

 [image: Discrete-Time Fourier Analysis]

 Discrete-Time Fourier Analysis
By: Don Johnson
Online: <http://cnx.org/content/col10579/1.1>
This selection and arrangement of content as a collection is copyrighted by Don Johnson.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/2.0/
Collection structure revised: 2008/09/20
For copyright and attribution information for the modules contained in this collection, see the "Attributions" section at the end of the collection.

Discrete-Time Fourier Analysis
Table of Contents
	Chapter 1. Discrete-Time Fourier Transform (DTFT)
	Chapter 2. Discrete Fourier Transform (DFT)
	Chapter 3. DFT: Computational Complexity
	Chapter 4. Fast Fourier Transform (FFT)
	Chapter 5. Filtering in the Frequency Domain
	Chapter 6. Efficiency of Frequency-Domain Filtering
	Index

Discrete-Time Fourier Analysis
By: Don Johnson
Online: <http://cnx.org/content/col10579/1.1>
This selection and arrangement of content as a collection is copyrighted by Don Johnson.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/2.0/
Collection structure revised: 2008/09/20
For copyright and attribution information for the modules contained in this collection, see the "Attributions" section at the end of the collection.

Chapter 1. Discrete-Time Fourier Transform (DTFT)*

It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/1.0

2009/07/06 17:25:46 -0500

Summary
Discussion of Discrete-time Fourier Transforms. Topics include comparison with analog transforms and discussion of Parseval's theorem.

 The Fourier transform of the discrete-time signal

 s(n)

 is defined to be

()

 Frequency here has no units. As should be expected, this
 definition is linear, with the transform of a sum of signals
 equaling the sum of their transforms. Real-valued signals have
 conjugate-symmetric spectra:
 .

Exercise 1.

	 	
	 A special property of the discrete-time Fourier transform is
	 that it is periodic with period one:	
	
	 S(ⅇⅈ2π(f+1))=S(ⅇⅈ2πf)
	 .
	 Derive this property from the definition of the DTFT.
	

 (Return to Exercise)
(1.1)

 Because of this periodicity, we need only plot the spectrum over
 one period to understand completely the spectrum's structure;
 typically, we plot the spectrum over the frequency range
 .
 When the signal is real-valued, we can further simplify our
 plotting chores by showing the spectrum only over
 ;
 the spectrum at negative frequencies can be derived from
 positive-frequency spectral values.

 When we obtain the discrete-time signal via sampling an analog
 signal, the Nyquist frequency corresponds to the
 discrete-time frequency
 . To show this, note that a sinusoid having a
 frequency equal to the Nyquist frequency

 has a sampled waveform that equals

 The exponential in the DTFT at frequency

 equals
 , meaning that discrete-time frequency equals analog
 frequency multiplied by the sampling interval

()
	 fD=fATs
	

	fD

 and

	fA
 represent discrete-time and analog frequency
 variables, respectively. The aliasing figure provides
 another way of deriving this result. As the duration of each
 pulse in the periodic sampling signal

	pTs(t)
 narrows, the amplitudes of the signal's spectral
 repetitions, which are governed by the Fourier series coefficients of

	pTs(t)
 , become increasingly equal. Examination of the periodic pulse
 signal reveals that as
 Δ decreases, the value of

	c0
 ,
 the largest Fourier coefficient, decreases to zero:
 .
 Thus, to maintain a mathematically viable Sampling Theorem, the
 amplitude
 A must increase as
 , becoming infinitely large as the pulse duration
 decreases. Practical systems use a small value of
 Δ, say

	0.1·Ts

 and use amplifiers to rescale the signal. Thus, the sampled
 signal's spectrum becomes periodic with period
 .
 Thus, the Nyquist frequency

 corresponds to the frequency
 .

Example 1.1.

	Let's compute the discrete-time Fourier transform of the
	exponentially decaying sequence	
	
	 s(n)=anu(n)
	,
	where 	
	
	 u(n)
		
	is the unit-step sequence. Simply plugging the signal's
	expression into the Fourier transform formula,

(1.2)

	This sum is a special case of the geometric
	series.

	
()

	Thus, as long as
	
	 |a|<1
	,
	we have our Fourier transform.

(1.3)

	Using Euler's relation, we can express the magnitude and phase
	of this spectrum.

(1.4)

(1.5)

 No matter what value of a we
 choose, the above formulae clearly demonstrate the periodic
 nature of the spectra of discrete-time signals. Figure 1.1 shows indeed that the spectrum
 is a periodic function. We need only consider the spectrum
 between
	
	and	
		
	to unambiguously define it. When
	
	 a>0
	,
	we have a lowpass spectrum—the spectrum diminishes as
	frequency increases from 0 to
	—with increasing
 a leading to a greater low frequency
	content; for
	
	 a<0
	,
	we have a highpass spectrum
	(Figure 1.2).

 [image: Spectrum of exponential signal]

Figure 1.1. Spectrum of exponential signal

	The spectrum of the exponential signal
 (a=0.5) is shown over
	the frequency range [-2, 2], clearly demonstrating the
	periodicity of all discrete-time spectra. The angle has units
	of degrees.

 [image: Spectra of exponential signals]

Figure 1.2. Spectra of exponential signals

	The spectra of several exponential signals are shown. What is
	the apparent relationship between the spectra for

	 a=0.5
	 and
	a=–0.5?

Example 1.2.

	Analogous to the analog pulse signal, let's find the spectrum
	of the length-N pulse sequence.

(1.6)

	The Fourier transform of this sequence has the form of a
	truncated geometric series.

(1.7)

	For the so-called finite geometric series, we know that

()

	for all values of α.

Exercise 2.

	
	 Derive this formula for the finite geometric series sum.
	 The "trick" is to consider the difference between the
	 series' sum and the sum of the series multiplied by
	 α.
	

 (Return to Exercise)

	
	
	 which, after manipulation, yields the geometric sum formula.
	

 Applying this result yields (Figure 1.3.)

()

 The ratio of sine functions has the generic form of
 ,
 which is known as the discrete-time sinc function

	dsinc(x)
 .
 Thus, our transform can be concisely expressed as

	S(ⅇⅈ2πf)=ⅇ–(ⅈπf(N−1))dsinc(πf)
 . The discrete-time pulse's spectrum contains many
 ripples, the number of which increase with
 N, the pulse's duration.

 [image: Spectrum of length-ten pulse]

Figure 1.3. Spectrum of length-ten pulse

	The spectrum of a length-ten pulse is shown. Can you explain
	the rather complicated appearance of the phase?

 The inverse discrete-time Fourier transform is easily derived
 from the following relationship:

()

 Therefore, we find that

()

 The Fourier transform pairs in discrete-time are

()

 The properties of the discrete-time Fourier transform mirror
 those of the analog Fourier transform. The
 DTFT properties table
 shows similarities and differences. One important common
 property is Parseval's Theorem.

()

 To show this important property, we simply substitute the
 Fourier transform expression into the frequency-domain
 expression for power.

()

 Using the orthogonality
 relation, the integral equals

	δ(m−n)
 ,
 where

	δ(n)
 is the unit sample. Thus, the double sum collapses
 into a single sum because nonzero values occur only when
 n=m,
 giving Parseval's Theorem as a result. We term

 the energy in the discrete-time signal

	s(n)

 in spite of the fact that discrete-time signals don't consume
 (or produce for that matter) energy. This terminology is a
 carry-over from the analog world.

Exercise 3.

	 	
	 Suppose we obtained our discrete-time signal from values of
	 the product
	
	 s(t)p
		 Ts
		 (t)
	 ,
	 where the duration of the component pulses in	
	
	 p
		 Ts
		 (t)
	 is Δ. How is
	 the discrete-time signal energy related to the total energy
	 contained in
	
	 s(t)
	 ?
	 Assume the signal is bandlimited and that the sampling rate
	 was chosen appropriate to the Sampling Theorem's conditions.
	

 (Return to Exercise)
	
	 If the sampling frequency exceeds the Nyquist frequency, the
	 spectrum of the samples equals the analog spectrum, but over
	 the normalized analog frequency

	 fT
	 . Thus, the energy in the sampled signal equals
	 the original signal's energy multiplied by
	 T.
	

Solutions

Chapter 2. Discrete Fourier Transform (DFT)*

It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/1.0

2009/10/01 14:04:15 -0500

Summary
The Fourier transform can be computed in discrete-time despite the
 complications caused by a finite signal and continuous frequency.

 The discrete-time Fourier transform (and the
 continuous-time transform as well) can be evaluated when we have
 an analytic expression for the signal. Suppose we just have a
 signal, such as the speech signal used in the previous chapter,
 for which there is no formula. How then would you compute the
 spectrum? For example, how did we compute a spectrogram such as
 the one shown in the speech signal example? The Discrete Fourier
 Transform (DFT) allows the computation of spectra from
 discrete-time data. While in discrete-time we can
 exactly calculate spectra, for analog
 signals no similar exact spectrum computation exists. For
 analog-signal spectra, use must build special devices, which
 turn out in most cases to consist of A/D converters and
 discrete-time computations. Certainly discrete-time spectral
 analysis is more flexible than continuous-time spectral
 analysis.

 The formula for the
 DTFT
 is a sum, which conceptually can be easily computed save for two
 issues.

 	
	Signal duration.
	The sum extends over the signal's duration, which must be
	finite to compute the signal's spectrum. It is exceedingly
	difficult to store an infinite-length signal in any case, so
	we'll assume that the signal extends over	
	
	 [0, N−1]
	.

	 Continuous frequency. Subtler than
	the signal duration issue is the fact that the frequency
	variable is continuous: It may only need to span one period,
	like
	
	or
	
	 [0, 1]
	,
	but the DTFT formula as it stands requires evaluating the
	spectra at all frequencies within a
	period. Let's compute the spectrum at a few frequencies; the
	most obvious ones are the equally spaced ones
	,
	
	
	 k∈{0, …, K−1}
	.

 We thus define the discrete Fourier transform (DFT)
 to be

()

 Here,

	S(k)

 is shorthand for
 .

 We can compute the spectrum at as many equally spaced
 frequencies as we like. Note that you can think about this
 computationally motivated choice as sampling the
 spectrum; more about this interpretation later. The issue now
 is how many frequencies are enough to capture how the spectrum
 changes with frequency. One way of answering this question is
 determining an inverse discrete Fourier transform formula: given

	S(k)
 ,

	k={0, …, K−1}

 how do we find

	s(n)
 ,

	n={0, …, N−1}
 ?
 Presumably, the formula will be of the form
 .
 Substituting the DFT formula in this prototype inverse transform
 yields

()

 Note that the orthogonality relation we use so often has a
 different character now.

()

 We obtain nonzero value whenever the two indices differ by multiples
 of K. We can express this result as
 .

 Thus, our formula becomes

()

 The integers n and
 m both range over
 .
 To have an inverse transform, we need the sum to be a
 single unit sample for

	m
 ,

	n

 in this range. If it did not, then

	s(n)

 would equal a sum of values, and we would not have a valid
 transform: Once going into the frequency domain, we could not
 get back unambiguously! Clearly, the term

	l=0

 always provides a unit sample (we'll take care of the factor of

	K

 soon). If we evaluate the spectrum at
 fewer frequencies than the signal's
 duration, the term corresponding to

	m=n+K

 will also appear for some values of

	m
 , .
 This situation means that our prototype transform equals

	s(n)+s(n+K)

 for some values of

	n
 .
 The only way to eliminate this problem is to require

	K≥N
 :
 We must have at least as many frequency samples as
 the signal's duration. In this way, we can return from the
 frequency domain we entered via the DFT.

Exercise 1.

	
	 When we have fewer frequency samples than the signal's
	 duration, some discrete-time signal values equal the sum of
	 the original signal values. Given the sampling
	 interpretation of the spectrum, characterize this effect a
	 different way.
	

 (Return to Exercise)

	 This situation amounts to aliasing in the time-domain.
	

 Another way to understand this requirement is to use the theory
 of linear equations. If we write out the expression for the DFT
 as a set of linear equations,

()
	 s(0)+s(1)+…+s(N−1)=S(0)
	

	⋮

 we have

	K

 equations in

	N

 unknowns if we want to find the signal from its sampled
 spectrum. This requirement is impossible to fulfill if

	K<N
 ;
 we must have

	K≥N
 .
 Our orthogonality relation essentially says that if we have a
 sufficient number of equations (frequency samples), the
 resulting set of equations can indeed be solved.

 By convention, the number of DFT frequency values

	K

 is chosen to equal the signal's duration

	N
 .
 The discrete Fourier transform pair consists of

(2.1)Discrete Fourier Transform Pair

Example 2.1.

	Use this demonstration to perform DFT analysis of a signal.

(This media type is not supported in this reader. Click to open media in browser.)

Example 2.2.

	Use this demonstration to synthesize a signal from a DFT sequence.

(This media type is not supported in this reader. Click to open media in browser.)

Solutions

Chapter 3. DFT: Computational Complexity*

It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/

2013/05/17 09:52:42 -0500

Summary
A brief explanation of calculation complexity and how the complexity of the discrete Fourier transform is order N squared.

 We now have a way of computing the spectrum for an arbitrary
 signal: The Discrete Fourier Transform (DFT) computes the spectrum at
 N equally spaced frequencies from
 a length- N sequence. An issue
 that never arises in analog "computation," like that
 performed by a circuit, is how much work it takes to perform the
 signal processing operation such as filtering. In computation,
 this consideration translates to the number of basic
 computational steps required to perform the needed
 processing. The number of steps, known as the
 complexity, becomes equivalent to how long the
 computation takes (how long must we wait for an
 answer). Complexity is not so much tied to specific computers or
 programming languages but to how many steps are required on any
 computer. Thus, a procedure's stated complexity says that
 the time taken will be proportional to some
 function of the amount of data used in the computation and the
 amount demanded.

 For example, consider the formula for the discrete Fourier
 transform. For each frequency we choose, we must multiply each signal
 value by a complex number and add together the results. For a
 real-valued signal, each real-times-complex multiplication requires
 two real multiplications, meaning we have

	2N
 multiplications to perform. To add the results
 together, we must keep the real and imaginary parts
 separate. Adding N numbers
 requires
 N−1

 additions. Consequently, each frequency requires

	2N+2(N−1)=4N−2

 basic computational steps. As we have
 N frequencies, the total number of
 computations is

	N(4N−2)
 .

 In complexity calculations, we only worry about what happens as
 the data lengths increase, and take the dominant term—here the

	4N2
 term—as reflecting how much work is involved in
 making the computation. As multiplicative constants don't matter
 since we are making a "proportional to" evaluation, we find the
 DFT is an

	O(N2)
 computational procedure. This notation is read "order
 N-squared". Thus, if we double
 the length of the data, we would expect that the computation
 time to approximately quadruple.

Exercise 1.

	
	 In making the complexity evaluation for the DFT, we assumed
	 the data to be real. Three questions emerge. First of all,
	 the spectra of such signals have conjugate symmetry, meaning
	 that negative frequency components (in the DFT) can be computed from the
	 corresponding positive frequency components. Does this
	 symmetry change the DFT's complexity? Secondly, suppose the
	 data are complex-valued; what is the DFT's complexity now?
	 Finally, a less important but interesting question is
	 suppose we want K frequency
	 values instead of N; now what
	 is the complexity?
	

 (Return to Exercise)

	 When the signal is real-valued, we may only need half the
	 spectral values, but the complexity remains unchanged. If
	 the data are complex-valued, which demands retaining all
	 frequency values, the complexity is again the same. When
	 only K frequencies are needed,
	 the complexity is
	
	 O(KN)
	 .
	

Solutions

Chapter 4. Fast Fourier Transform (FFT)*

It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/

2012/07/09 18:01:17 -0500

Summary
The DFT can be reduced from exponential time with the Fast
Fourier Transform algorithm.

 One wonders if the DFT can be computed faster: Does another
 computational procedure -- an algorithm -- exist
 that can compute the same quantity, but more efficiently. We
 could seek methods that reduce the constant of proportionality,
 but do not change the DFT's complexity

	O(N2)
 .

 Here, we have
 something more dramatic in mind: Can the computations be restructured
 so that a smaller complexity results?

 In 1965, IBM researcher Jim Cooley and Princeton faculty member
 John Tukey developed what is now known as the Fast Fourier
 Transform (FFT). It is an algorithm for computing that DFT that
 has order

	O(NlogN)

 for certain length inputs. Now when the length
 of data doubles, the spectral computational time will not quadruple as
 with the DFT algorithm; instead, it approximately doubles. Later
 research showed that no algorithm for computing the DFT could have a
 smaller complexity than the FFT. Surprisingly, historical work has
 shown that Gauss
 in the early nineteenth century developed the same
 algorithm, but did not publish it! After the FFT's rediscovery,
 not only was the computation of a signal's spectrum greatly
 speeded, but also the added feature of algorithm
 meant that computations had flexibility not available to analog
 implementations.

Exercise 1.

	
	 Before developing the FFT, let's try to appreciate the
	 algorithm's impact. Suppose a short-length transform takes
	 1 ms. We want to calculate a transform of a signal that is
	 10 times longer. Compare how much longer a straightforward
	 implementation of the DFT would take in comparison to an
	 FFT, both of which compute exactly the same quantity.

 (Return to Exercise)
If a DFT required 1ms to compute, and signal having ten
	 times the duration would require 100ms to compute. Using the
	 FFT, a 1ms computing time would increase by a factor of
	 about
	
	 10log210=33
	 , a factor of 3 less than the DFT would have
	 needed.

 To derive the FFT, we assume that the signal's duration is a
 power of two:

	N=2L
 .
 Consider what happens to the even-numbered and odd-numbered
 elements of the sequence in the DFT calculation.

(4.1)

 Each term in square brackets has the form of a

 -length DFT. The first one is a DFT of the
 even-numbered elements, and the second of the odd-numbered
 elements. The first DFT is combined with the second multiplied
 by the complex exponential

 . The half-length transforms are each evaluated at
 frequency indices
 k=0,
 …,
 N−1.
 Normally, the number of frequency indices in a DFT calculation
 range between zero and the transform length minus one. The
 computational advantage of the FFT comes from
 recognizing the periodic nature of the discrete Fourier
 transform. The FFT simply reuses the computations made in the
 half-length transforms and combines them through additions and
 the multiplication by

 , which is not periodic over

 .
 Figure 4.1 illustrates this decomposition.
 As it stands, we now compute two length-
 transforms (complexity

), multiply one of them by the complex exponential
 (complexity

	O(N)
), and add the results (complexity

	O(N)
). At this point, the total complexity is still
 dominated by the half-length DFT calculations, but the
 proportionality coefficient has been reduced.
 Now for the fun. Because

	N=2L
 , each of the half-length transforms can be reduced to
 two quarter-length transforms, each of these to two
 eighth-length ones, etc. This decomposition continues until we
 are left with length-2 transforms. This transform is quite
 simple, involving only additions. Thus, the first stage of the
 FFT has

 length-2 transforms (see the bottom part of Figure 4.1). Pairs of these transforms are
 combined by adding one to the other multiplied by a complex
 exponential. Each pair requires 4 additions and 2
 multiplications, giving a total number of computations equaling

 .

 This number of computations does not change from stage to stage.
 Because the number of stages, the number of times the length can
 be divided by two, equals

	log2N
 , the number of arithmetic operations equals
 , which makes the complexity of the FFT

	O(Nlog2N)
 .

 [image: Length-8 DFT decomposition]
(a)

 [image: Length-8 DFT decomposition]
(b)

Figure 4.1. Length-8 DFT decomposition

	The initial decomposition of a length-8 DFT into the terms
 using even- and odd-indexed inputs marks the first phase of
 developing the FFT algorithm. When these half-length transforms
 are successively decomposed, we are left with the diagram shown
 in the bottom panel that depicts the length-8 FFT computation.

 Doing an example will make
 computational savings more obvious. Let's look at the details
 of a length-8 DFT. As shown on Figure 4.2, we first decompose the DFT into two length-4
 DFTs, with the outputs added and subtracted together in pairs.
 Considering Figure 4.2 as the
 frequency index goes from 0 through 7, we recycle values from
 the length-4 DFTs into the final calculation because of the
 periodicity of the DFT output. Examining how pairs of outputs
 are collected together, we create the basic computational
 element known as a butterfly (Figure 4.2).

 [image: Butterfly]
Figure 4.2. Butterfly

	The basic computational element of the fast Fourier transform
	is the butterfly. It takes two complex numbers, represented
	by a and b, and
	forms the quantities shown. Each butterfly requires one
	complex multiplication and two complex additions.

 By considering together the computations involving common output
 frequencies from the two half-length DFTs, we see that the two
 complex multiplies are related to each other, and we can reduce
 our computational work even further. By further decomposing the
 length-4 DFTs into two length-2 DFTs and combining their
 outputs, we arrive at the diagram summarizing the length-8 fast
 Fourier transform (Figure 4.1).
 Although most of the complex multiplies are quite simple
 (multiplying by

 means swapping real and imaginary parts and changing their signs), let's count those for
 purposes of evaluating the complexity as full complex
 multiplies. We have

 complex multiplies and

	N=8

 complex additions for each stage and

	log2N=3

 stages, making the number of basic computations

 as predicted.

Exercise 2.

	
	 Note that the ordering of the input sequence in the two
	 parts of Figure 4.1 aren't quite
	 the same. Why not? How is the ordering determined?
	

 (Return to Exercise)

	 The upper panel has not used the FFT algorithm to compute
	 the length-4 DFTs while the lower one has. The ordering is
	 determined by the algorithm.
	

 Other "fast" algorithms were discovered,
 all of which make use of how many common factors the transform
 length N has. In number theory,
 the number of prime factors a given integer has measures how
 composite it is. The numbers 16 and 81 are
 highly composite (equaling

	24

 and

	34

 respectively), the number 18 is less so
 (
	21·32
), and 17 not at all (it's prime). In over thirty
 years of Fourier transform algorithm development, the original
 Cooley-Tukey algorithm is far and away the most frequently
 used. It is so computationally efficient that power-of-two
 transform lengths are frequently used regardless of what the
 actual length of the data.

Exercise 3.

	
	 Suppose the length of the signal were
 500? How would you compute
 the spectrum of this signal using the Cooley-Tukey
 algorithm? What would the length
 N of the transform be?
	

 (Return to Exercise)

	 The transform can have any greater than
 or equal to the actual duration of the signal. We simply
 “pad” the signal with zero-valued samples until
 a computationally advantageous signal length results. Recall
 that the FFT is an algorithm to compute
 the DFT.
 Extending the length of the signal this way merely means we
 are sampling the frequency axis more finely than required.
 To use the Cooley-Tukey algorithm, the length of the
 resulting zero-padded signal can be 512, 1024, etc. samples
 long.
	

Solutions

Chapter 5. Filtering in the Frequency Domain*

It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/1.0

2009/06/11 09:24:52 -0500

Summary
Investigation of different aspects of filtering in the frequency domain, particularly the use of discrete Fourier transforms.

 Because we are interested in actual computations
 rather than analytic calculations, we must consider the details
 of the discrete Fourier transform. To compute the
 length-N DFT, we assume that the
 signal has a duration less than or equal to
 N. Because frequency responses
 have an explicit frequency-domain specification in terms of
 filter coefficients, we don't have a direct handle on which
 signal has a Fourier transform equaling a given frequency
 response. Finding this signal is quite easy. First of all, note
 that the discrete-time Fourier transform of a unit sample equals
 one for all frequencies. Because of the input and output of
 linear, shift-invariant systems are related to each other by

	Y(ⅇⅈ2πf)=H(ⅇⅈ2πf)X(ⅇⅈ2πf)
 , a unit-sample input, which has

 X(ⅇⅈ2πf)=1
 , results in the output's Fourier transform
	equaling the system's transfer function.

Exercise 1.

	
	 This statement is a very important result. Derive it
	 yourself.
	

 (Return to Exercise)

	 The DTFT of the unit sample equals a constant (equaling
	 1). Thus, the Fourier transform of the output equals the
	 transfer function.
	

 In the time-domain, the output for a unit-sample input is known as the
 system's unit-sample response, and is denoted by

	h(n)
 .
 Combining the frequency-domain and time-domain interpretations of a
 linear, shift-invariant system's unit-sample response, we have that

	h(n)

 and the transfer function are Fourier transform pairs
	in terms of the discrete-time Fourier
	transform.

(5.1)
	
	(h(n) ↔ H(ⅇⅈ2πf))

 Returning to the issue of how to use the DFT to perform
 filtering, we can analytically specify the frequency response,
 and derive the corresponding
 length-N DFT by sampling the
 frequency response.

()

 Computing the inverse DFT yields a
 length-N signal no
 matter what the actual duration of the unit-sample response
 might be. If the unit-sample response has a duration
 less than or equal to N (it's a
 FIR filter), computing the inverse DFT of the sampled frequency
 response indeed yields the unit-sample response. If, however,
 the duration exceeds N, errors are
 encountered. The nature of these errors is easily explained by
 appealing to the Sampling Theorem. By sampling in the frequency
 domain, we have the potential for aliasing in the time domain
 (sampling in one domain, be it time or frequency, can result in
 aliasing in the other) unless we sample fast enough. Here, the
 duration of the unit-sample response determines the minimal
 sampling rate that prevents aliasing. For FIR systems —
 they by definition have finite-duration unit sample responses
 — the number of required DFT samples equals the
 unit-sample response's duration:

	N≥q
 .

Exercise 2.

	
	 Derive the minimal DFT length for a
	 length-q unit-sample response
	 using the Sampling Theorem. Because sampling in the
	 frequency domain causes repetitions of the unit-sample
	 response in the time domain, sketch the time-domain result
	 for various choices of the DFT length
	 N.

 (Return to Exercise)

	 In sampling a discrete-time signal's Fourier transform
	 L times equally over
	
	 [0, 2π)
	
	 to form the DFT, the corresponding signal equals the periodic
	 repetition of the original signal.
	

	 ()
 To avoid aliasing (in the time domain), the
	 transform length must equal or exceed the signal's duration.
	

Exercise 3.

	
	 Express the unit-sample response of a FIR filter in terms of
	 difference equation coefficients. Note that the
	 corresponding question for IIR filters is far more difficult
	 to answer: Consider the example.
	

 (Return to Exercise)

	 The difference equation for an FIR filter has the form
	
	 ()

	 The unit-sample response equals
	

	 ()

	 which corresponds to the representation described in a
	 problem of a length-q
	 boxcar filter.
	

 For IIR systems, we cannot use the DFT to find
 the system's unit-sample response: aliasing of the unit-sample
 response will always occur. Consequently,
 we can only implement an IIR filter accurately in the time
 domain with the system's difference
 equation. Frequency-domain implementations are
 restricted to FIR filters.

 Another issue arises in frequency-domain filtering that is
 related to time-domain aliasing, this time when we consider the
 output. Assume we have an input signal having duration

	Nx

 that we pass through a FIR filter having a
 length-
	q+1

 unit-sample response. What is the duration of the output signal? The
 difference equation for this filter is

()
	
	 y(n)=b0x(n)+…+bqx(n−q)
	

 This equation says that the output depends on current and past
 input values, with the input value
 q samples previous defining the
 extent of the filter's memory of past input
 values. For example, the output at index

	Nx

 depends on

	x(Nx)

 (which equals zero),

	x(Nx−1)
 , through

	x(Nx−q)
 . Thus, the output returns to zero only after the last input value passes
 through the filter's memory. As the input signal's last value occurs at
 index

	Nx−1
 , the last nonzero output value occurs when

	n−q=Nx−1

 or

	n=q+Nx−1
 . Thus, the output signal's duration equals

	q+Nx
 .

Exercise 4.

	
	 In words, we express this result as "The output's
	 duration equals the input's duration plus the filter's duration minus
	 one.". Demonstrate the accuracy of this statement.

 (Return to Exercise)

	 The unit-sample response's duration is
	
	 q+1
	
	 and the signal's
	
	
	 Nx
	 . Thus the statement is correct.

 The main theme of this result is that a
 filter's output extends longer than either its input or its
 unit-sample response. Thus, to avoid aliasing when we use DFTs,
 the dominant factor is not the duration of input or of the
 unit-sample response, but of the output. Thus, the number of
 values at which we must evaluate the frequency response's DFT
 must be at least

	q+Nx

 and we must compute the same length DFT of the input. To
 accommodate a shorter signal than DFT length, we simply
 zero-pad the input: Ensure that for indices
 extending beyond the signal's duration that the signal is
 zero. Frequency-domain filtering, diagrammed in Figure 5.1, is accomplished by storing the
 filter's frequency response as the DFT

	H(k)
 , computing the input's DFT

	X(k)
 , multiplying them to create the output's DFT

	Y(k)=H(k)X(k)
 , and computing the inverse DFT of the result to yield

	y(n)
 .

 [image:]

Figure 5.1.
To filter a signal in the frequency domain, first compute the
	DFT of the input, multiply the result by the sampled frequency
	response, and finally compute the inverse DFT of the product. The
	DFT's length must be at least the sum of
	the input's and unit-sample response's duration minus
	one. We calculate these discrete Fourier transforms using the fast
	Fourier transform algorithm, of course.

 Before detailing this procedure, let's clarify
 why so many new issues arose in trying to develop a
 frequency-domain implementation of linear filtering. The
 frequency-domain relationship between a filter's input
 and output is always true:

	Y(ⅇⅈ2πf)=H(ⅇⅈ2πf)X(ⅇⅈ2πf)
 . This Fourier transforms in this result are
 discrete-time Fourier transforms; for example,
 . Unfortunately, using this relationship to perform
 filtering is restricted to the situation when we have analytic
 formulas for the frequency response and the input signal. The
 reason why we had to "invent" the discrete Fourier transform
 (DFT) has the same origin: The spectrum resulting from the
 discrete-time Fourier transform depends on the
 continuous frequency variable
 f. That's fine for analytic
 calculation, but computationally we would have to make an
 uncountably infinite number of computations.

Did you know that two kinds of infinities can be
 meaningfully defined? A countably infinite quantity
 means that it can be associated with a limiting process
 associated with integers. An uncountably infinite
 quantity cannot be so associated. The number of rational
 numbers is countably infinite (the numerator and denominator
 correspond to locating the rational by row and column; the total
 number so-located can be counted, voila!); the number of
 irrational numbers is uncountably infinite. Guess which is
 "bigger?"

 The DFT computes the Fourier transform at a
 finite set of frequencies — samples the true spectrum
 — which can lead to aliasing in the time-domain unless we
 sample sufficiently fast. The sampling interval here is

 for a length-K DFT: faster
 sampling to avoid aliasing thus requires a longer transform
 calculation. Since the longest signal among the input,
 unit-sample response and output is the output, it is that
 signal's duration that determines the transform length. We
 simply extend the other two signals with zeros (zero-pad) to
 compute their DFTs.

Example 5.1.
 Suppose we want to average daily stock prices
	taken over last year to yield a running weekly average
	(average over five trading sessions). The filter we want is a
	length-5 averager (as shown in the unit-sample response),
	and the input's duration is 253 (365 calendar days minus
	weekend days and holidays). The output duration will be
	
	 253+5−1=257
	, and this determines the transform length we need to
	use. Because we want to use the FFT, we are restricted to
	power-of-two transform lengths. We need to choose any FFT
	length that exceeds the required DFT length. As it turns out,
	256 is a power of two (
	 28=256
), and this length just undershoots our required
	length. To use frequency domain techniques, we must use
	length-512 fast Fourier transforms.

 [image:]

Figure 5.2.

	 The blue line shows the Dow Jones Industrial Average from
	 1997, and the red one the length-5 boxcar-filtered result
	 that provides a running weekly of this market index. Note
	 the "edge" effects in the filtered output.
	

	Figure 5.2 shows the input and the
	filtered output. The MATLAB programs that compute the filtered
	output in the time and frequency domains are

	Time Domain
	h = [1 1 1 1 1]/5;
	y = filter(h,1,[djia zeros(1,4)]);

	Frequency Domain
	h = [1 1 1 1 1]/5;
	DJIA = fft(djia, 512);
	H = fft(h, 512);
	Y = H.*X;
	y = ifft(Y);

	

The filter program has the
	 feature that the length of its output equals the length of
	 its input. To force it to produce a signal having the
	 proper length, the program zero-pads the input
	 appropriately.

 MATLAB's fft function
	 automatically zero-pads its input if the specified transform
	 length (its second argument) exceeds the signal's
	 length. The frequency domain result will have a small
	 imaginary component — largest value is 2.2×10-11 —
	 because of the inherent finite precision nature of computer
	 arithmetic. Because of the unfortunate misfit between signal
	 lengths and favored FFT lengths, the number of arithmetic
	 operations in the time-domain implementation is far less
	 than those required by the frequency domain version: 514
	 versus 62,271. If the input signal had been one sample
	 shorter, the frequency-domain computations would have been
	 more than a factor of two less (28,696), but far more than
	 in the time-domain implementation.

 An interesting signal processing aspect of
	this example is demonstrated at the beginning and end of the
	output. The ramping up and down that occurs can be traced to
	assuming the input is zero before it begins and after it
	ends. The filter "sees" these initial and final values as the
	difference equation passes over the input. These artifacts can
	be handled in two ways: we can just ignore the edge effects or
	the data from previous and succeeding years' last and first
	week, respectively, can be placed at the ends.

Solutions

Chapter 6. Efficiency of Frequency-Domain Filtering*

It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/1.0

2009/06/11 09:27:30 -0500

Summary
Compares the efficiency of frequency domain and time domain filtering.

 To determine for what signal and filter durations a time- or
 frequency-domain implementation would be the most efficient, we
 need only count the computations required by each. For the
 time-domain, difference-equation approach, we need
 .
 The frequency-domain approach requires three Fourier transforms, each
 requiring

 computations for a length-K FFT, and the
 multiplication of two spectra
 (
	6K

 computations). The output-signal-duration-determined length must be at
 least

	Nx+q
 . Thus, we must compare

	

 Exact analytic evaluation of this comparison is quite difficult
 (we have a transcendental equation to solve). Insight into this
 comparison is best obtained by dividing by

	Nx
 .

 With this manipulation, we are evaluating the number of
 computations per sample. For any given value of the filter's
 order q, the right side, the
 number of frequency-domain computations, will exceed the left if
 the signal's duration is long enough. However, for filter
 durations greater than about 10, as long as the input is at
 least 10 samples, the frequency-domain approach is faster
 so long as the FFT's power-of-two constraint is
 advantageous.

 The frequency-domain approach is not yet viable;
 what will we do when the input signal is infinitely long? The
 difference equation scenario fits perfectly with the envisioned
 digital filtering structure, but so far we have required
 the input to have limited duration (so that we could calculate
 its Fourier transform). The solution to this problem is quite
 simple: Section the input into frames, filter each, and add the
 results together. To section a signal means expressing it as a
 linear combination of length-
	Nx

 non-overlapping "chunks." Because the filter is linear,
 filtering a sum of terms is equivalent to summing the results of
 filtering each term.

()

 As illustrated in Figure 6.1, note
 that each filtered section has a duration longer than the input.
 Consequently, we must literally add the filtered sections
 together, not just butt them together.

 [image: Efficiency of Frequency-Domain Filtering]

Figure 6.1.

	 The noisy input signal is sectioned into length-48 frames,
	 each of which is filtered using frequency-domain
	 techniques. Each filtered section is added to other outputs
	 that overlap to create the signal equivalent to having
	 filtered the entire input. The sinusoidal component of the
	 signal is shown as the red dashed line.
	

 Computational considerations reveal a substantial advantage for
 a frequency-domain implementation over a time-domain one. The number
 of computations for a time-domain implementation essentially remains
 constant whether we section the input or not. Thus, the number of
 computations for each output is
 . In the frequency-domain approach, computation
 counting changes because we need only compute the filter's
 frequency response

	H(k)

 once, which amounts to a fixed overhead. We need only compute
 two DFTs and multiply them to filter a section. Letting

	Nx

 denote a section's length, the number of computations for a
 section amounts to

	(Nx+q)log2(Nx+q)+6(Nx+q)
 . In addition, we must add the filtered outputs
 together; the number of terms to add corresponds to the excess
 duration of the output compared with the input
 (q). The frequency-domain approach
 thus requires

 computations per output value. For even modest filter orders, the
 frequency-domain approach is much faster.

Exercise 1.

	
	 Show that as the section length increases, the frequency
	 domain approach becomes increasingly more efficient.

 (Return to Exercise)

	 Let N denote the input's total
	 duration. The time-domain implementation requires a total of
	
	 N(2q+1)
	
	 computations, or
	
	 2q+1
	
	 computations per input value. In the frequency domain, we split the
	 input into
	
	 sections, each of which requires
	
	 per input in the section. Because we divide
	 again by
	
	 Nx
	
	 to find the number of computations per input value in the
	 entire input, this quantity decreases
	 as
	
	 Nx
	
	 increases. For the time-domain implementation, it stays
	 constant.
	

 Note that the choice of section duration is arbitrary. Once the
 filter is chosen, we should section so that the required FFT length is
 precisely a power of two: Choose

	Nx

 so that

	Nx+q=2L
 .

 Implementing the digital filter shown in the
 A/D block
 diagram with a frequency-domain implementation requires
 some additional signal management not required by time-domain
 implementations. Conceptually, a real-time, time-domain filter
 could accept each sample as it becomes available, calculate the
 difference equation, and produce the output value, all in less
 that the sampling interval
 Ts
 . Frequency-domain approaches don't operate on a
 sample-by-sample basis; instead, they operate on sections. They
 filter in real time by producing Nx outputs
 for the same number of inputs faster than

	NxTs
 . Because they generally take longer to produce an
 output section than the sampling interval duration, we must
 filter one section while accepting into memory the
 next section to be filtered. In
 programming, the operation of building up sections while
 computing on previous ones is known as buffering.
 Buffering can also be used in time-domain filters as well but
 isn't required.

Example 6.1.

	We want to lowpass filter a signal that contains a sinusoid
	and a significant amount of noise. The example shown in Figure 6.1 shows a portion of the noisy signal's waveform. If
	it weren't for the overlaid sinusoid, discerning the sine wave
	in the signal is virtually impossible. One of the primary
	applications of linear filters is noise removal:
	preserve the signal by matching filter's passband with the
	signal's spectrum and greatly reduce all other frequency
	components that may be present in the noisy signal.

	A smart Rice engineer has selected a FIR filter having a unit-sample
	response corresponding a period-17 sinusoid:
	,
	
	
	 n={0, …, 16}
	, which makes
	
	
	 q=16
	. Its frequency response (determined by computing
	the discrete Fourier transform) is shown in Figure 6.2. To apply, we can select the
	length of each section so that the frequency-domain filtering
	approach is maximally efficient: Choose the section length
	Nx so that
	
	
	 Nx+q
	
	is a power of two. To use a length-64 FFT, each section must
	be 48 samples long. Filtering with the difference equation
	would require 33 computations per output while the frequency
	domain requires a little over 16; this frequency-domain
	implementation is over twice as fast! Figure 6.1 shows how frequency-domain filtering works.

 [image:]

Figure 6.2.

	 The figure shows the unit-sample response of a length-17
	 Hanning filter on the left and the frequency response on the
	 right. This filter functions as a lowpass filter having a
	 cutoff frequency of about 0.1.
	

	We note that the noise has been dramatically reduced, with a
	sinusoid now clearly visible in the filtered output. Some
	residual noise remains because noise components within the
	filter's passband appear in the output as well as the signal.

Exercise 2.

	
	 Note that when compared to the input signal's sinusoidal
	 component, the output's sinusoidal component seems to be
	 delayed. What is the source of this delay? Can it be removed?

 (Return to Exercise)

	 The delay is not computational delay here--the
	 plot shows the first output value is aligned with the filter's first
	 input--although in real systems this is an important
	 consideration. Rather, the delay is due to the filter's phase shift: A
	 phase-shifted sinusoid is equivalent to a time-delayed one:
	 . All filters have phase shifts. This delay could
	 be removed if the filter introduced no phase shift. Such
	 filters do not exist in analog form, but digital ones can be
	 programmed, but not in real time. Doing so would require the
	 output to emerge before the input arrives!
	

Solutions

Solutions
Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Index

A
algorithm, Fast Fourier Transform (FFT)
B
buffering, Efficiency of Frequency-Domain Filtering
butterfly, Fast Fourier Transform (FFT)
C
complexity, DFT: Computational Complexity
computational advantage, Fast Fourier Transform (FFT)
countably infinite, Filtering in the Frequency Domain
D
discrete Fourier transform, Discrete Fourier Transform (DFT)
discrete-time sinc function, Discrete-Time Fourier Transform (DTFT)
F
form, Fast Fourier Transform (FFT)
G
geometric
	series, Discrete-Time Fourier Transform (DTFT)
N
noise removal, Efficiency of Frequency-Domain Filtering
P
proportional, DFT: Computational Complexity
S
sampling, Discrete Fourier Transform (DFT)
U
uncountably infinite, Filtering in the Frequency Domain
unit-sample response, Filtering in the Frequency Domain
Z
zero-pad, Filtering in the Frequency Domain

Attributions

	Collection: Discrete-Time Fourier Analysis
	Edited by: Don Johnson
	URL: http://cnx.org/content/col10579/1.1/
	Copyright: Don Johnson
	License: http://creativecommons.org/licenses/by/2.0/

	Module: Discrete-Time Fourier Transform (DTFT)
	By: Don Johnson
	URL: http://cnx.org/content/m10247/2.31/
	Copyright: Don Johnson
	License: http://creativecommons.org/licenses/by/1.0

	Module: Discrete Fourier Transform (DFT)
	By: Don Johnson
	URL: http://cnx.org/content/m10249/2.28/
	Copyright: Don Johnson
	License: http://creativecommons.org/licenses/by/1.0

	Module: DFT: Computational Complexity
	By: Don Johnson
	URL: http://cnx.org/content/m0503/2.12/
	Copyright: Don Johnson
	License: http://creativecommons.org/licenses/by/3.0/

	Module: Fast Fourier Transform (FFT)
	By: Don Johnson
	URL: http://cnx.org/content/m10250/2.21/
	Copyright: Don Johnson
	License: http://creativecommons.org/licenses/by/3.0/

	Module: Filtering in the Frequency Domain
	By: Don Johnson
	URL: http://cnx.org/content/m10257/2.17/
	Copyright: Don Johnson
	License: http://creativecommons.org/licenses/by/1.0

	Module: Efficiency of Frequency-Domain Filtering
	By: Don Johnson
	URL: http://cnx.org/content/m10279/2.16/
	Copyright: Don Johnson
	License: http://creativecommons.org/licenses/by/1.0

About Connexions

 Since 1999, Connexions has been pioneering a global system where anyone can create course materials and make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and learning environment open to anyone interested in education, including students, teachers, professors and lifelong learners. We connect ideas and facilitate educational communities. Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12 schools, distance learners, and lifelong learners. Connexions materials are in many languages, including English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai.

content/m10250/_autogen-svg2png-0028.png

content/m10279/_autogen-svg2png-0034.png
Ne+g

content/m0503/_autogen-svg2png-0011.png

content/m10279/_autogen-svg2png-0028.png

content/m0503/_autogen-svg2png-0008.png
N@E4N -2)

content/m10247/_autogen-svg2png-0032.png
<l

content/m10257/_autogen-svg2png-0047.png

content/m10247/_autogen-svg2png-0009.png
=

content/m10247/_autogen-svg2png-0072.png

content/m10247/_autogen-svg2png-0007.png

content/m10249/_autogen-svg2png-0031.png

content/m10257/_autogen-svg2png-0030.png

content/m10250/_autogen-svg2png-0023.png

content/m10279/_autogen-svg2png-0019.png
N2g+1)

content/m10250/_autogen-svg2png-0020.png
log,N

content/m10247/_autogen-svg2png-0061.png

content/m10257/_autogen-svg2png-0008.png

content/m10257/_autogen-svg2png-0022.png

content/m10279/_autogen-svg2png-0026.png

content/m10249/_autogen-svg2png-0015.png
) Jl(um— n(n % K (n % 2K,
] Ootherwise

content/m10250/_autogen-svg2png-0024.png
=

content/m10257/_autogen-svg2png-0033.png

content/m10257/_autogen-svg2png-0021.png

content/m10279/_autogen-svg2png-0027.png

content/m10247/_autogen-svg2png-0067.png
sOpr, (1)

content/m10247/_autogen-svg2png-0001.png
s(n)

content/m10250/_autogen-svg2png-0005.png
2k 72N =2k pgk o (pHER RN =2 Dk
S = SO 45 Y 4o +sN -2 T sme "V 45 o rs- e b
e 1)
% R)

[O+se 2 4+ 4sN-2e 2 J+fs(h+sBe 2 4. +5N= e

content/m10247/_autogen-svg2png-0003.png

content/m10279/sig25.png
Sectioned Input.

&%ﬁ%‘% @-ﬁiﬁﬁ’ 27 - a
] &M% P

])]

Fiter

. g@w{ y

Rered Sections)

Outpust (51

content/m10249/_autogen-svg2png-0033.png
SO +s(h+...+5(N =1

content/m10249/_autogen-svg2png-0035.png

content/m10250/_autogen-svg2png-0032.png

content/m0503/_autogen-svg2png-0001.png

content/m10257/_autogen-svg2png-0011.png

content/m10249/_autogen-svg2png-0018.png
=

content/m10247/_autogen-svg2png-0020.png
kol =44

content/m10247/_autogen-svg2png-0038.png
-

content/m10257/_autogen-svg2png-0042.png

content/m10257/_autogen-svg2png-0035.png

content/m10279/_autogen-svg2png-0003.png

content/m10247/_autogen-svg2png-0059.png

content/m10249/_autogen-svg2png-0029.png

content/m10279/sig24.png

content/m10257/_autogen-svg2png-0025.png

content/m0503/_autogen-svg2png-0005.png

content/m10250/_autogen-svg2png-0015.png
O(N)

content/m10249/_autogen-svg2png-0027.png

content/m10257/_autogen-svg2png-0005.png
hin)

content/m10279/_autogen-svg2png-0031.png
{0,

L 16}

content/m10247/_autogen-svg2png-0049.png

content/m10257/_autogen-svg2png-0017.png
[0, 2x)

content/m10257/_autogen-svg2png-0043.png

content/m10257/_autogen-svg2png-0044.png

content/m10247/_autogen-svg2png-0025.png

content/m10257/_autogen-svg2png-0039.png
Y(k)=Hk)\X(k)

content/m10247/spectrum11.png
05

& 2 282 °9

tap) spmubEn Biseds (seaibon) Uy

content/m10249/_autogen-svg2png-0001.png

content/m10249/_autogen-svg2png-0009.png
Stky

content/m10250/_autogen-svg2png-0001.png
o[N?)

content/m10257/_autogen-svg2png-0006.png
hin)

content/m10257/_autogen-svg2png-0013.png

content/m10247/_autogen-svg2png-0014.png

content/m10249/_autogen-svg2png-0041.png

content/m10279/_autogen-svg2png-0014.png

content/m10247/_autogen-svg2png-0015.png

content/m10247/_autogen-svg2png-0055.png
Ef(N—1)]

dsinciaf)

content/m10257/_autogen-svg2png-0029.png
XN —gq)

content/m10247/_autogen-svg2png-0033.png
1
o

content/m10249/_autogen-svg2png-0005.png
ke{0,..,K-1}

content/m0503/_autogen-svg2png-0009.png

content/m10257/_autogen-svg2png-0034.png
g+1

content/m10247/_autogen-svg2png-0051.png

content/m10247/_autogen-svg2png-0019.png

content/m0503/_autogen-svg2png-0016.png
OKN)

content/m10247/_autogen-svg2png-0070.png
s(r)

content/m10247/_autogen-svg2png-0066.png
s(n)

content/m0503/_autogen-svg2png-0006.png
IN+2IN-1)

content/m10250/sys11.png
So
S4
S2
S6
S1
S5
S3
57

+1 -1
ei0 z Ve
+1 -1 o-inld =1
&0 1 g2 -1
+1 1 g-jnl2 ~1 3w/ -1
7
4 length-2 DFTs
N

2 length-4 DFTs

content/m10247/_autogen-svg2png-0011.png
-

content/m10257/_autogen-svg2png-0048.png
22% 1071

content/m10257/_autogen-svg2png-0038.png
Xik)

content/m10279/_autogen-svg2png-0018.png

content/m10249/_autogen-svg2png-0021.png

content/m10250/_autogen-svg2png-0021.png
HiogaN

content/m10247/_autogen-svg2png-0035.png

content/m10257/_autogen-svg2png-0023.png
g+1

content/m10247/_autogen-svg2png-0010.png

content/m10247/_autogen-svg2png-0064.png

content/m10250/_autogen-svg2png-0022.png
ONlog, N)

content/m10257/_autogen-svg2png-0001.png

content/m10247/_autogen-svg2png-0012.png

content/m10257/_autogen-svg2png-0003.png

content/m10247/_autogen-svg2png-0026.png
=

content/m10247/_autogen-svg2png-0053.png
sin(Nx)

content/m10250/_autogen-svg2png-0016.png
O(N)

content/m10250/_autogen-svg2png-0027.png
HiogaN

content/m10247/_autogen-svg2png-0044.png
0.5

content/m10249/_autogen-svg2png-0012.png

content/m10250/_autogen-svg2png-0010.png

content/m10247/_autogen-svg2png-0047.png
{1 ifOsnsN
0 otherwise

content/m10257/_autogen-svg2png-0041.png

content/m10247/_autogen-svg2png-0002.png

content/m10247/spectrum12.png
03
08

% % goss

opmuben Enseds (saaiboep) afuy

content/m10247/_autogen-svg2png-0037.png

content/m10247/_autogen-svg2png-0065.png
22m)

content/m0503/_autogen-svg2png-0002.png

content/m10257/_autogen-svg2png-0007.png

content/m0503/_autogen-svg2png-0007.png

content/m10279/_autogen-svg2png-0035.png

content/m10257/_autogen-svg2png-0037.png
Hik)

content/m10247/_autogen-svg2png-0016.png
Prn)

content/m10247/_autogen-svg2png-0022.png

content/m10279/_autogen-svg2png-0033.png

content/m10250/sys9.png
© o S
S2— Lengina o 1
2] e A o
. =)
o e 58
s1—] &

]
i IO b/
s oFT

G
o

oY

content/m10279/_autogen-svg2png-0004.png

content/m10247/_autogen-svg2png-0050.png

content/m10249/_autogen-svg2png-0024.png
s(n)

content/m10247/_autogen-svg2png-0034.png
1
12+ a?sin22xf)

content/m10247/_autogen-svg2png-0069.png

content/m10279/_autogen-svg2png-0005.png
Ne+g

content/m10247/_autogen-svg2png-0045.png

content/m0503/_autogen-svg2png-0003.png

content/m10247/_autogen-svg2png-0018.png

content/m10250/_autogen-svg2png-0011.png

content/m10247/_autogen-svg2png-0004.png

content/m10279/_autogen-svg2png-0029.png

content/m10247/_autogen-svg2png-0040.png
-

content/m10257/_autogen-svg2png-0004.png

content/m10279/_autogen-svg2png-0022.png
(Hﬁ-{)ogw,w)uﬁ-ﬁb

content/m10249/_autogen-svg2png-0007.png
Stky

content/m10247/_autogen-svg2png-0039.png

content/m10257/_autogen-svg2png-0020.png

content/m10249/_autogen-svg2png-0034.png
s +se’

)2
¥

oSOV = 1

content/m10250/_autogen-svg2png-0014.png
i

content/m10247/_autogen-svg2png-0062.png
S(m —n)

content/m0503/_autogen-svg2png-0014.png

content/m10257/_autogen-svg2png-0015.png

content/m10279/_autogen-svg2png-0032.png

content/m10247/_autogen-svg2png-0008.png
-

content/m10249/_autogen-svg2png-0023.png

content/m10257/_autogen-svg2png-0018.png

content/m10279/_autogen-svg2png-0023.png

content/m10279/_autogen-svg2png-0016.png

content/m10249/_autogen-svg2png-0020.png

content/cover.png
Discrete-Time
Fourier Analysis

content/m10247/_autogen-svg2png-0041.png

content/m10249/_autogen-svg2png-0014.png

content/m10247/_autogen-svg2png-0029.png
u(n)

content/m10247/_autogen-svg2png-0057.png
), 2nfn Lifm=n

47 = Doitmen

S(m—n)

content/m10250/_autogen-svg2png-0030.png

content/m10250/_autogen-svg2png-0006.png
=

content/m10257/_autogen-svg2png-0031.png

content/m10250/sys10.png
a+beJ2/N
a
a+be2K/N

e—j2nk/N @
a-be-12k/N
e-i2n(k+N/2)/N b
i > a—be-i2nk/N

content/m10279/_autogen-svg2png-0024.png

content/m10247/_autogen-svg2png-0005.png

content/m10247/_autogen-svg2png-0068.png
Prn)

content/m0503/_autogen-svg2png-0013.png

content/m10247/_autogen-svg2png-0052.png
S8 = 1) s fN)
Snlnf)

content/m10257/_autogen-svg2png-0012.png

content/m10257/_autogen-svg2png-0024.png
y(n) = bgx(n) + ...+ bgx(n — q)

content/m10249/_autogen-svg2png-0022.png

content/m10250/_autogen-svg2png-0008.png

content/m10247/_autogen-svg2png-0031.png
. i<l

content/m10247/_autogen-svg2png-0056.png

content/m10249/_autogen-svg2png-0028.png

content/m10247/_autogen-svg2png-0036.png

content/m10249/_autogen-svg2png-0010.png
{0, .., K-1}

content/m10249/_autogen-svg2png-0043.png

content/m10250/_autogen-svg2png-0031.png
2132

content/m10257/_autogen-svg2png-0016.png

content/m10279/_autogen-svg2png-0030.png
i) =1{1 = cos

content/m10247/_autogen-svg2png-0060.png

content/m10247/_autogen-svg2png-0006.png

content/m0503/_autogen-svg2png-0004.png

content/m10257/_autogen-svg2png-0032.png

content/m10279/_autogen-svg2png-0025.png

content/m10257/_autogen-svg2png-0002.png

content/m10247/_autogen-svg2png-0028.png

content/m10247/_autogen-svg2png-0030.png

content/m10247/_autogen-svg2png-0017.png
Prn)

content/m10257/_autogen-svg2png-0028.png
xNe—1)

content/m10247/_autogen-svg2png-0021.png

content/m10279/_autogen-svg2png-0001.png
Ni+1)

content/m10249/_autogen-svg2png-0030.png
sin)+sn+K)

content/m10247/_autogen-svg2png-0054.png
dsinc(x)

content/m10249/_autogen-svg2png-0038.png

content/m0503/_autogen-svg2png-0015.png

content/m10250/_autogen-svg2png-0013.png
=

content/m10250/_autogen-svg2png-0004.png

content/m10249/_autogen-svg2png-0004.png
e

content/m10249/_autogen-svg2png-0042.png

content/m10279/_autogen-svg2png-0017.png
(Hﬁ-{)ogw,w)uﬁ-ﬁb

content/m10257/_autogen-svg2png-0019.png
yim)

content/m10257/_autogen-svg2png-0027.png
x(Ny)

content/m10249/_autogen-svg2png-0037.png

content/m10249/_autogen-svg2png-0016.png

content/m10257/_autogen-svg2png-0046.png
253 45—

257

content/m10279/_autogen-svg2png-0020.png
2q+1

content/m10249/_autogen-svg2png-0026.png

content/m10247/_autogen-svg2png-0048.png

content/m10249/_autogen-svg2png-0025.png

content/m10257/_autogen-svg2png-0040.png
yin)

content/m10257/_autogen-svg2png-0036.png

content/m10247/_autogen-svg2png-0042.png
a<0

content/m10250/_autogen-svg2png-0002.png
ONlogN)

content/m10257/_autogen-svg2png-0026.png

content/m10279/_autogen-svg2png-0013.png
Hik)

content/m10279/_autogen-svg2png-0012.png

content/m10257/_autogen-svg2png-0014.png

content/m10249/_autogen-svg2png-0019.png

content/m10257/_autogen-svg2png-0009.png

content/m10279/_autogen-svg2png-0021.png
2|

content/m10247/_autogen-svg2png-0058.png

content/m10250/_autogen-svg2png-0007.png

content/m10257/_autogen-svg2png-0045.png

content/m10249/_autogen-svg2png-0003.png
[0, 1]

content/m10279/_autogen-svg2png-0011.png
) ”Z (xtn=mNg) yim=_ D (yin —mip)

content/m10247/spectrum10.png
zzzzz

content/m10279/_autogen-svg2png-0002.png

content/m10257/sig23.png
8000
7000
5000
s000
4000
3000
2000
1000

Dow-Jones Industrial Average

Daiy Ao
Tely Nt

0 50 00 150
Trading Day (1997)

200 50

content/m10247/_autogen-svg2png-0024.png
01Ty

content/m0503/_autogen-svg2png-0012.png
N1

content/m10249/_autogen-svg2png-0040.png

content/m10257/_autogen-svg2png-0010.png

content/m10279/_autogen-svg2png-0006.png

content/m10249/_autogen-svg2png-0008.png

content/m10250/_autogen-svg2png-0033.png

content/m10249/_autogen-svg2png-0036.png
pZE=1) (HEN-IXK-D
S0)+s(1e K 4sN=1e

(K —1)

content/m10250/_autogen-svg2png-0026.png
logoN

content/m10250/_autogen-svg2png-0019.png

content/m10249/_autogen-svg2png-0032.png

content/m10257/sys13.png
*m

XK
oFT

Y

10FT

Hik)

yim

content/m10249/_autogen-svg2png-0011.png
s(n)

content/m10279/_autogen-svg2png-0008.png

content/m10279/_autogen-svg2png-0009.png

content/m10250/_autogen-svg2png-0017.png

content/m10249/_autogen-svg2png-0006.png
). e

K-1}

content/m10249/_autogen-svg2png-0039.png
K<N

content/m0503/_autogen-svg2png-0010.png
o[N?)

content/m10279/_autogen-svg2png-0010.png

content/m10249/_autogen-svg2png-0002.png

content/m10250/_autogen-svg2png-0009.png

content/m10249/_autogen-svg2png-0013.png

content/m10250/_autogen-svg2png-0025.png

content/m10249/_autogen-svg2png-0017.png
K, m —n—IK.
-

content/m10247/_autogen-svg2png-0071.png

content/m10279/_autogen-svg2png-0015.png
Ny +qlogyNe +¢)+ 6N +q)

content/m10247/_autogen-svg2png-0013.png

content/m10247/_autogen-svg2png-0027.png
-

content/m10247/_autogen-svg2png-0063.png
8(n)

content/m10250/_autogen-svg2png-0018.png
=

content/m10247/_autogen-svg2png-0043.png
0.5

content/m10247/_autogen-svg2png-0046.png

content/m10250/_autogen-svg2png-0003.png
10log, 1!

33

content/m10250/_autogen-svg2png-0029.png

content/m10279/_autogen-svg2png-0007.png

content/m10250/_autogen-svg2png-0012.png
=

content/m10247/_autogen-svg2png-0023.png

