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Chapter 1. Introduction to "Notes on the Design of Optimal FIR Filters"



 
Introduction
A recurring technical task in the development of digital signal processing products and systems
is the design of finite-impulse-response (FIR) digital filters.
Fortunately some excellent software packages exist for the automatic
synthesis of impulse responses for such filters, many of them based on
the now-famous Parks-McClellan algorithm [2]. Unfortunately, there is still
some mystery about how to use the software and, equally important, how to
estimate impulse response lengths short of actually designing the filter
itself. This technical note primarily addresses the second problem and
indirectly discusses a bit
the first. We examine here how to convert a typical filter specification in
terms of cutoff frequency, passband ripple, etc., into a reasonably
accurate estimate of the
length of the impulse response. Not only does this estimate suffice for
most design tradeoff exercises, it usually allows the Parks-McClellan routines
to be employed only once or twice rather than the multiple times needed
when the “cut-and-try" method is used.

Solutions


Chapter 2. Statement of the Optimal Linear Phase FIR Filter Design Problem



Equal-ripple Design



 While other types of filters are often of interest, this note focuses on the
lowpass linear phase filter. Even though it is not immediately obvious, virtually
all of the analytical results developed in this note apply to the other types
as well. This fact is amplified in the module Extension to Non-lowpass Filters.




 It is known that the Parks-McClellan filter synthesis software package produces
“optimal" filters in the sense that the best possible filter performance is
attained for the number of “filter taps" allowed by the designer. “Optimal"
can be defined various ways. The Parks-McClellan package uses the Remez
exchange algorithm to optimize the filter design by selecting the impulse
response of given length, termed here N, which minimizes the peak ripple in
the passband and stopband. It can be shown, though not here, that minimizing
the peak, or maximum, ripple is equivalent to making all of the local peaks
in the ripple equal to each other. This fact leads to three different names for
essentially the same filter design. They are commonly called “equal-ripple"
filters, because the local peaks are equal in deviation from the desired filter
response. Because the maximum ripple deviation is minimized in this optimization
procedure, they are also termed “minimax" filters. Finally, since the Russian
Chebyshev is usually associated with minimax designs

[1],


 these filters are often given his name.
 The design template for an equal-ripple lowpass filter is shown in
Figure 2.1.
 [image: Equal-ripple Design]

Figure 2.1. 
Frequency Response of an Optimal Weighted Equal-ripple Linear
Phase FIR Filter

 The passband extends from 0 Hz to the cutoff frequency denoted fc.
The gain in the passband is assumed to be unity. Any other gain is
attained by scaling the whole impulse response appropriately. The stopband
begins at the frequency denoted fst and ends at the so-called Nyquist
or “folding" frequency, denoted by , where fs is the
sampling frequency of the data entering the digital filter. In some
references, [1] for example, the sampling rate fs is assumed to be
normalized to unity just as the passband gain has here. The dependence on
the sampling frequency is kept explicit in this note, however, so that its
impact on design parameters can be kept visible.
 The optimal synthesis algorithm is assumed here to produce an impulse response
whose associated frequency response has ripples in both the passband
and the stopband. The peak deviation in the passband is denoted δ1
and the peak deviation in the stopband is denoted δ2. It is commonly
thought that an “equal-ripple" design forces δ1 to equal δ2.
In fact this is not true. The local ripple peaks in the passband will all
equal δ1 and those in the stopband will all equal δ2. For
a given filter specification the two are linked together by a weight denoted
W, so that δ1=Wδ2. In fact the Parks-McClellan routines
insure the design of weighted equal-ripple filters. The choice of W is
discussed shortly.
 An important design parameter is the transition band, denoted Δf,
and defined as the difference between the stopband edge fst and the
passband edge fc. Thus,
(2.1)

 In theory the required filter order N is a function of all of the
design parameters defined so far, that is, fs,fc,fst,δ1, and δ2. The central point of this technical note is
that under a large range of practical circumstances the required value of
N can be estimated using only fs,Δf, and the smaller of
δ1 and δ2.

Conversion of Specifications



 While the parameters defined in the previous section relate directly
to the theory of FIR filter design optimization, some of them differ
from those usually employed to specify the performance of a filter. We
discuss here the conversion of two of those, δ1 and δ2,
into more traditional measures.
  Passband Ripple:
 Figure 2.1 uses the
parameter δ1 to describe the peak difference between the template
lowpass filter and the magnitude of the filter response actually attained.
Traditionally this passband ripple has been specified in terms of the
maximum difference in the power level transmitted through the filter in
the passband. By this definition, the peak-to-peak
passband ripple, abbreviated here as
PBR, is given by
(2.2)

 Assuming that the nominal power transmission through the filter is unity,
the numerator is the power gain at a ripple peak and the denominator is
the gain at a trough. It is easily shown (see Appendix A)


that when δ1 is small compared to unity, or, equivalently, when the
passband ripple is less than about 1.5 dB, then

[2]


(2.3)

  Stopband Ripple:
 The traditional specification for
stopband ripple, abbreviated here as SBR, is the power difference between
the nominal passband transmission level and the transmission level of the
highest ripple in the stopband. For the equal ripple design shown in
Figure 2.1, all stopband ripples have equal peak values and
the nominal passband transmission is unity, that is, 0 dB. The stopband
ripple, or more accurately, the minimum stopband power rejection, denoted
SBR, is given by
(2.4)

Example 2.1. 
 Suppose a filter is specified to have a peak-to-peak
passband ripple of 0.5 dB and a minimum stopband attenuation of 60 dB.
Using the above equations we find that δ1=0.0288,
δ2=.001, and the relative weighting, W, therefore equals 28.8.




 In discussing filter specifications it should be noted that the cutoff
frequency fc shown in Figure 2.1 differs from the
definition typically used in analog filter designs. The cutoff
frequency is commonly defined as the
3 dB point, that is,
that frequency at which the power transfer function falls
to a value 3 dB below the nominal passband level. Instead the value of fc
shown in Figure 2.1 is the highest frequency at which the
specified passband ripple is still attained. In very few practical cases do the
two definitions result in the same value.


Solutions


Chapter 3. Filter Sizing



The Formula for Estimation of the FIR Filter Length



 For many lowpass filter designs the peak passband excursion δ1
exceeds the peak stopband excursion δ2 by a factor of ten or more.
This ratio, earlier denoted as the weight W, was just evaluted
in the previous section to have the
value 28.8 for a typical set of specifications.
In this example the stopband attenuation specification drives the required
filter order. In this case, and with a few additional assumptions which
will be enumerated later, the
number of coefficients in the impulse response of a high-order
FIR linear phase filter, denoted N, can be accurately estimated using the
formula:
(3.1)

 where the design parameter α is given by the equation:
(3.2)

 As before, SBR is the minimum stopband attenuation compared to the
nominal passband power transmission level, measured in decibels.
Example 3.1. Continuing from Example I "Statement of the Optimal Linear FIR Filter Design Problem" 
 
  Suppose as before that the lowpass
filter of interest is to have a peak-to-peak passband ripple (PBR) of 0.5 dB and
a minimum stopband attenuation of 60 dB. Since W has been evaluated to be
approximately 29 in this case, Equation 3.1 applies. Using
Equation 3.2, α is evaluated to be 2.42. Thus
N is closely approximated by 2.42 times the reciprocal of the normalized
transition bandwidth .
To continue the example assume that the sampling rate is 8 kHz, that
the cutoff frequency fc is 1530 Hz, and that the stopband edge fst
is 2330 Hz. Thus  Hz and ,
yielding an estimated filter order N of approximately 24.
Executing the Parks-McClellan design program with these
parameters happens to produce an impulse response which almost perfectly
matches the desired result (e.g., peak stopband ripple of 60.07 dB as
opposed to the stated objective of 60 dB).



 Note that the required filter order N as estimated by
 Equation 3.1 and Equation 3.2 does not depend on
the passband ripple PBR or on the exact values of the cutoff and stopband
frequencies. Thus, when the conditions allowing the underlying assumptions to
be met are true, estimating the required filter order N becomes very easy.
 Table 3.1 provides the values of the design parameter α
from Equation 3.2
for various degrees of stopband suppression. Given also is the range of
the passband ripple for which the values of α apply. The
column marked maximum passband ripple reflects the the assumption that
the passband deviation δ1 is small compared to unity;
specifically, the stated value of 1.74 dB corresponds
to δ1=0.1. The rightmost column, denoted minimum
passband ripple, is the limit imposed by the assumption that
. Of course FIR linear phase equal ripple
filters can be designed with passband ripple extending beyond the stated range.
However, as the PBR specification approaches either of these endpoints the
validity of Equation 3.2 will degrade. The predicted filter length
will err on the low side for small PBR values and be overly pessimistic for
PBR > 1.74 dB. In such cases, an iteration on design might be necessary to
obtain the desired filter characteristics.
Table 3.1. Table 1: Values of the Design Parameter α as a Function of the Minimum  Stopband Attenuation 	Stopband Attenuation (in dB)	
                
                  α
                
              	Maximum Passband Ripple  (in dB)	Minimum
Passband Ripple  (in dB)
	45	1.87	1.74	1.0
	50	2.05	1.74	0.55
	55	2.23	1.74	0.31
	60	2.42	1.74	0.174
	65	2.60	1.74	0.098
	70	2.78	1.74	0.055


Derivation of the Formula



 This section describes the theoretical underpinnings of
Equation 3.1 and Equation 3.2. A clear understanding of this
section is not required to use the Parks-McClellan software routines or
to enjoy the remainder of this technical note.
 As discussed in Section 2, the Parks-McClellan synthesis algorithm uses the
Remez exchange algorithm to optimally select the values of the N impulse
response coefficients in such a way as to minimize the weighted peak difference
between the desired magnitude frequency response and the actual one. Since
the solution to this optimization problem does not have a closed form, it is
not easy to generalize its properties. To learn about its properties and to
develop appropriate design rules, McClellan, Rabiner, and others synthesized
thousands of filters and measured their properties. Curves with this sort of
information are presented in [1], along with a complicated empirical formula for
the filter order N in terms of all of the parameters specifying the filter.
While this work is not immediately useful for design work, a limiting case
uncovered by those workers does provide some insight into the optimal
filter solutions and leads to the simple rules compressed into
Equation 3.1 and Equation 3.2.
 Suppose we desire to design a high-order, FIR, linear phase filter for
which the passband is as narrow as possible. Looking again at
Figure 1 from the module titled "Statement of the Optimal Linear Phase FIR Filter Design Problem"

with this in mind reveals that all of
the ripple behavior for such a filter will occur in the stopband. Such
a filter, or a very close approximation to it, can be synthesized using
another FIR filter design method, that of multiplying a
sampled  function, where ,
by an N-point window function
constructed from a Chebyshev polynomial.
The sampled , or sinc, function is the inverse z-transform
of a perfect lowpass filter. It cannot be used directly since it extends
infinitely far into both forward and backward time. A finite duration
impulse response is obtained by multiplying the “perfect" response by
a finite-duration window function. The one discussed here uses Chebyshev
polynomials as their basis.
These polynomials are discussed in
Appendix B

They all have the property that the polynomials'
peak magnitude is unity for values of x between -1 and 1, and that for
greater values of |x|, the magnitude grows as xM where M is the order
of the polynomial. One such polynomial is shown in Figure 3.1.
 [image: Derivation of the Formula]

Figure 3.1. 
A Chebyshev Polynomial (drawn from [1])

 We desire that the oscillatory portion of the polynomial correspond to the
stopband region of the filter response and the xM portion to correspond
to the transition from the stopband to the passband. This is accomplished by
invoking a change of variables relating x to the frequency f. The
resulting equation is then evaluated at the several points to obtain an
expression for the transition bandwidth . The details of this
manipulation are contained in  Appendix C.

They result
in the following equation:
(3.3)

 If δ1 is small compared to unity and N is large
compared to unity, as already assumed, then Δf is closely
approximated by
(3.4)

 When the argument of the hyperbolic cosine is large, the
function can be approximated as
(3.5)

 With suitable manipulation we find that
(3.6)

 Substituting this expression for the inverse hyperbolic cosine
yields a simple formula for Δf:
(3.7)

 Rewriting this equation shows that N must equal or exceed:
(3.8)

 where α is given by
(3.9)

 Rewriting equation 4 from the module titled "Statement of the Optimal Linear Phase FIR Filter Design Problem", δ2 can be written as

(3.10)

 Substituting this into Equation 3.9 yields
(3.11)
            
              α
              =
              0
              .
              22
              +
              0
              .
              0366
              ·
              S
              B
              R
              ,
            
          
 which can be recognized as Equation 3.2.

Caveats



 The derivation just presented assumes that the filter of interest is a
lowpass design, the filter order is high (>20 or
so), that the passband ripple is small (that δ1≪1), and that
the filter uses all degrees of freedom except one in the stopband, that is,
that the filter has the lowest possible cutoff frequency. In fact not all of
these conditions have to be met to make the design Equation 3.1
and Equation 3.2 useful. An indication of how errors can enter the
estimate of N under other conditions can be seen, however, by examining
Figure 3.2.
 [image: Caveats]

Figure 3.2. 
Comparison of the Transition Widths of Even and Odd Optimal
Lowpass Filters (drawn from [1])

 This figure shows the smallest value of Δf attainable with optimal
equal-ripple linear phase filters of different lengths as a function of the
cutoff frequency fc. Equation 3.1 and Equation 3.2
predict that the transition bandwidth is constant as a function of cutoff
frequency and that it always gets smaller as the filter order N increases.
Figure 3.2 shows that these generalities are not true. It can
be seen that Δf varies somewhat as a function of fc and that
there are particular choices of fc where a lower value of Δf is
actually attainable with a lower filter order rather than a higher one.
It would appear that, for a given filter order N, some values of fc
are “hard" to attain a small transition bandwidth and others are “easy".
This is in fact true and the reason for it will be discussed in
"Why does alpha Depend on the Cutoff Frequency fc?".


 While Figure 3.2 shows that Δf is not truly
independent of the cutoff frequency fc and monotonic in the
filter order N, the significant variations appear only for low filter
orders. If N is greater than 20 or so, and the other conditions listed
above hold true, as they usually do, then Equation 3.1
and Equation 3.2 can be used with impugnity, even for highpass
and bandpass filters.



Solutions


Chapter 4. Performance Comparsion with other FIR Design Methods



Performance Comparsion with other FIR Design Methods



 A commonly asked question among filter designers is why should the optimal
design methods be used at all, or, equivalently, how much does the use of
an optimal technique buy over some other conventional methods. This question
is conveniently answered using Figure 4.1, a figure extracted
from [1] and modified to use the definitions of variables employed in this
technical note. The figure shows the value of the design parameter α
needed to attain a specific degree of stopband suppression in lowpass filters.
Since the filter order N and therefore the amount of
computation[3]R=Nfs
are directly proportional to α, it serves as an excellent indicator
for comparisons.
 [image: Performance Comparsion with other FIR Design Methods]

Figure 4.1. 
Comparisons among Windowed, Frequency Sampling, and Optimal
Lowpass Filters (drawn from [1])

 Curves for three design methods are shown, windowing techniques, so-called
“frequency sampling" techniques, and the optimal, equal-ripple design
produced by the Parks-McClellan program. In each case there are some variations
depending on the choice of design parameters other than stopband ripple. For
example, the optimal technique shows a band of results indexed by the amount of
passband ripple (hence δ1) specified. The figure shows that, for
modest degrees of stopband suppression, all of the methods work about
equally well. For high degrees of suppression, however, the optimal technique
allows values of α to be attained which are on the order of half of
those attainable with the windowing methods and about 60-70% of the
frequency sampling method. Since computation is directly proportional 
to α, these saving are directly translatable into hardware and/or runtime
improvements.
 Why, one might ask, is the optimal method significantly better than, say,
the window method? A fuller answer is presently shortly, but a simple one is
that the optimal methods allow the designer to avoid overdesigning portions of
the frequency response about which he or she needn't exert as much control. For
example, recall the design example discussed in   the section "Conversion of Specifications" from the module titled "Statement of the Optimal Linear Phase FIR Filter Design Problem".

In that case a set of reasonable specifications was developed which allowed
the magnitude of the
passband ripple to be almost 29 times larger than the stopband ripple. Since
the Parks-McClellan design package allows the design of weighted
equal-ripple filters this disparity can be accommodated.
Window-designed filters,
however, are constrained to have exactly the same passband ripple δ1
as stopband ripple δ2. Effectively the optimal design methods
allow the degrees of freedom in the impulse response to be focused on the
most stressing parts of the frequency response design while the window method
treats all parts equally. The frequency-sampling method falls in between.

The Meaning of the Design Parameter α



 More insight into the meaning of the design parameter α can be gained
by examining all three aforementioned design methods in terms of the inverse
discrete Fourier transform. Suppose that our objective, as it is, is to
synthesize an N-point FIR filter. Suppose further that we
use the approach of specifying the frequency response we desire with equally
spaced samples in the frequency domain and then use the inverse discrete
Fourier transform (DFT) to transform the frequency specification into a
time-domain impulse response. This approach is shown in graphical form in
Figure 4.2.
 [image: The Meaning of the Design Parameter α]

Figure 4.2. 
Using the Discrete Fourier Transform (DFT) as the Basis of FIR
Filter Design

 Analytically there is a one-to-one relationship between the N points of
an FIR impulse response and the frequency response of the filter measured
at N equally-spaced frequencies between 0 and fs Hertz. Specifically it
is straight-forward to show that the impulse response h(k) and the complex
gains , for 0≤n≤N–1, are invertibly related, where
the filter's frequency response is given by
(4.1)

 Thus choosing the complex gains  is equivalent to choosing the
impulse response h(k),0≤k≤N–1, and, through
 Equation 4.1, to the filter frequency response at all values
of f between 0 and fs Hertz. By examining Figure 4.2 it
can be seen that choosing a frequency response (and hence an impulse response)
can be intuitively viewed as adjusting the gain levers on a graphic equalizer
of the type
now used on home stereos. Each lever sets the gain, denoted here as
, of a filter given by
(4.2)

 By setting these N gain values optimally the best
possible frequency response is
attained.
 The analogy of the graphic equalizer can be followed somewhat further.
 Figure 4.2 suggests that the FIR design problem can be
thought in the terms of the structure shown in Figure 4.3.
The input signal is applied to all N of what we'll the basis filters,
where the frequency response of the n-th filter is given by
Equation 4.2. As noted earlier these basis filters, so called
because they form the linearly independent set of filters used to
construct H(f), are frequency-shifted versions of the same fairly
sloppy bandpass filter. These filter outputs are then scaled by the
complex coefficients  and then added together to produce the
observable filter output. Thus the basis filters are fixed and the
 control the frequency and hence impulse response of the
digital filter. It should be noted that the filter is not usually actually
constructed[4] as shown in Figure 4.3 but it is a
very convenient analogy when trying to understand the relationships between
the various filter synthesis methods.
 [image: ]

Figure 4.3. 
The FIR Filter Design Problem Models as a Bank of Bandpass Filters

 Now we shall use the model.
In our quest for the true meaning of α, consider first the design of
a simple lowpass filter. We desire the cutoff frequency fc and the
stopband edge fst to be as low
as possible and allow the peak stopband ripple to be quite large. Using the
graphic equalizer model just discussed yields the design shown in
Figure 4.4. Only one filter, the one centered at DC, is used.
Its gain is set to unity and that of all others is set to zero. The peak
stopband ripple is determined by the first sidelobe of the only active
filter. It can be computed to be about 13 dB below the maximum passband power
level (measured at DC).
 [image: ]

Figure 4.4. 
A Simple Lowpass Filter Designed Using the Graphic Equalizer Analogy

 What is Δf in this case? Graphically it can be seen to be somewhat
less than than the frequency interval between DC and the first transmission
zero of Hn(f) which occurs at . Suppose that
we now rewrite  equation 2 from the module titled "Filter Sizing" as
(4.3)

 Thus we see that in the simple filter designed in Figure 4.4
that associated value of α is slightly less than one.
 Now suppose that we attempt to design a better filter, again using the graphic
equalizer method. Our first objective is to reduce the size of the stopband
ripple. To do this we leave  set to
unity and increase the values of
 and  slightly
so that their positive mainlobe values cancel the
negative-going first sidelobe of . All
other filter gain levels will
remain set to zero. The effects of this strategy are seen in
Figure 4.5.
 [image: ]

Figure 4.5. 
Lowpass Filter Obtained Using the Second and Third DFT Basis Functions

 The first objective, that of reducing the peak stopband ripple, is achieved.
By choosing  and  just right,
the first sidelobe of  can
be effectively cancelled, leaving the other sidelobes to compete for the
peak value. The second effect is less desirable, however. From graphical
inspection it is clear that Δf, the frequency interval between
fc and fst, has grown. It now exceeds , thus
making α greater than unity.
 These trends continue as more and more filter gains  are allowed to
become non-zero in the quest of further reducing the peak stopband ripple.
The peak is reduced, the ripple structure begins to approach the
Chebyshev equal-ripple firm seen in Figure 1 from the module titled "Statement of the Optimal Linear Phase FIR Filter Design Problem",

and the transition
band stretches out as more filters are used to try to constrain the stopband
frequency response to the stopband ripple goals. The design parameter α
is just a measure of the number of filters, or, equivalently, the number of
equalizer levers, needed to transit from one gain
level (e.g., the passband) to another (e.g., the stopband) while achieving the
desired passband and stopband ripple performance. Since  is
the spacing between the bins of an N-point DFT, the term α can also
be thought of as the number of DFT bins needed to make a gain transition. This
interpretation is explored next.


Solutions


Chapter 5. Three Methods of Designing FIR Filters



 The module "Performance Comparison with other FIR Design Methods"

alluded to the fact that three basic methods have
traditionally been used for the design of FIR digital filters.


  Figure 1 in the module titled "Performance Comparison with other FIR Design Methods"

in fact compares their relative performance
in terms of the value of α (which was shown to be proportional
to the filter's required run-time
computation rate). Given the background of the
previous subsection it is now possible to understand each of the methods
and to gain some insight into the differences between their performance.
Window-based Filters



 As described earlier, one of the first class of FIR filters is that
based on the use of a “smoothing window". This window, constructed to
have only N non-zero points, is multiplied point-by-point by an
impulse response of infinite duration which has the “perfect"
frequency response. This multiplication or windowing
has the effect of making the
filter impulse response finite in duration (hence FIR), but also has the
effect of smearing the desired frequency response.
 [image: Window-based Filters]

Figure 5.1. 
The Effect of a Window Function on the Basis Filter

 The stopband ripple specification is obtained by using a window capable
of suppressing all sidelobes to the desired degree. This can be seen in
Figure 5.1. The windowed filter basis function has
substantially lower sidelobes than the original 
filter basis function, in trade for substantial widening of the main lobe. This
widening means growth in the equivalent design parameter α and is
monotonic with the degree of sidelobe suppression attained.
 It should also be observed that the sidelobe reduction has the effect of
reducing the ripple in the passband as well as in the stopband. Thus
some of the filter's degrees of freedom are given up in perhaps overdesigning
the passband response rather than focusing them on the stopband
performance.

Frequency Sampling Design



 In the simplest DFT-based FIR filter design method, the desired frequency
response is sampled at frequency intervals of  Hertz
and the filter gains  are set to those values. This is
in essence the method used for the simple lowpass filter shown in 

 Figure 4 from the module titled"Performance Comparison with other FIR Design Methods".

The big advantages of this method are its
simplicity and the fact that any desired response, no matter how
complicated, can be approximated. The big disadvantage is its uncontrolled
ripple performance in both the stopband and passband. The traditional cures for
this are the use of a window function to suppress the ripple and the
expansion of the filter order N to compensate for the window's smearing of
the desired response. Increasing N, of course, increases the filter's
run-time computation rate.
 Relatively early in the development of FIR design techniques it was
discovered that much better adherence to the desired frequency
response could be attained by allowing some of the basis filter
gains  to vary slightly from the exact sampled values
(e.g., 1 and 0 for a lowpass filter). This idea is shown in
Figure 5.2. A simple lowpass filter is the desired
response. Solid dots show the frequency samples of this desired response
taken every  Hertz. These samples have values of
1 and 0 for  in the passband and stopband respectively.
Now suppose that the values of  for n in the vicinity of
the cutoff frequency fc are allowed to be modified slightly with the
goal of minimizing the peak stopband ripple. These values of n
are denoted with small circles instead of solid dots in
Figure 5.2. Rabiner and his coworkers [4] showed in
1970 that it was possible to use the linear programming optimization
technique to manipulate two or three of the filter gains to obtain
great improvement in stopband ripple performance. The computational
complexity of the linear programming method, however, limited the
number of the  which could be so chosen.
 [image: Frequency Sampling Design]

Figure 5.2. 
Comparison of “Frequency Sampling" and Equal-ripple Design


Equiripple Design



 It was generally known in 1971 that equal-ripple passband and stopband
behavior would lead to the best filter performance, where “best" means
the smallest transition band (and hence α) for a given set of
peak passband and stopband ripple specifications. In fact a great deal was
known about the properties of such filters. What was lacking was a
computationally satisfactory method of designing such optimal filters.
As just noted, the linear programming technique provided a big step but still
fell short. The breakthrough came in two parts. Several workers, but
principally Parks, McClellan (Parks' graduate student), and Rabiner
showed that four different variants of FIR linear phase filters could
all be represented by the same set of equations[5]
and could therefore be solved the same way. The second part was
Parks' suggestion of using the the Remez exchange algorithm for doing
the actual optimization. The Remez exchange algorithm effectively allows
all degrees of freedom in the filter impulse response to be adjusted
simultaneously while the linear programming technique allows the adjustment
of only one at a time. For high order filters this distinction makes a
tremendous difference in the number of computations needed to iteratively
optimize a design. Refering again to Figure 5.2,
the Remez algorithm allows all of the frequency samples to be modified,
even for filter orders as high as N=1000 or more, thus permitting the best possible
filter performance to be achieved. McClellan also proved that the linear
phase FIR filter design problem satisfied the conditions needed to guarantee
convergence of the Remez algorithm.


Solutions


Chapter 6. Why Does α Depend on the Cutoff Frequency?



 The formulas presented in Equation 1

and Equation 2 from the module titled 
"Filter Sizing"

imply that α and hence the required filter
order N are independent of the cutoff frequency fc. The supporting
analysis showed that this is only true in the limit of high order filters,
i.e. when N is large. The dependence for shorter filters is shown in
 Figure 2 from the module titled "Filter Sizing".

Why should this occur? Consider the filter
design problem shown in Figure 6.1. Again the goal is a simple
lowpass filter with cutoff frequency fc. The frequency sampling points
at frequency multiples of  are also shown as solid dots.
Instead of fixing the gains we presume that the filter gains ,
or, equivalently, the graphic equalizer levers, are optimized, by whatever
means, to yield the best stopband ripple performance.
 Figure 6.1(a) shows the combination of gains  needed
to constrain the peak stopband ripple to a given level, say .
The frequency at which this equal ripple band starts is of course
fst and the difference between fst and fc is Δf.
Now suppose that fc is increased slightly, as shown in
Figure 6.1(b). Now a different set of the  are
needed to make the peak ripple equal  and these result
in different values of fst and Δf. Pursuing this graphical
analysis we find that:
 	 Cutoff frequencies near multiples of  result in
smaller transition bands, and hence smaller values of α, than
those near the center of two bins. This occurs, to first order, since
two or more stopband basis filters are needed to
cancel the first sidelobe of the last basis passband filter when the passband
stops between two bins, while one is needed if the passband stops
near a bin.


	 Because these “hard" and “easy" frequency ranges occur
for every bin, the number of the ranges, counting both positive and
negative frequencies, is about the same as the filter
order[6]N.


	 The variation in the transition band Δf is more pronounced
as N decreases since there are fewer basis filters to use in
optimizing the response.
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Figure 6.1. 
Visualizing the Effects of Cutoff Frequency on Design Difficulty

 As an aside one might observe from Figure 1 from the module titled Performance Comparison with other FIR Design Methods that all
three methods perform about equally for high levels of stopband ripple.
Intuitively the reason for this should now be clear. Window-based methods
need not use much shaping if high levels of ripple are tolerable.
Similarly, frequency sampling need not use many adjustable coefficients.
Since this is true the equal-ripple techniques will not perform much better
since their only advantage is that of adjusting all of the filter gains.
The underlying point is that, for high-ripple designs, all of the methods
produce designs closely resembling the sum of simple, shifted
 functions and produce a transition band
Δf of about the order of , hence an α
of about unity. Only as the stopband ripple specification grows tighter
does the method and accuracy of adjusting the coefficients and the number
of them available for adjustment begin to affect the transition band
performance.

Solutions


Chapter 7. Extension to Non-lowpass Filters



 All of the discussion to this point has focused on lowpass filters.
Practical applications require other types, of course, including highpass,
bandpass, and bandstop designs. In fact the analysis presented in the
previous sections applies to all of these design criteria and the rules
for filter length estimation can be used almost directly. In general
  Equation 1

and Equation 2 from the module titled "Filter Sizing"

apply when one of
the equal ripple specifications dominates all others and when one of the
transition band specifications dominates all others. As a practical matter
this means that δi dominates if it is less than one-tenth of all
other rippple specifications and that Δfi dominates if it is
simply less than all others. Suppose we define δ and Δf by
the equations:
 

(7.1)

(7.2)

 If so then equation Equation 1 from the module titled "Filter Sizing"

can be used directly and the
equation for α becomes
(7.3)

 A final hint - Watch out for the implicit boundary conditions present in
the design of linear phase FIR digital filters in two cases: even order,
symmetric response and odd order, antisymmetrical response. In both of these
cases the underlying equations for the filter's frequency response constrain
it to equal exactly zero at . This is obviously not a problem
for lowpass filters, since the desired gain at  is zero
already. However, in the design of multiband and highpass filters an
inordinate amount of engineering time has been spent trying to design
even-order filters when in fact it is impossible to do so. The Parks-McClellan
algorithm will gamely try, but will fail. As a rule, use odd values of N
for highpass and multiband filters requiring nonzero response at
 and use even-order filters for differentiators.

Solutions


Chapter 8. Bibliography for "Notes on the Design of Optimal FIR Filters"
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Chapter 9. "Notes on the Design of Optimal FIR Filters" Appendix A



The Formula for Converting between  and Passband Ripple



 From

  equation 2 in the module titled Statement of Optimal Linear Phase FIR Filter Design Problem,

the peak-to-peak passband ripple, measured in
decibels, is given by
(9.1)

 where δ1 is the peak amplitude deviation in the
passband. Suppose now that
(9.2)

 If so, then the passband ripple PBR is closely approximated by
(9.3)

 Now recall that , when x is
small compared to unity, and that .
Combining these facts, leads to the equation
(9.4)

 This formula holds as long as δ1 is small compared to unity.
Using δ1=0.1 as a benchmark, the formula holds for values of passband
ripple less than 1.5 to 2 dB, the range in which most filter design falls.


Solutions


Chapter 10. "Notes on the Design of Optimal FIR Filters" Appendix B



Some Notes on Chebyshev Polynomials



 The section "The Derivation of the Formula" from the module titled "Filter Sizing" 

used some of the properties of the Chebyshev
polynomials to develop the key formulas used for FIR filter sizing.
This appendix provides a very brief review of these polynomials and the
equations used to generate them.
 Figure 10.1 shows a set of polynomials which have the
property that, for values of x between -1 and 1, the polynomial has
peak magnitude of unity. A footnote in The section "The Derivation of the Formula" from the module titled "Filter Sizing" 

pointed out
that the Russian engineer Chebyshev developed these polynomials as part
of design effort which required minimizing the maximum lateral excursion of
a locomotive drive rod. For each polynomial order, say M, the objective is
to choose the polynomial's coefficients so that that it “ripples" between
x=–1 and x=1 and then proceeds off proportional to |x|M for values
of |x|>1. Not only did Chebyshev find such polynomials, he found that
one exists for each positive value of M, and that they are related thorugh
a recursion equation, that is, the polynomial for M can directly obtained
for the polynomial for M-1.
 [image: Some Notes on Chebyshev Polynomials]

Figure 10.1. 
Graphs of Chebyshev Polynomials of Orders 0 through 4

 Consider the following recursion expression:
(10.1)
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 with initial conditions of
(10.2)
          
            P0
            =
            1
          
        
 and
(10.3)
          
            P1
            =
            x
          
        
 Note that both of these initial conditions meet (if
trivially) the stated
criteria for being Chebyshev polynomials.
 Using this recursion expression we find, for M from 0 to 5, that:
(10.4)

 These polynomials are plotted in Figure 10.1
and it may be confirmed by inspection that they meet the stated criteria.
 A surprising result is that there is yet another way to present these
polynomials. This method is given by the following equations:
(10.5)

(10.6)

 Analytically it can be confirmed that these equations satisfy the recursion
seen in equation Equation 10.1. To see that they describe the same polynomials
as seen in Figure 10.1, consider Equation 10.5
for values of |x| between -1 and 1. For such values cos–1x ranges
between π and 0. Thus M·cos–1x ranges between
Mπ and 0, and  cycles between -1 or 1 and
1, hiting M+1 extrema on the way, counting the endpoints. Similar
analysis shows that equation Equation 10.6 grows monotonically in
magnitude as |x| does. In fact it is easy to show that
 assymptotically approaches |x|M as
|x| gets much greater than one.
 This second form of the definition for Chebyshev polynomials is very useful
since it is a closed form and because it involves cosines, a functional
form appearing frequently in frequency-domain representations of filters.
In light of this a final twist might be noted. Equation 10.6
is in fact superfluous given Equation 10.5. To see this,
consider evaluating Equation 10.5 for |x|=2. It initially
appears that this won't work, since arccosine cannot be evaluated for
arguments greater than unity. In fact it can, it's just that the result is
purely imaginary. It is easy, using Euler's definition of the cosine, to see
that the cosine of jx is the same as the hyberbolic cosine of x. Thus
the arccosine of 2 is j times the inverse hyperbolic cosine of 2, that
is, j·1.31. Multiplying by M and taking the cosine of the
product yields the cosine of jMx, which is the hyperbolic cosine of Mx.
Thus, if imaginary arguments are permitted, then Equation 10.5
suffices to describe all of the Chebyshev polynomials.


Solutions


Chapter 11. "Notes on the Design of Optimal FIR Filters" Appendix C



Using a Chebyshev Polynomial to Estimate 



 We desire that the oscillatory portion of the polynomial shown in

Figure 1 in the module titled "Filter Sizing"

correspond to the
stopband region of the filter response and the xM portion to correspond
to the transition from the stopband to the passband. This is achieved by
employing a change of variables from frequency f to the polynomial
argument x:
(11.1)

 While many different types of variable changes could be employed, this one
matches the boundary conditions (an obvious requirement) but happens to
employ the cosine function, a member of the same family used to define the
Chebyshev polynomials.
 With this change of variables we see that the transition band Δf is
defined by the difference between x=1 and x=xp. Using the closed, but
nonintuitive form of the K-th order Chebyshev polynomial, valid for
|x|>1, we have that
(11.2)

 To synthesize the desired impulse response using this windowing technique we
multiply the resulting window function by the sampled sinc function. In this
case, however, we desire that the cutoff frequency be as low as possible,
limiting at zero Hz. The associated sinc function equals unity for all
non-zero
coefficients of the impulse response. Since the final impulse response is
the point-by-point product of the window and the sampled sinc function, in
this case the window itself is the resulting impulse response. It suffices then
to examine the properties of the N-th order
Chebyshev polynomial to see how the N-point optimal filter will behave.
 To find the relationship between the required filter order N and the
attainable transition band Δf, we first determine the proper
value of K and
then evaluate Equation 11.2 at the known combinations of
x and PK(x). To select K we note that all but one of the ripples in
the polynomial's response are used in the stopband and these are split
evenly between the positive and negative frequencies. Thus a filter and
window of order N implies a Chebyshev polynomial of order
(11.3)

 With this resolved we observe from Figure 1 in the module titled "Filter Sizing"

that
(11.4)

(11.5)

(11.6)

 These equations are manipulated to yield an expression for xp.
Equation 11.1 is then used to obtain values for fst,
corresponding to x=1, and fc, corresponding to x=xp. Their
difference, defined earlier to be the transition band Δf, is then
given by
(11.7)

 Under suitable conditions this equation can be simplified considerably. For
example, in the limits of small δ1 and large N, Equation 11.7 reduces to 
Equation 4 in the module titled "Filter Sizing".


Solutions
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