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Chapter 1

Introduction for "An Introduction to

Wavelet Analysis"1

In this chapter, we give an overview on multiresolution analysis, wavelet series and wavelet estimators in
the classical setting. By `classical' or `�rst-generation' wavelets, we mean wavelets that were constructed
initially to analyze signals observed at equispaced design points and having a sample size which is a power
of two. The `second-generation' wavelet basis presented in the subsequent chapters will release these two
constraints.

If one wants to analyze a function of time with a series expansion, the �rst idea that comes probably into
one's mind is to use a Fourier series, i.e. decompose the function into sine and cosine at di�erent frequencies.
In this process, we hope that only a few coe�cients in the series will carry most of the information about the
signal. Certain smooth functions have such an `economical' Fourier expansion. However, for most functions,
a good Fourier series approximation requires numerous sine and cosine basis functions. Indeed, the sine
functions have a precise frequency but are not localized in time, hence a localized information in the signal
like a discontinuity will a�ect all the coe�cients of the series. This drawback lead the researchers to look
for more e�cient bases, that is, bases which are localized both in time and in frequency. We will see in
Multiresolution analysis and wavelets (Chapter 3) that a wavelet basis o�ers this property.

This chapter is structured as follows. We begin by recalling some notations in Function spaces: notion and
notations (Chapter 2). Next Multiresolution analysis and wavelets (Chapter 3) introduces the multiresolution
analysis, the wavelet functions, and gives some simple examples of wavelet bases. Fast wavelet transform
(Chapter 4) explains how to decompose a signal using the wavelet transform. Such wavelet transforms, also
called `decimated', lack the property of translation-invariance. Non-decimated wavelet transform (Chapter 5)
presents a widely used trick to make a wavelet transform translation-invariant. Since the main goal of a
wavelet series is to provide a good approximation of a function belonging to a given space, Approximation of
Functions (Chapter 6) introduces some fundamental notions to measure the quality of such approximation.
Finally, Nonparametric regression with wavelets (Chapter 7) presents how to construct a nonparametric
regression estimator using wavelets. First, the classical case of equally spaced design is considered. In the
last part of Nonparametric regression with wavelets (Chapter 7), we review some existing methods that deal
with irregular designs.

1This content is available online at <http://cnx.org/content/m17393/1.3/>.
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Chapter 2

Function spaces: notion and notations1

A Hilbert space is a complete normed space whose norm is indexed by an inner (or scalar) product.
Two disjoint subspaces A and B of a space S form a direct sum decomposition of S if every element of S

can be written uniquely as a sum of an element of A and an element of B. The notation S = A⊕B is then
used.

A measurable function f belongs to the Lebesgue space Lp (R) , 1 ≤ p <∞ if

‖f‖p =
(∫ +∞

−∞
|f (x)|p

)1/p

<∞ . (2.1)

An example of a Hilbert space is the Lebesgue space L2 (R) of measurable and square integrable functions.
Indeed, the norm ‖ · ‖2 is induced by the scalar product

< f , g >=
∫
f (x) g (x)dx , (2.2)

where g (x) denotes the complex conjugate of g (x). Two functions are said to be orthogonal in L2 (R) if
their inner product is zero.

The Lebesgue measure can be replaced by a more general measure µ, leading to the weighted space
L2 (µ), which has as inner product

< f , g >dµ =
∫
f (x) g (x)dµ (x) (2.3)

and which contains the functions that have a �nite norm ‖f‖dµ :=
√
< f , f >dµ <∞.

A countable subset {fk} of functions belonging to a Hilbert space is a Riesz basis if every element f of
the space can be written uniquely as f =

∑
kckfk, and if positive constants A and B exist such that

A‖f‖22 ≤
∑
k

|ck|2 ≤ B‖f‖22 . (2.4)

A Riesz basis is an orthogonal basis if the fk are mutually orthogonal. In this case, A = B = 1.

1This content is available online at <http://cnx.org/content/m17392/1.3/>.
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Chapter 3

Multiresolution analysis and wavelets1

3.1 De�nition of subspaces and of scaling functions

A natural way to introduce wavelets is through the multiresolution analysis. Given a function f ∈ L2 (R), a
multiresolution of L2 (R) will provide us with a sequence of spaces Vj , Vj+1, ... such that the projections of
f onto these spaces give �ner and �ner approximations (as j →∞) of the function f .

Definition: (Multiresolution analysis (MRA) in the �rst generation) A multiresolution anal-
ysis of L2 (R) is de�ned as a sequence of closed subspaces Vj ⊂ L2 (R) , j ∈ Z with the following
properties:

1.
... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ ... (3.1)

2. The spaces Vj satisfy ⋃
j∈Z

Vj is dense in L2 (R) and
⋂
j∈Z

Vj = {0} . (3.2)

3. If f (x) ∈ V0, f
(
2jx
)
∈ Vj , i.e. the spaces Vj are scaled versions of the central space V0.

4. If f ∈ V0, f (.− k) ∈ V0, k ∈ Z, that is, V0 (and hence all the Vj) is invariant under translation.
5. There exists ϕ ∈ V0 such that {ϕ (x− k) ; k ∈ Z} is a Riesz basis in V0.

We will call `level' of a MRA one of the subspaces Vj . From De�nition, p. 5, it follows that, for �xed j, the
set {ϕjk (x) = 2j/2ϕ

(
2jx− k

)
; k ∈ Z} of scaled and translated versions of ϕ is a Riesz basis for Vj . Since

ϕ ∈ V0 ⊂ V1, we can express ϕ as a linear combination of {ϕ1,k}:

ϕ (x) =
∑
k∈Z

hkϕ1,k (x) =
√

2
∑
k∈Z

hkϕ (2x− k) . (3.3)

(3.3) is called the two-scale equation or re�nement equation. It is a fundamental equation in MRA
since it tells us how to go from a �ne levelV1 to a coarser levelV0. The function ϕ is called the scaling
function.

As said before, the spaces Vj will be used to approximate general functions. This will be done by de�ning
appropriate projections onto these spaces. Since the union of all the Vj is dense in L2 (R) , we are guaranteed

1This content is available online at <http://cnx.org/content/m17394/1.3/>.
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6 CHAPTER 3. MULTIRESOLUTION ANALYSIS AND WAVELETS

that any given function of L2 (R) can be approximated arbitrarily close by such projections. As an example,
de�ne the space Vj as

Vj = {f ∈ L2 (R) ;∀k ∈ Z, f |h
2−jk,2−j(k+1)

h
=constant}(3.4)

Then the scaling function ϕ (x) = 1[0,1) (x), called the Haar scaling function, generates by translation and
dilatation a MRA for the sequence of spaces {Vj , j ∈ Z} de�ned in (3.4), see [36], [16].

3.2 The detail space and the wavelet function

Rather than considering all the nested spaces Vj , it would be more e�cient to code only the information
needed to go from Vj to Vj+1. Hence we consider the space Wj which complements Vj in Vj+1 :

Vj+1 = Vj ⊕Wj . (3.5)

The space Wj is not necessarily orthogonal to Vj , but it always contains the detail information needed to
go from an approximation at resolution j to an approximation at resolution j + 1. Consequently, by using
recursively the equation (3.5), we have for any j0 ∈ Z, the decomposition

L2 (R) = Vj0 ⊕⊕∞j=j0Wj . (3.6)

With the notational convention that Wj0−1 := Vj0 , we call the sequence
{Wj}j≥j0−1 a multiscale decomposition (MSD).

We call ψ a wavelet function whenever the set {ψ (x− k) ; k ∈ Z} is a Riesz basis of W0. Since W0 ⊂ V1,
there also exist a re�nement equation for ψ, similarly to (3.3):

ψ (x) =
√

2
∑
k

gkϕ (2x− k) . (3.7)

The collection of wavelet functions {ψjk = 2j/2ψ
(
2jx− k

)
; k ∈ Z, j ∈ Z} is then a Riesz basis for L2 (R).

One of the main features of the wavelet functions is that they possess a certain number of vanishing moments.

Definition: A wavelet function ψ (x) has Nvanishing moments if
∫
ψ (x)xpdx = 0, p =

0, ..., N − 1.

We now mention two interesting cases of wavelet bases.

3.3 Orthogonal bases

In an orthogonal multiresolution analysis, the spaces Wj are de�ned as the orthogonal complement of
Vj in Vj+1. The following theorem tells us one of the main advantages of such a MRA.

Theorem: ([16], Theorem 5.1.1) If a sequence of closed subspaces (Vj)j∈Z in L2 (R) satis�es

De�nition, p. 5, and if, in addition, {ϕ (x− k) , k ∈ Z} is an orthogonal basis for V0, then there
exists one function ψ (x) such that {ψ (x− k) ; k ∈ Z} forms an orthogonal basis for the orthogonal
complement W0 of V0 in V1.

An immediate consequence of Theorem, p. 6 is that {ψjk, k ∈ Z} constitutes an orthogonal basis for the
orthogonal complement Wj of Vj in Vj+1. In this section, let Pj (resp. Qj) be the orthogonal projection
operator onto Vj (resp. Wj). The orthogonal expansion

f = Pj0f +
∑∞
j=j0
Qjf

=
∑
k < f , ϕj0,k > ϕj0,k +

∑∞
j=j0

∑
k < f , ψjk > ψjk

(3.8)

Available for free at Connexions <http://cnx.org/content/col10566/1.3>



7

tells us that a �rst, coarse approximation of f in Vj0 is further re�ned with the projection of f onto the
detail spaces Wj .

Figure 3.1 shows two examples of orthogonal wavelet functions. The �rst is the Haar wavelet, associated
to the Haar scaling function de�ned in "De�nition of subspaces V j and of scaling functions" (Section 3.1:
De�nition of subspaces and of scaling functions).

ψ(x)Haar = 2−1/2
(
ϕHaar (2x− 1)− ϕHaar (2x)

)
= 1[ 1

2 ,1) (x)− 1[0, 12 ) (x) . (3.9)

The Haar wavelet has only one vanishing moment and consequently is optimal only to represent functions
having a low degree of regularity, like, for example, β−Hölder functions with 0 < β < 1.

Daubechies constructed in [15], [16] compactly supported wavelets which have more than one vanishing
moment. Compactly supported wavelets are desirable from a numerical point of view, while having more
than one vanishing moment allows to reconstruct exactly polynomials of higher order. These wavelets cannot,
in general, be written in a closed analytic form. However, their graph can be computed with arbitrarily high
precision using a subdivision scheme algorithm. Figure 3.1(b) represents the Daubechies Least Asymmetric
wavelet with N = 4 vanishing moments.

Available for free at Connexions <http://cnx.org/content/col10566/1.3>



8 CHAPTER 3. MULTIRESOLUTION ANALYSIS AND WAVELETS
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Figure 3.1: Some orthogonal basis functions: (a) the Haar wavelet function bases with N = 1 vanishing
moments, (b) the Least Asymmetric wavelet function of Daubechies [16], [15], with N = 4 vanishing
moments. (a) (a) N = 1 (b) (b)N = 4

This �gure also illustrates the reason behind the name `wavelet': since wavelets are functions with a
certain number of vanishing moments, they have the shape of a `little wave' or `wavelet'.

3.4 Biorthogonal bases

Having an orthogonal MRA puts strong constraints on the construction of a wavelet basis. For example, the
Haar wavelet is the only real-valued function which is compactly supported and symmetric. However, if we
relax orthogonality for biorthogonality, then it becomes possible to have real-valued wavelet bases of �xed
but arbitrary high order (see De�nition 1 from Approximation of Functions (De�nition, p. 17)) which are
symmetric and compactly supported [13]. In a biorthogonal setting, a dual scaling function ϕ̃ and a dual
wavelet function ψ̃ exist. They generate a dual MRA with subspaces Ṽj and complement spaces W̃j such

Available for free at Connexions <http://cnx.org/content/col10566/1.3>
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that

Ṽj ⊥ Wj and Vj ⊥ W̃j . (3.10)

In other words,

< ϕ̃ , ψ (· − k) >= 0 and < ϕ , ψ̃ (· − k) >= 0 (3.11)

Moreover, the dual functions also have to satisfy

< ϕ̃ , ϕ (· − k) >= δk,0 and < ψ̃ , ψ (· − k) >= δk,0 , (3.12)

where δk,0 is the Kronecker symbol. By construction, the dual scaling and wavelet functions satisfy a
re�nement equation, similarly to the equations (3.3) and (3.7).

In this work, we use the following convention: the dual MSD will be used to decompose a function (or a
signal), while the original, or primal MSD reconstructs the function. This yields the following representation
of a function f ∈ L2 (R)

f (x) =
∑
k

< f , ϕ̃j0,k > ϕj0,k (x) +
∞∑
j=j0

∑
k

< f , ψ̃jk > ψjk (x) . (3.13)

Figure 3.2 shows an example of a biorthogonal wavelet basis built by Cohen, Daubechies and Feauveau in
[13], (called CDF-wavelets hereafter).

Available for free at Connexions <http://cnx.org/content/col10566/1.3>
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Figure 3.2: Primal and dual scaling and wavelet functions for the (3,1)-Cohen-Daubechies-Feauveau
(CDF) biorthogonal basis. The primal wavelet function ψ has one vanishing moment while the dual
wavelet ψ̃ has three vanishing moments.
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Chapter 4

Fast wavelet transform1

4.1 One-dimensional wavelet transform

Suppose we are given as signal the projection of a function onto the space Vj+1:

Pj+1f =
∑
k

sj+1,kϕj+1,k (x) , sj+1,k =< f , ϕ̃j+1,k > . (4.1)

Using the dual re�nement equations, we have:

sj,k =< f , ϕ̃j,k > = < f ,
∑
l h̃lϕj+1,2k+l >

=
∑
k h̃l−2ksj+1,l ,

(4.2)

where the coe�cients sjk are called scaling coe�cients, since they are related to scaling functions.
Similarly, the wavelet or detail coe�cientsdjk are obtained as

djk =< f , ψ̃jk >=
∑
k

g̃l−2ksj+1,l . (4.3)

The coe�cients sjk and djk are obtained from sj+1,l by `moving average' schemes, using the �lter coe�cients

{h̃l} and {g̃l} as `weights', with the exception that these moving averages are sampled only at the even
integers, i.e. a downsampling is performed. Such transform allows, once we have computed sJ,k=< f , ϕ̃J,k >
for a �ne level J ∈ N, to compute sjk and djk for all coarser levels j < J without evaluating the integrals.

Suppose now we are given the values of f at n = 2J equispaced design points. The scaling functions
ϕ̃J,k, k = 0, ..., 2J−1, are compactly supported and localized around 2−Jk. Hence the coe�cients < f , ϕ̃J,k >
are weighted and scaled average of f on a neighborhood of 2−Jk which becomes smaller as J tends to in�nity.
Consequently, it makes sense to replace the integral < f , ϕ̃J,k > by the (scaled) value of f at 2−Jk. More
complicate quadrature formulae have been developed in [44], [45], [46].

With sj := {sjk; k = 0, ..., 2j − 1} and dj := {djk; k = 0, ..., 2j − 1}, the forward (or analyzing) wavelet
transform given by (4.2)-(4.3) can be rewritten as

sj = H̃∗j sj+1 and dj = G̃∗jsj+1 , (4.4)

where H̃∗j denotes the Hermitian conjugate of H̃j .

1This content is available online at <http://cnx.org/content/m17391/1.3/>.
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12 CHAPTER 4. FAST WAVELET TRANSFORM

The inverse (or synthesis) transform is found by using the primal re�nement equations and the fact that
Vj+1 = Vj ⊕Wj .

Pj+1f =
∑
l sj+1,lϕj+1,l =

∑
k sj,kϕj,k +

∑
k dj,kψj,k

=
∑
k sj,k

∑
l hlϕj+1,2k+l +

∑
k dj,k

∑
l glϕj+1,2k+l

=
∑
l ϕj+1,l (

∑
k hl−2ksj,k +

∑
k gl−2kdjk) ,

(4.5)

from which it follows that

sj+1,l =
∑
k

hl−2ksjk +
∑
k

gl−2kdjk . (4.6)

In matrix form, we have

sj+1 = Hjsj +Gjdj . (4.7)

In the �nite and classical setting, the matrices Hj , Gj , H̃j and G̃j are of size 2j+1 × 2j . Moreover, if the

basis functions are compactly supported, the four �lters (hl, gl, h̃l, g̃l) have only a �nite number of nonzero
elements, and hence all these matrices are banded.

4.1.1 Example: Haar wavelet transform

In case of the orthogonal Haar transform, H̃∗j = H∗j and is of the form

H̃∗j =


h0 h1

h0 h1

...

h0 h1

 (4.8)

since only h0 and h1 are di�erent from zero : h0 = h1 = 1/
√

2. The high-pass �lter {gl} is such that
g0 = −1/

√
2 and g1 = 1/

√
2. The forward transform (4.2)-(4.3) reduces to

sj,k = 1√
2
sj+1,2k+1 + 1√

2
sj+1,2k

dj,k = 1√
2
sj+1,2k+1 − 1√

2
sj+1,2k ,

(4.9)

and the reconstruction is given by

sj+1,2k = 1√
2
sj,k − 1√

2
dj,k

sj+1,2k+1 = 1√
2
sj,k + 1√

2
dj,k .

(4.10)

4.2 Two-dimensional wavelet transform

The wavelet transform has been successfully applied to compress images, which are modelled as functions
de�ned on a regular two-dimensional grid.

Available for free at Connexions <http://cnx.org/content/col10566/1.3>
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Figure 4.1: Two-dimensional wavelet transform: �rst the �lters are applied on the column of the
matrix SJ , this produces two matrices. The �lters are applied a second time on the columns of these two
matrices, resulting in four elements: a matrix of scaling coe�cients, and three detail matrices.

The easiest way to build a two-dimensional MRA is probably to use tensor products of spaces, see [17],
[37]. In terms of wavelet transforms, this leads to applying two times a one-dimensional transform: �rst on
the `row' of the signal matrix SJ , and second on the `columns' of the resulting two matrices, see Figure 4.1.
In this �gure, we see that, at each level of the decomposition, three types of detail coe�cients are produced:
Dh
j , D

v
j and Dd

j . These superscripts recall that, in an image, horizontal edges will lead to large values of

Dh
j , vertical edges will show up in Dv

j and Dd
j will be sensitive to diagonal lines.

However, such a transform is not able to compress e�ciently an image that contains curves. More complex
bidimensional bases are now proposed in the literature to better model discontinuities along curves, see for
example [12], [31], [41], [48].

Available for free at Connexions <http://cnx.org/content/col10566/1.3>
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Chapter 5

Non-decimated wavelet transform1

Suppose we have some signal {yi} observed at some equispaced design points : yi = f (i/n) , i = 1, ..., n with
n = 2J , J ∈ N. The transform presented in the previous section is sometimes called `decimated' because, for
each scale j, the coe�cients djk give only some information about the signal near the positions x = 2−jk,
and not near all the existing design points 2−Jk = k/n.

For this reason, the decimated wavelet transform lacks the property of translation invariance: given
t0 ∈ R, the wavelet decomposition of f (.) and of f (.− t0) are in general completely di�erent. This may lead
to some unwanted pseudo-Gibbs oscillations near a discontinuity which is not localized at a dyadic point
[14].

One remedy to this drawback consists in using a non-decimated wavelet transform (NDWT) , also called
translation-invariant (TI) [14] or stationary [40]. The idea behind the NDWT is to a perform a discrete
wavelet transform, not only of the original sequence {yi}ni=1, but of all the possible shifted sequences (Shy)t =
y(t+h) mod n. In terms of wavelet functions, this transform corresponds to a set of functions

ψ̃jk (x) = ψ̃
(
2j
(
x− 2−Jk

))
, j = j0, ..., J − 1, k = 0, ..., 2J − 1 . (5.1)

At a given scale j, the NDWT coe�cients are thus present at all the locations k/n for k = 1, ..., n and give
information about the signal at each observed design point. In other words, the non-decimated transform
�lls in the gap introduced in the decimated transform, see Figure 5.1.

1This content is available online at <http://cnx.org/content/m17395/1.3/>.
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16 CHAPTER 5. NON-DECIMATED WAVELET TRANSFORM

Figure 5.1: Schema illustrating the translation-invariant version of the Haar transform. The points
marked by • are the one computed for the decimated Haar transform. At level J , one circulant shift
is performed: the �rst observation is put at the end of the observed signal, and a second decimated
transform is performed on the shifted data (yielding the points marked by ◦ at level J − 1). This process
is iterated at the coarser levels, producing detail coe�cients at all the points.

Since we have J − j0 scales and at each scales n detail coe�cients, the NDWT gives an overdetermined
representation of the original signal {yi}ni=1 and the wavelet coe�cients {djk, j = 0, ..., J − 1, k = 1, ..., n}
are related to many di�erent bases. Therefore the inverse operator will not be unique. A particular inverse,
the average basis, corresponds to systematically average out the inverse wavelet transform obtained from
each decimated wavelet transform that constitutes the translation-invariant transform. This makes the
reconstruction robust with respect to a bad choice of a particular basis. Moreover, this average basis provides
a smoother reconstruction than the original, decimated, transform [14], [6].

It allows for a (nearly) exact reconstruction of piecewise linear functions, instead of piecewise constant
functions for the decimated Haar transform [14].
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Chapter 6

Approximation of Functions1

We �rst give a de�nition of the order of a multiresolution analysis.

Definition: (Order of a MRA in the classical setting) A multiresolution analysis is said to be of
order Ñ if the primal scaling function ϕ reproduces polynomials up to degree Ñ − 1, i.e., For 0 ≤
p < Ñ, ∃ck ∈ R such that xp =

∑
k ckϕ (x− k) .

The associated dual wavelet ψ̃ has then Ñ vanishing moments. In the classical setting, it is proved that the
order of a MRA and the regularity of the scaling function are linked: the larger Ñ , the higher the regularity
of ϕ. Symmetrically to De�nition, p. 17, the order of the dual MRA is N if ϕ̃ can reproduce polynomials
up to degree N − 1. Figure 2 from Multiresolution analysis and wavelets (Figure 3.2) shows an example of
a biorthogonal basis where Ñ = 3 and N = 1. It illustrates the link between a high number of vanishing
moments of the dual wavelet ψ̃ and the regularity of the primal scaling function ϕ.

The main objective when decomposing a function in a wavelet series is to create a sparse representation
of the function, that is, to obtain a decomposition where only a few number of detail coe�cients are `large',
while the majority of the coe�cients are close to zero. By `large', we mean that the absolute value of the
detail coe�cient is large.

Near a singularity, large detail coe�cients at di�erent levels will be needed to recover the discontinuity.
However, between points of singularity, we can hope to have small detail coe�cients, in particular if the
analyzing wavelets ψ̃jk have a large number Ñ of vanishing moments. Indeed, suppose the function f to be

decomposed is analytic on the interval I without discontinuity. Since < xp , ψ̃jk >= 0 for p = 0, ..., Ñ − 1,
we are sure that the �rst Ñ terms of a Taylor expansion of f will not give a contribution to the wavelet
coe�cient < f , ψ̃jk > provided that the support of ψ̃jk does not contain any singularities of the function f .

This sparse representation explains why classical wavelets provide smoothness characterization of function
spaces like the Hölder and Sobolev spaces [18], but also of more general Besov spaces, which may contain
functions of inhomogeneous regularity [27], [22], [21], [19], [20].

We illustrate this characterization property with the case of β−Hölder functions.
De�nition 2
The class Λβ (L) of Hölder continuous functions is de�ned as follows:

1. if β ≤ 1,Λβ (L) = {f : |f (x)− f (y)| ≤ L|x− y|β}
2. if β > 1,Λβ (L) = {f :

∣∣f (bβc) (x)− f (bβc) (y)
∣∣ ≤ L|x− y|β'

; |f (bβc) (x) | ≤M}, where bβc is the largest
integer less than β and β' = β − bβc.

The global Hölder regularity of a function can be characterized as follows [10], [18].

Theorem: Let f ∈ Λβ (L), and suppose that the (orthogonal) wavelet function ψ has r continuous
derivatives and r vanishing moments with r > β. Then

1This content is available online at <http://cnx.org/content/m17390/1.3/>.
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18 CHAPTER 6. APPROXIMATION OF FUNCTIONS

|< f , ψjk >| ≤ C2−j(β+1/2) . (6.1)

A similar characterization exists for continuous and Sobolev functions [18], [27].
In the orthogonal setting, the wavelet ψ must be regular and have a high number of vanishing moments.

On the contrary, in the biorthogonal expansion equation 5 from Multiresolution analysis and wavelets (3.13),
it is mostly of interest to have a dual wavelet ψ̃ with a high number of vanishing moments, and hence a regular
primal scaling and wavelet functions. On the primal side, it is su�cient to have only one vanishing moment
for wavelet denoising, and consequently ψ̃ may not be very regular. In this case, the wavelet coe�cient
< f , ψ̃jk > with the less regular wavelet ψ̃jk can be used to characterize f ∈ Λβ (L) with 0 < β < Ñ , even
if β > N = 1: with a biorthogonal basis, regular functions can be characterized by their inner products with
much less regular functions.
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Chapter 7

Nonparametric regression with wavelets1

In this section, we consider only real-valued wavelet functions that form an orthogonal basis, hence ϕ ≡ ϕ̃ and
ψ ≡ ψ̃. We saw in Orthogonal Bases from Multiresolution analysis and wavelets (Section 3.3: Orthogonal
bases) how a given function belonging to L2 (R) could be represented as a wavelet series. Here, we explain
how to use a wavelet basis to construct a nonparametric estimator for the regression function m in the model

Yi = m (xi) + εi, i = 1, ..., n, n = 2J , J ∈ N , (7.1)

where xi = i
n are equispaced design points and the errors are i.i.d. Gaussian, εi ∼ N

(
0, σ2

ε

)
.

A wavelet estimator can be linear or nonlinear. The linear wavelet estimator proceeds by projecting
the data onto a coarse level space. This estimator is of a kernel-type, see "Linear smoothing with wavelets"
(Section 7.1: Linear smoothing with wavelets). Another possibility for estimating m is to detect which detail
coe�cients convey the important information about the function m and to put equal to zero all the other
coe�cients. This yields a nonlinear wavelet estimator as described in "Nonlinear smoothing with wavelets"
(Section 7.2: Nonlinear smoothing with wavelets).

7.1 Linear smoothing with wavelets

Suppose we are given data (xi, Yi)
n
i=1 coming from the model (7.1) and an orthogonal wavelet basis generated

by {ϕ,ψ}. The linear wavelet estimator proceeds by choosing a cutting level j1 and represents an estimation
of the projection of m onto the space Vj1 :

^
m (x) =

2j0−1∑
k=0

^
sj0,kϕj0,k (x) +

j1−1∑
j=j0

2j−1∑
k=0

^
dj,kψj,k (x) =

∑
k

^
sj1,kϕj1,k (x) , (7.2)

with j0 the coarsest level in the decomposition, and where the so-called empirical coe�cients are computed
as

^
sj,k =

1
n

n∑
i=1

Yi ϕjk (xi) and
^
dj,k =

1
n

n∑
i=1

Yi ψjk (xi) . (7.3)

The cutting level j1 plays the role of a smoothing parameter: a small value of j1 means that many detail
coe�cients are left out, and this may lead to oversmoothing. On the other hand, if j1 is too large, too many
coe�cients will be kept, and some arti�cial bumps will probably remain in the estimation of m (x).

1This content is available online at <http://cnx.org/content/m17396/1.3/>.
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20 CHAPTER 7. NONPARAMETRIC REGRESSION WITH WAVELETS

To see that the estimator (7.2) is of a kernel-type, consider �rst the projection of m onto Vj1 :

PVj1m (x) =
∑
k

(∫
m (y)ϕj1,k (y) dy

)
ϕj1,k (x)

=
∫
Kj1 (x, y)m (y) dy ,

(7.4)

where the (convolution) kernel Kj1 (x, y) is given by

Kj1 (x, y) =
∑
k

ϕj1,k (y)ϕj1,k (x) . (7.5)

Härdle et al. [28] studied the approximation properties of this projection operator. In order to estimate
(7.4), Antoniadis et al. [4] proposed to take:

^
PVj1 m (x) =

∑n
i=1 Yi

∫ i/n
(i−1)/n

Kj1 (x, y) dy

=
∑
k

∑n
i=1 Yi

(∫ i/n
(i−1)/n

ϕj1,k (y) dy
)
ϕj1,k (x) .

(7.6)

Approximating the last integral by 1
nϕj1,k (xi), we �nd back the estimator

^
m (x) in (7.2).

By orthogonality of the wavelet transform and Parseval's equality, the L2−risk (or integrated mean square
error IMSE) of a linear wavelet estimator is equal to the l2−risk of its wavelet coe�cients:

IMSE = E‖ ^m −m‖2L2
=

∑
k E

[
^
sj0,k − s◦j0,k

]2
+
∑j1−1
j=j0

∑
k E

[
^
djk − d◦jk

]2

+
∑∞
j=j1

∑
k d
◦ 2
jk = S1 + S2 + S3 ,

(7.7)

where

s◦jk :=< m ,ϕjk > and d◦jk =< m ,ψjk > (7.8)

are called `theoretical' coe�cients in the regression context. The term S1 + S2 in (7.7) constitutes the
stochastic bias whereas S3 is the deterministic bias. The optimal cutting level is such that these two
bias are of the same order. If m is β−Hölder continuous, it is easy to see that the optimal cutting level is

j1 (n) = O
(
n1/(1+2β)

)
. The resulting optimal IMSE is of order n−

2β
2β+1 . In practice, cross-validation methods

are often used to determine the optimal level j1 [4], [39].

7.2 Nonlinear smoothing with wavelets

7.2.1 Hard-, soft-thresholding and wavelet estimator

Given the regression model (7.1), we can decompose the empirical detail coe�cient
^
djk in (7.3) as

^
djk = 1

n

∑n
i=1m (xi)ψjk (xi) + 1

n

∑n
i=1 εiψjk (xi)

= djk + ρjk

(7.9)

If the function m (x) allows for a sparse wavelet representation, only a few number of detail coe�cients

djk contribute to the signal and are non-negligible. However, every empirical coe�cient
^
djk has a non-zero

contribution coming from the noise part ρjk.

Remark: Note the link between the coe�cients djk in (7.9) and the theoretical coe�cients d◦jk
in (7.8):
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djk = 1
n

∑n
i=1m (xi)ψj,k (xi)

=
∫
m (x)ψjk (x) dx+O

(
1
n

)
= d◦jk +O

(
1
n

)
.

(7.10)

In words, djk constitutes a �rst order approximation (using the trapezoidal rule) of the integral d◦jk. For
the scaling coe�cients s◦jk, it can be proved [47] that the order of accuracy of the trapezoidal rule is equal
to N − 1, where N is the order of the MRA associated to the scaling function.

Suppose the noise level is not too high, so that the signal can be distinguished from the noise. Then, from
the sparsity property of the wavelet, only the largest detail coe�cients should be included in the wavelet
estimator. Hence, when estimating an unknown function, it makes sense to include only those coe�cients
that are larger than some speci�ed threshold value t:

ηH

(
^
djk, t

)
=
^
djk1

{|
^
d jk|>t}

. (7.11)

This `keep-or-kill' operation is called hard thresholding, see Figure 7.1(a).
Now, since each empirical coe�cient consists of both a signal part and a noise part, it may be desirable

to shrink even the coe�cients that are larger than the threshold:

^
d

t

jk:= ηS

(
^
djk, t

)
= sign

(
^
djk

)(
|
^
djk| − t

)
+

. (7.12)

Since the function ηS is continuous in its �rst argument, this procedure is called soft thresholding. More
complex thresholding schemes have been proposed in the literature [3], [8], [26]. They often appear as a
compromise between soft and hard thresholding, see Figure 7.1(b) for an example.

Figure 7.1: In (a) the hard thresholding is represented in plain line: a coe�cient
^
djk with an absolute

value below t is put equal to zero. The soft thresholding is given in dashed line: there coe�cients
with absolute value above the threshold t are shrunk of an amount equal to t. In (b), a more complex
thresholding procedure, the SCAD threshold devised in Antoniadis and Fan [3] is represented.

For a given threshold value t and a thresholding scheme η(.), the nonlinear wavelet estimator is given by

^
m (x) =

∑
k

^
sj0k ϕj0k (x) +

∑
j,k

η(.)

(
^
djk, t

)
ψjk (x) , (7.13)

where j0 denotes the primary resolution level. It indicates the level above which the detail coe�cients
are being manipulated.
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22 CHAPTER 7. NONPARAMETRIC REGRESSION WITH WAVELETS

Let now
^
dj = {

^
djk, k = 0, ..., 2j − 1} denote the vector of empirical detail coe�cients at level j and

similarly de�ne
^
sj . In practice a nonlinear wavelet estimator is obtained in three steps.

1. Apply the analyzing (forward) wavelet transform on the observations {Yi}ni=1, yielding
^
sj0 and

^
dj , for

j = j0, ..., J − 1.
2. Manipulate the detail coe�cients above the level j0, e.g. by soft-thresholding them.

3. Invert the wavelet transform and produce an estimation of m at the design points: {^m (xi)}ni=1.

If necessary, a continuous estimator
^
m can then be constructed by an appropriate interpolation of the

estimated
^
m (xi) values [23].

The choice of the primary resolution level in nonlinear wavelet estimation has the same importance as
the choice of a particular kernel in local polynomial estimation, i.e., it is not the most important factor. It
is common practice to take j0 = 2 or j0 = 3, although a cross-validation determination is of course possible
[39].

The selection of a threshold value is much more crucial. If it is chosen too large, the thresholding operation
will kill too many coe�cients. Too few coe�cients will then be included in the reconstruction, resulting in
an oversmoothed estimator. Conversely, a small threshold value will allow many coe�cients to be included
in the reconstruction, giving a rough, or undersmoothed estimator. A proper choice of the threshold involves
thus a careful balance between smoothness and closeness of �t.

In case of an orthogonal transform and i.i.d. white noise, the same threshold can be applied to all detail
coe�cients, since the errors in the wavelet domain are still i.i.d. white noise. However, if the errors are
stationary but correlated, or if the transform is biorthogonal, a level-dependent threshold is necessary to
obtain optimal results [33], [7]. Finally, in the irregular setting, a level and location dependent threshold
must be utilized.

Many e�orts have been devoted to propose methods for selecting the threshold. We now review some of
the procedures encountered in the literature.

7.2.2 Choice of the threshold

7.2.2.1 Universal threshold

The most simple method to �nd a threshold whose value is supported by some statistical arguments, is
probably to use the so-called `universal threshold' [23], [24]

tuniv = σd
√

2logn , (7.14)

where the only quantity to be estimated is σ2
d, which constitutes the variance of the empirical wavelet

coe�cients. In case of an orthogonal transform, σd = σε/
√
n.

In a wavelet transform, the detail coe�cients at �ne scales are, with a small fraction of exception,
essentially pure noise. This is the reason why Donoho and Johnstone proposed in [25] to estimate σd in a

robust way using the median absolute deviation from the median (MAD) of
^
dJ−1:

^
σd =

median

(∣∣∣∣∣^dJ−1 −median

(
^
dJ−1

)∣∣∣∣∣
)

0.6745
. (7.15)

If the universal threshold is used in conjunction with soft thresholding, the resulting estimator possesses a

noise-free property: with a high probability, an appropriate interpolation of {^m (xi)} produces an estimator
which is at least as smooth as the function m, see Theorem 1.1 in [23]. Hence the reconstruction is of good
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visual quality, so that Donoho and Johnstone called the procedure `VisuShrink' [25]. Although simple, this
estimator enjoys a near-minimax adaptivity property, see "Adaptivity of wavelet estimator" (Section 7.4:
Adaptivity of wavelet estimator). However, this near-optimality is an asymptotic one: for small sample size
tuniv may be too large, leading to a poor mean square error.

7.2.2.2 Oracle inequality

Consider the soft-thresholded detail coe�cients
^
d

t

. Another approach to �nd an optimal threshold is to look
at the l2−risk

R

(
^
d

t

, d

)
= E

∑
(j,k)

(
^
d

t

jk −djk

)2

= E‖
^
d

t

− d‖2l2 , (7.16)

and to relate this risk with the one of an ideal risk Rideal. The ideal risk is the risk obtained if an oracle
tells us exactly which coe�cients to keep or to kill.

In [24], Donoho and Johnstone showed that, when using the universal threshold, the following oracle
inequality prevails

R

(
^
d

t

, d

)
≤ (2logn+ 1)

(
σ2
ε

n
+Rideal

)
. (7.17)

However, this inequality is not optimal. Donoho and Johnstone looked for the optimal threshold t∗ (n)
which leads to the smallest possible constant Λ∗n in place of 2logn + 1. Such a threshold does not exist in
closed form, but can be approximated numerically. For small sample size, it is sensibly smaller than the
universal threshold.

7.2.2.3 SureShrink procedure

Given the expression (7.16) for the l2-risk, it is natural to look for a threshold that minimizes an estimation
of this risk.

By minimizing Stein's unbiased estimate of the risk [42] and using a soft thresholding scheme, the resulting
estimator, called `SureShrink', is adaptive over a wide range of function spaces including Hölder, Sobolev,
and Besov spaces, see "Adaptivity of wavelet estimator" (Section 7.4: Adaptivity of wavelet estimator). That
is, without any a priori knowledge on the type or amount of regularity of the function, the SURE procedure
nevertheless achieves the optimal rate of convergence that one could attain by knowing the regularity of the
function.

7.2.2.4 Other thresholding procedures

We mention some of the other thresholding or shrinkage procedures proposed in the literature.
Instead of considering each coe�cient individually, Cai et al. [9], [11] consider blocks of empirical wavelet

coe�cients in order to make simultaneous shrinkage decisions about all coe�cients within a block.
Another fruitful idea is to use the Bayesian framework. There a prior distribution is imposed on the

wavelet coe�cients djk. This prior model is designed to capture the sparseness of the wavelet expansion.
Next, the function is estimated by applying some Bayes rules on the resulting posterior distribution of the
wavelet coe�cients, see for example [2], [5], [34], [35].

Antoniadis and Fan [3] treat the problem of selecting the wavelet coe�cients as a penalized least squares
issue. Let W be the matrix of an orthogonal wavelet transform and Y := {Yi}ni=1. The detail coe�cients
d := {djk} which minimize

‖WY − d‖2l2 +
∑
j,k

pλ (|djk|) (7.18)
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24 CHAPTER 7. NONPARAMETRIC REGRESSION WITH WAVELETS

are used to estimate the true wavelet coe�cients. In equation (7.18), pλ (·) is a penalty function which
depends on the regularization parameter λ. The authors provide a general framework, where di�erent
penalty functions correspond to di�erent type of thresholding procedures (like, e.g., the soft- and hard-
thresholding) and obtain oracle inequalities for a large class of penalty functions.

Other methods include threshold selection by hypothesis testing [1], cross-validation [38], or generalized
cross-validation [30], [32], which is used to estimated the l2-risk of the empirical detail coe�cients.

7.3 Linear versus nonlinear wavelet estimator

In order to di�erenciate the behaviours of a linear and of a nonlinear wavelet estimator, we consider the
Sobolev class W s

q (C) de�ned as

W s
q (C) = {f : ‖f‖qq + ‖ d

s

dxs
f (x) ‖qq ≤ C2} , (7.19)

and that we denote V in short. Assume we know that m, the function to be estimated, belongs to V . In
the next section, we will release this assumption. The Lp−risk of an arbitrary estimator Tn based on the
sample data is de�ned as E‖Tn −m‖pp, 1 ≤ p <∞, whereas the Lp−minimax risk is given by

Rn (V, p) = inf
Tn

sup
m∈V

E‖Tn −m‖pp, (7.20)

where the in�mum is taken over all measurable estimators Tn of m. Similarly, we de�ne the linear
Lp−minimax risk as

Rlin

n (V, p) = inf
T lin
n

sup
m∈V

E‖T lin

n −m‖pp, (7.21)

where the in�mum is now taken over all linear estimators T lin
n . Obviously, Rlin

n (V, p) ≥ Rn (V, p) . We �rst
state some de�nitions.

Definition: The sequences {an} and {bn} are said to be asymptotically equivalent and are
noted an ∼ bn if the ratio an/bn is bounded away from zero and ∞ as n→∞.

Definition: The sequence an is called optimal rate of convergence , (or minimax rate of con-

vergence) on the class V for the Lp−risk if an ∼ Rn(V, p)1/p. We say that an estimator mn of m
attains the optimal rate of convergence if sup

m∈V
E‖mn −m‖pp ∼ Rn (V, p) .

In order to �x the idea, we consider only the L2−risk in the remaining part of this section, thus p := 2.
In [29], [43], the authors found that the optimal rate of convergence attainable by an estimator when

the underlying function belongs to the Sobolev class W s
q is an = n

−s
2s+1 , hence Rn (V, 2) = n

−2s
2s+1 . We

saw in "Linear smoothing with wavelets" (Section 7.1: Linear smoothing with wavelets) that linear wavelet
estimators attain the optimal rate for s−Hölder function in case of the L2−risk (also called `IMSE'). For
a Sobolev class W s

q , the same result holds provided that q ≥ 2. More precisely, we have the two following
situations.

1. If q ≥ 2, we are in the so-called homogeneous zone. In this zone of spatial homogeneity, linear
estimators can attain the optimal rate of convergence n−s/(2s+1).

2. If q < 2, we are in the non-homogeneous zone, where linear estimators do not attain the optimal
rate of convergence. Instead, we have:

Rlin

n (V, 2) /Rn (V, 2)→∞, as n→∞. (7.22)
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The second result is due to the spatial variability of functions in Sobolev spaces with small index q. Linear
estimators are based on the idea of spatial homogeneity of the function and hence do perform poorly in
the presence of non-homogeneous functions. In contrast, even if q < 2, the SureShrink estimator attains
the minimax rate [25]. The same type of results holds for more general Besov spaces, see for example [28],
Chapter 10.

7.4 Adaptivity of wavelet estimator

We just saw that a nonlinear wavelet estimator is able to estimate in an optimal way functions of inhomo-
geneous regularity. However, it may not be su�cient to know that for m belonging to a given space, the
estimator performs well. Indeed, in general we do not know which space the function belongs to. Hence it
is of great interest to consider a scale of function classes and to look for an estimator that attains simul-
taneously the best rates of convergence across the whole scale. For example, the Lq−Sobolev scale is a
set of Sobolev function classes W s

q (C) indexed by the parameters s and C, see (7.19) for the de�nition of a
Sobolev class. We now formalize the notion of an adaptive estimator.

Let A be a given set and let {Fα, α ∈ A} be the scale of functional classes Fα indexed by α ∈ A. Denote
Rn (α, p) the minimax risk over Fα for the Lp−loss:

Rn (α, p) = inf

m̂n

sup
m∈Fα

E‖^mn −m‖pp. (7.23)

Definition: The estimator m∗n is called rate adaptive for the Lp−loss and the scale of classes
Fα, α ∈ A if for any α ∈ A there exists cα > 0 such that

sup
m∈Fα

E‖m∗n −m‖pp ≤ cαRn (α, p) ∀n ≥ 1. (7.24)

The estimator m∗n is called adaptive up to a logarithmic factor for the Lp−loss and the scale of classes
Fα, α ∈ A if for any α ∈ A there exist cα > 0 and γ = γα > 0 such that

sup
m∈Fα

E‖m∗n −m‖pp ≤ cα(logn)γRn (α, p) ∀n ≥ 1. (7.25)

Thus, adaptive estimators have an optimal rate of convergence and behave as if they know in advance in
which class the function to be estimated lies.

The VisuShrink procedure is adaptive up to a logarithmic factor for the L2−loss over every Besov, Hölder
and Sobolev class that is contained in C [0, 1], see Theorem 1.2 in [23]. The SureShrink estimator does better:
it is adaptive for the L2−loss, for a large scale of Besov, Hölder and Sobolev classes, see Theorem 1 in [25].

7.5 Conclusion

In this chapter, we saw the basic properties of standard wavelet theory and explained how these are related
to the construction of wavelet regression estimators.
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