    {
    1,2,3
    }
  
. Then, one of the possible reflexive relations   can be :

 
  
    R
    =
    {
    (
        1,1
      )
    ,
    (
        2,2
      )
    ,
    (
        3,3
      )
    ,
    (
        1,2
      )
    ,
    (
        1,3
      )
    }
  



 However, following is not a reflexive relation :

 

 It is not a reflexive relation as one instance of identity relation (3,3) is absent and violates the condition that every element of the set is related to itself. 

 
We state the condition for reflexive relation as :

 

 It is clear that identity relation is a reflexive relation. Further, universal relation consists of all combinations of ordered pairs in the Cartesian product. It means it consists of all elements of the identity relation apart from other ordered pairs. Hence, universal relation is also a reflexive relation.

Interpretation of reflexive relation



 Reflexivity of a relation (meaning that a relation is reflexive) is used to characterize important algebraic relations. Following relations are reflexive :

 

 	 “is equal to” 

	 “is less than or equal to” 

	 “is greater than or equal to” 

	 “divides” 

	 “is subset of” 





 The relation “is less than” or “greater than”, however, are not reflexive.


Examples



  Problem 1 :  Determine whether “greater than or equal to” is a reflexive relation for natural number.  

  Solution :  A relation, “R”, representing  “greater than or equal to” is defined as relation on natural number (N) as :

 


 We construct data for “x” and “y” in accordance with the given relation for few initial natural numbers, say 1, 2 and 3, as under :

 

 

 

 
Thus, the relation set is :

 
  
    R
    =
    {
    (
        1,1
      )
    ,
    (
        1,2
      )
    ,
    (
        1,3
      )
    ,
    (
        2,2
      )
    ,
    (
        2,3
      )
    ,
    (
        3,3
      )
    }
  


 Evidently, this set consists of relation of all elements of the set, which are related to itself ie. (1,1), (2,2) and (3,3). Thus, we conclude that “is greater than or equal to” is a reflexive relation.


  Problem 2 :  Determine whether “is not equal to” is a reflexive relation for natural number?  

  Solution :  A relation, “R”, representing “is not equal to” is defined as relation on natural number (N) as :

 


 We construct data for “x” and “y” in accordance with the given relation for few initial natural numbers, say 1,2 and 3, as under :

 

 

 

 Thus, the relation set is :

 
  
    R
    =
    {
    (
        1,2
      )
    ,
    (
        1,3
      )
    ,
    (
        2,1
      )
    ,
    (
        2,3
      )
    ,
    (
        3,1
      )
    ,
    (
        3,2
      )
    }
  


 Evidently, this set does consists of all ordered pair representing relation of an element with itself.  The instances (1,1), (2,2) and (3,3) are missing. Thus, we conclude that “is not equal to" is a irreflexive relation.




Symmetric relation



 In symmetric relation, the instance of relation has a mirror image. It means that if (1,3) is an instance, then (3,1) is also an instance in the relation. Clearly, an ordered pair of element with itself like (1,1) or (2,2) are themselves their mirror images. Consider some of the examples of the symmetric relation,

 


 

 We have purposely jumbled up ordered pairs to emphasize that order of elements in relation is not important. In order to decide symmetry of a relation, we need to identify mirror pairs. We state the condition of symmetric relation as :

 


 The symbol “Iff” means “If and only if”. Here one directional arrow means “implies”. Alternatively, the condition of symmetric relation can be stated as :

 

 In words, we say that if (x,y) be an instance of relation, then (y,x) will also be the instance of a symmetric relation "R".

 It is clear that identity relation is a symmetric relation. Also, universal set consists of the Cartesian product of a set with itself. It means that the relation consists of instances with mirror instances. Therefore, universal relation is also symmetric relation.

Symmetric and inverse relation



 An inverse relation (
  
    R
        −
        1
      
  
) consists of ordered pairs with exchange of positions of the elements in a given relation (R). Now let us consider a symmetric relation,

 
  
    R
    =
    {
    (
        1,2
      )
    ,
    (
        1,3
      )
    ,
    (
        2,1
      )
    ,
    (
        3,1
      )
    ,
    (
        3,3
      )
    }
  



 By definition, its inverse relation is :

 


 Using the fact that order does not change a set, we conclude that :

 
  
    ⇒
    R
    =
    R
        –
        1
      
  


 We use this fact to identify symmetric relation. The given set is a symmetric relation, if it equals its inverse set.

Analytical proof



 Let “R” be a symmetric relation on set “A”. In order to prove that 
  
    R
    =
    R
        –
        1
      
  
, we consider an arbitrary instance of relation “R” :

 
  
    (
        x
        ,
        y
      )
    ∈
    R
  


 According to definition of symmetric relation, 

 
  
    (
        y
        ,
        x
      )
    ∈
    R
  


 According to definition of inverse relation,

 
  
    (
        x
        ,
        y
      )
    ∈
    R
        –
        1
      
  


 But, we had started with “R” and used definitions to show that “(x,y)” belongs to another set “
  
    R
        −
        1
      
  
”. It means that the “
  
    R
        −
        1
      
  
”set consists of the elements of set “R” – at the least.  Thus,

 
  
    R
    ⊂
    R
        –
        1
      
  

 Similarly, we can start with “
  
    R
        –
        1
      
  
”set and reach the conclusion that :

 
  
    R
        –
        1
      
    ⊂
    R
  


 If sets are subsets of each other, then they are equal. Hence,

 
  
    ⇒
    R
    =
    R
        –
        1
      
  




Asymmetric relation



 A relation “R” on a set “A” is asymmetric for the following condition :

 


 It means that possibility of symmetry in asymmetric relation exists only if elements are equal. 


Transitive relation



 If “R” be the relation on set A, then we state the condition of transitive relation as :

 


 Alternatively,

 


 In words, we say that if (x,y) and (y,z) be the instances of a relation R such that (a,z) is also the instance of the relation, then that relation is transitive.

 The identity and universal relations are transitive. Some other important transitive relations are :

 

 	 “is equal to” 

	 “is greater than” 

	 “is at least as great as” 

	 “is a subset of” 

	 "divides" 





Example



  Problem 3 :   Determine whether “divides” is a transitive relation for natural number?  

  Solution :   Let us consider three elements “x”,”y” and “z” of set “N” of natural numbers such that a relation “R” on “N” is :

 


 This means that :

 

 Let us now consider two natural numbers “a” and “b” such that :

 

 
  
    z
    =
    a
    b
    x
  


 This means that “x divides z”. Hence, we conclude that the relation "divides" is transitive relation.



Equivalence relation



 A relation is equivalence relation if it is reflexive, symmetric and transitive at the same time. In order to check whether a relation is equivalent or not, we need to check all three characterizations.



2.3. Functions*



 Function is a special relation. It is also conceived as a “rule”, because function is a relation between elements of two sets, following certain rule. Every element of a set (say A) is related to exactly one element of other set (say B). This relationship is described as mapping of all elements of one set to elements of another set.

 In order to emphasize, we need to enumerate the way “function” relation is special :

 

 	 Every element of set “A” is related to elements in set “B”. 

	 An element of set “A” is related to exactly one element of “B”. 





 It can be deduced from the above characterization of a function that the element of set “B” may be paired with none or one or more elements of set “A”.

 In order to illustrate function relation, let us consider an example. Let "A" and "B" be two sets as given here :

 
  
    A
    =
    {
    –
    1,0,1,2,3
    }
  
 
 
  
    B
    =
    {
    –
    1,
    0,1,2,3,4,5,6,7,8,9,10
    }
  



 The two sets are related by the relation : 
 


 The values of “y” for given values of “x” are :

 


 


 


 


 


 The relation between two sets is pictorially shown with arrow diagram. We note that all elements of “A” are mapped. Further, elements in “A” are uniquely mapped i.e. they are paired to exactly one element of set “B”. It is, however, possible that few of the elements in set “A” are related to same element in “B” like "-1" and "1" in set "A" are related to "0" in set “B”. In the nutshell, we see that this relation meets both properties as enumerated for a function relation and hence is a function relation.

  

 [image: Function relation (f1.gif)]
Figure 2.3.  Function relation 
 Every element of set “A” is related to exactly one element in set “B”.



 Looking in reverse direction, we see that elements in “B” may be paired – with no element (1,2,4,5,6,7,9,10) or with one element (-1,3,8) or with more than one element (0) in "A". 

 We generally drop word “relation” from “function relation” and call it simply as “function”. The function is denoted by a small letter like “f”. To elaborate the direction of function, we expand the symbol as :

 

  
    f
    :
    A
    →
    B
  


 This means that function is mapped from “A” to “B”. Now, in order to define the function, we need to understand the concept of “image” and “pre-image” elements. We call first element “x” of set “A” in the ordered pair (x,y) of the function as the “pre-image” of second element “y” of set “B”. The second element “y” of set “B” is called the “image” of the first element “x” of set “A”. 

 The image is also denoted as “f(x)”. We read “f(x)” as image of “x” under rule “f”. For a particular value of x = a, "f(a)" is a particular instance of image :

 

  
    f
    (
        a
      )
    =
    b
  


 

	 Definition:  Function 
	  A relation “f” is a function, if every element in set “A” has one and only one image in set “B”.





Domain, range and co-domain of function



 As all the elements of set “A” are involved, it emerges that that the set of first elements in the ordered pairs i.e. domain set is same as set “A”. We can not say the same for set "B". The set “B” may have other elements than those, which have been mapped with the elements of “A”. The range is simply the set of images of the function. However, as defined earlier, the set “B” is co-domain of the relation and hence that of function in this special case. It is clear that range is a subset of co-domain "B".

 

  
    
      Domain of "f"
    
    =
    A
  


 

  
    
      Co-domain of "f"
    
    =
    B
  


 

  
    
      Range of "f"
    
    =
    
      Set of images
    
    =
    {
    f
    (
        x
      )
    :
    x
    ∈
    A
    }
  



Equal functions



 Two functions are equal, if each ordered pair in one of the two functions is uniquely present in other function. It means that if “g” and “h” be two equal functions, then : 

 


 Two functions g(x) and h(x) are equal or identical, if all images of two functions are equal. Further, we can visualize equality of two functions in a negative context. If there exists “x” such that g(x)≠ h(x), then two functions are not equal. We state this symbolically as :

 


 The important question, however, is that whether equality of functions in terms of equality of images is a sufficient condition? We can see here that two functions can meet the stated condition even if they are constituted by different sets of ordered pair. There may be additional ordered pairs, which are present in one, but not in other.

 
In order to remove such possibilities, two equal functions should have same domain. This will ensure that set of ordered pairs in two functions are same. We conclude this discussion by saying that two functions are equal, iff

 

 	 g(x) = h(x) for all “x” 

	 Domain of “f” = Domain of “h”  





 
It is clear that equality of functions, however, do not require that co-domains be equal. 


Real function



 If the range of a function is a set of real numbers, then the function is called “real valued function”. In other words, if the range of a function is either the set “R” or its subset, then it is a real valued function. We should emphasize here that “R” denotes set of real number and it is not the symbol for relation, which is also denoted as “R”. 

 Further, we distinguish “real valued function” from “real function”. The very terminology is indicative of the difference. The term “real valued function” means that the value of function i.e. image is real. It does not say anything about “pre-image”. Now, there can be a function, which accepts non-real complex numbers, but maps to a real value. 

 On the other hand, a real function has both image and pre-image as real numbers. It follows then that the domain of a “real function” is also either a set or subset of real numbers.

 

	 Definition:  Real function 
	  A function is a real function, if its domain and range are either “R” or subset of “R”. 





 

 Our discussion from this point onwards in the course relates to real function only – unless otherwise stated.




Interpretation of function relation



 It is intuitive to find similarity of an algebraic equation to the “rule” of a function. Consider an equation,

 

  
    y
    =
    x2
    +
    1
  


 This equation is valid for all real values of “x”. The set of real values of “x”, belongs to set “R”. The set of values of “y” also belongs to set of “R”. On the other hand, the equation itself is the rule that maps two sets comprising of values of “x” and “y”. 
 Alternatively, we can write the rule also as :

 

  
    ⇒
    f
    (
        x
      )
    =
    x2
    +
    1
  


 In terms of rule, we define function, saying that :

 


 We read it as : “f” is a function from “R” to “R” by the rule given by 

  
    f
    (
        x
      )
    =
    x2
    +
    1
  
.

 From this description, we think a function as a relation, which is governed by a specified rule. The rule relates two sets known as domain and co-domain, which are sets of real numbers. One of the quantities “x” is independent of other quantity “y”. The other quantity “y” is a dependent on quantity “x”. In plain words, one of the interpretations is that function relates dependent and independent variables. As a matter of fact, we would attach additional meanings to the concept of function as we proceed to study it in details.


Example



  Problem 1 :   Let “A” be the set of first three natural numbers. A real function is defined as :

 

 Find (i) domain of “f” (ii) range of “f” (iii) co-domain of “f” (iv) f(3) and (v) pre-images of  2 and 4.

  Solution :   Here set “A” is the domain of “f”. Hence,

 

  
    
      Domain of "f"
    
    =
    A
    =
    {
    1,2,3
    }
  


 For determining the range, we need to find images for the each element of the domain as :

 


 


 


 Hence, range of function is given as :
 
  
    
      Range of "f"
    
    =
    A
    =
    {
    2,5,10
    }
  


 Co-domain of the function is the second set on which the elements of first set are mapped. It is given that “f” is a function from set “A” to set “N”. Hence,

 

  
    
      Co-domain of "f"
    
    =
    N
  


 The image of set for x = 3 has been already calculated. It is :

 

  
    ⇒
    f
    (
        3
      )
    =
    x2
    +
    1
    =
    32
    +
    1
    =
    10
  


 For pre-image of f(x) = 2, we have :

 

  
    ⇒
    f
    (
        x
      )
    =
    2
    =
    x2
    +
    1
  


 
  
    ⇒
    x2
    =
    1
  


 

  
    ⇒
    x
    =
    1,
    –
    1
  


 But, only "1" is an element of domain set "A" - not "-1". Hence, "pre-image" of "2" is "1". 
 
For pre-image of f(x) = 4, we have :

 

  
    ⇒
    f
    (
        x
      )
    =
    4
    =
    x2
    +
    1
  


 

  
    ⇒
    x2
    =
    3
  


 


 
But it is given that domain is first three natural numbers only. Thus, we conclude that “4” has no pre-image.


Numbers of functions



 We can find out maximum numbers or total possible numbers of functions that can be generated by the rule from given domain and co-domain sets, provided these sets are finite sets. We have noted that the total numbers of relations generated from Cartesian product of two sets “A” and “B” is given by :

 

  
    N
    =
    2pq
  


 where “p” and “q” are the finite numbers of elements in sets “A” and “B”. 

 However, function is a special relation, in which each element of set ”A” is related to exactly one element of set “B” - unlike in the case of power set in which we count all possible combinations. Hence, number of possible relations is not same as the numbers of possible functions. 
 For determining total numbers of functions from two given sets, let us consider that “m” and “n” denote the numbers of elements in domain “A” and co-domain “B” respectively. Then, an element of domain can combine with one of the “n” elements in “B”. Hence, total numbers of such relations for a total of “m” elements in set “A” is :

 

  
    Nf
    =
    m
    X
    n
    =
    m
    n
  



Finite and infinite functions



 The numbers of elements of ordered pair in the function set is equal to the numbers of elements in domain set. This follows from the fact that every element of domain set “A” is related to an unique element in “B”. Thus, if domain is a finite set, then the resulting function is finite. Consider the earlier example, when A = {1,2,3} and function is defined as :

 


 The function set is a finite set : 

 

  
    f
    =
    {
    (
        1,2
      )
    ,
    (
        2,5
      )
    ,
    (
        3,10
      )
    }
  


 On the other hand, if we expand this function by defining the relation from the infinite set of natural numbers, “N” to “N”, then resulting set of ordered pair is an infinite set and so is the function :

 


 The resulting function set, in the set builder form, is given as :

 


Function graphs



 Here, we shall introduce an alternative way to represent a function. We should be aware that we can define a function even with a graph. Graphical representation of function is intuitive and revealing about their characteristics. 

 Function is a set of ordered pairs between “x” and “y” from domain and co-domain sets respectively in accordance with certain rule. If we look closely at the function set, then it is easy to realize that the elements of ordered pair (x,y) can be considered to be coordinates “x” and “y” of a planar coordinate system.

 We represent independent variable, “x” i.e. the element of domain set “A” as abscissa along x-axis and dependent variable, “y”, i.e. the element of co-domain “B” as ordinate along y-axis. A point on the plot represented by coordinate (x,y) is an instance of or value of the function for a given value of “x”. Compositely, the graph itself is the collection of all such points, which form part of the function set.

 For example, we draw a graph, which is defined as :

 


 In order to plot the function, we evaluate function values for values of “x” :

 


 


 

  
    …
    …
    …
    …
    …
    …
    …
    …
    …
    …
  


 

  
    …
    …
    …
    …
    …
    …
    …
    …
    …
    …
  


 


 

 [image: Function graph (f2.gif)]
Figure 2.4.  Function graph 
 The plot is a collection of discrete points.



 
Note that plot of the function is a collection of discrete points only. 

 For the plot to be continuous, it is clear that the domain and co-domain of the function should be set of real numbers. In that case, we can define the function as :

 


 The corresponding plot is a bisector straight line, passing through the origin, as shown in the figure here :

 

 [image: Function graph (f3.gif)]
Figure 2.5.  Function graph 
 The plot is a continuous straight line passing through origin.




Classification of real functions



 Real functions can be classified from different point of views. Here, we present few major classifications.

 
 Based on expression types

  1: Algebraic function : The function (function rule) consists of algebraic expression, consisting of terms, which are constituted of constants and variables. The variables of algebraic expressions may be raised to a constant exponent. Example :

 


  2: Transcendental function : The non algebraic functions are called transcendental functions. They include logarithmic, exponential, trigonometric and inverse trigonometric functions etc. Example : 

 

  
    sin
    x
    +
    cos
    x
  


 
 Based on independent and dependent variables

  1: Explicit function : A function is an explicit function, if its dependent variable can be expressed in terms of independent variables only. Example :

 

  
    y
    =
    x2
    +
    1
  


  2: Implicit function : A function is an implicit function, if its dependent variable can not be expressed in terms of independent variables only. Example :

 

  
    x
    y
    =
    sin
    (
        x
        +
        y
      )
  




2.4. Function types*



 The relation between two sets under a rule has two perspectives. We can look at the relation in the direction from domain set “A” to co-domain set “B”. This is the function view. But, we can also look this relation in opposite direction from “B” to “A”.

 When we see function relation from domain “A” to co-domain “B”, then we find following possibilities :

 
 	Every element of domain is related to different element of co-domain ( one to one function or injection)

	 More than one elements of domain is related to an element of co-domain ( many to one function) 






 When we see relation from co-domain “B” to domain “A”, then we find following possibilities :

 
 	There are elements in co-domain, which are not related to any of the elements in domain ( into function).

	 There are no elements in co-domain, which are not related to elements in domain ( onto function or surjection). 

	 There are elements in co-domain, which are related to exactly one element in domain. This statement is an equivalent statement ( one to one function). 

	 There are elements in co-domain, which are related to more than one element in domain. This statement is an equivalent statement ( many to one function). 



 

 Thus, we see that there are many ways in which a function - as a relation - can be unique and hence different. This gives rise to function types, which – as we shall see – are reflection of different possibilities that we have enumerated above. 

One - one function (Injection)



 As is evident, this function describes relation in which something can be related distinctly to something. The countries have unique and distinct capital. It is evident that a function, based on this relation, would be an injection.

 

	 Definition:  One - one function (Injection) 
	  A function 

  
    f
    :
    A
    →
    B
  
 is an injection, if different elements of domain set “A” have different images in co-domain set “B”. 





 In plain words, every “x” in “A” associates with a distinct “y” in “B”. We can yet put it like this : Every argument (x) is related to distinct value (y).

 In order to represent the condition of injectivity symbolically, we can think of two different elements “x” and “y” in set “A”. Then, two images f(x) and f(y) in “B”, corresponding to these elements in “A” are not equal. We capture this intent in constructing condition for an injection as :

 

 We can also interpret injection by asserting that if two images are equal, then it means that they are images of the same pre-image. The map diagram, corresponding to an injection, is shown in the figure. Note that elements in “A” are mapped to different elements in “B”.

 
 [image: one-one function (injection) (rt1.gif)]
Figure 2.6.  one-one function (injection) 
 Every argument (x) is related to distinct value (y). 



Example 



  Problem 1:  Consider a function defined as :

 


 Determine whether the function is an injection?

  Solution :  We consider two arbitrary elements of the domain set such that :

 

  
    f
    (
        x
      )
    =
    f
    (
        y
      )
  


 We have deliberately considered a contradictory supposition with respect to the requirement of injectivity. If this supposition yields x = y, then the given function is an injection; otherwise not. Here,

 

  
    ⇒
    x2
    +
    1
    =
    y2
    +
    1
  


 

  
    ⇒
    x2
    =
    y2
  


 

  
    ⇒
    x
    =
    ±
    y
  


 This is not an unique solution. Here, “x” is not uniquely equal to “y”. We conclude that given function is not an injection. As a matter of fact, we can infer a check on our conclusion as,

 

  
    ⇒
    f
    (
        1
      )
    =
    f
    (
        –
        1
      )
    =
    2
  


 
Thus, we see that two pre-images relate to one image, which is contradictory to the requirement of an injection. 


Increasing and decreasing functions



  The fact that function value is different for different arguments has an important bearing on the nature of injection plot. Consider two plots shown in the figure. In the plot shown on the left, a straight line parallel to x-axis intersects the plot only once. In the second plot, a line parallel to x-axis intersects the plot at two points for 

  
    x
    =
    x1
  

 and 

  
    x
    =
    x2
  

. The function represented by second plot is not an injection as two values of arguments map to a single value of function – not two different values as required for an injection function.

 

 [image: one-one function (injection) (rt2.gif)]
Figure 2.7.  one-one function (injection) 
 Injection graph is either increasing or decreasing. 



 It means that intersection plot intersects a line parallel to x-axis only once. This is possible only if the function is either (i) continuously increasing or (ii) continuously decreasing. Note the use of word “continuously”. An increasing plot, for example, if drops, then we can always find a line parallel ot x-axis, which intersects it at two points.

 Hence, an injection graph is either an increasing or decreasing type. We can associate these characteristics with differential calculus. We can say that :

 Either

 


 
or, 

 


 As a matter of fact the derivative can be equal to zero for certain values of "x" - not for an interval of "x". Thus, we can write the condition of increasing function : iif function is continuous and 
 

 Similarly, we can write the condition of decreasing function : iif function is continuous and 
 



Many – one function



 More than one pre-images of a function are related to same image. 

 

	 Definition:  Many - one function 
	  A function 

  
    f
    :
    A
    →
    B
  

 is an many – one function, if two or more elements of domain set “A” have the same images in co-domain set “B”.





 The test of condition for many-one function is easy : if a function is not one-one, then it is many-one. Alternatively, we can check literally going by the definition – whether there exist such many-one relation. A map diagram showing the relation will reveal such instances of many-one relation.

 

 [image: Many-one function (rt3.gif)]
Figure 2.8.  Many-one function 
 More than one pre-images of a function are related to same image.  



 Modulus function is one such many-one function. The function yields same value for positive and negative arguments of same magnitude.

 

  
    f
    (
        x
      )
    =
    |
    x
    |
  


 
  
    ⇒
    f
    (
        –
        1
      )
    =
    |
    –
    1
    |
    =
    1
  


 
  
    ⇒
    f
    (
        1
      )
    =
    |
    1
    |
    =
    1
  


 We should understand that a reverse function of the type “one to many” is barred from the very definition of function. The element of domain can be related to exactly one element in co-domain.


Onto function (surjection)



 The definition of function puts the restriction on domain that every element in it is related. If we extend this restriction to co-domain also, then we get a function called “onto” or “surjection”.

 
	 Definition:  Onto function (surjection) 
	  A function 

  
    f
    :
    A
    →
    B
  

 is an onto function or surjection, if every element of co-domain set is the image of some element in the domain set “A”. 







 

 [image: Onto function (surjection) (rt4.gif)]
Figure 2.9.  Onto function (surjection) 
 Every element of co-domain set is the image of some element in the domain set “A”.  



 One of the implications of surjection is that all elements of co-domain is related. It reduces the co-domain to range set. In other words, co-domain is also the range of the function.

 

  
    
      Co-domain of "f"
    
    =
    
      Range of "f"
    
  


 This equality of sets form one of the condition for testing a function to be surjection. Alternatively, we can check surjectivity by evaluating the rule of the function for the argument “x”. If the expression of “x” is valid for elements in co-domain, then the function is a surjection.

Example 



  Problem 2 :  Consider a function defined as :

 


 Determine whether the function is a surjection?

  Solution :  We solve the rule for argument “x” as :

 

  
    y
    =
    x3
    +
    1
  


 

  
    ⇒
    x
    =
    (
          y
          −
          1
        )
        1
        /
        3
      
  


 We see that expression on the right hand side is a valid real expression for all values of “y” in "R" i.e co-domain. Hence, given function is an onto function or surjection.



Into function 



 We have discussed in the beigining of this module that there is possibility that some of the elements of co-domains are not related. In that case, function is said to be into function.

 
	 Definition:  Onto function (surjection) 
	 A function 

  
    f
    :
    A
    →
    B
  
 is an into function, if there exists element in co-domain set, which has no pre-image in the domain set “A”. 
 







 One of the implications is that all elements of co-domain are not related to elements in domain set. In other words, range of the function is subset of the co-domain :

 

 [image: Into function (rt3.gif)]
Figure 2.10.  Into function  
 The range of the function is subset of the co-domain .  



 

  
    
      Range of "f"
    
    ⊂
    
       Co-domain of "f"
    
  


 We can check whether a given function is an into function or not by checking whether the function is an onto set or not. If the function is not an onto function, then it an into function. Alternatively, we can check the equality of co-domain and range set. If they are not equal, then the function is into function. 

Into function 



  Problem 3 : Consider a function defined as :

 


 Determine whether the function is an into function?

  Solution :  The rule of the function is :

 

  
    y
    =
    x2
    +
    1
  


 The square of a real number is a positive number for all real number. Hence,

 

  
    ⇒
    y
    =
    x2
    +
    1
    >
    0
  


 It means that images are only the right half of the real number i.e. from zero to infinity. But, the co-domain of the function is “R”. It means that left half of the co-domain i.e. from negative infinity to less than zero has no image in “A”. Therefore, the given function is an into function.

 



One – one onto function (Bijection) 



 The bijection presents the most stringent condition for a function.  Every element of both domain and co-domain is related to distinct element.  This requirement is fulfilled when a function is both an injection and surjection. 

 

 [image: One – one onto function (Bijection) (rt5.gif)]
Figure 2.11.  One – one onto function (Bijection)  
 Every element of both domain and co-domain is related to distinct element.   



 The injection means that every element of domain is related to a distinct element in co-domain. On the other hand, surjection means that every element of co-domain is related, both distinctly and commonly. When conditions of injection and surjection are taken together, then it is also ensured that elements of co-domains are also related to distinct elements only.  

One – one onto function (Bijection) 



  Problem 4 :  Consider a function defined as :

 


 Determine domain (A) and co-domain(B) of the function so that it is a bijection. 

  Solution :  For determining domain of the function, we inspect the given rule,

 


 We observe that the given rational function is defined for all values of “x” except for x = 3. Hence, its domain is :

 

  
    Domain
    =
    R
    −
    {
    3
    }
  


 In order that the given function is a bijection, it should be both an injection and a surjection. For infectivity, we put :

 

  
    f
    (
        x
      )
    =
    f
    (
        y
      )
  


 


 

  
    ⇒
    (
        x
        −
        2
      )
    (
        y
        −
        3
      )
    =
    (
        x
        −
        3
      )
    (
        y
        −
        2
      )
  


 

  
    ⇒
    x
    y
    −
    3
    x
    −
    2
    y
    +
    6
    =
    x
    y
    −
    2
    x
    −
    3
    y
    +
    6
  


 

  
    ⇒
    −
    3
    x
    −
    2
    y
    =
    −
    2
    x
    −
    3
    y
  


 

  
    ⇒
    x
    =
    y
  


 Hence, function is an injection for the domain as determined above. Now, for surjection we solve the rule of the function for the argument (x),

 


 

  
    ⇒
    x
    y
    −
    3
    y
    =
    x
    −
    2
  


 

  
    ⇒
    x
    (
        y
        −
        1
      )
    =
    3
    y
    −
    2
  


 


 This equation is valid for all real values of “y” except “1”. Hence, function is surjection for all real values of “y” except for “1”. Hence, co-domain for the function to be a surjection is :

 

  
    Co-domain
    =
    R
    −
    {
    1
    }
  


 Thus, we conclude that the given function is bijection for the domain and co-domain  as determined above.

 
  
    Domain
    =
    R
    −
    {
    3
    }
  


 

  
    Co-domain
    =
    R
    −
    {
    1
    }
  





2.5. Composition of functions*



 Function is a relation on two sets by a rule. It is a special mapping between two sets. It emerges that it is possible to combine two functions, provided co-domain of one function is domain of another function.   The composite function is a relation by a new rule between sets, which are not common to the functions.

 We can understand composition in terms of two functions. Let there be two functions defined as :

 


 


 Observe that set “B” is common to two functions. The rules of the functions are given by “f(x)” and “g(x)” respectively. Our objective here is to define a new function 

  
    h
    :
    A
    →
    C
  

 and its rule.

 Thinking in terms of relation, “A” and “B” are the domain and co-domain of the function “f”. It means that every element “x” of “A” has an image “f(x)” in “B”. 
 Similarly, thinking in terms of relation, “B” and “C” are the domain and co-domain of the function “g”. In this function, "f(x)" – which was the image of pre-image “x” in “A” – is now pre-image for the function “g”. There is a corresponding unique image in set "C". Following the symbolic notation, "f(x)" has image denoted by "g(f(x))" in "C".  The figure here depicts the relationship among three sets via two functions (relations) and the combination function. 

 
 [image: Composition of two functions (cf1a.gif)]
Figure 2.12.  Composition of two functions 
 Composition functions is a special relation between sets not common to two functions.



 For every element, “x” in “A”, there exists an element f(x) in set “B”. This is the requirement of function “f” by definition. For every element “f(x)” in “B”, there exists an element g(f(x)) in set “B”. This is the requirement of function “g” by definition. It follows, then, that for every element “x” in “A”, there exists an element g(f(x)) in set “C”. This concluding statement is definition of a new function  :

 


 By convention, we call this new function as “gof” and is read as "g circle f" or "g composed with f".

 


 
The two symbolical representations are equivalent.

Example 



  Problem 1: Let two sets be defined as :

 


 


 
Determine “hok” and “koh”.

  Solution : According to definition,

 

  
    h
    o
    k
    (
        x
      )
    =
    h
    (
        k
        (
            x
          )
      )
  


 

  
    ⇒
    h
    o
    k
    (
        x
      )
    =
    h
    (
        x
        +
        1
      )
  


 

  
    ⇒
    h
    o
    k
    (
        x
      )
    =
    (
          x
          +
          1
        )2
  


 Again, according to definition,

 

  
    k
    o
    h
    (
        x
      )
    =
    k
    (
        h
        (
            x
          )
      )
  


 

  
    ⇒
    k
    o
    h
    (
        x
      )
    =
    k
    (
        x2
      )
  


 

  
    ⇒
    k
    o
    h
    (
        x
      )
    =
    (
        x2
        +
        1
      )
  


 Importantly note that 
  
    h
    o
    k
    (
        x
      )
    ≠
    k
    o
    h
    (
        x
      )
  
. It indicates that composition of functions is not commutative.


Existence of composition set 



 In accordance with the definition of function, “f”, the range of “f” is a subset of its co-domain “B”. But, set “B” is the domain of function “g” such that there exists image g(f(x)) in “C” for every “x” in “A”. This means that range of “f” is subset of domain of “g” :

 

  
    Range of “f”
    ⊂
    Domain of “g”
  


 Clearly, if this condition is met, then composition “gof” exists. Following this conclusion, “fog” will exist, if 

 

  
    Range of “g”
    ⊂
    Domain of “f”
  


 And, if both conditions are met simultaneously, then we can conclude that both “gof” and “fog” exist. Such possibility is generally met when all sets involved are set of real numbers, “R”.

Example 



  Problem 2:  Let two functions be defined as :

 

  
    f
    =
    {
    (
        1,2
      )
    ,
    (
        2,3
      )
    ,
    (
        3,4
      )
    ,
    (
        4,5
      )
    }
  


 

  
    g
    =
    {
    (
        2,4
      )
    ,
    (
        3,2
      )
    ,
    (
        4,3
      )
    ,
    (
        5,1
      )
    }
  


 Check whether “gof” and “fog” exit for the given functions?

  Solution : Here,

 

  
    ⇒
    Domain of “f”
    =
    {
    1,2,3,4
    }
  


 

  
    ⇒
    Range of “f”
    =
    {
    2,3,4,5
    }
  


 

  
    ⇒
    Domain of “g”
    =
    {
    2,3,4,5
    }
  


 

  
    ⇒
    Range of “g”
    =
    {
    4,2,3,1
    }
    =
    {
    1,2,3,4
    }
  


 Hence, 

 

  
    ⇒
    Range of “f”
    ⊂
    Domain of “g”
  


 and

 

  
    ⇒
    Range of “g”
    ⊂
    Domain of “f”
  


 It means that both compositions “gof” and “fog” exist for the given sets.



Domain of Composition 



 Composition of two functions results in new rule for the new composite function. The expression of new rule may prohibit certain elements of the original domain set. For example, consider the function,

 

 Clearly, the domain of function is R – {1}. Let us now see the expression of composition of function with itself,

 


 


 This expression is valid for real values of “x” when 
  
    x
    ≠
    0
  
. Thus, we see that new rule has changed the domain of resulting function. The domain of the composition fof(x) is "R - {0,1}".

 
If functions “f” and “g” having different intervals of real numbers are involved in the composition, then we consider both the intervals and determine the domain of the composition by meeting requirement of both intervals (common interval). This aspect is illustrated in the examples given in the next section.

Algorithm for finding interval of composition 



 The most important aspect of working with composition of function is to combine intervals i.e. domains of two functions. Consider for example the function given by :
 

 

 Here, "|x|" is modulus function, which returns non-negative number for all real values of "x". We are required to find fog(x). What would be the domain of the resulting composition? Let us have a closer look at the definition of composition,
 
  
    f
    o
    g
    (
        x
      )
    =
    f
    (
        g
        (
            x
          )
      )
    =
    f
    (
        |
        x
        |
      )

  

  
 In plain words, it means that argument of the function “f” is the function “g” itself. The function “f” is defined in the domain "0 ≤ x ≤ 2", whereas function “g” is defined in "0≤x≤3". From the expression of composition as above, it is clear that we need to ensure that value of “x” should lie in the domain interval of function “g”. Hence,
 

 But function “f” is defined for values of “x”, which lie in its interval “0≤x≤2”. So when we expand the composition in accordance with the rule of function “f”, we should ensure that value of its argument – note that it is not the value of independent variable “x” - lies in the interval specified by its domain. 
 

 Note that interval of function “f” is written with respect to function “g” i.e. “|x|” – not “x”. Since requirements of both functions are required to be met simultaneously, the domain of the resulting composition is intersection of two domains. It is this reason that we use either “and” or a comma “,” to combine two intervals.
 Now, we interpret the interval of modulus function “0≤ |x| ≤2”. We see that part of the interval, "|x| ≥0",  is always true for all values of “x”. Whereas part of the interval, "|x| ≤2", means (we shall learn about interpreting modulus inequality in a separate module) :
 
  
    –
    2
    ≤
    x
    ≤
    2
  


 Combining intervals of two parts of the interval “0≤ |x| ≤2”, we conclude that it is equal to :
 
  
    –
    2
    ≤
    x
    ≤
    2
  


 Hence,
 

 



Examples 



  Problem 3: Consider the function as given here :

 


 Determine fof(x).

  Solution :  The composition of the function with itself is :

 


 


 


 



  Problem 4:  A function is defined for real values by :

 


 Determine f[f{f(x)}] and draw the graph of resulting composition.

  Solution :   This is composition triplet. We have already seen that :

 

 Compositing again with f(x), we have :

 

  

 The graph of the composition is as shown here :
 
 [image: Plot of compostion (cf2.gif)]
Figure 2.13.  Plot of compostion 
 The plot is a straight line with two undefined points.


  Problem 5:  A function is defined for real values by :

 
 

       | 1 + x ;  0 ≤ x ≤ 2    
f(x) = |  
       | 3 – x ;  2 < x ≤ 3  

   

 Determine f(f(x)). 

  Solution : The function “f(x)” is combined with itself. Here,

 
 

          | f(1 + x) ;  0 ≤ x ≤ 2    
f(f(x)) = |
          | f(3 - x) ;  2 < x ≤ 3    

 

 We need to evaluate function for each of the above two intervals :

 
 

f(1 + x) ;  0 ≤ x ≤ 2 

    

 
 

  | 1 + (1+x) ; 0 ≤ 1+ x ≤ 2 and 0 ≤ x ≤ 2    
= |
  | 3 – (1+x); 2 < 1+ x ≤ 3 and 0 ≤ x ≤ 2  

   

 
 

  | 2 + x ; -1 ≤ x ≤ 1 and 0 ≤ x ≤ 2    
= |
  | 2 – x ; 1 < x ≤ 2 and 0 ≤ x ≤ 2 

 

 
 

  | 2 + x ; 0 ≤ x ≤ 1 
= |
  | 2 – x ; 1 < x ≤ 2 

 

 
Similarly,

 
 

f(3 - x) ;  2 < x ≤ 3

     

 
 

  | 1 + (3-x) ; 0 ≤ 3- x ≤ 2 and 2 < x ≤ 3    
= |
  | 3 – (3-x) ; 2 < 3- x ≤3 and 2 < x ≤3  

   

 
 

  | 4 - x ;  -3 ≤ x ≤ -1 and 2 < x ≤ 3    
= |
  | x     ; -1 < x ≤ 0 and 2 < x ≤ 3  

  

 
 

  | 4 - x ;  1 ≤ x ≤ 3 and 2 < x ≤ 3    
= |
  | x     ; 0 < x ≤ 1 and 2 < x ≤ 3 

    

 
 

  | 4 - x ;  2 < x ≤ 3    
= |
  |   x   ; No common interval  

 

 
 

= | 4 - x ;  2 < x ≤ 3    

 

 Putting the results in the expression of “fof”, we have :

 
 

          | 2 + x ; 0 ≤ x ≤1
f(f(x)) = | 2 – x ; 1 < x ≤ 2
          | 4 - x ; 2 < x ≤ 3  

   



Properties of composition 



 The composition is generally not commutative except for some special functions. 

 

  
    g
    o
    f
    (
        x
      )
    ≠
    f
    o
    g
    (
        x
      )
  


 On the other hand, composition among three functions is independent of parentheses and hence is associative.

 

  
    (gof)
    o
    h
    =
    g
    o
    (foh)
  




2.6. Inverse of a function*



 Inverse relation is like looking a relation in opposite direction. Equivalently, it is also like an image in a mirror. For example, consider the relation “husband of”. The inverse to this relation is “wife of”. This is an explicit relation very easily conceivable. In other situations involving function, inverse relations may not be so explicit. We shall, therefore, develop mathematical technique to obtain inverse function (relation) for a given function (relation).

 In order to facilitate easy recapitulation of concepts and terms for the study of inverse relation, we can refer meaning attached to following terms :

 

 	 

  
    f
    :
  

  denotes function relation from domain “A” to co-domain “B” of “f” (implicit inference of sets). 

	 

  
    f
    :
    A
    →
    B
    :
  

  denotes function relation from domain “A” to co-domain “B” of “f” (explicit reference of sets). 

	 

  
    f
    (
        x
      )
    :
  

 denotes image, an instance of function “f”, image under “f”, rule of “f”. 

	 
  
    f
        –
        1
      
    :
  

 denotes inverse function relation from domain “A” to co-domain “B” of “

  
    f
        –
        1
      
  

” (implicit reference of sets) 

	 
  
    f
        –
        1
      
    :
    A
    →
    B
    :
  

 denotes inverse function relation from domain “A” to co-domain “B” of “

  
    f
        –
        1
      
  
” (explicit reference of sets) 

	 
  
    f
        –
        1
      
    (
        x
      )
    :
  

 denotes pre-image, an instance of function “

  
    f
        –
        1
      
  
”, image under “

  
    f
        –
        1
      
  
”, rule of “

  
    f
        –
        1
      
  
” 





Inverse of an element



 We use the concept of pre-image and image to connect the elements of a function in the direction from domain “A” to co-domain “B”. The related elements are connected by a rule “f(x)” such that :

 

  
    Image
    =
    f
    (
        x
      )
    =
    f
    (pre-image)
  


 Clearly, “x” is the pre-image and “f(x)” is image. Now, we want to derive a similar rule, "

  
    f
        –
        1
      
    (
        x
      )
  

",  which evaluates to pre-image like :

 

  
    Pre-image(s)
    =
    f
        –
        1
      
    (
        x
      )
    =
    f
        –
        1
      
    (image)
  


 Clearly, “x” is now the image and “

  
    f
        –
        1
      
    (
        x
      )
  

” is pre-image(s). The important point to understand here is that the image in the co-domain set can be related to none, one or more elements in domain set. Therefore, this rule may evaluate accordingly to value(s) – none, one or more - for the pre-images.

Method to construct an inverse rule



 We construct an inverse rule in step-wise manner as enumerated here with an example :

   Step 1:  Write down the rule of the given function “f”.

 Let the given rule be f(x) given by :

 

  
    f
    (
        x
      )
    =
    x2
  


 Let us put y = f(x). Then,

 

  
    ⇒
    y
    =
    f
    (
        x
      )
    =
    x2
  


 This relation gives us one value of image. For example, if x = 3, then 

 

  
    ⇒
    y
    =
    32
    =
    9
  


   Step 2:   Solve for “x”

 


   Step 3:  Replace “x” which represents pre-image by the symbol “

  
    f
        −
        1
      
    (
        x
      )
  
” and replace “y” which represents image by “x”. For the given function,
, the new inverse rule is :

 


 This is how we construct the inverse rule. Note emphatically that “x” now represents “image” and “

  
    f
        –
        1
      
    (
        x
      )
  

” represents “pre-image”. For example, if image is “9”, then we can find its pre-image (s), using this new rule as :

 


 Thus, the required pre-images is a set of two pre-images :

 




Inverse of a function



 Once the inverse rule is constructed, it is easy to define inverse function. However, we should be careful in one important aspect. An inverse function, “

  
    f
        –
        1
      
  

” is a function ultimately. This puts the requirement that every element of the domain of the new function “

  
    f
        –
        1
      
  

” should be related to exactly one element to its co-domain set.

 We must also understand that this new function, “

  
    f
        –
        1
      
  

”,  gives the perspective of relation from co-domain to domain of the given function “f”.  However, new function “

  
    f
        –
        1
      
  

” is read from its new domain to its new co-domain. After all this is how a function is read. This simply means that domain and co-domain of the function “f” is exchanged for “

  
    f
        –
        1
      
  

”.

 

 [image: Inverse function (in1.gif)]
Figure 2.14.  Inverse function 
 The domain and co-domain sets are exchanged.



 
Further, inverse function is inverse of a given function. Again by definition, every element of domain set of the given function “f” is also related to exactly one element of in its co-domain. Thus, there is bidirectional requirement that elements of one set are related to exactly one element of other set. Clearly, this requirement needs to be fulfilled, before we can define inverse function. 

 In other words, we can define inverse function, "

  
    f
        –
        1
      
  

", only if the given function is an injection and surjection function (map or relation) at the same time. Hence, iff function, “f” is a bijection, then inverse function is defined as :

 


 We should again emphasize here that sets “A” and “B” are the domain and co-domain  respectively of the inverse function. These sets have exchanged their place with respect to function “f”. This aspect can be easily understood with an illustration. Let a function “f” , which is a bijection, be defined as :

 
Let A = {1,2,3,4} and B={3,6,9,12}

 


 Then, the function set in the roaster form is :

 
  
    ⇒
    f
    =
    {
    (
        1,3
      )
    ,
    (
        2,6
      )
    ,
    (
        3,9
      )
    ,
    (
        4,12
      )
    }
  


 This function is clearly a bijection as only distinct elements of two sets are paired. Its domain and co-domains are :

 

  
    ⇒
    Domain of “f”
    =
    {
    1,2,3,4
    }
  


 

  
    ⇒
    Co-domain of “f”
    =
    {
    3,6,9,12
    }
  


 Now, the inverse function is given by :

 

 


 
In the roaster form, the inverse function is :

 


 Note that we can find inverse relation by merely exchanging positions of elements in the ordered pairs. The domain and co-domain of new function “

  
    f
        –
        1
      
  

” are :

 

 


 Thus, we see that the domain of inverse function “

  
    f
        –
        1
      
  
” is co-domain of the function “f” and co-domain of inverse function “

  
    f
        –
        1
      
  
“ is domain of the function “f”. 


Example



  Problem 1:  A function is given as :

 


 Construct the inverse rule. Determine f(x) for first 5 natural numbers. Check validity of inverse rule with the values of images so obtained. Find inverse function, if it exists. 

  Solution :  Following the illustration given earlier, we derive inverse rule as :

 

  
    y
    =
    2
    x
    +
    5
  


 


 Changing notations,

 


 The images i.e. corresponding f(x), for first five natural numbers are :

 


 Now, the corresponding pre-images, using inverse rule for two values of images are :

 


 


 Thus, we see that the inverse rule correctly determines the pre-images as intended. Now, in order to find inverse function, we need to determine that the given function is an injection and surjection. For injection, let us assume that “
  
      x1 
  

” and “
  
      x2 
  
” be two different elements such that :

 
  
    f
    (
      x1 
      )
    =
    f
    (
      x2 
      )
  


 
  
    ⇒
    2
      x1 
    +
    5
    =
    2
      x2 
    +
    5
  


 
  
      x1 
    =
      x2 
  


 This means that given function is an injection. Now, to prove surjection, we solve the rule for “x” as :

 


 We see that this equation is valid for all values of “R” i.e. all values in the co-domain of the given function. This means that every element of the co-domain is related. Hence, given function is surjection. The inverse function, therefore, is given as :

 


Properties of inverse function



 There are few characteristics of inverse function that results from the fact that it is inverse of a bijection. We can check the validity of these properties in terms of the example given earlier. Let us define a bijection function as defined earlier :

 

 


Inverse function is unique function



 This means that there is only one inverse function. For the given function the inverse function is :

 


 


 In the roaster form, the inverse function is :

 


 This inverse function is unique to a given bijection.


Inverse function is bijection



 We see that inverse comprises of ordered pairs such that elements of domain and co-domain are distinctly related to each other. 

 


 This mean that the inverse function is bijection. 


Graph of inverse function



 If a function is bijection, then the inverse of function exists. On the other hand, a function is bijection, if it is both one-one and onto function. We know that one-one function is strictly monotonic in its domain. Hence, an onto function is invertible, if its graph is strictly monotonic i.e. either increasing or decreasing.

 In order to investigate the nature of the inverse graph, let us consider a plot of an invertible function, “f(x)”. Let (a,b) be a point on the plot. Then, by definition of an inverse function, the point (b,a) is a point on the plot of inverse function, if plotted on the same coordinate system.

 

  
      y
    =
      f
    (
      x
    )
  


 


 By geometry, the line joining points (a,b) and (b,a) is bisected at right angles by the line y = x. It means that two points under consideration are object and image for the mirror defined by y=x. This relationship also restrains that two plots can intersect only at line y = x.

 
 [image: Graph of inverse function (in2.gif)]
Figure 2.15.  Graph of inverse function 
 The points on two plots are object and image for the mirror defined by y=x.



Example



  Problem 2 :  Two functions, inverse of each other, are given as :

 

  
    f
    (
        x
      )
    =
    x2
    −
    x
    +
    1
  


 


 Find the solution of the equation :

 


  Solution :  

  Statement of the problem :  The given functions are inverse to each other, which can intersect only at line defined by y = x. Clearly, the intersection point is the solution of the equation.

 

  
    y
    =
    f
    (
        x
      )
    =
    x
  


 


 

  
    ⇒
    (
          x
          −
          1
        )2
    =
    0
  


 

  
    ⇒
    x
    =
    1
  


 This is the answer. It is interesting to know that we can also proceed to find the solution by working on the inverse function. This should also give the same result as given functions are inverse to each other.

 

  
    y
    =
    f
        –
        1
      
    (
        x
      )
    =
    x
  
 

 


  


  
Squaring both sides,

  


 


 

  
    ⇒
    x
    =
    1
  





Glossary



	Definition:  Domain 
	 The set of first elements of all ordered pairs in the relation “R” from set “A” to “B” is called the domain of relation “R”. 

	Definition:  Function 
	 A relation “f” is a function, if every element in set “A” has one and only one image in set “B”.

	Definition:  Identity relation 
	 
In an identity relation "R", every element of the set “A” is related to itself only. 

	Definition:  Many - one function 
	 A function 
simplemath
  
    mathml-miitalicsf
    :
    mathml-miitalicsA
    →
    mathml-miitalicsB
  

  
    f
    :
    A
    →
    B
  

 is an many – one function, if two or more elements of domain set “A” have the same images in co-domain set “B”.

	Definition:  One - one function (Injection) 
	 A function 
simplemath
  
    mathml-miitalicsf
    :
    mathml-miitalicsA
    →
    mathml-miitalicsB
  

  
    f
    :
    A
    →
    B
  
 is an injection, if different elements of domain set “A” have different images in co-domain set “B”. 

	Definition:  Onto function (surjection) 
	 A function 
simplemath
  
    mathml-miitalicsf
    :
    mathml-miitalicsA
    →
    mathml-miitalicsB
  

  
    f
    :
    A
    →
    B
  

 is an onto function or surjection, if every element of co-domain set is the image of some element in the domain set “A”. 

	Definition:  Onto function (surjection) 
	A function 
simplemath
  
    mathml-miitalicsf
    :
    mathml-miitalicsA
    →
    mathml-miitalicsB
  

  
    f
    :
    A
    →
    B
  
 is an into function, if there exists element in co-domain set, which has no pre-image in the domain set “A”. 
 

	Definition:  Range 
	 The set of second elements of all ordered pairs in the relation “R” from set “A” to “B” is called the range of relation “R”.

	Definition:  Real function 
	 A function is a real function, if its domain and range are either “R” or subset of “R”. 

	Definition:  Reflexive relation 
	 
In reflexive relation, "R", every element of the set “A” is related to itself.  

	Definition:  Relation 
	 A relation “R” from a non-empty set “A” to non-empty set “B” is a subset of Cartesian product “AXB”. 

	Definition:  Relation on A 
	 A relation “R” from set “A” to “A” is called a “relation on A”. 



Solutions



    
      [image: Functions]
    

  Chapter 3. Real functions



3.1. Domain and range*



 We have seen that a function is a special relation. In the same sense, real function is a special function. The special about real function is that its domain and range are subsets of real numbers “R”. In mathematics, we deal with functions all the time – but with a difference. We drop the formal notation, which involves its name, specifications of domain and co-domain, direction of relation etc. Rather, we work with the rule alone. For example,

 

  
    f
    (
        x
      )
    =
    x2
    +
    2
    x
    +
    3
  


 This simplification is based on the fact that domain, co-domain and range are subsets of real numbers. In case, these sets have some specific intervals other than “R” itself, then we mention the same with a semicolon (;) or a comma(,) or with a combination of them :

 

 Note that the interval “

  
    x
    <
    –
    2
  
  
    ,
    x
    ≥
    0
  

” specifies a subset of real number and defines the domain of function. In general, co-domain of real function is “R”. In some cases, we specify domain, which involves exclusion of certain value(s), like :

 

 This means that domain of the function is 

  
    R
    −
    {
    1
    }
  

. Further, we use a variety of ways to denote a subset of real numbers for domain and range. Some of the examples are :

 

 	

  
    x
    >
    1
    :
  

 denotes subset of real number greater than “1”. 

	 

  
    R
    −
    {
    0
    ,
    1
    }
  

 denotes subset of real number that excludes integers “0” and “1”.

	

  
    1
    <
    x
    <
    2
    :
  

 denotes subset of real number between “1” and “2” excluding end points. 

	

  
    (
      
        1,2
      
    ]
    :
  

 denotes subset of real number between “1” and “2” excluding end point “1”, but  including end point “2”.





 
Further, we may emphasize the meaning of following inequalities of real numbers as the same will be used frequently for denoting important segment of real number line : 

 

 	Positive number means x > 0 (excludes “0”). 

	 Negative number means x < 0 (excludes “0”). 

	Non - negative number means x ≥ 0 (includes “0”).

	Non – positive number means x ≤ 0 (includes “0”).





Domain of real function



 Domain of real function is a subset of “R” such that rule “f(x)” is real. This concept is simple. We need to critically examine the given function and evaluate interval of “x” for which “f(x)” is real. 

 In this module, we shall restrict ourselves to algebraic functions. We determine domain of algebraic function for being real in the light of following facts :

 

 	If the function has rational form p(x)/q(x), then denominator q(x) ≠ 0.

	The term √x is a positive number, where x>=0.

	 The expression under even root should be non-negative. For example the function  
 to be real, 

  
    x2
    +
    3
    x
    −
    2
    ≥
    0
  

.

	 The expression under even root in the denominator of a function should be positive number. For example the function  

 to be real, 

  
    x2
    +
    3
    x
    –
    2
    >
    0
  

. Note that zero value of expression is not permitted in the denominator. 





 Here, we shall work with few examples as illustration for determining domain of real function. 

Examples



  Problem 1 :  A function is given by :

 


 Determine its domain set.

  Solution :  The function, in the form of rational expression, needs to be checked for its denominator. The denominator should not evaluate to zero as “a/0” form is undefined. For given function in the question, the denominator evaluates to zero when,

 

  
    x
    +
    1
    =
    0
  


 

  
    ⇒
    x
    =
    –
    1
  


 Hence, domain of the given function is 

  
    R
    −
    {
    –
    1
    }
  

. The representation of the domain on real number line is shown with a dark line on  either side of the excluded point “-1”.

 

 [image: Domain of a function (dr1.gif)]
Figure 3.1.  Domain of a function 
 The number "-1" is excluded from the domain. 




  Problem 2 : A function is given by :

 


 Determine its domain set.

  Solution :  We observe that given function is a square root of a quadratic polynomial. The expression within square root should be a non-negative number as square root of a negative number is not a real number. It means that expression under even root should be non-negative.

 We factorize the quadratic expression in order to find corresponding interval for which expression under the root is non-negative.  

 

  
    ⇒
    (
        x2
        –
        5
        x
        +
        6
      )
    ≥
    0
  
 

 

  
    ⇒
    (
        x
        −
        2
      )
    (
        x
        −
        3
      )
    ≥
    0
  


 

There are two specific sign schemes. These schemes are very helpful in determining interval for inequalities. We shall discuss and use them in next module. For the present, we carry on with general interpretation so that we realize difficulties in estimating intervals of inequalities without sign schemes and also that we have insight into the requirements of interval formation.



 We interpret this result in reference to quadratic equation. When x ≤ 2, both factors of quadratic equation are non-positive and  their product is non-negative. We can check with one such value like “1” or “-1”. On the other hand, when x ≥ 3, both factors are non-negative and their product is also non-negative. It turns out that these two conditions correspond to two intervals, which are disconnected to each other.

 

 [image: Domain of a function (dr2.gif)]
Figure 3.2.  Domain of a function 
 The domain consists of two disjointed intervals. 



 The representation of the domain interval on real number line is shown with thick line and small filled circles. From the representation on the figure also, it is clear that it is a case of two disjoint intervals. We, therefore, represent the valid domain of the function with the help of the concept of union of two sets (intervals) in the following manner :

 

 


 i.e.

 

 This interpretation is typical of product of two linear factors, which is greater than or equal to zero. This interpretation, as a matter of fact, can be used as an axiom in general for deciding interval, involving product of two factors.




Range of a real function



 Range is a set of images. It is a subset of co-domain. The requirement, here, is to find the interval of the co-domain for which there is “pre-image” in the domain set. In other words, we need to find the values of “y” within the domain of the function.

 Further, we have already developed technique to find the inverse element i.e. pre-images, while studying inverse function. We shall apply the same concept here to decide range of the function. However, unlike determining domain, it is extremely helpful that we follow a step-wise algorithm to determine the range. It is given here as :

 

 	 Find domain. 

	 Put y = f(x). 

	 Solve the function for “x” in terms of “y”. 

	 Find the values of “y” for which “x” is real in the domain of the function determined in step 1. 





 While determining range of a function, we need to be careful with regard to two important aspects :
  1:  The values obtained for range are consistent with the function. This means that we should check the range against the requirement of a given function. For example, if range of a square root function is evaluated as say [-3,3], then we need to discard negative interval. A square root can not be negative. Hence, the correct range would be [0,3]. 
  2:   We need to exclude values of function (y) corresponding to invalid values of “x”. This is particularly the case if domain is a continuous interval except few points barred by the definition of the function. 
 
The best way to understand this algorithm is to work with few examples.

Examples



  Problem 3 : A function is given by :

 


 Determine its range.

  Solution :  For real value of “y”, the expression 

  
    (
        9
        −
        x2
      )
  

 is non-negative number. It means that :

 

  
    ⇒
    9
    −
    x2
    ≥
    0
  


 

  
    ⇒
    x2
    −
    9
    ≤
    0
  


 

  
    ⇒
    (
        x
        −
        3
      )
    (
        x
        +
        3
      )
    ≤
    0
  


 We interpret this result in reference to the given quadratic equation. When 
, the signs of two factors are opposite and hence their product is less than or equal to zero. Outside this interval, the expression evaluates to positive number. 

 

 [image: Domain of a function (dr3.gif)]
Figure 3.3.  Domain of a function 
 The domain lies between two end points, inclusive of them. 



 The representation of the domain interval on real number line is shown with thick line and two small filled circles. We see that real values of “x” lies between “-3” and “3”, including end points. We represent the valid domain as :

 

  
    –
    3
    ≤
    x
    ≤
    3
  


 or 

 

  
    [
    –
    3,3
    ]
  


 This interpretation is typical of product of two linear factors, which is less than or equal to zero. This interpretation can also be used as an axiom in general for deciding interval, involving two factors.

 In order to find range, we solve the function for “x”,

 


 

 
Following the same analysis as for domain, we reach the conclusion that the value of “y” for real “x” is given by the interval :

 

  
    [
    –
    3,3
    ]
  


 Now, the examination of given function reveals that “y” can be only positive number (note that no negative sign precede square root expression) in the expression for "Y" : 

 

 Hence, “y” can not be negative. Note that we determined interval of "y", which includes negative numbers also. Thus, we conclude that range of the given function is half of the interval obtained earlier, which includes zero also :
 

  
    [
    0,3
    ]
  



  Problem 4 : A function is given by :

 


 Determine its range.

  Solution :  We observe that the both numerator and denominator of the given function are non-negative. It is because “

  
      x2
  

 “ always evaluates to non-negative number. It means that given function is real for all values of “x”. Thus, domain of function is “R”. 

 In order to find range, we solve the function for “x”,

 


 

  
    ⇒
    y
    x2
    +
    y
    =
    x2
  


 


 


 For “x” to be real, the expression within square root should be non - negative. This case, however, is different in that it is a ratio of two linear expressions. It is possible that denominator is positive, but numerator is negative or vice - versa. As such, the rational expression as a whole will be negative. In the nutshell, we need to evaluate “x” for following requirements (Note : we are presenting basic reasoning here. Subsequently, we will learn more sophisticated means to determine valid intervals of variables) :

 

 	 Total expression within the square root as a whole is non-negative number as square root of a negative number is not a real number. 

	 For positive value of "y" in the numerator, the denominator is non-negative as square root of a negative number is not a real number. 

	 The denominator does not evaluate to zero. The form “y/0” is undefined. 





 For the first requirement, the expression in the square root should be greater than or  equal to zero i.e non-negative number.

 


 

  
    ⇒
    y
    ≥
    0
  


 Further, denominator of the expression “1-y” is non-negative.  Also,  “1-y” is not equal to zero. Combining two requirements, the expression is a positive number : 

 

  
    1
    −
    y
    >
    0
  


 

  
    ⇒
    y
    <
    1
  


 Combining two intervals i.e. intersection of two intervals, we have the range of the function as :

 
 [image: Range of a function (dr4b.gif)]
Figure 3.4.  Range of a function 
 Range of the function is equal to intersection of two intervals. 

 

  
    ⇒
    0
    ≤
    y
    <
    1
  





Classification of functions  



 In mathematics, we deal with specific real functions, which are characterized by specific domain, range and rules. Some of the familiar functions are polynomial, rational, irrational, trigonometric, exponential, logarithmic functions and piece wise defined functions etc. These functions are further combined to form more complex function following certain definition or rule so that function is meaningful for real values. 

 There are varieties of functions. These functions are broadly classified under three headings :

 

 	 	 Algebraic functions :  polynomial, rational and irrational functions 

	  Transcendental functions :  trigonometric, inverse trigonometric, exponential and logarithmic functions 

	  Piece wise defined functions :  modulus, greatest integer, least integer, fraction part functions and other specific piece wise definitions  



	

 Polynomial function is further classified based on (i) numbers of terms eg. monomial, binomial, trinomial etc. (ii) numbers of variables involved eg. function in one or two variables and (iii) degree of the polynomial eg. linear, quadratic, cubic, bi-quadratic etc. 

 Generally we deal with function expressions in one variable in which dependent variable (y) is explicitly related to independent variable (x). Such functions are called explicit function.

 

  
    y
    =
    x2
    −
    2
    x
    +
    1
  




 On the other hand, there are function rules in which “y” is not explicitly related to “x”. Such functions are called implicit functions.

 

  
    sin
    (
        x2
        +
        x
        y
        +
        y2
      )
    =
    x
    y
  
 

 Further, we also use properties of function like periodicity (repetition of function values at regular intervals of independent variable) and polarity (odd or even) to characterize a function. For this reason, we sometimes name a function like periodic, non-periodic, aperiodic, odd, even or equal function etc.


Important concepts  



 In this section, we discuss few important concepts, which are frequently used in determining domain and range.

Defined and undefined expressions



 Defined expressions are meaningful and unambiguous. On the contrary, undefined expressions are not meaningful. Most of the undefined expressions results from combination of zeros and infinity in various ways. There is, however, no unanimity about “undefined” values among mathematicians. Hence, we shall present two lists – one list which is undefined in all contexts and another list which may be defined in certain context. We consider this later list as defined expressions, unless otherwise stated.

  Undefined in all contexts 

 

 We should understand here that an expression is undefined when it can not be interpreted. The important point is that it has got nothing to do with the magnitude of quantity. Emphatically, infinity is not undefined. We shall discuss this aspect subsequently.
 Note that "

  
    (
          –
          1
        )∞
  

 " is undefined, because it is not certain whether the expression will evaluate to "-1" or "1". On the other hand, expression "

  
    (
          1
        )∞
  

" is defined because we are sure that the expression will evaluate to "1", however large is infinity.
  Defined in some contexts 

 

  
    00
    =
    
      undefined or 1
    
  


 

  
    ∞0
    =
    
	      undefined or 1
    
  


 

  
    1∞
    =
    
	      undefined or 1
    
  


 

  
    0
    X
    ∞
    =
    
	      undefined or 0
    
  


 For our purpose, unless otherwise stated, we shall consider later set as defined.  

Infinity



 Infinity is not a member of real number set “R”. Strictly we can not write infinity like :

 


 For this reason, the interval of real number set is defined in terms of infinity without equality as :

 


 We may emphasize that infinity by itself is “unbounded” – not undefined. What it means that we can interpret infinity – even though its value is not known. We can say it is very large number (either positive or negative as the case be), but we can not interpret undefined values at all.  
 It is easy to interpret operations with infinity. We need to only keep the meaning of infinity as a very large number in focus. Various operations, involving infinity are presented here :

  1:    The plus or minus infinity is not changed by adding or subtracting real number.

 

  
    ∞
    ±
    x
    =
    ∞
  


 

  
    –
    ∞
    ±
    x
    =
    –
    ∞
  


 Above results are on expected line. Addition or subtraction of finite values will only yield a large number. It is so because infinity can be greater than a large value that we might conceive.
  2:   Addition of two infinities is infinity. 

 

  
    ∞
    +
    ∞
    =
    ∞
  


  3:   Difference of two infinities is undefined.

 

  
    ∞
    −
    ∞
    =
    Undefined
  


 Addition of two infinities is definitely a very large number. We are, however, not sure about their difference. The difference of two infinities can either be small or large. It depends on the relative "largeness" of two infinities. Hence, difference of two infinities is "undefined".
  4:    Product of two infinities are inferred as :

 

  
    ∞
    X
    ∞
    =
    ∞
  


 

  
    –
    ∞
    X
    ∞
    =
    –
    ∞
  


 

  
    –
    ∞
    X
    –
    ∞
    =
    ∞
  


  5:   Product of infinity with a real number “x” is given as :

 


 

 


  6:   Division of infinity by infinity is not defined.

 


  7:   A real number, “x”, raised to infinity

 


 


 


  8:   An infinity raised to infinity is defined.

 
  
    ∞∞
    =
    ∞
  





3.2. Inequality*



 
Inequality is an important concept in understanding function and its properties – particularly domain and range. Many function forms are valid in certain interval(s) of real numbers. This means definition of function is subjected to certain restriction of values with respect to dependent and independent variables. The restriction is generally evaluated in terms of algebraic inequalities, which may involve linear, quadratic, higher degree polynomials or rational polynomials. 


 Function definition and inequality  



 

A function imposes certain limitations by virtue of definition itself. We have seen such restriction with respect to radical functions in which polynomial inside square root needs to be non-negative. We have also seen that denominator of a rational function should not be zero. We shall learn about different functions in subsequent modules. Here, we consider few examples for illustration :


 
  1 :  


 
Here, logrithmic function is defined for 
  
    a
    ∈
    (
        0,1
      )
    ∪
    (
        1,
        ∞
      )
  

and

 

  
    3
    x2
    −
    x
    +
    4
    >
    0
  


 
  2 :  
  
    f
    (
        x
      )
    =
    arcsin
    (
        3
        x2
        −
        x
        +
        4
      )
  



 
Here, arcsine function is defined in the domain [-1,1]. Hence, 

 

  
    –
    1
    ≤
    3
    x2
    −
    x
    +
    4
    ≤
    1
  


 
It is clear that we need to have clear understanding of algebraic inequalities as function definitions are defined with certain condition(s).


 Forms of function inequality  



 

Function inequality compares function to zero. There are four forms :


 
  1 :  f(x) < 0

 
  2 : f(x) ≤ 0

 
  3 : f(x) > 0

 
  4 :  f(x) ≥ 0


 
Here, f(x) < 0 and f(x) >0 are strict inequalities as they confirm the notion of “less than” and “greater than”. There is no possibility of equality. If a strict inequality is true, then non-strict equality is also true i.e.


 
  1 :  If f(x) > 0 then  f(x) ≥  0 is true.

 
  2 : If f(x) ≥  0 then  f(x) >  0 is not true.

 
  3 : If f(x) <  0 then  f(x) ≤ 0 is true.

 
  4 : If f(x) ≤ 0 then  f(x) < 0 is not true.


 
Further, we may be presented with inequality which compares function to non-zero value :
 

 

  
    3
    x2
    −
    x
    ≤
    –
    4
  



 
However, such alterations are equivalent expressions. We can always change this to standard form which compares function with zero :


 

  
    3
    x2
    −
    x
    +
    4
    >
    0
  



Inequalities   



  Some important definitions/ results are enumerated here : 

 

 	 Inequalities involve a relation between two real numbers or algebraic expressions. 

	 The inequality relations are "<", ">", "≤" and "≥". 

	 Equal numbers can be added or subtracted to both sides of an inequality. 

	 Both sides of an inequality can be multiplied or divided by a positive number without any change in the inequality relation. 

	 Both sides of an inequality can be multiplied or divided by a negative number with reversal of inequality relation. 

	 Both sides of an inequality can be squared, provided expressions are non-negative. As a matter of fact, this conclusion results from rule that we can multiply both sides with a positive number.  

	 When both sides are replaced by their inverse, the inequality is reversed .  





 Equivalently, we may state above deductions symbolically.  

 


 

  
    x
    +
    a
    >
    y
    +
    a
  


 


 


 

  
    x2
    >
    y2
    ;
    x
    ,
    y
    >
    0
  


 


 It is evident that we can deduce similar conclusions with the remaining three inequality signs. 
Intervals with inequalities  



 In general, a continuous interval is denoted with "less than (<)" or "less than equal to (≤)" inequalities like :

 

  
    1
    <
    x
    ≤
    5
  


 The segment of a real number line from a particular number extending to plus infinity is denoted with “greater than” or “greater than equal to” inequalities like :

 

  
    x
    ≥
    3
  


 The segment of real number line from minus infinity to a certain number on real number line is denoted with “less than(<) or less than equal to (≤)” inequalities like :

 

  
    x
    ≤
    –
    3
  


 Two disjointed intervals are combined with “union” operator like :

 




 Linear inequality  



 
Linear function is a polynomial of degree 1. A linear inequality can be solved for intervals of valid “x” and “y” values, applying properties of inequality of addition, subtraction, multiplication and division. For illustration, we consider a logarithmic function, whose argument is a linear function in x.

 

  
    f
    (
        x
      )
    =
    loge
    (
        3
        x
        +
        4
      )
  


 
The argument of logarithmic function is a positive number. Hence, 

 


 
Therefore, interval of x i.e. domain of logarithmic function is 
  
    (
        –
        4
        /
        3,
        ∞
      )
  

. The figure shows the values of “x” on a real number line as superimposed on x-axis. Note x= - 4/3 is excluded. 

 

 [image: Graph of logarithmic function (i1a.gif)]
Figure 3.5.  Graph of logarithmic function 
 Domain is traced on x-axis.



 
When f(x) = 0,

 

  
    3
    x
    +
    4
    =
    e
        f
        (
            x
          )
      
    =
    e0
    =
    1
  


 

  
    ⇒
    x
    =
    –
    1
  


 
It means graph intersects x-axis at x=-1 as shown in the figure. From the figure, it is clear that range of function is real number set R.

 


 We shall similarly consider inequalities involving polynomials of higher degree, rational function etc in separate modules.





Example 3.1. 
   Problem :  
 A linear function is defined as f(x)=2x+2. Find valid intervals of “x” for each of four inequalities viz f(x)<0, f(x) ≤ 0, f(x) > 0 and f(x) ≥ 0.

 
 Solution :  
 Here, given function is a linear function. At y=0,

 

  
    f
    (
        x
      )
    =
    2
    x
    +
    2
    =
    0
  


 

  
    ⇒
    x
    =
    –
    1
  



 
At x=0,


 

  
    f
    (
        x
      )
    =
    2
  



 
We draw a line passing through these two points as shown in the figure. From the figure, we conclude that :

 

 [image: Graph of linear function (i2a.gif)]
Figure 3.6.  Graph of linear function 
 Graph is continuous for all values of x.



 


 


 


 






3.3. Polynomial function*



 
A real polynomial, simply referred as polynomial in our study, is an algebraic expression having terms of “x” raised to non-negative numbers, separated by “+” or “-“ sign. A polynomial in one variable is called a univariate polynomial, a polynomial in more than one variable is called a multivariate polynomial. A real polynomial function in one variable is an algebraic expression having terms of real variable “x” raised to non-negative numbers. The general form of representation is :



 

  
    f
    (
        x
      )
    =
    ao
    +
    a1
    x
    +
    a2
    x2
    +
    …
    …
    +
    an
    xn
  



 
or


 

  
    f
    (
        x
      )
    =
    ao
    xn
    +
    a1
    x
        n
        −
        1
      
    +
    a2
    x
        n
        −
        2
      
    +
    …
    …
    +
    an
  



 Here, 
		
			ao
		
	
,
		
			a1
		
	
,….,
		
			an
		
	
 are real numbers. For real function, “x” is real variable and “n” is a non-negative number. An expression like 
		
			2
			x2
			+
			2
		
	
 is a valid polynomial in “x”. But, 
		
			x
			+
			1
			/
			x
		
	
is not as 
		
			1
			/
			x
			=
			x
					–
					1
				
		
	
has negative integer power. Also, 
		
			3
			x1.2
			+
			2
			x
		
	
 is not a polynomial as it contains a term with fractional power. Sum and difference of two real polynomials is also a polynomial. Polynomials are continuous function. Its domain is real number set R, whereas its range is either real number set R or its subset. Derivative and anti-derivative (indefinite integral) of a polynomial are also real polynomials.

 
 Degree of polynomial function/ expression


 
Highest power in the expression is the degree of the polynomial. The degree of the polynomial 
  
    x3
    +
    x2
    +
    3
  

is 3. The degree “1” corresponds to linear, degree “2” to quadratic, “3” to cubic and “4” to bi-quadratic polynomial. The general form of quadratic equation is :

 



 
Note that “a” can not be zero because degree of function/ expression reduces to 1. Extending this requirement for maintaining order of polynomial, we define polynomial of order “n” as :


 


 Polynomial equation 




 

The polynomial equation is formed by equating polynomial to zero.


 

  
    f
    (
        x
      )
    =
    ao
    xn
    +
    a1
    x
        n
        −
        1
      
    +
    a2
    x
        n
        −
        2
      
    +
    …
    …
    +
    an
    =
    0
  



 
A quadratic equation has the form :



 

  
    f
    (
        x
      )
    =
    a
    x2
    +
    b
    x
    +
    c
    =
    0
  



 
The roots of a polynomial equation are the values of “x” for which value of polynomial f(x) becomes zero. If f(a) = 0, then "x=a" is the root of the polynomial. A polynomial equation of degree “n” has at the most “n” roots – real or imaginary. Important point to underline here is that a real polynomial can have imaginary roots. 


 
Solution of polynomial equation is intersection(s) of two equations :


 

  
    y
    =
    ao
    xn
    +
    a1
    x
        n
        −
        1
      
    +
    a2
    x
        n
        −
        2
      
    +
    …
    …
    +
    an
    =
    0
  



 
and


 



 
The solutions of equations (real or complex) are the roots of the polynomial equation. If we plot y=f(x) .vs. y=0 plot, then real roots are x-coordinates (x-intercepts) where plot intersect x-axis. Clearly, graph of polynomial can at most intersect x-axis at “n” points, where “n” is the degree of polynomial. On the other hand, y-intercept of a polynomial is obtained by putting x=0,


 

  
    y
    =
    a0
    X
    0
    +
    a1
    X
    0
    +
    a2
    X
    0
    +
    …
    …
    +
    an
    =
    an
  



 

 [image: x and y intercepts of polynomial (p1a.gif)]
Figure 3.7.  x and y intercepts of polynomial 
 Graph of polynomial can at most intersect x-axis at “n” points, where “n” is the degree of polynomial. 



 Polynomial equation 




 


Some useful deductions about roots of a polynomial equation and their nature are :


 
 1 :  A polynomial equation of order n can have n roots – real or imaginary.
 


 
 2 :  Imaginary roots occur in pairs like 1+3i and 1-3i


 
 3 :  Roots having square root term occur in pairs 1+√3 and 1-√3.


 
 4 :  If a polynomial equation involves only even powers of x and all terms are positive, then all roots of polynomial equation are imaginary (complex). For example, roots of the quadratic equation given here are complex.


 

  
    x4
    +
    2
    x2
    +
    4
    =
    0
  


 
 Descartes rules of signs

 
Descartes rules are :

 
 (i) 	Maximum number of positive real roots of a polynomial equation f(x) is equal to number of sign changes in f(x).

 
 (ii)  Maximum number of negative real roots of a polynomial equation f(x) is equal to number of sign changes in f(-x).


 
The signs of the terms of polynomial equation 
  
    f
    (
        x
      )
    =
    x3
    +
    3
    x2
    −
    12
    x
    +
    3
    =
    0
  


 are “+  +  -  +”. There are two sign changes as we move from left to right. Hence, this cubic polynomial can have at most 2 positive real roots.  Further,  corresponding 
  
    f
    (
        –
        x
      )
    =
    –
    x3
    +
    3
    x2
    +
    12
    x
    +
    3
    =
    0
  

has signs of term given as “-  + + +“. There is one sign change involved here. It means that polynomial equation can have at most one negative root. 



 Polynomials




 Zero polynomial




 
The function is defined as :

 

  
    y
    =
    f(x)
    =
    0
  


 
The polynomial “0”, which has no term at all, is called zero polynomial. The graph of zero polynomial is x-axis itself. Clearly, domain is real number set R, whereas range is a singleton set {0}.


 Constant function




 

It is a polynomial of degree 0. The value of constant function is constant irrespective of values of "x". The image of the constant function (y) is constant for all values of pre-images (x). 


 


  
    y
    =
    f(x)
    =
    c
  



 

 [image: Constant function (p2.gif)]
Figure 3.8.  Constant function 
 Constant function is a polynomial of degree 0. 



 
The graph of a constant function is a straight line parallel to x-axis. As “y = (f(x) = c” holds for real values of “x”, the domain of constant function is "R". On the other hand, the value of “y” is a single valued constant, hence range of constant function is singleton set {c}.We can treat constant function also as a linear function of the form f(x) = c with m=0. Its graph is a straight line like that of linear function.


 There is an interesting aspect about periodicity of constant function. A polynomial function is not periodic in general. A periodic function repeats function values after regular intervals. It is defined as a fuction for which f(x+T) = f(x), where T is the period of the function. In the case of constant function, function value is constant whatever be the value of independent variable. It means that 
	

. Clearly, it meets the requirement with the difference that there is no definite or fixed period like "T". The relation of periodicity, however, holds for any change to x. We, therefore, summarize (it is also the accepted position) that constant function is a periodic function with no period.

 Linear function




 

Linear function is a polynomial of order 1. 


 

  
    f
    (
        x
      )
    =
    a0
    x
    +
    a1
  



 
It is also expressed as :


 

  
    f
    (
        x
      )
    =
    m
    x
    +
    c
  



 

 [image: Linear function (p3.gif)]
Figure 3.9.  Linear function 
 Linear function is a polynomial of degree 1. 



 
The graph of a linear function is a straight line. The coefficient of “x” i.e. m is slope of the line and c is y-intercept, which is obtained for x = 0 such that f(0) = c. It is clear from the graph that its domain and range both are real number set R. 


 Identity function




 

The dependent (y) and independent (x) variables have same value. Identity function is similar in concept to that of identity relation which consists of relation of an element of a set with itself.  It is a linear function in which m=1 and c=0. Identity function form is represented as :


 

  
      y
    =
    f(x)
    =
      x
  



 

 [image: Identity function (p4.gif)]
Figure 3.10.  Identity function 
 Identity function is a polynomial of degree 1. 




 
The graph of identity function is a straight line bisecting first and third quadrants of coordinate system. Note that slope of straight line is 45°. It is clear from the graph that its domain and range both are real number set R. 



 Quadratic function




 
The general form of quadratic function is :


 




 
We shall discuss quadratic function in detail in a separate module and hence discussion of this function is not taken up here.



 Graph of polynomial function




 
Graph of polynomial is continuous and non-periodic. If degree is greater than 1, then it is a non-linear graph. Polynomial graphs are analyzed with the help of function properties like intercepts, slopes, concavity, and end behaviors. The may or may not intersect x-axis. This means that it may or may not have real roots. As maximum number of roots of a polynomial is at the most equal to the order of polynomial, we can deduce that graph can at the most intersect x-axis “n” times as maximum numbers of real roots are “n”. 

 
The fact that graph of polynomial is continuous suggests two interesting inferences  :


 
1: If there are two values of polynomial f(a) and f(b) such that f(a)f(b) < 0, then there are at least 1 or an odd numbers of real roots between a and b. The condition f(a)f(b) < 0 means that function values f(a) and f(b) lie on the opposite sides of x-axis. Since graph is continuous, it is bound to cross x-axis at least once or odd times. As such, there are at least 1 or odd numbers of real roots (as shown in the left figure down).


 

 [image: Roots of polynomial function (p5.gif)]
Figure 3.11.  Roots of polynomial function 
 The numbers of x-intercepts depend on nature of product given by f(a)f(b). 



 
2 : If there are two values of polynomial f(a) and f(b) such that f(a)f(b) > 0, then there are either no real roots or there are even numbers of real roots between a and b. The condition f(a)f(b) > 0 means that function values f(a) and f(b) are either both negative or both positive i.e. they lie on the same side of x - axis. Since graph is continuous, it may not cross at all or may cross x-axis even times (as shown in the right figure above). Clearly, there is either no real root or there are even numbers of real roots.


 
We shall study graphs of quadratic polynomials in a separate module. Further, other graphs will be discussed in appropriate context, while discussing a particular function. Here, we present two monomial quadratic graphs 
  
    y
    =
    x2
  

 and 
  
    y
    =
    x3
  



. These graphs are important from the point of view of generalizing graphs of these particular polynomial structure. The nature of graphs 
  
    y
    =
    xn
  


, where “n” is even integer greater than equal to 2, is similar to the graph of 
  
    y
    =
    x2
  


. We should emphasize that the shape of curve simply generalizes the nature of graph – we need to draw them actually, if we want to draw graph of a particular monomial function. However, we shall find that these generalizations about nature of curve lets us know a great deal about the monomial polynomial. In particular, we can conclude that their domain and range are real number set R.  

 

 [image: Even degree function (p6.gif)]
Figure 3.12.  Even degree function 
 The nature of graphs of degree of positive even integer are similar to the graph shown. 



 
Similarly, the nature of graphs 
  
    y
    =
    xn
  


, where “n” is odd number integer greater than 2, is similar to the graph of 

  
    y
    =
    x3
  

. 

 

 [image: Odd degree function (p7.gif)]
Figure 3.13.  Odd degree function 
 The nature of graphs of degree of positive odd integer are similar to the graph of shown. 





3.4. Quadratic polynomial function*



 
We are already acquainted with quadratic equation and its roots. In this module, we shall study quadratic expression from the point of view of a function. It is a polynomial function of degree 2. The general form of quadratic expression/ function is :

 


 Elements of quadratic equation




 Quadratic equation




 
Quadratic equation is obtained by equating quadratic function to zero. General form of quadratic equation corresponding to quadratic function is :   


 



 Discriminant of quadratic equation




 
Nature of a given quadratic function is best understood in terms of discriminant, D, of corresponding quadratic equation. This is given as :

 

  
    D
    =
    b2
    −
    4
    a
    c
  



 Roots of quadratic equation




 
Quadratic equation is obtained by equating quadratic function to zero. Quadratic equation has at most two roots. The roots are given by :



 


 


 Properties of roots of quadratic equation




 
 1 :  If D>0, then roots are real and distinct. 

 
 2 :  If D=0, then roots are real and equal.

  3 :  If D<0, then roots are complex conjugates with non-zero imaginary part. 

 
 4 :  If D>0; a,b,c∈T (rational numbers) and D is a perfect square, then roots are rational. 

 
 5 :  If D>0; a,b,c∈T (rational numbers) and D is not a perfect square, then roots are radical conjugates.

 
 6 :  If D>0; a=1;b,c∈Z (integer numbers) and roots are rational, then roots are integers.

 
 7 :  If a quadratic equation has more than two roots, then the function is an identity in x and a=b=c=0.

 
 8 :  If a quadratic equation has one real root and a,b,c∈R, then other root is also real.




 Elements of quadratic function




 Zeroes of quadratic function




 
The real roots of the quadratic equation are zeroes of quadratic function. The zeroes of quadratic function are real values of x for which value of quadratic function becomes zero. On graph, zeros are the points at which graph intersects y=0 i.e. x-axis. 



 Graph of quadratic function




 

Graph reveals important characteristics of quadratic function. The graph of quadratic function is a parabola. Working with the quadratic function, we have :


 



 
In order to complete square, we add and subtract 
  
    b2
    /
    4
    a2
  

as :


 



 


 


 


 

  
    ⇒
    Y
    =
    a
    X2
  


 
Where,


 



 

 [image: Graph of quadratic function (qf1.gif)]
Figure 3.14.  Graph of quadratic function 
 The graph is parabola.



 
Clearly, 
  
    Y
    =
    a
    X2
  

 is an equation of parabola having its vertex given by (-b/2a, -D/4a). When a>0, parabola opens up and when a<0, parabola opens down. Further, parabola is symmetric about x=-b/2a.

 Maximum and minimum values of quadratic function




 

The graph of quadratic function extends on either sides of x-axis. Its domain, therefore, is R. On the other hand, value of function extends from vertex to either positive or negative infinity, depending on whether “a” is positive or negative.  

 
When a > 0, the graph of quadratic function is parabola opening up. The minimum and maximum values of the function are given by :


 


 

  
    y
        max
      
    ⇒
    ∞
  



 
Clearly,  range of the function is [-D/4a, ∞). 


 
When a < 0, the graph of quadratic function is parabola opening down. The maximum and minimum values of the function are given by :



 

 [image: Graph of quadratic function (qf2.gif)]
Figure 3.15.  Graph of quadratic function 
 The graph is parabola, which opens down.



 



 

  
    y
        min
      
    ⇒
    −
    ∞
  



 
Clearly, range of the function is (-∞, -D/4a].


Example 3.2. 
 
 Problem :  
Determine range of 
  
    f
    (
        x
      )
    =
    –
    3
    x2
    +
    2
    x
    −
    4
  


 
 Solution :  
The determinant of corresponding quadratic equation is :


 


 



 
The graph of function is parabola opening down. Its vertex represents the maximum function value. The ma