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Summary
Discussion of Discrete-time Fourier Transforms. Topics include comparison with analog transforms and discussion of Parseval's theorem.




 
      The Fourier transform of the discrete-time signal
        
           s(n)
        
      is defined to be
      
      
()

      
      Frequency here has no units. As should be expected, this
      definition is linear, with the transform of a sum of signals
      equaling the sum of their transforms. Real-valued signals have
      conjugate-symmetric spectra:      
      .
    
Exercise 1.
 
	 	  
	  A special property of the discrete-time Fourier transform is
	  that it is periodic with period one:	  
	  
	    S(ⅇⅈ2π(f+1))=S(ⅇⅈ2πf)
	  .  
	  Derive this property from the definition of the DTFT.
	
  
      
 (Return to Exercise)
(1.1)





  
      Because of this periodicity, we need only plot the spectrum over
      one period to understand completely the spectrum's structure;
      typically, we plot the spectrum over the frequency range      
      .
      When the signal is real-valued, we can further simplify our
      plotting chores by showing the spectrum only over      
      ;      
      the spectrum at negative frequencies can be derived from
      positive-frequency spectral values.
    
 
      When we obtain the discrete-time signal via sampling an analog
      signal, the Nyquist frequency corresponds to the
      discrete-time frequency
      .  To show this, note that a sinusoid having a
      frequency equal to the Nyquist frequency
       
      has a sampled waveform that equals
    
      

      The exponential in the DTFT at frequency 
            
      equals      
      , meaning that discrete-time frequency equals analog
      frequency multiplied by the sampling interval
    
      
()
	  fD=fATs    
	
    
      
      
	fD
       
      and 
      
	fA
       represent discrete-time and analog frequency
      variables, respectively.  The aliasing figure provides
      another way of deriving this result.  As the duration of each
      pulse in the periodic sampling signal
      
	pTs(t)
       narrows, the amplitudes of the signal's spectral
      repetitions, which are governed by the Fourier series coefficients of
      
	pTs(t)
      , become increasingly equal.  Examination of the periodic pulse
      signal reveals that as
      Δ decreases, the value of
      
	c0
      , 
      the largest Fourier coefficient, decreases to zero:       
      .      
      Thus, to maintain a mathematically viable Sampling Theorem, the
      amplitude
      A must increase as      
      , becoming infinitely large as the pulse duration
      decreases.  Practical systems use a small value of
      Δ, say
      
	0.1·Ts
            
      and use amplifiers to rescale the signal.  Thus, the sampled
      signal's spectrum becomes periodic with period      
      . 
      Thus, the Nyquist frequency 
            
      corresponds to the frequency 
      .
    
Example 1.1. 
 
	Let's compute the discrete-time Fourier transform of the
	exponentially decaying sequence	
	
	  s(n)=anu(n)
	, 
	where 	
	
	  u(n)
		
	is the unit-step sequence.  Simply plugging the signal's
	expression into the Fourier transform formula,
      
(1.2)

 
	This sum is a special case of the  geometric
	series.  
      
 
	
()

      
 
	Thus, as long as 
	
	  |a|<1
	, 
	we have our Fourier transform.
      
(1.3)

 
	Using Euler's relation, we can express the magnitude and phase
	of this spectrum.
      
(1.4)

(1.5)

 No matter what value of a we
        choose, the above formulae clearly demonstrate the periodic
        nature of the spectra of discrete-time signals.  Figure 1.1 shows indeed that the spectrum
        is a periodic function.  We need only consider the spectrum
        between
	 
	and	
		
	to unambiguously define it.  When 
	
	  a>0
	,
	we have a lowpass spectrum—the spectrum diminishes as
	frequency increases from 0 to
	—with increasing
       a leading to a greater low frequency
	content; for
	
	  a<0
	,
	we have a highpass spectrum
	(Figure 1.2).
      


 [image: Spectrum of exponential signal]

Figure 1.1. Spectrum of exponential signal

	The spectrum of the exponential signal
        (a=0.5) is shown over
	the frequency range [-2, 2], clearly demonstrating the
	periodicity of all discrete-time spectra.  The angle has units
	of degrees.
      

 [image: Spectra of exponential signals]

Figure 1.2. Spectra of exponential signals

	The spectra of several exponential signals are shown.  What is
	the apparent relationship between the spectra for
        
	  a=0.5
	 and
	a=–0.5?
      

Example 1.2. 
 
	Analogous to the analog pulse signal, let's find the spectrum
	of the length-N pulse sequence.
      
(1.6)

 
	The Fourier transform of this sequence has the form of a
	truncated geometric series.
      
(1.7)

 
	For the so-called finite geometric series, we know that
      
      
()
      
      
	for all values of α. 
      


Exercise 2.
 
	 
	  Derive this formula for the finite geometric series sum.
	  The "trick" is to consider the difference between the
	  series' sum and the sum of the series multiplied by
	  α. 
	

      
 (Return to Exercise)

	  
	  
	  which, after manipulation, yields the geometric sum formula.
	



 
      Applying this result yields (Figure 1.3.)
    
    
()
    
    
      The ratio of sine functions has the generic form of 
      , 
      which is known as the  discrete-time sinc function      
      
	dsinc(x)
      .  
      Thus, our transform can be concisely expressed as
      
	S(ⅇⅈ2πf)=ⅇ–(ⅈπf(N−1))dsinc(πf)
      .  The discrete-time pulse's spectrum contains many
      ripples, the number of which increase with
      N, the pulse's duration.
    
 [image: Spectrum of length-ten pulse]

Figure 1.3. Spectrum of length-ten pulse

	The spectrum of a length-ten pulse is shown. Can you explain
	the rather complicated appearance of the phase?
      

 
      The inverse discrete-time Fourier transform is easily derived
      from the following relationship:
    
    
()
    
    
      Therefore, we find that
    
    
()

    
      The Fourier transform pairs in discrete-time are 
    
    
()

    
 
      The properties of the discrete-time Fourier transform mirror
      those of the analog Fourier transform.  The
      DTFT properties table 
      shows similarities and differences.  One important common
      property is Parseval's Theorem.      
      
      
()

      
      To show this important property, we simply substitute the
      Fourier transform expression into the frequency-domain
      expression for power.      
      
      
()

      
      Using the orthogonality
      relation, the integral equals
      
	δ(m−n)
      , 
      where      
      
	δ(n)
       is the unit sample.  Thus, the double sum collapses
      into a single sum because nonzero values occur only when
      n=m,
      giving Parseval's Theorem as a result.  We term
            
      the energy in the discrete-time signal       
      
	s(n)
             
      in spite of the fact that discrete-time signals don't consume
      (or produce for that matter) energy.  This terminology is a
      carry-over from the analog world.  
    
Exercise 3.
 
	 	  
	  Suppose we obtained our discrete-time signal from values of
	  the product
	  
	    s(t)p
		      Ts 
		    (t)
	  , 
	  where the duration of the component pulses in	  
	  
	    p
		    Ts
		  (t)
	   is Δ. How is
	  the discrete-time signal energy related to the total energy
	  contained in
	  
	    s(t)
	  ?
	  Assume the signal is bandlimited and that the sampling rate
	  was chosen appropriate to the Sampling Theorem's conditions.
	

      
 (Return to Exercise)
	  
	  If the sampling frequency exceeds the Nyquist frequency, the
	  spectrum of the samples equals the analog spectrum, but over
	  the normalized analog frequency
          
	    fT
	  .  Thus, the energy in the sampled signal equals
	  the original signal's energy multiplied by
	  T.
	



Solutions


Chapter 2. Discrete Fourier Transform (DFT)*
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Summary
The Fourier transform can be computed in discrete-time despite the
    complications caused by a finite signal and continuous frequency.




  The discrete-time Fourier transform (and the
      continuous-time transform as well) can be evaluated when we have
      an analytic expression for the signal. Suppose we just have a
      signal, such as the speech signal used in the previous chapter,
      for which there is no formula. How then would you compute the
      spectrum?  For example, how did we compute a spectrogram such as
      the one shown in the speech signal example?  The Discrete Fourier
      Transform (DFT) allows the computation of spectra from
      discrete-time data.  While in discrete-time we can
      exactly calculate spectra, for analog
      signals no similar exact spectrum computation exists. For
      analog-signal spectra, use must build special devices, which
      turn out in most cases to consist of A/D converters and
      discrete-time computations. Certainly discrete-time spectral
      analysis is more flexible than continuous-time spectral
      analysis.
    
 
      The formula for the 
      DTFT      
      is a sum, which conceptually can be easily computed save for two
      issues.  
    
 	
	Signal duration.
	The sum extends over the signal's duration, which must be
	finite to compute the signal's spectrum. It is exceedingly
	difficult to store an infinite-length signal in any case, so
	we'll assume that the signal extends over	
	
	    [0, N−1]
	.
      

	 Continuous frequency.  Subtler than
	the signal duration issue is the fact that the frequency
	variable is continuous: It may only need to span one period,
	like
	
	or 
	
	    [0, 1]
	, 
	but the DTFT formula as it stands requires evaluating the
	spectra at all frequencies within a
	period. Let's compute the spectrum at a few frequencies; the
	most obvious ones are the equally spaced ones
	, 
	
	
	  k∈{0, …, K−1}
	.
      



  
      We thus define the  discrete Fourier transform (DFT)
      to be  
      
      
()

      Here, 
      
	S(k)
      
      is shorthand for      
      .  
    
 We can compute the spectrum at as many equally spaced
      frequencies as we like.  Note that you can think about this
      computationally motivated choice as  sampling the
      spectrum; more about this interpretation later.  The issue now
      is how many frequencies are enough to capture how the spectrum
      changes with frequency.  One way of answering this question is
      determining an inverse discrete Fourier transform formula: given
      
	S(k)
      ,

      
	k={0, …, K−1}
      
       how do we find 
      
	s(n)
      ,
      
      
	n={0, …, N−1}
      ? 
      Presumably, the formula will be of the form      
      .
      Substituting the DFT formula in this prototype inverse transform
      yields       
      
      
()

      
      Note that the orthogonality relation we use so often has a
      different character now.  
      
      
()

      
      We obtain nonzero value whenever the two indices differ by multiples
      of K. We can express this result as       
      .  

      Thus, our formula becomes 
      
()


      The integers n and
      m both range over
      .        
      To have an inverse transform, we need the sum to be a
      single unit sample for
      
	m
      , 

      
	n
       
      in this range. If it did not, then
      
	s(n)
            
      would equal a sum of values, and we would not have a valid
      transform: Once going into the frequency domain, we could not
      get back unambiguously!  Clearly, the term
      
	l=0
             
      always provides a unit sample (we'll take care of the factor of
      
	K
            
      soon).  If we evaluate the spectrum at
      fewer frequencies than the signal's
      duration, the term corresponding to
      
	m=n+K
       
      will also appear for some values of 
      
	m
      , . 
      This situation means that our prototype transform equals 
      
	s(n)+s(n+K)
       
      for some values of 
      
	n
      .  
      The only way to eliminate this problem is to require 
      
	K≥N
      :        
      We must have at least as many frequency samples as
      the signal's duration.  In this way, we can return from the
      frequency domain we entered via the DFT.
    
Exercise 1.
 
	 
	  When we have fewer frequency samples than the signal's
	  duration, some discrete-time signal values equal the sum of
	  the original signal values.  Given the sampling
	  interpretation of the spectrum, characterize this effect a
	  different way.
	

      
 (Return to Exercise)

	  This situation amounts to aliasing in the time-domain.
	



  
      Another way to understand this requirement is to use the theory
      of linear equations.  If we write out the expression for the DFT
      as a set of linear equations,

      
()
	  s(0)+s(1)+…+s(N−1)=S(0)       
	


      
      
      
      
	⋮
            

      
            

      we have 
      
	K
      
      equations in 
      
	N
            
      unknowns if we want to find the signal from its sampled
      spectrum.  This requirement is impossible to fulfill if
      
	K<N
      ; 
      we must have 
      
	K≥N
      .        
      Our orthogonality relation essentially says that if we have a
      sufficient number of equations (frequency samples), the
      resulting set of equations can indeed be solved.  
    
 
      By convention, the number of DFT frequency values
      
	K
       
      is chosen to equal the signal's duration   
      
	N
      .  
      The discrete Fourier transform pair consists of

      
(2.1)Discrete Fourier Transform Pair


    
Example 2.1. 
 
	Use this demonstration to perform DFT analysis of a signal.
      
(This media type is not supported in this reader. Click to open media in browser.)


Example 2.2. 
 
	Use this demonstration to synthesize a signal from a DFT sequence.
      
(This media type is not supported in this reader. Click to open media in browser.)


Solutions
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Summary
A brief explanation of calculation complexity and how the complexity of the discrete Fourier transform is order N squared.




 
      We now have a way of computing the spectrum for an arbitrary
      signal: The Discrete Fourier Transform (DFT) computes the spectrum at
      N equally spaced frequencies from
      a length- N sequence. An issue
      that never arises in analog "computation," like that
      performed by a circuit, is how much work it takes to perform the
      signal processing operation such as filtering. In computation,
      this consideration translates to the number of basic
      computational steps required to perform the needed
      processing. The number of steps, known as the
       complexity, becomes equivalent to how long the
      computation takes (how long must we wait for an
      answer). Complexity is not so much tied to specific computers or
      programming languages but to how many steps are required on any
      computer. Thus, a procedure's stated complexity says that
      the time taken will be  proportional to some
      function of the amount of data used in the computation and the
      amount demanded.
    
 For example, consider the formula for the discrete Fourier
      transform.  For each frequency we choose, we must multiply each signal
      value by a complex number and add together the results. For a
      real-valued signal, each real-times-complex multiplication requires
      two real multiplications, meaning we have 
      
	2N
       multiplications to perform. To add the results
      together, we must keep the real and imaginary parts
      separate. Adding N numbers
      requires 
      N−1
      
      additions. Consequently, each frequency requires 

      
	2N+2(N−1)=4N−2
      
      basic computational steps. As we have
      N frequencies, the total number of
      computations is
      
	N(4N−2)
      .  
    
 
      In complexity calculations, we only worry about what happens as
      the data lengths increase, and take the dominant term—here the
      
	4N2
       term—as reflecting how much work is involved in
      making the computation. As multiplicative constants don't matter
      since we are making a "proportional to" evaluation, we find the
      DFT is an
      
	O(N2)
       computational procedure. This notation is read "order
      N-squared".  Thus, if we double
      the length of the data, we would expect that the computation
      time to approximately quadruple.
    
Exercise 1.
  
	 
	  In making the complexity evaluation for the DFT, we assumed
	  the data to be real.  Three questions emerge.  First of all,
	  the spectra of such signals have conjugate symmetry, meaning
	  that negative frequency components ( in the DFT) can be computed from the
	  corresponding positive frequency components.  Does this
	  symmetry change the DFT's complexity?  Secondly, suppose the
	  data are complex-valued; what is the DFT's complexity now?
	  Finally, a less important but interesting question is
	  suppose we want K frequency
	  values instead of N; now what
	  is the complexity?
	

      
 (Return to Exercise)

	  When the signal is real-valued, we may only need half the
	  spectral values, but the complexity remains unchanged. If
	  the data are complex-valued, which demands retaining all
	  frequency values, the complexity is again the same. When
	  only K frequencies are needed,
	  the complexity is
	  
	    O(KN)
	  .
	



Solutions


Chapter 4. Fast Fourier Transform (FFT)*

It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/

2012/07/09 18:01:17 -0500

Summary
The DFT can be reduced from exponential time with the Fast
Fourier Transform algorithm.




 
      One wonders if the DFT can be computed faster: Does another
      computational procedure -- an  algorithm -- exist
      that can compute the same quantity, but more efficiently. We
      could seek methods that reduce the constant of proportionality,
      but do not change the DFT's complexity
      
      
	O(N2)
      .
      
      Here, we have
      something more dramatic in mind: Can the computations be restructured
      so that a smaller complexity results?  
    
 
      In 1965, IBM researcher Jim Cooley and Princeton faculty member
      John Tukey developed what is now known as the Fast Fourier
      Transform (FFT). It is an algorithm for computing that DFT that
      has order
      
      
	O(NlogN)
      
      
      for certain length inputs. Now when the length
      of data doubles, the spectral computational time will not quadruple as
      with the DFT algorithm; instead, it approximately doubles. Later
      research showed that no algorithm for computing the DFT could have a
      smaller complexity than the FFT. Surprisingly, historical work has
      shown that Gauss 
      in the early nineteenth century developed the same 
      algorithm, but did not publish it! After the FFT's rediscovery,
      not only was the computation of a signal's spectrum greatly
      speeded, but also the added feature of  algorithm
      meant that computations had flexibility not available to analog
      implementations.  
    
Exercise 1.
 
	 
	  Before developing the FFT, let's try to appreciate the
	  algorithm's impact.  Suppose a short-length transform takes
	  1 ms. We want to calculate a transform of a signal that is
	  10 times longer. Compare how much longer a straightforward
	  implementation of the DFT would take in comparison to an
	  FFT, both of which compute exactly the same quantity.

      
 (Return to Exercise)
If a DFT required 1ms to compute, and signal having ten
	  times the duration would require 100ms to compute. Using the
	  FFT, a 1ms computing time would increase by a factor of
	  about
	  
	    10log210=33
	  , a factor of 3 less than the DFT would have
	  needed.



 
      To derive the FFT, we assume that the signal's duration is a
      power of two:
      
	N=2L
      .  
      Consider what happens to the even-numbered and odd-numbered
      elements of the sequence in the DFT calculation. 
    
(4.1)

 Each term in square brackets has the  form of a 
      
      -length DFT.  The first one is a DFT of the
      even-numbered elements, and the second of the odd-numbered
      elements.  The first DFT is combined with the second multiplied
      by the complex exponential
      
      .  The half-length transforms are each evaluated at
      frequency indices 
      k=0,
      …,
      N−1.
      Normally, the number of frequency indices in a DFT calculation
      range between zero and the transform length minus one.  The
       computational advantage of the FFT comes from
      recognizing the periodic nature of the discrete Fourier
      transform.  The FFT simply reuses the computations made in the
      half-length transforms and combines them through additions and
      the multiplication by
      
      , which is not periodic over 
      
      .
      Figure 4.1 illustrates this decomposition.
      As it stands, we now compute two length-
      transforms (complexity 
      
      ), multiply one of them by the complex exponential
      (complexity
      
      
	O(N)
      ), and add the results (complexity 
      
      
	O(N)
      ).  At this point, the total complexity is still
    dominated by the half-length DFT calculations, but the
    proportionality coefficient has been reduced.  
 Now for the fun.  Because 
      
	N=2L
      , each of the half-length transforms can be reduced to
      two quarter-length transforms, each of these to two
      eighth-length ones, etc.  This decomposition continues until we
      are left with length-2 transforms.  This transform is quite
      simple, involving only additions.  Thus, the first stage of the
      FFT has
       
      
      length-2 transforms (see the bottom part of Figure 4.1).  Pairs of these transforms are
      combined by adding one to the other multiplied by a complex
      exponential.  Each pair requires 4 additions and 2
      multiplications, giving a total number of computations equaling
      
      .  

      This number of computations does not change from stage to stage.
      Because the number of stages, the number of times the length can
      be divided by two, equals
      
      
	log2N
      , the number of arithmetic operations equals
      , which makes the complexity of the FFT
      
	O(Nlog2N)
      .
    
  [image: Length-8 DFT decomposition]
(a)

  [image: Length-8 DFT decomposition]
(b)


Figure 4.1. Length-8 DFT decomposition

	The initial decomposition of a length-8 DFT into the terms
      using even- and odd-indexed inputs marks the first phase of
      developing the FFT algorithm.  When these half-length transforms
      are successively decomposed, we are left with the diagram shown
      in the bottom panel that depicts the length-8 FFT computation.
      

 Doing an example will make
      computational savings more obvious.  Let's look at the details
      of a length-8 DFT.  As shown on Figure 4.2, we first decompose the DFT into two length-4
      DFTs, with the outputs added and subtracted together in pairs.
      Considering Figure 4.2 as the
      frequency index goes from 0 through 7, we recycle values from
      the length-4 DFTs into the final calculation because of the
      periodicity of the DFT output. Examining how pairs of outputs
      are collected together, we create the basic computational
      element known as a  butterfly (Figure 4.2).
    
 [image: Butterfly]
Figure 4.2. Butterfly

	The basic computational element of the fast Fourier transform
	is the butterfly.  It takes two complex numbers, represented
	by a and b, and
	forms the quantities shown.  Each butterfly requires one
	complex multiplication and two complex additions.
      


      By considering together the computations involving common output
      frequencies from the two half-length DFTs, we see that the two
      complex multiplies are related to each other, and we can reduce
      our computational work even further. By further decomposing the
      length-4 DFTs into two length-2 DFTs and combining their
      outputs, we arrive at the diagram summarizing the length-8 fast
      Fourier transform (Figure 4.1).
      Although most of the complex multiplies are quite simple
      (multiplying by
      
      
      
      means swapping real and imaginary parts and changing their signs), let's count those for
      purposes of evaluating the complexity as full complex
      multiplies.  We have
      
      
      
      complex multiplies and
      
      
	N=8
      
      
      complex additions for each stage and
      
      
	log2N=3
      
      
      stages, making the number of basic computations 
      
       
      as predicted. 
    
Exercise 2.
  
	 
	  Note that the ordering of the input sequence in the two
	  parts of Figure 4.1 aren't quite
	  the same.  Why not?  How is the ordering determined?
	

      
 (Return to Exercise)

	  The upper panel has not used the FFT algorithm to compute
	  the length-4 DFTs while the lower one has. The ordering is
	  determined by the algorithm.
	



  Other "fast" algorithms were discovered,
      all of which make use of how many common factors the transform
      length N has.  In number theory,
      the number of prime factors a given integer has measures how
      composite it is.  The numbers 16 and 81 are
      highly composite (equaling
      
      
	24
       
      
      and 
      
	34
       
      
      respectively), the number 18 is less so
      (
	21·32
      ), and 17 not at all (it's prime).  In over thirty
      years of Fourier transform algorithm development, the original
      Cooley-Tukey algorithm is far and away the most frequently
      used. It is so computationally efficient that power-of-two
      transform lengths are frequently used regardless of what the
      actual length of the data.
    
Exercise 3.
  
	 
	  Suppose the length of the signal were
          500?  How would you compute
          the spectrum of this signal using the Cooley-Tukey
          algorithm?  What would the length
          N of the transform be?
	

      
 (Return to Exercise)

	  The transform can have any greater than
          or equal to the actual duration of the signal.  We simply
          “pad” the signal with zero-valued samples until
          a computationally advantageous signal length results. Recall
          that the FFT is an algorithm to compute
          the DFT.
          Extending the length of the signal this way merely means we
          are sampling the frequency axis more finely than required.
          To use the Cooley-Tukey algorithm, the length of the
          resulting zero-padded signal can be 512, 1024, etc. samples
          long.
	



Solutions
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Summary
Investigation of different aspects of filtering in the frequency domain, particularly the use of discrete Fourier transforms.




  Because we are interested in actual computations
      rather than analytic calculations, we must consider the details
      of the discrete Fourier transform. To compute the
      length-N DFT, we assume that the
      signal has a duration less than or equal to
      N.  Because frequency responses
      have an explicit frequency-domain specification in terms of
      filter coefficients, we don't have a direct handle on which
      signal has a Fourier transform equaling a given frequency
      response.  Finding this signal is quite easy. First of all, note
      that the discrete-time Fourier transform of a unit sample equals
      one for all frequencies. Because of the input and output of
      linear, shift-invariant systems are related to each other by

      
	Y(ⅇⅈ2πf)=H(ⅇⅈ2πf)X(ⅇⅈ2πf)
      , a unit-sample input, which has
      
        X(ⅇⅈ2πf)=1
      , results in the output's Fourier transform
	equaling the system's transfer function.
    
Exercise 1.
 
	 
	  This statement is a very important result. Derive it
	  yourself.
	

      
 (Return to Exercise)

	  The DTFT of the unit sample equals a constant (equaling
	  1). Thus, the Fourier transform of the output equals the
	  transfer function.
	



 
      In the time-domain, the output for a unit-sample input is known as the
      system's  unit-sample response, and is denoted by
    
      
	h(n)
      .  
      Combining the frequency-domain and time-domain interpretations of a
      linear, shift-invariant system's unit-sample response, we have that
      
      
	h(n)
      
      and the transfer function are Fourier transform pairs
	in terms of the discrete-time Fourier
	transform.
    
(5.1)
	
	(h(n)  ↔  H(ⅇⅈ2πf))
      
 
      Returning to the issue of how to use the DFT to perform
      filtering, we can analytically specify the frequency response,
      and derive the corresponding
      length-N DFT by sampling the
      frequency response.

      
()


      Computing the inverse DFT yields a
      length-N signal no
      matter what the actual duration of the unit-sample response
      might be. If the unit-sample response has a duration
      less than or equal to N (it's a
      FIR filter), computing the inverse DFT of the sampled frequency
      response indeed yields the unit-sample response. If, however,
      the duration exceeds N, errors are
      encountered. The nature of these errors is easily explained by
      appealing to the Sampling Theorem. By sampling in the frequency
      domain, we have the potential for aliasing in the time domain
      (sampling in one domain, be it time or frequency, can result in
      aliasing in the other) unless we sample fast enough. Here, the
      duration of the unit-sample response determines the minimal
      sampling rate that prevents aliasing. For FIR systems —
      they by definition have finite-duration unit sample responses
      — the number of required DFT samples equals the
      unit-sample response's duration:

      
	N≥q
      .  
    
Exercise 2.
 
	 
	  Derive the minimal DFT length for a
	  length-q unit-sample response
	  using the Sampling Theorem. Because sampling in the
	  frequency domain causes repetitions of the unit-sample
	  response in the time domain, sketch the time-domain result
	  for various choices of the DFT length
	  N. 

      
 (Return to Exercise)

	  In sampling a discrete-time signal's Fourier transform
	  L times equally over
	  
	    [0, 2π)
	  
	  to form the DFT, the corresponding signal equals the periodic
	  repetition of the original signal.
	  

	  ()
 To avoid aliasing (in the time domain), the
	  transform length must equal or exceed the signal's duration.
	



Exercise 3.
 
	 
	  Express the unit-sample response of a FIR filter in terms of
	  difference equation coefficients. Note that the
	  corresponding question for IIR filters is far more difficult
	  to answer: Consider the example.
	

      
 (Return to Exercise)

	  The difference equation for an FIR filter has the form
	
	  ()


	  The unit-sample response equals
	  

	  ()


	  which corresponds to the representation described in a
	  problem of a length-q
	  boxcar filter.
	



  For IIR systems, we cannot use the DFT to find
      the system's unit-sample response: aliasing of the unit-sample
      response will always occur. Consequently,
      we can only implement an IIR filter accurately in the time
      domain with the system's difference
      equation. Frequency-domain implementations are
      restricted to FIR filters.
    
  
      Another issue arises in frequency-domain filtering that is
      related to time-domain aliasing, this time when we consider the
      output. Assume we have an input signal having duration 
      
	Nx
      
      that we pass through a FIR filter having a
      length-
	q+1
      
      unit-sample response. What is the duration of the output signal? The
      difference equation for this filter is 


      
()
	  
	  y(n)=b0x(n)+…+bqx(n−q)
	


      This equation says that the output depends on current and past
      input values, with the input value
      q samples previous defining the
      extent of the filter's memory of past input
      values. For example, the output at index

      
	Nx
      
      depends on

      
	x(Nx)
      
      (which equals zero), 

      
	x(Nx−1)
      , through

      
	x(Nx−q)
      .  Thus, the output returns to zero only after the last input value passes
      through the filter's memory. As the input signal's last value occurs at
      index

      
	Nx−1
      , the last nonzero output value occurs when
      
	n−q=Nx−1
      
      or
      
	n=q+Nx−1
      . Thus, the output signal's duration equals
      
	q+Nx
      .
    
Exercise 4.
 
	 
	  In words, we express this result as "The output's
	  duration equals the input's duration plus the filter's duration minus
	  one.". Demonstrate the accuracy of this statement.

      
 (Return to Exercise)

	  The unit-sample response's duration is 
	  
	    q+1
	  
	  and the signal's
	  
	  
	    Nx
	  . Thus the statement is correct.



  The main theme of this result is that a
      filter's output extends longer than either its input or its
      unit-sample response. Thus, to avoid aliasing when we use DFTs,
      the dominant factor is not the duration of input or of the
      unit-sample response, but of the output. Thus, the number of
      values at which we must evaluate the frequency response's DFT
      must be at least
      
      
	q+Nx
      
      and we must compute the same length DFT of the input. To
      accommodate a shorter signal than DFT length, we simply
       zero-pad the input: Ensure that for indices
      extending beyond the signal's duration that the signal is
      zero. Frequency-domain filtering, diagrammed in Figure 5.1, is accomplished by storing the
      filter's frequency response as the DFT
      
      
	H(k)
      , computing the input's DFT 
      
      
	X(k)
      , multiplying them to create the output's DFT
      
      
      
	Y(k)=H(k)X(k)
      , and computing the inverse DFT of the result to yield
      
      
	y(n)
      .
    
 [image: ]

Figure 5.1. 
To filter a signal in the frequency domain, first compute the
	DFT of the input, multiply the result by the sampled frequency
	response, and finally compute the inverse DFT of the product. The
	DFT's length must be at least the sum of
	the input's and unit-sample response's duration minus
	one. We calculate these discrete Fourier transforms using the fast
	Fourier transform algorithm, of course.
      

  Before detailing this procedure, let's clarify
      why so many new issues arose in trying to develop a
      frequency-domain implementation of linear filtering. The
      frequency-domain relationship between a filter's input
      and output is always true:
      
	Y(ⅇⅈ2πf)=H(ⅇⅈ2πf)X(ⅇⅈ2πf)
      .  This Fourier transforms in this result are
      discrete-time Fourier transforms; for example,
      .  Unfortunately, using this relationship to perform
      filtering is restricted to the situation when we have analytic
      formulas for the frequency response and the input signal. The
      reason why we had to "invent" the discrete Fourier transform
      (DFT) has the same origin: The spectrum resulting from the
      discrete-time Fourier transform depends on the
      continuous frequency variable
      f. That's fine for analytic
      calculation, but computationally we would have to make an
      uncountably infinite number of computations.  

Did you know that two kinds of infinities can be
      meaningfully defined? A  countably infinite quantity
      means that it can be associated with a limiting process
      associated with integers.  An  uncountably infinite
      quantity cannot be so associated.  The number of rational
      numbers is countably infinite (the numerator and denominator
      correspond to locating the rational by row and column; the total
      number so-located can be counted, voila!); the number of
      irrational numbers is uncountably infinite. Guess which is
      "bigger?"


 The DFT computes the Fourier transform at a
      finite set of frequencies — samples the true spectrum
      — which can lead to aliasing in the time-domain unless we
      sample sufficiently fast. The sampling interval here is
      
      for a length-K DFT: faster
      sampling to avoid aliasing thus requires a longer transform
      calculation. Since the longest signal among the input,
      unit-sample response and output is the output, it is that
      signal's duration that determines the transform length. We
      simply extend the other two signals with zeros (zero-pad) to
      compute their DFTs.
    
Example 5.1. 
  Suppose we want to average daily stock prices
	taken over last year to yield a running weekly average
	(average over five trading sessions).  The filter we want is a
	length-5 averager (as shown in the unit-sample response),
	and the input's duration is 253 (365 calendar days minus
	weekend days and holidays). The output duration will be
	
	  253+5−1=257
	, and this determines the transform length we need to
	use. Because we want to use the FFT, we are restricted to
	power-of-two transform lengths. We need to choose any FFT
	length that exceeds the required DFT length. As it turns out,
	256 is a power of two (
	  28=256
	), and this length just undershoots our required
	length. To use frequency domain techniques, we must use
	length-512 fast Fourier transforms.
      
 [image: ]

Figure 5.2. 

	  The blue line shows the Dow Jones Industrial Average from
	  1997, and the red one the length-5 boxcar-filtered result
	  that provides a running weekly of this market index. Note
	  the "edge" effects in the filtered output.
	

 
	Figure 5.2 shows the input and the
	filtered output. The MATLAB programs that compute the filtered
	output in the time and frequency domains are
      
 
	Time Domain 
	h = [1 1 1 1 1]/5; 
	y = filter(h,1,[djia zeros(1,4)]);

	Frequency Domain
	h = [1 1 1 1 1]/5; 
	DJIA = fft(djia, 512);
	H = fft(h, 512);
	Y = H.*X;
	y = ifft(Y);
      
 
	

The filter program has the
	  feature that the length of its output equals the length of
	  its input.  To force it to produce a signal having the
	  proper length, the program zero-pads the input
	  appropriately.


 MATLAB's fft function
	  automatically zero-pads its input if the specified transform
	  length (its second argument) exceeds the signal's
	  length. The frequency domain result will have a small
	  imaginary component — largest value is 2.2×10-11 —
	  because of the inherent finite precision nature of computer
	  arithmetic. Because of the unfortunate misfit between signal
	  lengths and favored FFT lengths, the number of arithmetic
	  operations in the time-domain implementation is far less
	  than those required by the frequency domain version: 514
	  versus 62,271. If the input signal had been one sample
	  shorter, the frequency-domain computations would have been
	  more than a factor of two less (28,696), but far more than
	  in the time-domain implementation.
      
  An interesting signal processing aspect of
	this example is demonstrated at the beginning and end of the
	output. The ramping up and down that occurs can be traced to
	assuming the input is zero before it begins and after it
	ends. The filter "sees" these initial and final values as the
	difference equation passes over the input. These artifacts can
	be handled in two ways: we can just ignore the edge effects or
	the data from previous and succeeding years' last and first
	week, respectively, can be placed at the ends.
      


Solutions
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Summary
Compares the efficiency of frequency domain and time domain filtering.




 To determine for what signal and filter durations a time- or
      frequency-domain implementation would be the most efficient, we
      need only count the computations required by each. For the
      time-domain, difference-equation approach, we need
      .
      The frequency-domain approach requires three Fourier transforms, each
      requiring
      
      computations for a length-K FFT, and the
      multiplication of two spectra
      (
	6K
      
      computations). The output-signal-duration-determined length must be at
      least
      
	Nx+q
      . Thus, we must compare 

	

      Exact analytic evaluation of this comparison is quite difficult
      (we have a transcendental equation to solve). Insight into this
      comparison is best obtained by dividing by
      
	Nx
      .

      

      With this manipulation, we are evaluating the number of
      computations per sample. For any given value of the filter's
      order q, the right side, the
      number of frequency-domain computations, will exceed the left if
      the signal's duration is long enough. However, for filter
      durations greater than about 10, as long as the input is at
      least 10 samples, the frequency-domain approach is faster
      so long as the FFT's power-of-two constraint is
      advantageous.
    
  The frequency-domain approach is not yet viable;
      what will we do when the input signal is infinitely long? The
      difference equation scenario fits perfectly with the envisioned
      digital filtering structure, but so far we have required
      the input to have limited duration (so that we could calculate
      its Fourier transform). The solution to this problem is quite
      simple: Section the input into frames, filter each, and add the
      results together. To section a signal means expressing it as a
      linear combination of length-
	Nx
      
      non-overlapping "chunks." Because the filter is linear,
      filtering a sum of terms is equivalent to summing the results of
      filtering each term.

      
()

      
      As illustrated in Figure 6.1, note
      that each filtered section has a duration longer than the input.
      Consequently, we must literally add the filtered sections
      together, not just butt them together.
    
 [image: Efficiency of Frequency-Domain Filtering]

Figure 6.1. 

	  The noisy input signal is sectioned into length-48 frames,
	  each of which is filtered using frequency-domain
	  techniques. Each filtered section is added to other outputs
	  that overlap to create the signal equivalent to having
	  filtered the entire input. The sinusoidal component of the
	  signal is shown as the red dashed line.
	

  
      Computational considerations reveal a substantial advantage for
      a frequency-domain implementation over a time-domain one. The number
      of computations for a time-domain implementation essentially remains
      constant whether we section the input or not. Thus, the number of
      computations for each output is
      .  In the frequency-domain approach, computation
      counting changes because we need only compute the filter's
      frequency response
      
	H(k)
      
      once, which amounts to a fixed overhead. We need only compute
      two DFTs and multiply them to filter a section.  Letting
      
	Nx
      
      denote a section's length, the number of computations for a
      section amounts to
      
	(Nx+q)log2(Nx+q)+6(Nx+q)
      .  In addition, we must add the filtered outputs
      together; the number of terms to add corresponds to the excess
      duration of the output compared with the input
      (q). The frequency-domain approach
      thus requires
      
      computations per output value. For even modest filter orders, the
      frequency-domain approach is much faster.
    
Exercise 1.
 
	 
	  Show that as the section length increases, the frequency
	  domain approach becomes increasingly more efficient.

      
 (Return to Exercise)

	  Let N denote the input's total
	  duration. The time-domain implementation requires a total of
	  
	    N(2q+1)
	  
	  computations, or   
	  
	    2q+1
	  
	  computations per input value. In the frequency domain, we split the
	  input into
	  
	  sections, each of which requires 
	  
	  per input in the section. Because we divide
	  again by
	  
	    Nx
	  
	  to find the number of computations per input value in the
	  entire input, this quantity decreases
	  as
	  
	    Nx
	  
	  increases. For the time-domain implementation, it stays
	  constant.
	



  
      Note that the choice of section duration is arbitrary. Once the
      filter is chosen, we should section so that the required FFT length is
      precisely a power of two: Choose
      
	Nx
      
      so that 
      
	Nx+q=2L
      .
    
  Implementing the digital filter shown in the
      A/D block
      diagram with a frequency-domain implementation requires
      some additional signal management not required by time-domain
      implementations. Conceptually, a real-time, time-domain filter
      could accept each sample as it becomes available, calculate the
      difference equation, and produce the output value, all in less
      that the sampling interval 
      Ts
      .  Frequency-domain approaches don't operate on a
      sample-by-sample basis; instead, they operate on sections. They
      filter in real time by producing Nx outputs
      for the same number of inputs faster than
      
	NxTs
      .  Because they generally take longer to produce an
      output section than the sampling interval duration, we must
      filter one section while accepting into memory the
      next section to be filtered. In
      programming, the operation of building up sections while
      computing on previous ones is known as  buffering.
      Buffering can also be used in time-domain filters as well but
      isn't required.
    
Example 6.1. 
 
	We want to lowpass filter a signal that contains a sinusoid
	and a significant amount of noise. The example shown in Figure 6.1 shows a portion of the noisy signal's waveform. If
	it weren't for the overlaid sinusoid, discerning the sine wave
	in the signal is virtually impossible. One of the primary
	applications of linear filters is  noise removal:
	preserve the signal by matching filter's passband with the
	signal's spectrum and greatly reduce all other frequency
	components that may be present in the noisy signal.  
  
	A smart Rice engineer has selected a FIR filter having a unit-sample
	response corresponding a period-17 sinusoid: 
	,
	
	  
	  n={0, …, 16}
	, which makes
	
	  
	  q=16
	.  Its frequency response (determined by computing
	the discrete Fourier transform) is shown in Figure 6.2. To apply, we can select the
	length of each section so that the frequency-domain filtering
	approach is maximally efficient: Choose the section length
	Nx  so that
	
	  
	  Nx+q
	
	is a power of two.  To use a length-64 FFT, each section must
	be 48 samples long. Filtering with the difference equation
	would require 33 computations per output while the frequency
	domain requires a little over 16; this frequency-domain
	implementation is over twice as fast!  Figure 6.1 shows how frequency-domain filtering works.
      
 [image: ]

Figure 6.2. 

	  The figure shows the unit-sample response of a length-17
	  Hanning filter on the left and the frequency response on the
	  right.  This filter functions as a lowpass filter having a
	  cutoff frequency of about 0.1.
	

 
	We note that the noise has been dramatically reduced, with a
	sinusoid now clearly visible in the filtered output. Some
	residual noise remains because noise components within the
	filter's passband appear in the output as well as the signal.
      


Exercise 2.
 
	 
	  Note that when compared to the input signal's sinusoidal
	  component, the output's sinusoidal component seems to be
	  delayed. What is the source of this delay? Can it be removed?

      
 (Return to Exercise)

	  The delay is  not computational delay here--the
	  plot shows the first output value is aligned with the filter's first
	  input--although in real systems this is an important
	  consideration. Rather, the delay is due to the filter's phase shift: A
	  phase-shifted sinusoid is equivalent to a time-delayed one:
	  . All filters have phase shifts. This delay could
	  be removed if the filter introduced no phase shift. Such
	  filters do not exist in analog form, but digital ones can be
	  programmed, but not in real time. Doing so would require the
	  output to emerge before the input arrives!
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