
  
    
  
Chapter 2. Digital Filter Design



2.1. Overview of Digital Filter Design*



 
      
 Advantages of FIR filters
	
	  Straight forward conceptually and simple to implement
	

	
	  Can be implemented with fast convolution
	

	
	  Always stable
	

	
	  Relatively insensitive to quantization
	

	
	  Can have linear phase (same time delay of all frequencies)
	




      
 Advantages of IIR filters
	
	  Better for approximating analog systems
	

	
	  For a given magnitude response specification, IIR filters
	  often require much less computation than an equivalent FIR,
	  particularly for narrow transition bands
	




      Both FIR and IIR filters are very important in applications.
      
 Generic Filter Design Procedure
	
	  Choose a desired response, based on application requirements
	

	
	  Choose a filter class
	

	
	  Choose a quality measure
	

	
	  Solve for the filter in class 2 optimizing criterion in 3
	




    
Perspective on FIR filtering



 
	Most of the time, people do 
	
	  L∞
	
	optimal design, using the Parks-McClellan algorithm.  This is
	probably the second most important technique in "classical"
	signal processing (after the Cooley-Tukey (radix-2) FFT).
      
 
	Most of the time, FIR filters are designed to have linear
	phase.  The most important advantage of FIR filters over IIR
	filters is that they can have exactly linear phase.  There are
	advanced design techniques for minimum-phase filters,
	constrained
	
	  L2
	
	optimal designs, etc. (see chapter 8 of
	text).  However, if only the
	magnitude of the response is important,
	IIR filers usually require much fewer operations and are
	typically used, so the bulk of FIR filter design work has
	concentrated on linear phase designs.
      


2.2. FIR Filter Design



Linear Phase Filters*



 
      In general, for 
      
	–π≤ω≤π
       

      
	H(ω)=|H(ω)|ⅇ–(ⅈθ(ω))
      
      Strictly speaking, we say 
      
	H(ω)
       is linear phase if 

      
	H(ω)=|H(ω)|ⅇ–(ⅈωK)ⅇ–(ⅈθ0)
      
      Why is this important?  A linear phase response gives the
      same time delay for ALL
      frequencies!  (Remember the shift theorem.)  This is
      very desirable in many applications, particularly when the
      appearance of the time-domain waveform is of interest, such as
      in an oscilloscope.  (see Figure 2.1)

      
 [image: Linear Phase Filters]
Figure 2.1. 


    
Restrictions on h(n) to get linear phase



 
	
()

	For linear phase, we require the right side of Equation to be 
	
	  ⅇ–(ⅈθ0)(real,positive function of ω)
	.  For 
	
	  θ0=0
	, we thus require 
	
	  h(0)+h(M−1)=real number
	

	
	  h(0)−h(M−1)=pure imaginary number
	

	
	  h(1)+h(M−2)=pure real number
	

	
	  h(1)−h(M−2)=pure imaginary number
	
	
	  ⋮
	

	Thus 
	
	  h(k)=h*(M−1−k)
	 is a necessary condition for
	the right side of Equation to be real valued, for
	
	  θ0=0
	.
      
 
	For 
	, or 
	
	  ⅇ–(ⅈθ0)=–ⅈ
	, we require 
	
	  h(0)+h(M−1)=pure imaginary
	

	
	  h(0)−h(M−1)=pure real number
	

	
	  ⋮
	

	
	  ⇒
	    h(k)=–(h*(M−1−k))
	
      
 
	Usually, one is interested in filters with
	real-valued coefficients, or see Figure 2.2 and Figure 2.3.
	
 [image: Restrictions on h(n) to get linear phase]
Figure 2.2. 

	      θ0=0
	     (Symmetric Filters).

h(k)=h(M−1−k).
	  


	
 [image: Restrictions on h(n) to get linear phase]
Figure 2.3. 
 (Anti-Symmetric Filters).

h(k)=–(h(M−1−k)).
	  


	Filter design techniques are usually slightly different for
	each of these four different filter types.  We will study the
	most common case, symmetric-odd length, in detail, and often
	leave the others for homework or tests or for when one
	encounters them in practice.  Even-symmetric filters are often
	used; the anti-symmetric filters are rarely used in practice,
	except for special classes of filters, like differentiators or
	Hilbert transformers, in which the desired response is
	anti-symmetric.
      
 
	So far, we have satisfied the condition that 
	
	where 
	
	  A(ω)
	
	is real-valued.  However, we have
	not assured that
	
	  A(ω)
	 is non-negative.  In general,
	this makes the design techniques much more difficult, so most
	FIR filter design methods actually design filters with
	 Generalized Linear Phase: 
	, where 
	
	  A(ω)
	 is real-valued, but possible negative. 
	
	  A(ω)
	 is called the  amplitude of the frequency
	response.
	
Excuse

	  A(ω)
	


	




      
Example 2.1. 
 
Lowpass Filter

	  
	  
 [image: Desired |H(ω)|]
Figure 2.4. Desired |H(ω)|


	  
 [image: Desired ∠H(ω)]
Figure 2.5. Desired ∠H(ω)
The slope of each line is .


	  
 [image: Actual |H(ω)|]
Figure 2.6. Actual |H(ω)|
A(ω) goes negative.



 [image: Actual ∠H(ω)]
Figure 2.7. Actual ∠H(ω)

	      2π
	     phase jumps due to periodicity of phase.
	    π phase jumps due to sign change in
	    
	      A(ω)
	    .


	  
	 
	  Time-delay introduces generalized linear phase.
	  


	    For odd-length FIR filters, a linear-phase design
	    procedure is equivalent to a zero-phase design procedure
	    followed by an
	    -sample delay of the impulse response.  For
	    even-length filters, the delay is non-integer, and the
	    linear phase must be incorporated directly in the desired
	    response!
	  



	




Window Design Method*



 
       The truncate-and-delay design procedure is the simplest and
    most obvious FIR design procedure.
    
Exercise 1.
 
	 Is it any Good?

      


	  Yes; in fact it's optimal! (in a certain sense)
	




	L2 optimization criterion
      



 
	find
	
	  h[n]  ,  
	      0≤n≤M−1
	      
	, maximizing the energy difference between the
	desired response and the actual response: i.e., find
	
	by Parseval's relationship
	
()

	Since 
	
	this becomes
	
      


	  h[n]
	

 
	The best we can do is let
	
	Thus
	
	  h[n]=hd[n]w[n]
	,
	
	is optimal in a least-total-sqaured-error
	(
	
	  L2
	, or energy) sense!
      
Exercise 2.
 
	   
	    Why, then, is this design often considered undersirable?
	  

	

	  [image: Gibbs Phenomenon](a) 
		  A(ω)
		, small M
	      

	  [image: Gibbs Phenomenon](b) 
		  A(ω)
		, large M
	      



Figure 2.7. 





 
	For desired spectra with discontinuities, the least-square
	designs are poor in a minimax 
	(worst-case, or 
	  L∞
	) error sense.
      

Window Design Method



 
	Apply a more gradual truncation to reduce "ringing" (Gibb's
	Phenomenon)

      
	  
      
      


	  H(ω)=Hd(ω)*W(ω)
	

 
	The window design procedure (except for the boxcar window) is
	ad-hoc and not optimal in any usual sense.  However, it is
	very simple, so it is sometimes used for "quick-and-dirty"
	designs of if the error criterion is itself heurisitic.
      


Frequency Sampling Design Method for FIR filters*



 
       Given a desired frequency response, the frequency sampling
    design method designs a filter with a frequency response
    exactly equal to the desired response at a
    particular set of frequencies 
      
	ωk
      .
    
(2.1)Procedure




      Desired Response must incluce linear phase shift (if linear
      phase is desired)
    


Exercise 3.
 
	 
	  What is
	  
	    Hd(ω)
	  
	  for an ideal lowpass filter, cotoff at
	  
	    ωc
	  ?
	

      


	
	





      This set of linear equations can be written in matrix form
    


(2.2)

(2.3)

 
      or
      
      So
    
(2.4)


W
      
	N=M
      
	ωi≠ωj+2πl
      
	i≠j
      

Important Special Case



 
	What if the frequencies are equally spaced between
	0 and 
	
	  2π
	, i.e.
	
      
 
	Then
	
	so
	
	or
	
      

Important Special Case #2



 
	
	  h[n]
	
	symmetric, linear phase, and has real coefficients.  Since 
	
	  h[n]=h[M−n]
	, there are only 
	
	degrees of freedom, and only
	
	linear equations are required.
      
(2.5)

 
	Removing linear phase from both sides yields
	
	Due to symmetry of response for real coefficients, only
	
	
	  ωk
	
	on
	
	  ω∈[0, π)
	
	need be specified, with the frequencies
	
	  –ωk
	 thereby being implicitly defined also. Thus we have 
	
	
	  real-valued
	
	simultaneous linear equations to solve for
	
	  h[n]
	.
      
Special Case 2a



 
	  
	    h[n]
	  
	  symmetric, odd length, linear phase, real coefficients, and
	  
	    ωk
	  
	  equally spaced:
	  
	
(2.6)

 
	  To yield real coefficients, 
	  
	    A(ω)
	   mus be symmetric
	  
	    A(ω)=A(–ω)⇒A[k]=A[M−k]
	  
	
(2.7)

 
	  Simlar equations exist for even lengths, anti-symmetric, and
	  
	  filter forms.
	


Comments on frequency-sampled design



 
	This method is simple conceptually and very efficient for
	equally spaced samples, since
	
	  h[n]
	 can be computed using the IDFT.
      
 
	
	  H(ω)
	 for a frequency sampled design goes
	exactly through the sample points, but it
	may be very far off from the desired response for
	
	  ω≠ωk
	.  This is the main problem with frequency sampled
	design.
      
 
	Possible solution to this problem: specify more frequency
	samples than degrees of freedom, and minimize the total error
	in the frequency response at all of these samples.
      

Extended frequency sample design



 
	For the samples
	
	  H(ωk)
	
	where
	
	  0≤k≤M−1
	
	and 
	
	  N>M
	, find
	
	  h[n]
	,
	where
	
	  0≤n≤M−1
	
	minimizing
	
	  ∥Hd(ωk)−H(ωk)∥
	
      
 
	For
	
	  ∥l∥∞
	 norm, this becomes a linear programming problem
	(standard packages availble!)
      
 
	Here we will consider the 
	
	  ∥l∥2
	 norm.
      
 
	To minimize the 
	
	  ∥l∥2
	 norm; that is,
	, we have an overdetermined set of linear equations:
	
	or
	
      
 
	The minimum error norm solution is well known to be
	;
	 is well known as the pseudo-inverse matrix.
      

Extended frequency sampled design discourages radical
      behavior of the frequency response between samples for
      sufficiently closely spaced samples.  However, the actual
      frequency response may no longer pass exactly through
      any of the 
	
	  Hd(ωk)
	.
      




Parks-McClellan FIR Filter Design*



 The approximation tolerances for a filter are very often given
    in terms of the maximum, or worst-case, deviation within
    frequency bands.  For example, we
    might wish a lowpass filter in a (16-bit) CD player to have no
    more than
      -bit deviation in the pass and stop bands.
    
 
    
 The Parks-McClellan filter design method efficiently designs
      linear-phase FIR filters that are optimal in terms of worst-case
      (minimax) error.
      Typically, we would like to have the shortest-length filter
      achieving these specifications.
      Figure Figure 2.8 illustrates the amplitude frequency
      response of such a filter.
    
 [image: Parks-McClellan FIR Filter Design]

Figure 2.8. 
The black boxes on the left and right are the passbands, the black boxes in the middle represent the stop band, and the space between
        the boxes are the transition bands. Note that
        overshoots may be allowed in the transition bands.

Exercise 4.
 
	 
	  Must there be a transition band?
	

      


          Yes, when the desired response is discontinuous.
          Since the frequency response of a finite-length filter
          must be continuous, without a transition band the worst-case
          error could be no less than half the discontinuity.
        



Formal Statement of the 
	L-∞ (Minimax) Design Problem
      



 
	For a given filter length (M) and
	type (odd length, symmetric, linear phase, for example), and a
	relative error weighting function
	
	  W(ω)
	, find the filter coefficients minimizing the maximum
	error
	 where
	
	  E(ω)=W(ω)(Hd(ω)−H(ω))
	
	and F is a compact
	subset of 
	
	  ω∈[0, π]
	 (i.e., all ω in
	the passbands and stop bands).
      


	Typically, we would often rather specify 
	
	  ∥E(ω)∥∞≤δ
	 and minimize over M
	and h; however,
	the design techniques minimize
	δ for a given
	M. One then repeats the design
	procedure for different M until
	the minimum M satisfying the
	requirements is found.
      




	We will discuss in detail the design only of odd-length
	symmetric linear-phase FIR filters.  Even-length and
	anti-symmetric linear phase FIR filters are essentially the
	same except for a slightly different implicit weighting
	function.  For arbitrary phase, exactly optimal design
	procedures have only recently been developed (1990).
      

Outline of L-∞ Filter Design



 The Parks-McClellan method adopts an indirect method for finding the
minimax-optimal filter coefficients.
 	Using results from Approximation Theory, simple
	conditions for determining whether a given filter is
	  
	    L∞
	  
	  (minimax) optimal are found.
	

	An iterative method for finding a filter which
	  satisfies these conditions (and which is thus optimal) is
	  developed.
	



 
	That is, the 
	
	  L∞
	 filter design problem is actually solved
	indirectly.
      

Conditions for L-∞ Optimality of a Linear-phase FIR
      Filter



 
	All conditions are based on Chebyshev's "Alternation Theorem,"
	a mathematical fact from polynomial approximation theory.
      
Alternation Theorem



 
	  Let F be a compact subset on the real axis
	  x, and let
	  
	    P(x)
	  
	  be and Lth-order polynomial
	  
	  Also, let
	  
	    D(x)
	  
	  be a desired function of x
	  that is continuous on F, and 
	  
	    W(x)
	   
	  a positive, continuous weighting function on
	  F.  Define the error 
	  
	    E(x)
	  
	  on F as
	  
	    E(x)=W(x)(D(x)−P(x))
	  and
	  
	  A necessary and sufficient condition that
	  
	    P(x)
	   is the unique Lth-order polynomial minimizing
	  
	    ∥E(x)∥∞
	   is that
	  
	    E(x)
	   exhibits at least 
	  
	    L+2
	   "alternations;" that is, there must exist at least
	  
	    L+2
	   values of x,
	  
	    xk∈F
	  , 
	  
	    k=[0, 1, …, L+1]
	  , such that
	  
	    x0<x1<…<x
			L
			+
			2
		      
	     
	   and such that
	  
	    E(xk)=–(E(x
			k
			+
			1
		      ))=±(∥E∥∞)
	  
	
Exercise 5.
 
	     What does this have to do with
	    linear-phase filter design?
	    

	  

 It's the same problem! To show that,
	    consider an odd-length, symmetric linear phase filter.
	    
(2.8)

(2.9)

 
	      Where 
	      .
	    
 Using trigonometric identities (such as 
	      
		cos(nα)=2cos((n−1)α)cos(α)−cos((n−2)α)
	      ), we can rewrite 
	      
		A(ω)
	       as
	       where the
	      
		αk
	       are related to the
	      
		h(n)
	       by a linear transformation.  Now, let
	      
		x=cos(ω)
	      .  This is a one-to-one mapping from
	      
		x∈[-1, 1]
	       onto
	      
		ω∈[0, π]
	      .
	      Thus
	      
		A(ω)
	       is an Lth-order polynomial in
	      
		x=cos(ω)
	      !
	    
Implication
The alternation theorem holds for
	    the
	      
		L∞
	       filter design problem, too!
	    



            Therefore, to determine whether or not a
	      length-M, 
	      odd-length, symmetric linear-phase filter is optimal in an 
		L∞
	       sense, simply count the alternations in
	      
		E(ω)=W(ω)(Ad(ω)−A(ω)) in the
		      pass and stop bands. 
	      If there are  or more alternations, 
	      h(n), 
	      0≤n≤M−1 
	      is the optimal filter!






Optimality Conditions for Even-length Symmetric
      Linear-phase Filters



 For M
	 even,
	 where  Using the trigonometric identity
	
	  cos(α+β)=cos(α−β)+2cos(α)cos(β)
	 to pull out the  term and then using the other
	trig identities, it can be shown that 
	  A(ω)
	 can be written as
	
	Again, this is a polynomial in
	
	  x=cos(ω)
	, except for a weighting function out in front.
	
()

	which implies
	
()
	    E(x)=W'(x)(Ad'(x)−P(x))
	  

	where
	
	and
	

	Again, this is a polynomial approximation problem, so the
	alternation theorem holds. If 
	  E(ω)
	 has at least
	 alternations, the even-length symmetric filter is
	optimal in an 
	    L∞
	   sense.
 The prototypical filter design problem:
	 See Figure 2.9.
      
 [image: Optimality Conditions for Even-length Symmetric Linear-phase Filters]

Figure 2.9. 


L-∞ Optimal Lowpass Filter Design Lemma



 
	
 	The maximum possible number of alternations for a
	  lowpass filter is
	    
	      L+3
	    : The proof is that the extrema of a polynomial
	    occur only where the derivative is zero:
	    . Since
	    
	      P′(x)
	     is an 
	    
	      
		(
		L
		–
		1
		)
	      
	    th-order polynomial, it can have at
	    most  
	      
		L
		–
		1
	      
	     zeros. However, the mapping
	    
	      x=cos(ω)
	     implies that
	     at 
	    
	      ω=0
	     and 
	      ω=π
	    , for two more possible alternation
	    points. Finally, the band edges can
	    also be alternations, for a total of
	    
	      L−1+2+2=L+3
	     possible alternations.

	There must be an alternation at either
	    
	      ω=0
	     or 
	      ω=π
	    .

	Alternations must occur at
	    
	      ωp
	     and  
	      ωs
	    . See Figure 2.9.

	The filter must be equiripple except at possibly 
	      ω=0
	     or 
	      ω=π
	    . Again see Figure 2.9.




	

The alternation theorem doesn't directly suggest a
	method for computing the optimal filter. It simply tells us
	how to recognize that a filter is
	optimal, or isn't optimal. What we need
	is an intelligent way of guessing the optimal filter
	coefficients.



	In matrix form, these
	
	  L+2
	 simultaneous equations become
	 or
	
	So, for the given set of 
	  L+2
	 extremal frequencies, we can solve for 
	  h
	 and δ
	 via
	. Using the FFT, we can compute
	
	  A(ω)
	 of 
	
	  h(n)
	, on a dense set of frequencies. If the old
	
	  ωk
	 are, in fact the extremal locations of 
	  A(ω)
	, then the alternation theorem is satisfied and
	
	  h(n)
	 is  optimal. If not, repeat the process
	with the new extremal locations.

Computational Cost



 
	  O(L3)
	 for the matrix inverse and
	
	  Nlog2N
	 for the FFT (
	  N≥32L
	, typically), per
	iteration!
 This method is expensive computationally due
	to the matrix inverse.
 A more efficient variation of this method was
	developed by Parks and McClellan (1972), and is based on the
	Remez exchange algorithm. To understand the Remez exchange
	algorithm, we first need to understand Lagrange Interpoloation.

 Now 
	A(ω)
       is an L
      th-order polynomial in 
      
	x=cos(ω)
      , so Lagrange interpolation can be used to
      exactly compute 
	A(ω)
       from 
	L+1
       samples of
      
	A(ωk)
      ,
      
	k=[0, 1, 2, ..., L]
      .
 Thus, given a set of extremal frequencies and
    knowing δ
      , samples of the amplitude response
      
	A(ω)
       can be computed directly from the
      
()

      without solving for the filter
      coefficients!
 This leads to computational savings!
 Note that Equation is a set of
      
	L+2
       simultaneous equations, which can be solved for
      
	δ
       to obtain (Rabiner, 1975)
      
()

      where
      
      The result is the Parks-McClellan FIR filter design method,
      which is simply an application of the Remez exchange algorithm
      to the filter design problem. See Figure 2.10.
    
 [image: Computational Cost]

Figure 2.10. 
The initial guess of extremal frequencies is usually
      equally spaced in the band. Computing 
	  δ
	 costs 
	O(L2)
      . Using Lagrange interpolation costs
	
	  O(16LL)≈O(16L2)
	. Computing 
	  h(n)
	 costs 
	O(L3)
      , but it is only done once!

 The cost per iteration is 
      
	O(16L2)
      , as opposed to 
      
	O(L3)
      ; much more efficient for large L
      . Can also interpolate to DFT sample frequencies,
      take inverse FFT to get corresponding filter coefficients, and
      zeropad and take longer FFT to efficiently interpolate.


2.3. IIR Filter Design



Overview of IIR Filter Design*



IIR Filter



 
	

	

IIR Filter Design Problem



 Choose
	
	  {ai}
	, 
	  {bi}
	 to best approximate some
	desired
	
	  |Hd(w)|
	 or, (occasionally), 
	
	  Hd(w)
	.
 As before, different design techniques will be
      developed for different approximation criteria.

Outline of IIR Filter Design Material



  
	Bilinear Transform: 
	    Maps 
	   ∥L∥∞
	 optimal (and other) analog
	    filter designs to 
	   ∥L∥∞
	 optimal digital IIR filter designs.
	Prony's Method: 
	    Quasi-
	   ∥L∥2
	 optimal method for time-domain fitting of a
	    desired impulse response (ad
	    hoc).
	Lp Optimal Design: 
	    
	   ∥L∥p
	 optimal filter design (1<p<∞
	    ) using non-linear optimization techniques.
	  


Comments on IIR Filter Design Methods



 The bilinear transform method is used to design
      "typical"
	
	   ∥L∥∞
	 magnitude optimal filters. The 
	   ∥L∥p
	 optimization procedures are used to design filters
	for which classical analog prototype solutions don't
	exist. The program by Deczky (DSP Programs Book,
	IEEE Press) is widely used. Prony/Linear Prediction techniques
	are used often to obtain initial guesses, and are almost
	exclusively used in data modeling, system identification, and
	most applications involving the fitting of real data (for
	example, the impulse response of an unknown filter).


Prototype Analog Filter Design*



Analog Filter Design



 Laplace transform:
	
	Note that the continuous-time Fourier transform is
	
	  H(ⅈλ)
	 (the Laplace transform evaluated on the imaginary
	axis).
 Since the early 1900's, there has been a lot of
	research on designing analog filters of the form
	
	A causal IIR filter cannot have linear
	phase (no possible symmetry point), and design work for analog
	filters has concentrated on designing filters with equiriplle
	(
	   ∥L∥∞
	) magnitude responses. These
	design problems have been solved. We will not concern
	ourselves here with the design of the analog prototype
	filters, only with how these designs are mapped to
	discrete-time while preserving optimality.
 An analog filter with real
	coefficients must have a magnitude response of the form
	
	  (|H(λ)|)2=B(λ2)
	
        
()

	Let 
	  s=ⅈλ
	, note that the poles and zeros of 
	
	  B(–(s2))
	 are symmetric around both the
	real and imaginary axes: that is, a pole at p1
	 implies poles at  p1
	,  ,  –p1
	, and  , as seen in Figure 2.11.
      
 [image: s-plane]

Figure 2.11. s-plane

 Recall that an analog filter is stable and causal
      if all the poles are in the left half-plane, LHP, and is
       minimum phase if all zeros and poles are in the
      LHP.
 
	  s=ⅈλ
	:
	 we can factor
	
	  B(–(s2))
	 into 
	  H(s)H(–s)
	, where 
	  H(s) 
	 has the left half plane poles and zeros, and
	
	  H(–s)
	 has the RHP poles and zeros.
 
	
	  (|H(s)|)2=H(s)H(–s)
	 for 
	
	  s=ⅈλ
	, so 
	  H(s)
	 has the magnitude response 
	
	  B(λ2)
	. The trick to analog filter design is to design a
	good
	
	  B(λ2)
	, then factor this to obtain a filter with that
	magnitude response.
 The traditional analog filter designs all take the
      form
	, where F
	 is a rational function in 
	  λ2
	.
      
Example 2.2. 
 
	  

	   where 
	  .
	  

Roots of 
	    
	      1+sN
	     are N
	     points equally spaced around the unit circle
	    (Figure 2.12).



		
 [image: ]

Figure 2.12. 

 Take
	  
	    H(s)=LHP
	   factors:
	  



Traditional Filter Designs



Butterworth



 
	  
	  

Remember this for homework and rest problems!



	  "Maximally smooth" at 
	    λ=0
	   and 
	  
	    λ=∞
	   (maximum possible number of zero
	  derivatives). Figure 2.13.
	  
	    B(λ2)=(|H(λ)|)2
	  
	
 [image: Butterworth]

Figure 2.13. 


Chebyshev



 
	   where
	  
	    CM2(λ)
	   is an 
	    Mth
	   order Chebyshev polynomial. Figure 2.14.
	
  [image: Chebyshev]
(a)

  [image: Chebyshev]
(b)


Figure 2.14. 


Inverse Chebyshev



 Figure 2.15.
		
 [image: Inverse Chebyshev]

Figure 2.15. 


Elliptic Function Filter (Cauer Filter)



   where
	  
	    	JM
	   is the "Jacobi Elliptic Function." Figure 2.16.
	
 [image: Elliptic Function Filter (Cauer Filter)]

Figure 2.16. 

 The Cauer filter is

∥L∥∞
 optimum in the sense that for a given M, 
δp,
δs, and
λp, the transition bandwidth is smallest.
 That is, it is 
∥L∥∞
 optimal.



IIR Digital Filter Design via the Bilinear Transform*



 A  bilinear transform maps an analog filter
      Ha(s) to a discrete-time filter 
	H(z) of the same order.
 If only we could somehow map these optimal analog filter designs to the digital world while preserving the magnitude response characteristics, we could make use of the already-existing body of knowledge concerning optimal analog filter design.
Bilinear Transformation



 The Bilinear Transform is a nonlinear 
	(ℂ  →  ℂ)
	 mapping that maps a function of the complex variable
	s
	 to a function of a complex variable 
	  z
	. This map has the property that the LHP in 
	s
	 (
	  Re(s)<0
	) maps to the interior of the unit circle in
	
	  z
	, and the
	
	  ⅈλ=s
	 axis maps to the unit circle
	
	  ⅇⅈω
	 in 
	  z
	.
 Bilinear transform:
	

	

	

Figure 2.17


      
 [image: Bilinear Transformation]

Figure 2.17. 

 The magnitude response doesn't change in the
      mapping from λ
	 to ω
	, it is simply warped nonlinearly according to 
	, Figure 2.18.
  [image: Bilinear Transformation]
(a)

  [image: Bilinear Transformation]
(b)


Figure 2.18. 
The first image implies the second one.

 

This mapping preserves
	  
	    ∥L∥∞
	   errors in (warped) frequency bands. Thus optimal
	  Cauer
	  (
	    ∥L∥∞
	  ) filters in the analog realm can be mapped to 
	  
	    ∥L∥∞
	   optimal discrete-time IIR filters using the
	  bilinear transform! This is how IIR filters with
	  
	    ∥L∥∞
	   optimal magnitude responses are designed.



	
	

The parameter α
	   provides one degree of freedom which can be used
	  to map a single
	  λ0
	   to any desired  ω0
	  :
	   or
	  
	  This can be used, for example, to map the pass-band edge of
	  a lowpass analog prototype filter to any desired pass-band
	  edge in ω
	  . Often, analog prototype filters will be designed with
	
	  λ=1
	 as a band edge, and α
	 will be used to locate the band edge in 
	    ω
	  . Thus an Mth
	   order optimal lowpass analog filter prototype can
	  be used to design any Mth
	   order discrete-time lowpass IIR filter with the
	  same ripple specifications.



      

Prewarping



 Given specifications on the frequency
	response of an IIR filter to be designed, map these to
	specifications in the analog frequency domain which are
	equivalent. Then a satisfactory analog prototype can be
	designed which, when transformed to discrete-time using the
	bilinear transformation, will meet the specifications.
Example 2.3. 
 The goal is to design a
      high-pass filter,
	  
	    ωs=ωs
	  ,
	  
	    ωp=ωp
	  ,
	  
	    δs=δs
	  ,
	  
	    δp=δp
	  ; pick up some
	  
	    α=α0
	  . In Figure 2.19 the δi
	   remain the same and the band edges are mapped by
	  .
	
  [image: ]
(a)

  [image: ]
(b)


Figure 2.19. 
Where
	     and
	    .
	  





Impulse-Invariant Design*



  Pre-classical, adhoc-but-easy method of
    converting an analog prototype filter to a digital IIR
    filter. Does not preserve any optimality.
 Impulse invariance means that digital filter impulse
    response exactly equals samples of the analog prototype impulse
    response:
      
	h(n)=ha(nT)  
       How is this done?
 The impulse response of a causal, stable analog filter
    is simply a sum of decaying exponentials:
       which implies
      
	ha(t)=(A1ⅇs1t+A2ⅇs2t+...+Apⅇspt)u(t)
      
      For impulse invariance, we desire
      
	h(n)=ha(nT)=(A1ⅇs1nT+A2ⅇs2nT+...+ApⅇspnT)u(n)
      
      Since 
      
      where
      
	|z|>|ⅇskT|
      , and
      
      where
      .
    
 This technique is used occasionally in digital simulations of analog filters.
Exercise 6.
  What is the main
    problem/drawback with this design technique?

      

Since it samples the non-bandlimited
      impulse response of the analog prototype filter, the frequency
      response  aliases. This distorts the
      original analog frequency and destroys any optimal frequency
      properties in the resulting digital filter.
	




Digital-to-Digital Frequency Transformations*



 Given a prototype digital
    filter design, transformations similar to the bilinear transform
    can also be developed.
 Requirements on such a mapping
      
	z-1=g(z-1)
      :
    
 	 points inside the unit circle stay inside the unit
	circle (condition to preserve stability)

	 unit circle is mapped to itself (preserves frequency
	response)



 This condition implies
      that
      
	ⅇ–(ⅈω1)=g(ⅇ–(ⅈω))=|g(ω)|ⅇⅈ∠(g(ω))
       requires that
      
	|g(ⅇ–(ⅈω))|=1
       on the unit circle!
    
 Thus we require an  all-pass
    transformation:
       where
      
	|αK|<1
      , which is required to satisfy this condition.
    
Example 2.4. Lowpass-to-Lowpass
 
	 which maps original filter with a cutoff at 
	ωc
	 to a new filter with cutoff
	ωc′
	,
	
      


Example 2.5. Lowpass-to-Highpass
 
	 which maps original filter with a cutoff at 
	ωc
	 to a frequency reversed filter with cutoff
	ωc′
	,
	
      


 (Interesting and occasionally useful!)

Prony's Method*



 Prony's Method is a quasi-least-squares time-domain
    IIR filter design method.
 First, assume
      
	H(z)
       is an "all-pole" system:
      
()
 and
       where
      
	h(n)=0
      , 
	n<0
       for a causal system.
    

For
	
	  h=0
	,
	
	  h(0)=b0
	.



      
      Let's attempt to fit a desired impulse response (let it be
      causal, although one can extend this
      technique when it isn't)
      
	hd(n)
      .
 A true least-squares solution would attempt to
    minimize
       where 
      
	H(z)
       takes the form in Equation. This is a 
      difficult non-linear
      optimization problem which is known to be plagued by local
      minima in the error surface. So instead of solving this
      difficult non-linear problem, we solve the  deterministic linear
      prediction problem, which is related to, but
      not the same as, the true least-squares optimization.
    
 The deterministic linear prediction problem is a
    linear least-squares optimization, which is
    easy to solve, but it minimizes the
    prediction error, not the 
      
	(|desired−actual|)2
       response error.
 Notice that for
	
	  n>0
	, with the all-pole filter
	
()
 the right hand side of this
	equation is a  linear predictor of
	
	  h(n)
	 in terms of the M
	 previous samples of 
	  h(n)
	.
 For the desired reponse
      
	hd(n)
      , one can choose the recursive filter coefficients
      
	ak
       to minimize the squared prediction error
       where, in practice, the ∞
       is replaced by an N
      .
    
 In matrix form, that's
      
      or
      
      The optimal solution is
      
      Now suppose 
      
	H(z)
       is an 
      Mth
      -order IIR (ARMA) system,
      
      or
        
()

      For 
	n>M
      , this is just like the all-pole case, so we can solve
      for the best predictor coefficients as before:
      
      or
      
      and
      
      Having determined the a
      's, we can use them in Equation to obtain
      the bn
      's:
      
      where
      
	hd(n−k)=0
       for
      
	n−k<0
      .
    
 For
      
	N=2M
      , 
       is square, and we can solve exactly
      for the
      
	ak
      's with no error. The  
	bk
      's are also chosen such that there is no error in the
      first
      
	M+1
       samples of
      
	h(n)
      . Thus for
      
	N=2M
      , the first
      
	2M+1
       points of  
	h(n)
       exactly equal
      
	hd(n)
      . This is called  Prony's Method. Baron de
      Prony invented this in 1795.
    
 For 
      
	N>2M
      ,
      
	hd(n)=h(n)
       for
      
	0≤n≤M
      , the prediction error is minimized for
      
	M+1<n≤N
      , and whatever for
      
	n≥N+1
      . This is called the  Extended Prony
      Method.
    
 One might prefer a method which tries to minimize an
    overall error with the numerator coefficients, rather than just
    using them to exactly fit
      
	hd(0)
       to
      
	hd(M)
      .
    
Shank's Method



 	Assume an all-pole model and fit
	    
	      hd(n)
	     by minimizing the prediction error
	    
	      1≤n≤N
	    .

	Compute 
	      v(n)
	    , the impulse response of this all-pole
	    filter.

	 Design an all-zero (MA, FIR) filter which
	    fits
	    
	      v(n)*hz(n)≈hd(n)
	     optimally in a least-squares sense (Figure 2.20).



 [image: Shank's Method]

Figure 2.20. 
Here, 
         h(n)≈hd(n)
         .

 The final IIR filter is the cascade of the all-pole and
	all-zero filter.
 This is is solved by
	
	or in matrix form
	
	
	Which has solution:
	
      
 Notice that none of these methods solve the true
      least-squares problem:
	
	which is a difficult non-linear optimization problem. The true
	least-squares problem can be written as:
	
	since the impulse response of an IIR filter is a sum of
	exponentials, and non-linear optimization is then used to
	solve for the 
	
	  αi
	 and
	
	  βi
	.
      


Linear Prediction*



 Recall that for the all-pole design problem, we had
    the overdetermined set of linear equations:      
      
      with solution 
      
    
 Let's look more closely at
      
	HdHHd=R
      .
      r
	    i
	    ​
	    j
	  
       is related to the correlation of
      hd
       with itself:
      

      Note also that:
       where
      
      so this takes the form
      , or
      
	Ra=–r
      , where R
       is 
	M×M
      , a
       is 
	M×1
      , and r
       is also 
	M×1
      .
 Except for the changing endpoints of the sum,
      
	r
		  i
		  ​
		  j
		≈r(i−j)=r(j−i)
      . If we tweak the problem slightly to make
      
	r
		i
		​
		j
	      =r(i−j)
      , we get:
      
      The matrix R
       is  Toeplitz (diagonal elements equal),
      and a
       can be solved for with
      
	O(M2)
       computations using Levinson's recursion.
Statistical Linear Prediction



 Used very often for forecasting
      (e.g. stock market).
 Given a time-series 
	  y(n)
	, assumed to be produced by an auto-regressive (AR)
	(all-pole) system:

	
	where
	
	  u(n)
	 is a white Gaussian noise sequence which is
	stationary and has zero mean.
 To determine the model parameters
	
	  {ak}
	 minimizing the variance of the prediction error, we
	seek
	
()

	
	

The mean of 
	y(n)
	 is zero.


	

	
()

	
()

	Setting Equation equal to zero yields:
	
	  Ra=–r
	
	These are called the  Yule-Walker equations. In
	practice, given samples of a sequence
	
	  y(n)
	, we estimate 
	
	  r(n)
	 as
	
	which is extremely similar to the deterministic least-squares
	technique.



Solutions


Chapter 6. Digital Filter Structures and Quantization Error Analysis



6.1. Filter Structures



Filter Structures*



 
      A realizable filter must require only a finite number of
    computations per output sample. For linear, causal, time-Invariant filters,
    this restricts one to rational transfer functions of the form
      
      Assuming no pole-zero cancellations, 
      
	H(z)
       is FIR if
      
	ai=0  ,  
	    i>0
	    
      , and IIR otherwise. Filter structures usually implement
      rational transfer functions as difference equations.
    
 
      Whether FIR or IIR, a given transfer function can be implemented with
    many different filter structures.  With infinite-precision data,  
    coefficients, and arithmetic, all filter structures implementing the
    same transfer function produce the same output.  However, different
    filter strucures may produce very different errors with quantized
    data and finite-precision or fixed-point arithmetic.  The computational
    expense and memory usage may also differ greatly.  Knowledge of different
    filter structures allows DSP engineers to trade off these factors to create
    the best implementation.
    

FIR Filter Structures*



 
      Consider causal FIR filters:
      ; this can be realized using the following structure
      
      
 [image: Figure (fig1FIRFilterStruct.png)]
Figure 6.1. 


     
      or in a different notation
       
      
 [image: Figure (fig2FIRFilterStruct.png)]
Figure 6.2. 


      
  [image: Subfigure (a) (subfig3aFIRFilterStruct.png)](a)

  [image: Subfigure (b) (subfig3bFIRFilterStruct.png)](b)

  [image: Subfigure (c) (subfig3cFIRFilterStruct.png)](c)


Figure 6.3. 


      
      This is called the  direct-form FIR filter structure.
    
 
      There are no closed loops (no feedback) in this structure, so it
      is called a  non-recursive structure. Since any FIR
      filter can be implemented using the direct-form, non-recursive
      structure, it is always possible to implement an FIR filter
      non-recursively. However, it is also possible to implement an
      FIR filter recursively, and for some
      special sets of FIR filter coefficients this is much more
      efficient.
	
    
Example 6.1. 
 
	
	where
	
	But note that 
	
	  y(n)=y(n−1)+x(n)−x(n−M)
	
	This can be implemented as
	
	
 [image: Figure (fig4FIRFilterStruct.png)]
Figure 6.4. 



	Instead of costing 
	
	  M−1
	 adds/output point, this comb filter costs only two
	adds/output.
      


Exercise 1.
 
	 
	  Is this stable, and if not, how can it be made so?
	

      


 
      IIR filters must be implemented with a
      recursive structure, since that's the
      only way a finite number of elements can generate an
      infinite-length impulse response in a linear, time-invariant (LTI)
      system. Recursive structures have the advantages of being
      able to implement IIR systems, and sometimes greater
      computational efficiency, but the disadvantages of
      possible instability, limit cycles, and other deletorious
      effects that we will study shortly.
    
Transpose-form FIR filter structures



 
	The  flow-graph-reversal theorem says that if one
	changes the directions of all the arrows, and inputs at the
	output and takes the output from the input of a reversed
	flow-graph, the new system has an identical input-output
	relationship to the original flow-graph.
      
 [image: Direct-form FIR structure (fig2FIRFilterStruct.png)]

Figure 6.5. Direct-form FIR structure

 [image: reverse = transpose-form FIR filter structure (fig5FIRFilterStruct.png)]

Figure 6.6. reverse = transpose-form FIR filter structure

 [image: or redrawn (fig6FIRFilterStruct.png)]

Figure 6.7. or redrawn

Cascade structures



 
	  The z-transform of an FIR filter can be factored into a
	  cascade of short-length filters
	  
	    b0+b1z-1+b2z-3+…+bmz–m=b0(1−z1z-1)(1−z2z-1)…(1−zmz-1)
	  
	  where the
	  
	    zi
	   are the zeros of this polynomial. Since the
	  coefficients of the polynomial are usually real, the roots
	  are usually complex-conjugate pairs, so we generally combine
	  
	  into one quadratic (length-2) section with
	  real coefficients
	  
	  The overall filter can then be implemented in a
	   cascade structure.
	  
	  
 [image: Figure (fig7FIRFilterStruct.png)]
Figure 6.8. 


	  This is occasionally done in FIR filter implementation
	  when one or more of the short-length filters can be
	  implemented efficiently.
	

Lattice Structure



 
	  It is also possible to implement FIR filters in a lattice
	  structure: this is sometimes used in adaptive filtering
	  
	  
 [image: Figure (fig8FIRFilterStruct.png)]
Figure 6.9. 


	  
	



IIR Filter Structures*



 
      IIR (Infinite Impulse Response) filter structures must be recursive
      (use feedback); an infinite number of coefficients could not otherwise
       be realized with a finite number of computations per sample.
      
       The corresponding time-domain difference equation is
      
	y(n)=–(a1y(n−1))−a2y(n−2)+…−aNy(n−N)+b0x(0)+b1x(n−1)+…+bMx(n−M)
      
    
Direct-form I IIR Filter Structure



 
        The difference equation above is implemented directly as written by the
        Direct-Form I IIR Filter Structure.
      
 [image: Figure (fig1IIRFilterStruct.png)]

Figure 6.10. 

 
	Note that this is a cascade of two systems, 
	
	  N(z)
	 and 
	. If we reverse the order of the filters, the overall
	system is unchanged: The memory elements appear in the middle
	and store identical values, so they can be combined, to form
	the Direct-Form II IIR Filter Structure.
      

Direct-Form II IIR Filter Structure



 [image: Figure (fig2IIRFilterStruct.png)]

Figure 6.11. 

 
	This structure is  canonic: (i.e., it requires
	the minimum number of memory elements).
      
 
	Flowgraph reversal gives the
      

Transpose-Form IIR Filter Structure



 [image: Figure (fig3IIRFilterStruct.png)]

Figure 6.12. 

 
	Usually we design IIR filters with 
	
	  N=M
	, but not always.
      
 
	Obviously, since all these structures have identical
	frequency response, filter structures are not unique. We
	consider many different structures because
	
 	Depending on the technology or application, one
	    might be more convenient than another

	The response in a practical realization, in which the
	    data and coefficients must be  quantized,
	    may differ substantially, and some
	    structures behave much better than others with quantization.
	  




        The Cascade-Form IIR filter structure is one of the least sensitive
        to quantization, which is why it is the most commonly used IIR filter
        structure.
      

IIR Cascade Form



 
	The numerator and denominator polynomials can be factored 
	
	and implemented as a cascade of short IIR filters.
	
	
 [image: Figure (fig4IIRFilterStruct.png)]
Figure 6.13. 


	Since the filter coefficients are usually real yet the roots are
        mostly complex, we
	actually implement these as second-order sections, where
	comple-conjugate pole and zero pairs are combined into
	second-order sections with real coefficients.
        The second-order sections are usually implemented with either
        the Direct-Form II or Transpose-Form structure.
      

Parallel form



 
	A rational transfer function can also be written as
	 which by linearity can be implemented as
	
 [image: Figure (fig5IIRFilterStruct.png)]
Figure 6.14. 


	
	As before, we combine complex-conjugate pole pairs into
	second-order sections with real coefficients.
      
 
	The cascade and parallel forms are of interest because they
	are much less sensitive to coefficient quantization than
	higher-order structures, as analyzed in later modules in this course.
      

Other forms



 
	There are many other structures for IIR filters,
        such as wave digital filter
	structures, lattice-ladder, all-pass-based forms, and so forth.
        These are the result of extensive research to find structures
	which are computationally efficient and
	insensitive to quantization error. They all represent various
	tradeoffs; the best choice in a given context is not yet fully
	understood, and may never be.
      


State-Variable Representation of Discrete-Time Systems*



State and the State-Variable Representation



 
      
	 Definition: State
	 the minimum additional information
	at time n, which, along with all
	current and future input values, is necessary to compute all future
	outputs.
	




      Essentially, the state of a system is the information held in the
      delay registers in a filter structure or signal flow graph.
    
Fact
 Any LTI (linear, time-invariant) system of finite order
      M can be represented by a
      state-variable description
      
	x(n+1)=Ax(n)+Bu(n)
      
      
	y(n)=Cx(n)+Du(n)
       
      where x is an
      
	(M  x  1)
       "state vector," 
      
	u(n)
       is the input at time n, 
      
	y(n)
       is the output at time n;
      A is an
      
	(M  x  M)
       matrix, 
      B is an
      
	(M  x  1)
       vector, 
      C is a
      
	(1  x  M)
       vector, and
      D is a
      
	(1  x  1)
       scalar.
    


 
      One can always obtain a state-variable description of a signal
      flow graph.
    
Example 6.2. 3rd-Order IIR
 
	
	  y(n)=–(a1y(n−1))−a2y(n−2)−a3y(n−3)+b0x(n)+b1x(n−1)+b2x(n−2)+b3x(n−3)
	
      
 [image: Figure (fig1State-Space.png)]

Figure 6.15. 

 
	
	
      



Exercise 2.
 
	 
	  Is the state-variable description of a filter 
	  
	    H(z)
	   unique?
	

      


Exercise 3.
 
	 
	  Does the state-variable description fully describe the
	  signal flow graph?
	

      


State-Variable Transformation



 
      Suppose we wish to define a new set of state variables, related
      to the old set by a linear transformation:
      
	q(n)=Tx(n)
      , where T is a nonsingular 
      
	(M  x  M)
       matrix, and 
      
	q(n)
       is the new state vector. We wish the overall system to
      remain the same. Note that
      
	x(n)=T-1q(n)
      , and thus
      
	(x(n+1)=Ax(n)+Bu(n)  ⇒  T-1q(n)=AT-1q(n)+Bu(n)  ⇒  q(n)=TAT-1q(n)+TBu(n))
      
      
	(y(n)=Cx(n)+Du(n)  ⇒  y(n)=CT-1q(n)+Du(n))
      
      This defines a new state system with an input-output behavior
      identical to the old system, but with different internal memory contents (states)
      and state matrices.
      
      
      	
      ,
      ,
      ,
      
      
    
 
      These transformations can be used to generate a wide
      variety of alternative stuctures or implementations of a filter.
    

Transfer Function and the State-Variable Description



 
	Taking the z transform of the
	state equations
	
	  Z[x(n+1)]=Z[Ax(n)+Bu(n)]
	
	
	  Z[y(n)]=Z[Cx(n)+Du(n)]
	
	
	  ⇓
	
	
 	  zX(z)=AX(z)+BU(z)
	

	


	    X(z)
	  z


	
 	  Y(z)=CX(n)+DU(n)
	
	
	  ((zI−A)X(z)=BU(z)  ⇒  X(z)=(zI−A)-1BU(z))
	
	so
	
()

	and thus
	
	  H(z)=C(zI−A)-1B+D
	
	Note that since
	, this transfer function is an
	Mth-order rational fraction in
	z. The denominator polynomial is
	
	  D(z)=det(zI−A)
	.
	A discrete-time state system is thus stable if the
        M roots of 
	
	  det(zI−A)
	  
	
	(i.e., the poles of the digital filter) are all inside the unit circle.
      
 
	Consider the transformed state system with
	,
	,
	,
	:
	
()

	This proves that state-variable transformation
	doesn't change the transfer function of the underlying system.
        However, it can provide alternate forms that are less sensitive
        to coefficient quantization or easier to analyze, understand,
        or implement.
      
 
	State-variable descriptions of systems are useful because they
	provide a fairly general tool for analyzing all systems; they
	provide a more detailed description of a signal flow graph than does the
	transfer function (although not a full description); and they suggest
	a large class of alternative implementations. They are even more
	useful in control theory, which is largely based on state descriptions
	of systems.
      



6.2. Fixed-Point Numbers



Fixed-Point Number Representation*



 
      Fixed-point arithmetic is generally used when hardware cost, speed,
      or complexity is important.  Finite-precision quantization issues
      usually arise in fixed-point systems, so we concentrate on fixed-point
      quantization and error analysis in the remainder of this course.
      For basic signal processing computations such as digital
      filters and FFTs, the magnitude of the data, the internal
      states, and the output can usually be scaled to obtain good performance
      with a fixed-point implementation.
    
Two's-Complement Integer Representation



 
      As far as the hardware is concerned, fixed-point number systems
      represent data as B-bit
      integers. The two's-complement number system is usually used:
      
      
      
 [image: Figure (fig1FixedPoint.png)]
Figure 6.16. 


      The most significant bit is known at the  sign
      bit; it is 0 when the number is non-negative; 1 when the
      number is negative.
      
    

Fractional Fixed-Point Number Representation



 
      For the purposes of signal processing, we often regard the
      fixed-point numbers as binary fractions between
      
	[-1, 1)
      , by implicitly placing a decimal point after the sign bit.
      
      
 [image: Figure (fig2FixedPoint.png)]
Figure 6.17. 


      
      or
      
      This interpretation makes it clearer how to implement digital
      filters in fixed-point, at least when the coefficients have a
      magnitude less than 1.
    

Truncation Error



 
      Consider the multiplication of two binary
      fractions
      
 [image: Figure (fig3FixedPoint.png)]
Figure 6.18. 


      
      Note that full-precision multiplication almost doubles the
      number of bits; if we wish to return the product to a
      B-bit representation, we must
      truncate the
      
	B−1
       least significant bits. However, this introduces
       truncation error (also known as  quantization error,
      or  roundoff error if the number is rounded to the nearest
      B-bit fractional value rather than truncated). Note
      that this occurs after multiplication.

    

Overflow Error



 
      Consider the addition of two binary fractions;
      
 [image: Figure (fig4FixedPoint.png)]
Figure 6.19. 


     
      Note the occurence of wraparound  overflow; this
      only happens with addition. Obviously, it
      can be a bad problem.
    

 
      There are thus two types of fixed-point error: roundoff error,
      associated with data quantization and multiplication, and
      overflow error, associated with data quantization and
      additions. In fixed-point systems, one must strike a balance
      between these two error sources; by scaling down the data, the
      occurence of overflow errors is reduced, but the relative size
      of the roundoff error is increased.
    
 
    


      Since multiplies require a number of additions, they
      are especially expensive in terms of hardware
      (with a complexity proportional to
      
	BxBh
      , where 
      
	Bx
       is the number of bits in the data, and 
      
	Bh
       is the number of bits in the filter coefficients).
      Designers try to minimize both
      
	Bx
       and 
       
	Bh
      , and often choose
      
	Bx≠Bh
      !
    



    

Fixed-Point Quantization*



 
      The fractional B-bit two's
    complement number representation evenly distributes 
      
	2B
       quantization levels between 
      
	-1
       and 
      
	1−2–((B−1))
      . The spacing between quantization levels is then
      
      Any signal value falling between two levels is assigned to one
      of the two levels.
    
 
      
	XQ=Q[x]
       is our notation for quantization.
      
	e=Q[x]−x
       is then the quantization error.
    
 
      One method of quantization is  rounding, which assigns the signal
      value to the nearest level. The maximum
      error is thus
      .
    
	  [image: Subfigure (a) (subfig1aFixed-PointQuant.png)](a)

	  [image: Subfigure (b) (subfig1bFixed-PointQuant.png)](b)



Figure 6.20. 

 
      Another common scheme, which is often easier to implement in
      hardware, is  truncation.
      
	Q[x]
       assigns x to the next
      lowest level.
      
	  [image: Subfigure (a) (subfig2aFixed-PointQuant.png)](a)

	  [image: Subfigure (b) (subfig2bFixed-PointQuant.png)](b)



Figure 6.21. 


     
      The worst-case error with truncation is
      
	Δ=2–((B−1))
      , which is twice as large as with rounding. Also, the
      error is always negative, so on average it may have a non-zero
      mean (i.e., a bias component).
    
 
      Overflow is the other problem. There are two common types: two's
      complement (or  wraparound) overflow, or 
       saturation overflow.
      
	 <db:title>wraparound</db:title> [image: wraparound (subfig3aFixed-PointQuant.png)](a)

	 <db:title>saturation</db:title> [image: saturation (subfig3bFixed-PointQuant.png)](b)



Figure 6.22. 


     
      Obviously, overflow errors are bad because they are typically
      large; two's complement (or
      wraparound) overflow introduces more error than saturation, but is easier
      to implement in hardware. It also has the advantage that if the
      sum of several numbers is between
      
	[-1, 1)
      , the final answer will be correct even if intermediate
      sums overflow! However, wraparound overflow leaves IIR systems
      susceptible to zero-input large-scale limit cycles, as discussed in
      another module. As usual, there are many tradeoffs to evaluate, and
      no one right answer for all applications.
    


6.3. Quantization Error Analysis



Finite-Precision Error Analysis*



Fundamental Assumptions in finite-precision error analysis



 
	Quantization is a highly nonlinear process and is very
	difficult to analyze precisely. Approximations and assumptions are made
	to make analysis tractable.
      
      
Assumption #1



 
	  The roundoff or truncation errors at any point in a system
	  at each time are random,
	  stationary, and statistically
	  independent (white and independent of all other
	  quantizers in a system).
	
 
	  That is, the error autocorrelation function is
	  
	    re[k]=E[ene
			n
			+
			k
		      ]=σq2δ[k]
	  .
	  Intuitively, and confirmed experimentally in some (but not
	  all!) cases, one expects the quantization error to have a
	  uniform distribution over the interval
	   for rounding, or
	  
	    (–Δ, 0]
	  
	  for truncation.
	
 
	  In this case, rounding has zero mean and variance
	  
	    E[Q[xn]−xn]=0
	  
	  
	  and truncation has the statistics
	   
	  
	
 
	  Please note that the independence assumption may be very
	  bad (for example, when quantizing a sinusoid with an integer
	  period N). There is another
	  quantizing scheme called  dithering, in which
	  the values are randomly assigned to nearby quantization
	  levels. This can be (and often is) implemented by adding a
	  small (one- or two-bit) random input to the signal before a
	  truncation or rounding quantizer.
	  
	  
 [image: Figure (fig1Finite-PrecisionError.png)]
Figure 6.23. 


          
	  This is used extensively in practice. Altough the overall
	  error is somewhat higher, it is spread evenly over all
	  frequencies, rather than being concentrated in spectral
	  lines. This is very important when quantizing sinusoidal or
          other periodic signals, for example.
	

Assumption #2



 
	  Pretend that the quantization error is really additive
	  Gaussian noise with the same mean and
	  variance as the uniform quantizer. That is, model
	  
	  
  [image: Subfigure (a) (subfig2aFinite-PrecisionError.png)](a)

 <db:title>as</db:title> [image: as (subfig2bFinite-PrecisionError.png)](b)


Figure 6.24. 


	   
	  This model is a linear system,
	  which our standard theory can handle easily. We model the noise as
	  Gaussian because it remains Gaussian after passing through
	  filters, so analysis in a system context is tractable.
	


Summary of Useful Statistical Facts



 	correlation function: 
	  
	  
	    (rx[k]  ≐  E[xnx
			n
			+
			k
		      ])
	  
	

	power spectral density: 
	  
	  
	    (Sx(w)  ≐  DTFT[rx[n]])
	  
	

	Note
	  
	

	
	  
	    (rxy[k]  ≐  E[x*[n]y[n+k]])
	  
	

	cross-spectral density: 
	  
	  
	    Sxy(w)=DTFT[rxy[n]]
	  
	

	
	  For 
	  
	    y=h*x
	  :
	  
	    Syx(w)=H(w)Sx(w)
	  
	  
	    Syy(w)=(|H(w)|)2Sx(w)
	  
	

	
	  Note that the output noise level after
	  filtering a noise sequence is
	   so postfiltering quantization noise alters the
	  noise power spectrum and may change its variance!
	

	
	  For
	  
	    x1
	  ,
	  
	    x2
	   statistically independent
	  
	    r
		      x1
		      +
		      x2
		    [k]=rx1[k]+rx2[k]
	  
	  
	    S
		      x1
		      +
		      x2
		    (w)=Sx1(w)+Sx2(w)
	  
	

	For independent random variables
	  
	    σ
			x1
			+
			x2
		      2=σx12+σx22
	  
	





Input Quantization Noise Analysis*



 
       All practical analog-to-digital converters (A/D) must quantize
    the input data. This can be modeled as an ideal sampler followed
    by a B-bit quantizer.
      
      
 [image: Figure (fig1InputQuant.png)]
Figure 6.25. 


      
      The signal-to-noise ratio (SNR) of an A/D is
      
()

      where 
      
	Px
       is the power in the signal and
      
	Pn
       is the power of the quantization noise, which equals its 
      variance if it has a zero mean. The SNR increases by 6dB with
      each additional bit.
    

Quantization Error in FIR Filters*



 
      In digital filters, both the data at various places in the
    filter, which are continually varying, and the coefficients, which
    are fixed, must be quantized. The effects of quantization on data
    and coefficients are quite different, so they are analyzed
    separately.
    
Data Quantization



 
	Typically, the input and output in a digital filter are
	quantized by the analog-to-digital and digital-to-analog converters,
        respectively. Quantization also occurs at
	various points in a filter structure, usually after a
	multiply, since multiplies increase the number of bits.
      
Direct-form Structures



 
	  There are two common possibilities for quantization in a
	  direct-form FIR filter structure:
          after each multiply, or only once at the end.
	  
	  
  [image: Subfigure (a) (fig1QuantErrorFIR.png)](a)  Single-precision accumulate; total variance
		

  [image: Subfigure (b) (fig2QuantErrorFIR.png)](b)  Double-precision accumulate; variance
		


Figure 6.26. 


	 
	 
	  In the latter structure, a double-length accumulator adds all 
	  
	    2B−1
	   bits of each product into the accumulating sum, and
	  truncates only at the end. Obviously, this is much
	  preferred, and should always be used
	  wherever possible. All DSP microprocessors and most
	  general-pupose computers support double-precision
	  accumulation.
	

Transpose-form



 
          Similarly, the transpose-form FIR filter structure presents two
          common options for quantization: after each multiply, or once at the end.
	
  [image: Subfigure (a) (fig3QuantErrorFIR.png)](a) Quantize at each stage before storing
	    intermediate sum. Output variance
	      

 <db:title>or</db:title> [image: or (fig4QuantErrorFIR.png)](b) Store double-precision partial sums. Costs more
	    memory, but variance
	      


Figure 6.27. 


        
 
	  The transpose form is not as convenient in terms of
	  supporting double-precision accumulation, which is a
	  significant disadvantage of this structure.
	


Coefficient Quantization



 
	Since a quantized coefficient is fixed for all time, we treat it
	differently than data quantization. The fundamental question
	is: how much does the quantization affect the frequency
	response of the filter?
      
 
	The quantized filter frequency response is
	
	Assuming the quantization model is correct, 
	
	  He(w)
	 should be fairly random and white, with the error
	spread fairly equally over all frequencies
	
	  w∈[–π, π)
	; however, the randomness of this error destroys any
	equiripple property or any infinite-precision optimality of a filter.
      
Exercise 4.
 
	   
	    What quantization scheme minimizes the 
	    
	      L2
	     quantization error in frequency (minimizes
	    )? On average, how big is this error?
	  

	


 
	Ideally, if one knows the coefficients are to be quantized to
	B bits, one should incorporate
	this directly into the filter design problem, and find the
	M
	B-bit binary fractional
	coefficients minimizing the maximum deviation 
	(
	  L∞
	 error). This can be done, but it is an integer
	program, which is known to be np-hard (i.e., requires almost a
        brute-force
	search). This is so expensive computationally that it's
	rarely done. There are some sub-optimal methods that are
	much more efficient and usually produce pretty good results.
      


Data Quantization in IIR Filters*



 
       Finite-precision effects are much more of a concern with IIR
    filters than with FIR filters, since the effects are more difficult to analyze and
    minimize, coefficient quantization errors can cause the filters to become
    unstable, and disastrous things like large-scale limit cycles can occur.
    
Roundoff noise analysis in IIR filters



 
	Suppose there are several quantization points in an IIR filter
	structure.  By our simplifying assumptions about quantization error
        and Parseval's theorem, the quantization noise variance
        
          σy,i2
         
         at the output of the filter from the ith
         quantizer is
	
()

	where
        
                σni2
        
        is the variance of the quantization error at the
        ith quantizer,
        
                    Sni(w)
        
        is the power spectral density of that quantization error, and
        
                    Hi(w)
        
        is the transfer function from the ith
        quantizer to the output point.
        Thus for P independent quantizers in the 
        structure, the total quantization noise variance is
	
	Note that in general, each 
	
	  Hi(w)
	, and thus the variance at the output due to each quantizer,
        is different; for example, the system as seen by a quantizer at the
        input to the first delay state in the Direct-Form II IIR filter 
        structure to the output, call it
	
	  n4
	, is
	
	
 [image: Figure (fig1QuantIIR.png)]
Figure 6.28. 


	
	with a transfer function
	 which can be evaluated at
	
	  z=ⅇⅈw
	 to obtain the frequency response.
      
 
	A general approach to find
	
	  Hi(w)
	 is to write state equations for the equivalent
	structure as seen by
	
	  ni
	, and to determine the transfer function according to
	
	  H(z)=C(zI−A)-1B+d
	.
      
 [image: Figure (fig2QuantIIR.png)]

Figure 6.29. 

Exercise 5.
 
	   
	    The above figure illustrates the quantization points in a
            typical implementation of a Direct-Form II IIR
            second-order section.
            What is the total variance of the output error due to all of the
	    quantizers in the system?
	  

	


 
	By making the assumption that each 
	
	  Qi
	 represents a noise source that is white,
	independent of the other sources, and additive,
       
	
 [image: Figure (fig3QuantIIR.png)]
Figure 6.30. 


	 
	the variance at the output is the sum of the variances at
	the output due to each noise source:
	 
	The variance due to each noise source at the output
	can be determined from
	; note that 
	
	  Sni(w)=σni2
	 by our assumptions, and 
	
	  Hi(w)
	
	is the transfer function from the noise source to
	  the output.
      


IIR Coefficient Quantization Analysis*



 
      Coefficient quantization is an important concern with IIR filters,
      since straigthforward quantization often yields poor results, and because
      quantization can produce unstable filters.
    
Sensitivity analysis



 
	The performance and stability of an IIR filter depends
	on the pole locations, so it is important to know how
	quantization of the filter coefficients
	
	  ak
	 affects the pole locations
	
	  pj
	. The denominator polynomial is
	 We wish to know 
	, which, for small deviations, will tell us that a
	δ change in
	
	  ak
	 yields an
	 change in the pole location.
	
	is the  sensitivity of the pole location to
	quantization of 
	
	  ak
	. We can find 
	 using the chain rule.  
	
	
	  ⇓
	
	
	which is 
	
()


	Note that as the poles get closer together, the sensitivity
	increases greatly. So as the filter order increases and more poles
	get stuffed closer together inside the unit circle, the error
	introduced by coefficient quantization in the pole locations
	grows rapidly.
      
 
        How can we reduce this high sensitivity to IIR filter coefficient
        quantization?
      
Solution



 
	  Cascade
          or parallel form
          implementations! The numerator and denominator polynomials
	  can be factored off-line at very high precision and grouped into
	  second-order sections, which are then quantized section by
	  section. The sensitivity of the quantization is thus that
	  of second-order, rather than
	  N-th order, polynomials. This
	  yields major improvements in the frequency response of the
	  overall filter, and is almost always done in practice.
	
 
	  Note that the numerator polynomial faces the same
	  sensitivity issues; the cascade form
	  also improves the sensitivity of the zeros, because they are
	  also factored into second-order terms. However, in the
	  parallel form, the zeros are globally
	  distributed across the sections, so they suffer from
	  quantization of all the blocks. Thus the
	  cascade form preserves zero locations
	  much better than the parallel form, which typically means
	  that the stopband behavior is better in the cascade
	  form, so it is most often used in practice.
	

Note on FIR Filters

	On the basis of the preceding analysis, it would seem
	important to use cascade structures in FIR filter
	implementations. However, most FIR filters are linear-phase and
        thus symmetric or anti-symmetric.  As long as the quantization is
	implemented such that the filter coefficients retain
	symmetry, the filter retains linear phase. Furthermore, since all
	zeros off the unit circle must appear in groups of four for
        symmetric linear-phase filters, zero
	pairs can leave the unit circle only by joining with another
	pair. This requires relatively severe quantizations (enough to
	completely remove or change the sign of a ripple in the
        amplitude response). This "reluctance" of pole pairs to leave the
	unit circle tends to keep quantization from damaging the
	frequency response as much as might be expected, enough so
	that cascade structures are rarely used for FIR filters.
      


Exercise 6.
 
	   
	    What is the worst-case pole pair in an IIR digital filter?
	  

	


The pole pair closest to the real axis in the z-plane, since the
complex-conjugate poles will be closest together and thus have the
highest sensitivity to quantization.
          




Quantized Pole Locations



 
	In a direct-form
        or transpose-form
        implementation of a second-order section, the filter coefficients are
        quantized versions of the polynomial coefficients.
	
	
	
	  p=rⅇⅈθ
	
	
	  D(z)=z2−2rcos(θ)+r2
	
	So
	
	  a1=–(2rcos(θ))
	
	
	  a2=r2
	
	Thus the quantization of 
	
	  a1
	
        and
	
	  a2
	 to B bits restricts
	the radius r to
	, and 
	
	  a1=–(2Re(p))=kΔB
	
	The following figure shows all stable pole locations after
        four-bit two's-complement quantization.
	
	
 [image: Figure (figdfpolelocs.png)]
Figure 6.31. 


	
	Note the nonuniform distribution of possible pole
	locations. This might be good for poles
	near
	
	  r=1
	,
	, but not so good for poles near the origin or the Nyquist
        frequency.
      
 
	In the "normal-form" structures,
        a state-variable based
	realization, the poles are uniformly spaced.
        
	
 [image: Figure (fignfpolelocs.png)]
Figure 6.32. 


	 
	This can only be accomplished if the coefficients to be
	quantized equal the real and imaginary parts of the pole
	location; that is,
	
	  α1=rcos(θ)=Re(r)
	
	
	  α2=rsin(θ)=Im(p)
	
	This is the case for a 2nd-order system with the
        state matrix
	: The denominator polynomial is
	
()

	Given any second-order filter coefficient set, we can write it
	as a state-space system,
        find a transformation matrix
	T such that
	 is in normal form, and then implement the
	second-order section using a structure corresponding to
        the state equations.
      
 
	The normal form has a number of other advantages; both
	eigenvalues are equal, so it minimizes the norm of
	
	  Ax
	, which makes overflow less likely, and it minimizes
	the output variance due to quantization of the state
	values. It is sometimes used when minimization of finite-precision
	effects is critical.
      
Exercise 7.
 
	   
	    What is the disadvantage of the normal form?
	  

	


            It requires more computation.  The general
            state-variable equation
            requires nine multiplies, rather than the five used by the
            Direct-Form II
            or Transpose-Form structures.
          






6.4. Overflow Problems and Solutions



Limit Cycles*



Large-scale limit cycles



 
	When overflow occurs, even otherwise stable filters may
    get stuck in a  large-scale limit cycle, which is a
    short-period, almost full-scale persistent filter output caused by overflow.
      
Example 6.3. 
 
	  Consider the second-order system
	  
	  
	  
 [image: Figure (fig1LimitCycles.png)]
Figure 6.33. 


	  
	  with zero input and initial state values
	  
	    z0[0]=0.8
	  ,
	  
	    z1[0]=-0.8
	  . Note
	  
	    y[n]=z0[n+1]
	  .
	
 
	  The filter is obviously stable, since the magnitude of the poles is 
	  , which is well inside the unit circle.
	  However, with wraparound overflow, note that
	    , and that 
	    , so
	     even with zero input.
	


 
	  Clearly, such behavior is intolerable and must be
	  prevented. Saturation arithmetic has been proved to prevent
	   zero-input limit cycles, which is one reason why all
          DSP microprocessors support this feature. In many applications,
	  this is considered sufficient protection. Scaling to prevent
	  overflow is another solution, if as well the inital state
	  values are never initialized to limit-cycle-producing
	  values. The normal-form structure also reduces the chance of
	  overflow.
      

Small-scale limit cycles



 
	 Small-scale limit cycles are caused by quantization. Consider
	the system
	
 [image: Figure (fig2LimitCycles.png)]
Figure 6.34. 


	Note that when
	, rounding will quantize the output to the current
	level (with zero input), so the output will remain at this
	level forever. Note that the maximum amplitude of this
	"small-scale limit cycle" is achieved when
	
	In a higher-order system, the small-scale limit cycles are
	oscillatory in nature. Any
	quantization scheme that never increases the magnitude of
	any quantized value prevents small-scale limit cycles. 

	

Two's-complement truncation does
	  not do this; it increases the magnitude
	  of negative numbers.



	
	However, this introduces greater error
	and bias. Since the level of the limit cycles is
	proportional to
	
	  ΔB
	, they can be reduced by increasing the
	number of bits. Poles close to the unit circle increase the
	magnitude and likelihood of small-scale limit cycles.
      


Scaling*



 
      Overflow is clearly a serious problem, since the errors it
    introduces are very large. As we shall see, it is also responsible
    for large-scale limit cycles, which cannot be tolerated. One way
    to prevent overflow, or to render it acceptably unlikely, is to
     scale the input to a filter such that overflow cannot
    (or is sufficiently unlikely to) occur.
    
 [image: Figure (fig1Scaling.png)]

Figure 6.35. 

 
      In a fixed-point system, the range of the input signal is
      limited by the fractional fixed-point number representation to
      
	|x[n]|≤1
      . If we scale the input by multiplying it by a value
      β,
      
	0<β<1
      , then 
      
	|βx[n]|≤β
      .
    
 
      Another option is to incorporate the scaling directly into the filter
      coefficients.
    
 [image: Figure (fig2Scaling.png)]

Figure 6.36. 

FIR Filter Scaling



 
	What value of β is required
	so that the output of an FIR filter cannot overflow
	(
	  |y(n)|≤1  
	,
	
	  |x(n)|≤1  
	)?
	
	
	  ⇓
	
	
	Alternatively, we can incorporate the scaling directly into
	the filter, and require that
	
	to prevent overflow.
      

IIR Filter Scaling



 
	To prevent the output from overflowing in an IIR filter,
        the condition above still holds: 
	(
	  M=∞
	)
	
	so an initial scaling factor
	
	can be used, or the filter itself can be scaled.
      
 
	However, it is also necessary to prevent the
	states from overflowing, and to prevent overflow at
	any point in the signal flow graph where the arithmetic hardware would
        thereby produce errors. To prevent the states from overflowing, we
        determine the transfer function from the input to all states
	i,
        and scale the filter such that
	
      
 
	Although this method of scaling guarantees no overflows, it
	is often too conservative. Note that a worst-case signal is
	
	  x(n)=sign(h(–n))
	; this input may be extremely unlikely. In the
	relatively common situation in which the input is expected to
	be mainly a single-frequency sinusoid of unknown frequency and
	amplitude less than 1, a scaling condition of
	
	  |H(w)|≤1  
	
	is sufficient to guarantee no overflow. This scaling condition
	is often used. If there are several potential overflow
	locations i in the digital
	filter structure, the scaling conditions are
	
	  |Hi(w)|≤1  
	
	where 
	
	  Hi(w)
	 is the frequency response from the input to location
	i in the filter.
      
 
	Even this condition may be excessively conservative, for
	example if the input is more-or-less random, or if occasional
        overflow can be tolerated. In
	practice, experimentation and simulation are often the best
	ways to optimize the scaling factors in a given application.
      
 
	For filters implemented in the cascade form, rather than
	scaling for the entire filter at the beginning, (which
	introduces lots of quantization of the input) the
	filter is usually scaled so that each stage is just prevented
	from overflowing. This is best in terms of reducing the
	quantization noise. The scaling factors are incorporated
	either into the previous or the next stage, whichever is most
	convenient.
      
 
	Some heurisitc rules for grouping poles and zeros in a cascade
	implementation are:
	
 	Order the poles in terms of decreasing radius. Take
	  the pole pair closest to the unit circle and group it with
	  the zero pair closest to that pole pair (to minimize the
	  gain in that section). Keep doing this with all remaining
	  poles and zeros.
	  

	Order the section with those with highest gain 
	    (
	      argmax|Hi(w)|
	    ) in the middle, and those with lower gain on the
	    ends.
	  




      
 
	Leland B. Jackson [link] has an excellent
	intuitive discussion of finite-precision problems in digital
	filters. The book by Roberts and
        Mullis [link] is one of the most thorough
	in terms of detail.
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Glossary



	Definition: State
	the minimum additional information
	at time simplemathmathml-miitalicsnn, which, along with all
	current and future input values, is necessary to compute all future
	outputs.
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  Chapter 3. The DFT, FFT, and Practical Spectral Analysis



3.1. The Discrete Fourier Transform



DFT Definition and Properties*



DFT



 The discrete Fourier transform (DFT) is the primary transform used for numerical computation in digital signal processing.
It is very widely used for spectrum analysis,
fast convolution, and many other applications.
The DFT transforms N discrete-time samples to the same number of discrete frequency samples, and is defined as
        
()

      The DFT is widely used in part because it can be computed very efficiently using fast Fourier transform (FFT) algorithms.

IDFT



 The inverse DFT (IDFT) transforms N discrete-frequency samples to the same number of discrete-time samples.
The IDFT has a form very similar to the DFT,
        
()

      and can thus also be computed efficiently using FFTs.

DFT and IDFT properties



Periodicity



 Due to the N-sample periodicity of the complex exponential basis functions
                
in the DFT and IDFT, the resulting transforms are also periodic with N samples.
 
	
	  X(k+N)=X(k)
	
	
	  x(n)=x(n+N)
	
      

Circular Shift



 A shift in time corresponds to a phase shift that is linear in frequency.
Because of the periodicity induced by the DFT and IDFT, the shift is circular, or modulo N samples.
 
	The modulus operator
	
	  pmodN
	 means the remainder of
	p when divided by
	N.
        For example,
	
	  9mod5=4
	
        and
	
	  -1mod5=4
	
      

Time Reversal



 
	  (x((–n)modN)=x((N−n)modN)    X((N−k)modN)=X((–k)modN))
	
	Note: time-reversal maps
	
	  (0    0)
	,
	
	  (1    N−1)
	,
	
	  (2    N−2)
	, etc. as illustrated in the figure below.
      
	  [image: Time Reversal](a) Original signal

	  [image: Time Reversal](b) Time-reversed



Figure 3.1. 
Illustration of circular time-reversal


Complex Conjugate



 
	
      

Circular Convolution Property



 
        Circular convolution is defined as
	
      
 
      Circular convolution of two discrete-time signals corresponds
      to multiplication of their DFTs:
	
	  (x(n)*h(n)    X(k)H(k))
	
      

Multiplication Property



 
        A similar property relates multiplication in time to circular convolution in frequency.
	
      

Parseval's Theorem



 Parseval's theorem relates the energy of a length-N discrete-time signal (or one period) to the energy of its DFT.
	
      

Symmetry



 
	The continuous-time Fourier transform,
        the DTFT,
        and DFT are all
        defined as transforms of complex-valued
	data to complex-valued spectra.  However, in practice signals are
	often real-valued.
        The DFT of a real-valued discrete-time signal has a special symmetry,
        in which the real part of the transform values are
         DFT even symmetric and the imaginary part is
         DFT odd symmetric, as illustrated in the equation and 
        figure below.
      
 
	  x(n)
	 real 
	 
	(This implies 
	
	  X(0)
	,
	 are real-valued.)
      
 <db:title>Real part of X(k) is even</db:title> [image: Real part of X(k) is even]
(a) Even-symmetry in DFT sense

 <db:title>Imaginary part of X(k) is odd</db:title> [image: Imaginary part of X(k) is odd]
(b) Odd-symmetry in DFT sense


Figure 3.2. 
DFT symmetry of real-valued signal





3.2. Spectrum Analysis



Spectrum Analysis Using the Discrete Fourier Transform*



Discrete-Time Fourier Transform



 The Discrete-Time Fourier Transform (DTFT)
      is the primary theoretical tool for understanding the frequency content
      of a discrete-time (sampled) signal.
      The DTFT is defined as
      
()

    The inverse DTFT (IDTFT) is defined by an integral formula, because it operates on a continuous-frequency DTFT spectrum:
      
()
 The DTFT is very useful for theory and analysis, but is not practical for
      numerically computing a spectrum digitally, because 
      
 	infinite time samples means
	  
 	infinite computation

	infinite delay




	

	The transform is continuous in the discrete-time frequency, ω




    
 For practical computation of the frequency content of real-world signals,
      the Discrete Fourier Transform (DFT) is used.
    

Discrete Fourier Transform



 The DFT transforms N samples of a discrete-time 
      signal to the same number of discrete frequency samples, and is defined as
      
()

      The DFT is invertible by the inverse discrete Fourier transform (IDFT):
      
()

      The DFT and IDFT are a self-contained,
      one-to-one transform pair for a
      length-N discrete-time
      signal. (That is, the DFT is not
      merely an approximation to the
      DTFT as discussed next.)
      However, the DFT is very often used as a
      practical approximation to the DTFT.
	    
    

Relationships Between DFT and DTFT



DFT and Discrete Fourier Series



 The DFT gives the discrete-time
	  Fourier series coefficients of a periodic sequence
	  (
	    x(n)=x(n+N)
	  )
          of period N samples, or
        
()

	  as can easily be confirmed by computing the inverse DTFT of the corresponding line spectrum:
	
(3.1)

 The DFT can thus be used to exactly compute the relative values of the
N line spectral components of the DTFT of any periodic discrete-time sequence with an integer-length period.

DFT and DTFT of finite-length data



 When a discrete-time sequence happens to equal zero for all samples except for those between 0 and N−1,
the infinite sum in the DTFT equation becomes the same as the finite sum from 0 to N−1
in the DFT equation.
By matching the arguments in the exponential terms, we observe that the
DFT values exactly equal the DTFT for specific DTFT frequencies

.
That is, the DFT computes exact samples of the DTFT at N equally spaced frequencies
,
or
 
   

DFT as a DTFT approximation



 In most cases, the signal is neither exactly periodic nor truly of finite length;
          in such cases, the DFT of a finite block of N
          consecutive discrete-time samples does not exactly equal
          samples of the DTFT at specific frequencies.
          Instead, the DFT gives frequency
	  samples of a windowed (truncated) DTFT
	  
	  where
	  
          Once again, 
	  
	    X(k)
	  
	  exactly equals 
	  
	    X(ωk)
	   a DTFT frequency sample only when
	  
	    x(n)=0  ,  
		n∉[0, N−1]
	        
	  
	


Relationship between continuous-time FT and DFT



 The goal of spectrum analysis is often to determine the frequency content of an analog (continuous-time) signal; very often, as in most modern spectrum analyzers, this is actually accomplished by sampling the analog signal, windowing (truncating)
the data, and computing and plotting the magnitude of its DFT.
It is thus essential to relate the DFT frequency samples back to the original analog frequency.
Assuming that the analog signal is bandlimited and the sampling frequency exceeds twice that limit so that no frequency aliasing occurs, the relationship between
the continuous-time Fourier frequency Ω (in radians) and the
DTFT frequency ω imposed by sampling is

  ω=ΩT

where T is the sampling period.
Through the relationship

 between the DTFT frequency ω
and the DFT frequency index k, the correspondence between the DFT frequency index and the original analog frequency can be found:

or in terms of analog frequency f in Hertz
(cycles per second rather than radians)

for k in the range
k
between 0 and
.
It is important to note that 

correspond to negative
frequencies due to the periodicity of the DTFT and the DFT.
Exercise 1.
     
	   In general, will DFT frequency values

  X(k)

 exactly equal samples
of the analog Fourier transform

  Xa

at the corresponding frequencies?
That is, will
	    ?
	  

	

 In general, NO.
          The DTFT exactly corresponds to the continuous-time Fourier transform only when the signal is bandlimited and sampled at more than twice its highest frequency.
The DFT frequency values exactly correspond to frequency samples of the DTFT
only when the discrete-time signal is time-limited.
However, a bandlimited continuous-time signal cannot be time-limited, so in
general these conditions cannot both be satisfied.

 It can, however, be true for a small class of analog signals which are not time-limited
but happen to exactly equal zero at all sample times outside of the interval
.
The sinc function with a bandwidth equal to the Nyquist frequency and centered at

t=0

is an example.





Zero-Padding



 If more than N equally spaced frequency samples of
a length-N signal are desired, they can easily be obtained
by  zero-padding the discrete-time signal and computing a DFT of the
longer length.
In particular, if
        
          LN
        
        DTFT samples are desired
	of a length-N sequence, one can compute the length-
          LN
        
	DFT of a
length-
          LN
         zero-padded
	sequence
	
	
        Note that
	zero-padding interpolates the spectrum.  One
	should always zero-pad (by about at least a factor of 4) when
	using the DFT to approximate
	the DTFT to get a clear
	picture of the DTFT.
        While performing computations on zeros may at first seem inefficient,
        using FFT algorithms, which generally
        expect the same number of input and output samples, actually makes this
        approach very efficient.
 Figure 3.3 shows the magnitude of the DFT values corresponding to the
        non-negative frequencies of a real-valued length-64 DFT of a length-64 signal,
        both in a "stem" format to emphasize the discrete nature of the DFT frequency samples,
        and as a line plot to emphasize its use as an approximation to the 
        continuous-in-frequency DTFT.
        From this figure, it appears that the signal has a single dominant
        frequency component.
      
 <db:title>Stem plot</db:title> [image: Stem plot (zpstem64.png)](a)

 <db:title>Line Plot</db:title> [image: Line Plot (zpline64.png)](b)


Figure 3.3. Spectrum without zero-padding
Magnitude DFT spectrum of 64 samples
        of a signal with a length-64 DFT (no zero padding)
      


      Zero-padding by a factor of two by appending 64 zero values to the
      signal and computing a length-128 DFT yields Figure 3.4.
      It can now be seen that the signal consists of at least two narrowband
      frequency components; the gap between them fell between DFT samples
      in Figure 3.3, resulting in a misleading picture of the
      signal's spectral content.
      This is sometimes called the  picket-fence effect, and
      is a result of insufficient sampling in frequency.
      While zero-padding by a factor of two has revealed more structure,
      it is unclear whether the peak magnitudes are reliably rendered, and
      the jagged linear interpolation in the line graph does not yet reflect
      the smooth, continuously-differentiable spectrum of the DTFT
      of a finite-length truncated signal.
      Errors in the apparent peak magnitude due to insufficient frequency sampling
      is sometimes referred to as  scalloping loss.
      
 <db:title>Stem plot</db:title> [image: Stem plot (zpstem128.png)](a)

 <db:title>Line Plot</db:title> [image: Line Plot (zpline128.png)](b)


Figure 3.4. Spectrum with factor-of-two zero-padding
Magnitude DFT spectrum of 64 samples
        of a signal with a length-128 DFT (double-length zero-padding)
      


      Zero-padding to four times the length of the signal,
      as shown in Figure 3.5,
      clearly shows the spectral structure and reveals that the magnitude of
      the two spectral lines are nearly identical.
      The line graph is still a bit rough and the peak magnitudes and frequencies
      may not be precisely captured, but the spectral characteristics of the
      truncated signal are now clear.
      
 <db:title>Stem plot</db:title> [image: Stem plot (zpstem256.png)](a)

 <db:title>Line Plot</db:title> [image: Line Plot (zpline256.png)](b)


Figure 3.5. Spectrum with factor-of-four zero-padding
Magnitude DFT spectrum of 64 samples
        of a signal with a length-256 zero-padded DFT (four times zero-padding)
      


      Zero-padding to a length of 1024, as shown in Figure 3.6
      yields a spectrum that is smooth and continuous to the resolution of the
      computer screen, and produces a very accurate rendition of the DTFT of
      the truncated signal.
      
 <db:title>Stem plot</db:title> [image: Stem plot (zpstem1024.png)](a)

 <db:title>Line Plot</db:title> [image: Line Plot (zpline1024.png)](b)


Figure 3.6. Spectrum with factor-of-sixteen zero-padding
Magnitude DFT spectrum of 64 samples
        of a signal with a length-1024 zero-padded DFT.
        The spectrum now looks smooth and continuous and reveals all the
        structure of the DTFT of a truncated signal.
      


      The signal used in this example actually consisted of two pure sinusoids of
      equal magnitude.
      The slight difference in magnitude of the two dominant peaks, the breadth
      of the peaks, and the sinc-like lesser
       side lobe peaks throughout frequency are artifacts of the
      truncation, or windowing, process used to practically approximate the DFT.
      These problems and partial solutions to them are discussed in the following section.

Effects of Windowing



 Applying the DTFT multiplication property
	
	we find that the DFT
        of the windowed (truncated) signal produces
	samples not of the true (desired)  DTFT spectrum
	
	  X(ω)
	, but of a smoothed verson
	
	  X(ω)*W(ω)
	. We want this to resemble
	
	  X(ω)
	 as closely as possible, so 
	
	  W(ω)
	 should be as close to an impulse as possible.
        The  window
        
          w(n)
	
        need not be a simple  truncation (or 
         rectangle, or  boxcar) window; other shapes
        can also be used as long as they limit the sequence to at most
        N consecutive nonzero samples.
        All good windows are impulse-like, and represent various tradeoffs
	between three criteria:
	
 	
	    main lobe width: (limits resolution of closely-spaced peaks
	    of equal height)
	  

	
	    height of first sidelobe: (limits ability to see a small peak near a big peak)
	  

	
	    slope of sidelobe drop-off: (limits ability to see small peaks further away from a big peak)
	  




      
 Many different window functions have been
developed for truncating and shaping a length-N signal segment for
spectral analysis.
The simple  truncation window has a periodic sinc DTFT, as shown in Figure 3.7.
It has the narrowest main-lobe width,

at the -3 dB level and

between the two zeros surrounding the main lobe,
of the common window functions, but also the largest side-lobe peak, at about -13 dB.
The side-lobes also taper off relatively slowly.

 <db:title>Rectangular window</db:title> [image: Rectangular window (boxcar64.png)]
(a)

 <db:title>Magnitude of boxcar window spectrum</db:title> [image: Magnitude of boxcar window spectrum (boxcarfreq.png)]
(b)


Figure 3.7. 
Length-64 truncation (boxcar) window and its magnitude DFT spectrum
      

 The  Hann window (sometimes also called the  hanning window),
illustrated in Figure 3.8,
takes the form

for n between 0 and 

  N−1
.

It has a main-lobe width (about

at the -3 dB level and

between the two zeros surrounding the main lobe) considerably larger than the
rectangular window,
but the largest side-lobe peak is much lower, at about -31.5 dB.
The side-lobes also taper off much faster.
For a given length, this window is worse than the boxcar window at separating
closely-spaced spectral components of similar magnitude, but better for identifying
smaller-magnitude components at a greater distance from the larger components.

 <db:title>Hann window</db:title> [image: Hann window (hann64.png)]
(a)

 <db:title>Magnitude of Hann window spectrum</db:title> [image: Magnitude of Hann window spectrum (hannfreq.png)]
(b)


Figure 3.8. 
Length-64 Hann window and its magnitude DFT spectrum
      

 The  Hamming window,
illustrated in Figure 3.9,
has a form similar to the Hann window but with slightly different constants:

for n between 0 and 

  N−1
.

Since it is composed of the same Fourier series harmonics as the Hann window,
it has a similar main-lobe width (a bit less than

at the -3 dB level and

between the two zeros surrounding the main lobe),
but the largest side-lobe peak is much lower, at about -42.5 dB.
However, the side-lobes also taper off much more slowly than with the Hann window.
For a given length, the Hamming window is better than the Hann (and of course
the boxcar) windows at separating a small component relatively near to a large
component, but worse than the Hann for identifying very small components at
considerable frequency separation.
Due to their shape and form, the Hann and Hamming windows are also known as
 raised-cosine windows.
 <db:title>Hamming window</db:title> [image: Hamming window (hamming64.png)]
(a)

 <db:title>Magnitude of Hamming window spectrum</db:title> [image: Magnitude of Hamming window spectrum (hammingfreq.png)]
(b)


Figure 3.9. 
Length-64 Hamming window and its magnitude DFT spectrum
      


Standard even-length windows are symmetric around a point halfway between the window
samples

and
.
For some applications such as time-frequency analysis,
it may be important to align the window perfectly to a sample.
In such cases, a  DFT-symmetric window that is symmetric around
the
-th
sample can be used.
For example, the DFT-symmetric Hamming window is
.
A DFT-symmetric window has a purely real-valued DFT and DTFT.
DFT-symmetric versions of windows,
such as the Hamming and Hann windows, composed of few discrete Fourier series terms
of period N,
have few non-zero DFT terms (only when not zero-padded)
and can be used efficiently in running FFTs.


 The main-lobe width of a window is an inverse function of the window-length

  N
;
for any type of window, a longer window will always provide better resolution.

 Many other windows exist that make various other tradeoffs between main-lobe width,
height of largest side-lobe, and side-lobe rolloff rate.
The Kaiser window family, based on a modified Bessel function, has an adjustable parameter that
allows the user to tune the tradeoff over a continuous range.
The Kaiser window has near-optimal time-frequency resolution and is widely used.
A list of many different windows can be found here.

Example 3.1. 
 Figure 3.10 shows 64 samples of a real-valued signal composed of several sinusoids
    of various frequencies and amplitudes.
      
 [image: Figure (examplesig.png)]
Figure 3.10. 
64 samples of an unknown signal
      


    Figure 3.11 shows the magnitude (in dB) of the
    positive frequencies of a length-1024 zero-padded DFT of this signal
    (that is, using a simple truncation, or rectangular, window).
      
 [image: Figure (boxcarspec.png)]
Figure 3.11. 
Magnitude (in dB) of the zero-padded DFT spectrum of the signal in Figure 3.10
        using a simple length-64 rectangular window
      


     From this spectrum, it is clear that the signal has two large, nearby
     frequency components with frequencies near 1 radian of essentially the same magnitude.
     
 Figure 3.12 shows the spectral estimate produced using
     a length-64 Hamming window applied to the same signal shown in Figure 3.10.
      
 [image: Figure (hammingspec.png)]
Figure 3.12. 
Magnitude (in dB) of the zero-padded DFT spectrum of the signal in Figure 3.10
        using a length-64 Hamming window
      


    The two large spectral peaks can no longer be resolved; they blur into a
    single broad peak due to the reduced spectral resolution of the broader main
    lobe of the Hamming window.
    However, the lower side-lobes reveal a third component at a frequency of
    about 0.7 radians at about 35 dB lower magnitude than the larger components.
    This component was entirely buried under the side-lobes when the
    rectangular window was used, but now stands out well above the much lower
    nearby side-lobes of the Hamming window.
    
 
     Figure 3.13 shows the spectral estimate produced using
     a length-64 Hann window applied to the same signal shown in Figure 3.10.
      
 [image: Figure (hannspec.png)]
Figure 3.13. 
Magnitude (in dB) of the zero-padded DFT spectrum of the signal in Figure 3.10
        using a length-64 Hann window
      


    The two large components again merge into a single peak, and the smaller
    component observed with the Hamming window is largely lost under the higher
    nearby side-lobes of the Hann window.
    However, due to the much faster side-lobe rolloff of the Hann window's spectrum,
    a fourth component at a frequency of about 2.5 radians with a magnitude
    about 65 dB below that of the main peaks is now clearly visible.
 This example illustrates that no single window is best for all spectrum analyses.
The best window depends on the nature of the signal, and different windows may
be better for different components of the same signal.
A skilled spectrum analysist may apply several different windows to a signal to
gain a fuller understanding of the data.




Classical Statistical Spectral Estimation*



 Many signals are either partly or wholly stochastic, or random.
      Important examples include human speech, vibration in machines,
      and CDMA communication signals.
      Given the ever-present noise in electronic systems, it can be argued
      that almost all signals are at least partly stochastic.
      Such signals may have a distinct average spectral
      structure that reveals important information (such as for speech
      recognition or early detection of damage in machinery).
      Spectrum analysis of any single block of data using 
      window-based
      deterministic spectrum analysis, however, produces
      a random spectrum that may be difficult to interpret.
      For such situations, the classical statistical spectrum estimation
      methods described in this module can be used.
    
 The goal in classical statistical spectrum analysis is to estimate
        
	  E[(|X(ω)|)2]
	,
      the  power spectral density (PSD) across frequency
      of the stochastic signal.
      That is, the goal is to find the expected (mean, or average)
      energy density of the signal as a function of frequency.
      (For zero-mean signals, this equals the variance of each frequency sample.)
      Since the spectrum of each block of signal samples is itself random,
      we must average the squared spectral magnitudes over a number of blocks
      of data to find the mean.
    There are two main classical approaches,
    the periodogram
    and auto-correlation methods.
Periodogram method



 The periodogram method divides the signal into a number of shorter
        (and often overlapped) blocks of data, computes the squared magnitude
        of the windowed
        (and usually zero-padded)
        DFT,
        
		    Xi(ωk)
        ,
        of each block,
        and averages them to estimate the power spectral density.
        The squared magnitudes of the DFTs of L possibly overlapped
        length-N windowed blocks
        of signal (each probably with zero-padding) are averaged to estimate the
        power spectral density:
 
	
        For a fixed total number of samples,
        this introduces a tradeoff: Larger individual data blocks provides
        better frequency resolution due to the use of a longer window,
        but it means there are less blocks to average, so the estimate
        has higher variance and appears more noisy.
        The best tradeoff depends on the application.
        Overlapping blocks by a factor of two to four increases the number
        of averages and reduces the variance, but since the same data is being
        reused, still more overlapping does not further reduce the variance.
        As with any window-based spectrum estimation procedure, the window
        function introduces broadening and sidelobes into the power spectrum
        estimate.
        That is, the periodogram produces an estimate of the windowed spectrum
	, not of 
	
	  E[(|X(ω)|)2]
	.
        
Example 3.2. 
 Figure 3.14 shows the non-negative frequencies of the DFT
          (zero-padded to 1024 total samples) of 64 samples of a
          real-valued stochastic signal.
      
 [image: Figure (stoch64.png)]
Figure 3.14. 
DFT magnitude (in dB) of 64 samples of a stochastic signal
      


          With no averaging, the power spectrum is very noisy and difficult
          to interpret other than noting a significant reduction in spectral energy
          above about half the Nyquist frequency.
          Various peaks and valleys appear in the lower frequencies,
          but it is impossible to say from this figure whether they
          represent actual structure in the power spectral density (PSD)
          or simply random variation in this single realization.
          Figure 3.15 shows the same frequencies of a length-1024 DFT of a
          length-1024 signal. While the frequency resolution has improved,
          there is still no averaging, so it remains difficult to
          understand the power spectral density of this signal.
          Certain small peaks in frequency might represent narrowband
          components in the spectrum, or may just be random noise peaks.
        
 [image: Figure (stoch1024.png)]
Figure 3.15. 
DFT magnitude (in dB) of 1024 samples of a stochastic signal
      


          In Figure 3.16, a power spectral density computed from averaging 
          the squared magnitudes of length-1024 zero-padded DFTs of 508 length-64
          blocks of data (overlapped by a factor of four, or a 16-sample
          step between blocks) are shown.
          
 [image: Figure (stochPSD.png)]
Figure 3.16. 
Power spectrum density estimate (in dB) of 1024 samples of a stochastic signal
           


          While the frequency resolution corresponds
          to that of a length-64 truncation window, the averaging greatly
          reduces the variance of the spectral estimate and allows the user to
          reliably conclude that the signal consists of lowpass broadband noise
          with a flat power spectrum up to half the Nyquist frequency, with
          a stronger narrowband frequency component at around 0.65 radians.




Auto-correlation-based approach



 The averaging necessary to estimate a power spectral density
        can be performed in the discrete-time domain, rather than in frequency,
        using the auto-correlation method.
        The squared magnitude of the frequency response,
        from the DTFT multiplication and conjugation properties,
        corresponds in the discrete-time domain to the signal convolved
        with the time-reverse of itself, 
	
	  ((|X(ω)|)2=X(ω)X*(ω)  ↔  (x(n), x*(–n))=r(n))
	
or its  auto-correlation
	
	  r(n)=∑(x(k)x*(n+k))
	
        We can thus compute the squared magnitude of
        the spectrum of a signal by computing
        the DFT of its auto-correlation.
        For stochastic signals, the power spectral density
        is an expectation, or average, and by linearity of
        expectation can be found by transforming the
        average of the auto-correlation.

        For a finite block of N
        signal samples, the average of the autocorrelation values,
	
	  r(n)
	,
        is
	
	Note that with increasing  lag,
        n,
        fewer values are averaged, so they introduce
        more noise into the estimated power spectrum.
        By 
	windowing the auto-correlation before
        transforming it to the frequency domain, a
        less noisy power spectrum is obtained, at the
        expense of less resolution.
        The multiplication property of the DTFT shows
        that the windowing smooths the resulting power
        spectrum via convolution with the DTFT of the window:
	
        This yields another important interpretation of how the auto-correlation method works:
        it estimates the power spectral density by
        averaging the power spectrum over nearby frequencies,
        through convolution with the window function's transform,
        to reduce variance.
        Just as with the periodogram approach, there is always a 
        variance vs. resolution tradeoff.
        The periodogram and the auto-correlation method give
        similar results for a similar amount of averaging; the user should
        simply note that in the periodogram case, the window introduces smoothing
        of the spectrum via frequency convolution before squaring the magnitude,
        whereas the periodogram convolves the squared magnitude with
        
          W(ω)
        .


Short Time Fourier Transform*



Short Time Fourier Transform



 
	The Fourier transforms (FT, DTFT, DFT,
	etc.) do not clearly indicate how the
	frequency content of a signal changes over time.  
 
	That information is hidden in the phase - it is not
	revealed by the plot of the magnitude of the spectrum.
	
Note

	  To see how the frequency content of a signal changes over
	  time, we can cut the signal into blocks and compute the
	  spectrum of each block.
	



	To improve the result,
	
 	blocks are overlapping

	
	    each block is multiplied by a window that is tapered
	    at its endpoints.
	  




	Several parameters must be chosen:
	
 	Block length, R.

	The type of window.

	
	    Amount of overlap between blocks. (Figure 3.17)
	  

	Amount of zero padding, if any.




      
 [image: STFT: Overlap Parameter (stftfigs.png)]

Figure 3.17. STFT: Overlap Parameter

 
	The short-time Fourier transform is defined as

	
()

	where 
	
	  w(n)
	
	is the window function of length
	R.

	
 	
	    The STFT of a signal 
	    
	      x(n)
	     is a function of two variables: time and
	    frequency.
	  

	
	    The block length is determined by the support of the
	    window function
	    
	      w(n)
	    .
	  

	
	    A graphical display of the magnitude of the STFT,
	    
	      |X(ω, m)|
	    , is called the  spectrogram of the
	    signal.  It is often used in speech processing.
	  

	
	    The STFT of a signal is invertible.
	  

	
	    One can choose the block length.  A long block length will
	    provide higher frequency resolution (because the main-lobe
	    of the window function will be narrow).  A short block
	    length will provide higher time resolution because less
	    averaging across samples is performed for each STFT value.
	  

	
	    A  narrow-band spectrogram is one computed
	    using a relatively long block length
	    R, (long window function).
	  

	
	    A  wide-band spectrogram is one computed using
	    a relatively short block length
	    R, (short window function).
	  




      
Sampled STFT



 
	  To numerically evaluate the STFT, we sample the frequency
	  axis ω in
	  N equally spaced samples from
	  
	    ω=0
	   to
	  
	    ω=2π
	  .

	  
()

	  We then have the discrete STFT,

	  
()
 where
	  0,…0 is
	  N−R.
	
 
	  In this definition, the overlap between adjacent blocks is
	  
	    R−1
	  . The signal is shifted along the window one sample
	  at a time. That generates more points than is usually
	  needed, so we also sample the STFT along the time
	  direction. That means we usually evaluate

	  
	    Xd(k, Lm)
	   where L is the
	  time-skip. The relation between the time-skip, the number of
	  overlapping samples, and the block length is
	  
	  
	    Overlap=R−L
	  
	
Exercise 2.
 
	     
	      Match each signal to its spectrogram in Figure 3.17.
	    

	      [image: Subfigure (a) (sgrams1.png)]
(a)

  [image: Subfigure (b) (sgrams2.png)]
(b)


Figure 3.17. 


	  


	    




Spectrogram Example



 [image: Figure (stft_x.png)]

Figure 3.18. 

 [image: Figure (stft_256.png)]

Figure 3.19. 

 
	  The matlab program for producing the figures above (Figure 3.18 and Figure 3.19).
	
 
	  

	  % LOAD DATA
	  load mtlb;
	  x = mtlb;

	  figure(1), clf
	  plot(0:4000,x)
	  xlabel('n')
	  ylabel('x(n)')

	  % SET PARAMETERS
	  R = 256;               % R: block length
	  window = hamming(R);   % window function of length R
	  N = 512;               % N: frequency discretization
	  L = 35;                % L: time lapse between blocks
	  fs = 7418;             % fs: sampling frequency
	  overlap = R - L;

	  % COMPUTE SPECTROGRAM
	  [B,f,t] = specgram(x,N,fs,window,overlap);

	  % MAKE PLOT
	  figure(2), clf
	  imagesc(t,f,log10(abs(B)));
	  colormap('jet')
	  axis xy 
	  xlabel('time')
	  ylabel('frequency')
	  title('SPECTROGRAM, R = 256')

	  
	

Effect of window length R



 [image: Narrow-band spectrogram: better frequency resolution (stft_512.png)]

Figure 3.20. Narrow-band spectrogram: better frequency
	    resolution

 [image: Wide-band spectrogram: better time resolution (stft_128.png)]

Figure 3.21. Wide-band spectrogram: better time resolution
	  

 
	  Here is another example to illustrate the frequency/time
	  resolution trade-off (See figures - Figure 3.20, Figure 3.21, and Figure 3.22).
	
  [image: Subfigure (a) (sgramsR_1.png)]
(a)

  [image: Subfigure (b) (sgramsR_2.png)]
(b)


Figure 3.22. Effect of Window Length R


Effect of L and N



 
	  A spectrogram is computed with different parameters:

	  
	    L∈{1, 10}
	  

	  
	    N∈{32, 256}
	  

	  
 	
	      L = time lapse between
	      blocks.
	    

	
	      N = FFT length (Each
	      block is zero-padded to length
	      N.)
	    




	  
	  In each case, the block length is 30 samples.
	
Exercise 3.
 
	     
	      For each of the four spectrograms in Figure 3.22 can you tell what
	      L and
	      N are?
	    

	      [image: Subfigure (a) (sgramsLN_1.png)]
(a)

  [image: Subfigure (b) (sgramsLN_2.png)]
(b)


Figure 3.22. 


	  


	    



 
	  L and
	  N do not effect the time
	  resolution or the frequency resolution. They only affect the
	  'pixelation'.
	

Effect of R and L



 
	  Shown below are four spectrograms of the same signal. Each
	  spectrogram is computed using a different set of parameters.

	  
	    R∈{120, 256, 1024}
	  

	  
	    L∈{35, 250}
	  

	  where
	  
 	R = block length
	    

	L = time lapse between
	    blocks.




	
Exercise 4.
 
	     
	      For each of the four spectrograms in Figure 3.22, match the above values
	      of L and
	      R.
	    

	     [image: Figure (stft.png)]

Figure 3.22. 


	  


	    



 
	  If you like, you may listen to this signal with the
	  soundsc command; the data is in the
	  file: stft_data.m. Here is a figure
	  of the signal.
	
 [image: Figure (stft_signal.png)]

Figure 3.23. 





3.3. Fast Fourier Transform Algorithms



Overview of Fast Fourier Transform (FFT) Algorithms*



 A fast Fourier transform,
       or FFT, is not a new transform,
       but is a computationally efficient algorithm for the computing
       the DFT.
       The length-N DFT, defined as
    
()

    where 
      
	X(k)
       and
      
	x(n)
       are in general complex-valued and
      
	0≤k
      ,
      
	n≤N−1
      ,
      requires N complex multiplies to compute each
      
	X(k)
      .
      Direct computation of all
      N frequency samples thus requires
      
	N2
       complex multiplies and
      
	N(N−1)
      
      complex additions.
     (This assumes precomputation of the DFT coefficients
      ; otherwise, the cost is even higher.)
       For the large DFT lengths used in many applications,
       
         N2
       
       operations may be prohibitive.
       (For example, digital terrestrial television broadcast
       in Europe uses N = 2048 or 8192 OFDM channels, and the SETI project uses
       up to length-4194304 DFTs.)

       DFTs are thus almost always computed in practice by an
       FFT algorithm.
       FFTs are very widely used in signal processing, for applications
       such as spectrum analysis and
       digital filtering via fast convolution.
    
History of the FFT



 It is now known that C.F. Gauss invented an FFT in 1805 or so
       to assist the computation of planetary orbits via 
       discrete Fourier series.
       Various FFT algorithms were independently invented over the next two
       centuries, but FFTs achieved widespread awareness and impact only
       with the Cooley and Tukey algorithm published in 1965, which came
       at a time of increasing use of digital computers and when the vast
       range of applications of numerical Fourier techniques was becoming apparent.
       Cooley and Tukey's algorithm spawned a surge of research in FFTs
       and was also partly responsible for the emergence of Digital Signal Processing (DSP) as a
       distinct, recognized discipline.
       Since then, many different algorithms have been rediscovered or developed,
       and efficient FFTs now exist for all DFT lengths.
    

Summary of FFT algorithms



 The main strategy behind most FFT algorithms is to factor a
       length-N DFT into a number of
       shorter-length DFTs, the outputs of which are reused multiple
       times (usually in additional short-length DFTs!) to compute the
       final results.
       The lengths of the short DFTs correspond to integer factors of the
       DFT length, N, leading to different
       algorithms for different lengths and factors.
       By far the most commonly used FFTs select
       
         N=2M
       
     to be a power of two, leading to the very efficient
     power-of-two FFT algorithms,
     including the decimation-in-time radix-2 FFT
     and the decimation-in-frequency radix-2 FFT algorithms,
     the radix-4 FFT
     (
         N=4M
       ),
       and the split-radix FFT.
       Power-of-two algorithms gain their high efficiency
       from extensive reuse of intermediate results and
       from the low complexity of length-2 and length-4
       DFTs, which require no multiplications.
       Algorithms for lengths with repeated common factors
       (such as 2 or 4 in the radix-2 and radix-4 algorithms, respectively)
       require extra  twiddle factor multiplications
       between the short-length DFTs, which together lead
       to a computational complexity of

   O(NlogN) 
 ,
a very considerable savings over direct computation of the DFT.
 The other major class of algorithms is the
Prime-Factor Algorithms (PFA).
In PFAs, the short-length DFTs must be of relatively prime lengths.
These algorithms gain efficiency by reuse of intermediate
computations and by eliminating twiddle-factor multiplies,
but require more operations than the power-of-two algorithms to compute the short DFTs of various prime lengths.
In the end, the computational costs of the prime-factor
and the power-of-two algorithms are comparable for similar
lengths, as illustrated in Choosing the Best FFT Algorithm.
Prime-length DFTs cannot be factored into shorter DFTs,
but in different ways both Rader's conversion
and the chirp z-transform
convert prime-length DFTs into convolutions of other
lengths that can be computed efficiently using FFTs
via fast convolution.
 Some applications require only a few DFT frequency samples, in which case Goertzel's algorithm halves the number of computations relative to the DFT sum.
Other applications involve successive DFTs of overlapped
blocks of samples, for which the running FFT
can be more efficient than separate FFTs of each block.


Running FFT*



 Some applications need DFT frequencies
    of the most recent N samples on an ongoing basis.
    One example is DTMF, or touch-tone
    telephone dialing, in which a detection circuit must constantly monitor the line for
    two simultaneous frequencies indicating that a telephone button is depressed.
    In such cases, most of the data in each successive block of samples is the same,
    and it is possible to efficiently update the DFT value from the previous sample
    to compute that of the current sample.
    Figure 3.24 illustrates successive length-4 blocks of data for which
    successive DFT values may be needed.
    The  running FFT algorithm described here can be used to compute
    successive DFT values at a cost of only two complex multiplies and additions
    per DFT frequency.

 [image: Running FFT]

Figure 3.24. 
The running FFT efficiently computes DFT values for successive
        overlapped blocks of samples.
      

 The running FFT algorithm is derived by expressing each DFT sample,
        
          X
		  n
		  +
		  1
		(ωk)
        ,
      for the next block at time
      
        n+1
      
      in terms of the previous value,

Xn(ωk)
,
 at time n.
      
      
      Let 
	q=p−1
      :
       
      Now let's add and subtract
      
	ⅇ–(ⅈωk(N−2))x(n−N+1)
      :
      
()

      This running FFT algorithm requires only two complex multiplies and adds
      per update, rather than N if each DFT value were recomputed according
      to the DFT equation.
      Another advantage of this algorithm is that it works for 
      any 
      
	ωk
      ,
      rather than just the standard DFT frequencies.
      This can make it advantageous for applications, such as DTMF detection,
      where only a few arbitrary frequencies are needed.
    
 
      Successive computation of a specific DFT frequency for overlapped blocks
      can also be thought of as a length-N
      FIR filter.
      The running FFT is an efficient recursive implementation of this
      filter for this special case.
      Figure 3.25 shows a block diagram of the running FFT
      algorithm.
      The running FFT is one way to compute DFT filterbanks.
      If a window other than rectangular is desired, a running FFT
      requires either a fast recursive implementation of the corresponding
      windowed, modulated impulse response, or it must have few non-zero
      coefficients so that it can be applied after the running FFT update
      via frequency-domain convolution.
      DFT-symmmetric raised-cosine windows are an example.
    
 [image: Running FFT]

Figure 3.25. 
Block diagram of the running FFT computation, implemented
        as a recursive filter
      


Goertzel's Algorithm*



 Some applications require only a few DFT frequencies.
One example is frequency-shift keying (FSK) demodulation, in which typically two frequencies
are used to transmit binary data; another example is DTMF, or touch-tone
    telephone dialing, in which a detection circuit must constantly monitor the line for
    two simultaneous frequencies indicating that a telephone button is depressed.
       Goertzel's algorithm [link] reduces the number of real-valued multiplications by almost a factor
    of two relative to direct computation via the DFT equation.     
    Goertzel's algorithm is thus useful for
    computing a few frequency values; if many or most DFT values are needed, 
    
    FFT algorithms that compute all DFT samples in

   O(NlogN) 
 
    operations are faster.

    Goertzel's algorithm can be derived by converting the DFT equation
    into an equivalent form as a convolution, which can be efficiently implemented as a digital filter.
    For increased clarity, in the equations below the complex exponential is denoted as
    .
        Note that because
	
	  WN
		–
		N
		k
	      
	
        always equals 1,
        the DFT equation can be rewritten as a convolution, or filtering operation:
      
()

      Note that this last expression can be written in terms of a recursive difference equation
      
	y(n)=WN
		    –
		    k
		  y(n−1)+x(n)
       where 
      
	y(–1)=0
      .
      The DFT coefficient equals the output of the difference equation at time
      
        n=N
      :
      
	X(k)=y(N)
      
      Expressing the difference equation as a z-transform and
      multiplying both numerator and denominator by
          
            1−WNkz–1
          
      gives the transfer function 
      
    This system can be realized by the structure in Figure 3.26
      
 [image: Goertzel's Algorithm]
Figure 3.26. 


      
 
      We want 
	
	  y(n)
	
	not for all n, but only for 
	
	  n=N
	.
	We can thus compute only the recursive part, or just the left side of
	the flow graph in Figure 3.26, for
	
	  n=[0, 1, …, N]
	, which involves only a
	real/complex product rather than a
	complex/complex product as in a direct DFT, plus one complex
	multiply to get
	
	  y(N)=X(k)
	.
        

The input
        
          x(N)
        
        at time
        
          n=N
        
        must equal 0!
        A slightly more efficient
        alternate implementation
        that computes the full recursion only through
        
          n=N−1
        
        and combines the nonzero operations of the final recursion with the final complex multiply
        can be found here,
        complete with pseudocode (for real-valued data).



        If the data are real-valued, only real/real multiplications and real additions are needed until the
        final multiply.
      
Cost
The computational cost of Goertzel's algorithm is thus
	
	  2N+2
	 real multiplies and
	
	  4N−2
	 real adds, a reduction of almost a factor of two in the number of real multiplies relative
        to direct computation via the DFT equation.
        If the data are real-valued, this cost is almost halved again.



    
 For certain frequencies, additional simplifications requiring even fewer multiplications are possible.
      (For example, for the DC
      (
        k=0
      )
      frequency, all the multipliers equal 1 and only additions are needed.)
      A correspondence by C.G. Boncelet, Jr. [link] describes some of these additional
      simplifications.
      Once again, Goertzel's and Boncelet's algorithms are efficient for a few DFT frequency samples; if more
      than
      
	logN
      
      frequencies are needed,
      
   O(NlogN) 
 
      FFT algorithms that compute all frequencies simultaneously will be more
      efficient.
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Power-of-Two FFTs



Power-of-two FFTs*



 FFTs of length
      
	N=2M
      
  equal to a power of two are, by far, the most commonly used.
  These algorithms are very efficient, relatively simple, and a single program can compute
  power-of-two FFTs of different lengths.
  As with most FFT algorithms, they gain their efficiency by computing
  all DFT points
  simultaneously through extensive reuse of intermediate computations; they are thus efficient
  when many DFT frequency samples are needed.
  The simplest power-of-two FFTs are the decimation-in-time radix-2 FFT
  and the decimation-in-frequency radix-2 FFT; they reduce the
  length-
	N=2M
      
  DFT to a series of length-2 DFT computations with  twiddle-factor complex multiplications
  between them.
  The radix-4 FFT algorithm
  similarly reduces a length-
	N=4M
      
  DFT to a series of length-4 DFT computations with twiddle-factor multiplies
  in between.
  Radix-4 FFTs require only 75% as many complex multiplications as the radix-2
  algorithms, although the number of complex additions remains the same.
  Radix-8 and higher-radix FFT algorithms can be derived using
  multi-dimensional index maps to reduce the
  computational complexity a bit more.
  However, the split-radix algorithm and its recent extensions combine
  the best elements of the radix-2 and radix-4 algorithms to obtain lower
  complexity than either or than any higher radix, requiring only two-thirds
  as many complex multiplies as the radix-2 algorithms.
  All of these algorithms obtain huge savings over direct computation of the DFT, reducing the complexity from 

   O(N2) 
 
to

   O(NlogN) 
 .
 The efficiency of an FFT implementation depends on more than just the
      number of computations.
      Efficient FFT programming tricks can make
      up to a several-fold difference in the run-time of FFT programs.
      Alternate FFT structures can lead to
      a more convenient data flow for certain hardware.
      As discussed in choosing the best FFT algorithm,
      certain hardware is designed for, and thus most efficient for, FFTs of specific lengths or radices.

    

Radix-2 Algorithms



Decimation-in-time (DIT) Radix-2 FFT*



 The radix-2 decimation-in-time and decimation-in-frequency fast Fourier transforms
(FFTs) are the simplest FFT algorithms.
Like all FFTs, they gain their speed by reusing the results of smaller,
intermediate computations to compute multiple DFT frequency outputs.
    
Decimation in time



 
The radix-2 decimation-in-time algorithm rearranges the
discrete Fourier transform (DFT) equation
into two parts: a sum over the even-numbered discrete-time indices

  n=[0, 2, 4, …, N−2]

and a sum over the odd-numbered indices

  n=[1, 3, 5, …, N−1]

as in Equation 3.2:
(3.2)

 The mathematical simplifications in
Equation 3.2
reveal that all DFT frequency outputs

  X(k)

can be computed as the sum of the outputs of two
length-
DFTs, of the even-indexed and odd-indexed discrete-time samples, respectively,
where the odd-indexed short DFT is multiplied by a so-called  twiddle factor
term
.
This is called a  decimation in time because the
time samples are rearranged in alternating groups,
and a  radix-2 algorithm because there
are two groups.
Figure 3.27 graphically illustrates this form of the DFT computation,
where for convenience the frequency outputs of the length-
DFT of the even-indexed time samples are denoted

  G(k)

and those of the odd-indexed samples as

  H(k)
.
Because of the periodicity with

frequency samples of these
length-
DFTs,

  G(k)

and

  H(k)

can be used to compute two of the
length-N DFT frequencies,
namely

  X(k)

and
,
but with a different twiddle factor.
This reuse of these short-length DFT outputs
gives the FFT its computational savings.
 [image: ]

Figure 3.27. 
Decimation in time of a length-N DFT
          into two length-
          DFTs followed by a combining stage.
        

 Whereas direct computation of all N DFT frequencies
according to the DFT equation would require

  N2

complex multiplies and

  N2−N

complex additions (for complex-valued data),
by reusing the results of the two short-length DFTs
as illustrated in Figure 3.27,
the computational cost is now
 New Operation Counts
	
	
	complex multiplies
      

	
	
        complex additions
      



 This simple reorganization and reuse has reduced the total computation
      by almost a factor of two over direct DFT computation!
    

Additional Simplification



 A basic  butterfly operation is shown in Figure 3.28,
	which requires only
	
	  twiddle-factor multiplies per  stage.
      It is worthwhile to note that, after merging the twiddle factors to a single term on the lower branch,
      the remaining butterfly is actually a length-2 DFT!
      The theory of multi-dimensional index maps
      shows that this must be the case, and that FFTs of any factorable
      length may consist of successive stages of shorter-length FFTs
      with twiddle-factor multiplications in between.
	  [image: Additional Simplification](a)

	  [image: Additional Simplification](b)



Figure 3.28. 

	    Radix-2 DIT butterfly simplification: both operations produce the same outputs
	  


Radix-2 decimation-in-time FFT



 The same radix-2 decimation in time can be applied recursively to the two length
	 DFTs to save computation.  When successively applied until
        the shorter and shorter DFTs reach length-2, the result is the radix-2 DIT FFT algorithm.
	
 [image: Radix-2 decimation-in-time FFT]
Figure 3.29. 
Radix-2 Decimation-in-Time FFT algorithm for a length-8 signal


      
 The full radix-2 decimation-in-time decomposition illustrated in Figure 3.29 using the simplified butterflies
involves
	  
	    M=log2N
	  
          stages, each with
	  
          butterflies per stage.
          Each butterfly requires
          1
	  complex multiply and
          2
	  adds per butterfly.
The total cost of the algorithm is thus
 Computational cost of radix-2 DIT FFT
	
	   complex multiplies
	

	
	  
	    Nlog2N
	   complex adds
	



 This is a remarkable savings over direct computation of the DFT.
For example, a length-1024 DFT would require 1048576
complex multiplications and 1047552 complex additions
with direct computation, but only 5120 complex multiplications and 10240 complex
additions using the radix-2 FFT, a savings by a factor of 100 or more.
The relative savings increase with longer FFT lengths, and are less for shorter lengths.
 Modest additional reductions in computation can be achieved by noting that certain twiddle factors,
        namely
	Using special butterflies for 
	
	  WN0
	,
	,
	,
	,
	,
        require no multiplications, or fewer real multiplies than other ones.
        By implementing special butterflies for these twiddle factors
        as discussed in FFT algorithm and programming tricks,
        the computational cost of the radix-2 decimation-in-time FFT can be reduced to
	
 	
	    
	      2Nlog2N−7N+12
	     real multiplies
	  

	
	    
	      3Nlog2N−3N+4
	     real additions
	  




      

In a decimation-in-time radix-2 FFT as illustrated in Figure 3.29,
the input is in  bit-reversed order (hence
      "decimation-in-time").
That is, if the time-sample index n
       is written as a binary number, the order is that
      binary number reversed.
The bit-reversal process is illustrated for a length-
  N=8

example below.
      


Example 3.3. N=8
Table 3.1. 	In-order index	In-order index in binary	Bit-reversed binary	Bit-reversed index
	0	000	000	0
	1	001	100	4
	2	010	010	2
	3	011	110	6
	4	100	001	1
	5	101	101	5
	6	110	011	3
	7	111	111	7




 It is important to note that, if the input signal data are placed in bit-reversed order
before beginning the FFT computations, the outputs of each butterfly throughout the
computation can be placed in the same memory locations from which the inputs were fetched,
resulting in an  in-place algorithm that requires no extra memory to perform
the FFT.
Most FFT implementations are in-place, and overwrite the input data with the intermediate
values and finally the output.

Example FFT Code



 The following function, written in the C programming language, implements a radix-2 decimation-in-time FFT.
It is designed for computing the DFT of complex-valued inputs to produce complex-valued outputs, with the real and
imaginary parts of each number stored in separate double-precision floating-point arrays.
It is an in-place algorithm, so the intermediate and final output values are stored in the same array as
the input data, which is overwritten.
After initializations, the program first bit-reverses the discrete-time samples, as is typical with a
decimation-in-time algorithm (but see alternate FFT structures for DIT
algorithms with other input orders), then computes the FFT in stages according to the above description.

 Ihis FFT program uses a standard three-loop structure
for the main FFT computation.
The outer loop steps through the stages (each column in Figure 3.29);
the middle loop steps through " flights" (butterflies with the same twiddle factor
from each short-length DFT at each stage),
and the inner loop steps through the individual butterflies.
This ordering minimizes the number of fetches or computations of the twiddle-factor values.
Since the bit-reverse of a bit-reversed index is the original index,
bit-reversal can be performed fairly simply by swapping pairs of data.


While of

   O(NlogN) 
 
 complexity and thus much faster than a direct DFT,
this simple program is optimized for clarity,
not for speed.
A speed-optimized program making use of additional
efficient FFT algorithm and programming tricks
will compute a DFT several times faster on most machines.


 
/**********************************************************/
/* fft.c                                                  */
/* (c) Douglas L. Jones                                   */
/* University of Illinois at Urbana-Champaign             */
/* January 19, 1992                                       */
/*                                                        */
/*   fft: in-place radix-2 DIT DFT of a complex input     */
/*                                                        */
/*   input:                                               */
/* n: length of FFT: must be a power of two               */
/* m: n = 2**m                                            */
/*   input/output                                         */
/* x: double array of length n with real part of data     */
/* y: double array of length n with imag part of data     */
/*                                                        */
/*   Permission to copy and use this program is granted   */
/*   under a Creative Commons "Attribution" license       */
/*   http://creativecommons.org/licenses/by/1.0/          */
/**********************************************************/
fft(n,m,x,y)
int n,m;
double x[],y[];
{
int i,j,k,n1,n2;
double c,s,e,a,t1,t2;        
         
  
j = 0; /* bit-reverse */
n2 = n/2;
for (i=1; i < n - 1; i++)
{
  n1 = n2;
  while ( j >= n1 )
   {
    j = j - n1;
    n1 = n1/2;
   }
  j = j + n1;
               
  if (i < j)
   {
    t1 = x[i];
    x[i] = x[j];
    x[j] = t1;
    t1 = y[i];
    y[i] = y[j];
    y[j] = t1;
   }
}
                                       
                                           
n1 = 0; /* FFT */
n2 = 1;
                                             
for (i=0; i < m; i++)
{
  n1 = n2;
  n2 = n2 + n2;
  e = -6.283185307179586/n2;
  a = 0.0;
                                             
  for (j=0; j < n1; j++)
   {
    c = cos(a);
    s = sin(a);
    a = a + e;
                                            
    for (k=j; k < n; k=k+n2)
     {
      t1 = c*x[k+n1] - s*y[k+n1];
      t2 = s*x[k+n1] + c*y[k+n1];
      x[k+n1] = x[k] - t1;
      y[k+n1] = y[k] - t2;
      x[k] = x[k] + t1;
      y[k] = y[k] + t2;
     }
   }
}
                                      
return;
}                          

	


Decimation-in-Frequency (DIF) Radix-2 FFT*



 The radix-2 decimation-in-frequency and decimation-in-time fast Fourier transforms
(FFTs) are the simplest FFT algorithms.
Like all FFTs, they compute the discrete Fourier transform (DFT)
     
()

where for notational convenience
.
FFT algorithms gain their speed by reusing the results of smaller,
intermediate computations to compute multiple DFT frequency outputs.

Decimation in frequency



 The radix-2 decimation-in-frequency algorithm rearranges the
discrete Fourier transform (DFT) equation
into two parts: computation of the even-numbered discrete-frequency indices

  X(k)

for

  k=[0, 2, 4, …, N−2]

(or

            X(2r)

as in Equation)
and computation of the odd-numbered indices

  k=[1, 3, 5, …, N−1]

(or

  X(2r+1)

as in Equation)

      
()

      
()


 The mathematical simplifications in
Equation and Equation
reveal that both the even-indexed and odd-indexed frequency outputs

  X(k)

can each be computed by a
length-
DFT.
The inputs to these DFTs are sums or differences of the first and second halves of the input signal,
respectively,
where the input to the short DFT producing the odd-indexed frequencies is multiplied by a so-called  twiddle factor
term
.
This is called a  decimation in frequency because the
frequency samples are computed separately in alternating groups,
and a  radix-2 algorithm because there
are two groups.
Figure 3.30 graphically illustrates this form of the DFT computation.
This conversion of the full DFT into a series of shorter DFTs with a simple
preprocessing step
gives the decimation-in-frequency FFT its computational savings.
      
 [image: Decimation in frequency]
Figure 3.30. 
Decimation in frequency of a length-N DFT
          into two length-
          DFTs preceded by a preprocessing stage.
        


    
 Whereas direct computation of all N DFT frequencies
according to the DFT equation would require

  N2

complex multiplies and

  N2−N

complex additions (for complex-valued data),
by breaking the computation into two short-length DFTs
with some preliminary combining of the data,
as illustrated in Figure 3.30,
the computational cost is now

 New Operation Counts
	
	
	complex multiplies
      

	
	
        complex additions
      




This simple manipulation has reduced the total computational cost of the DFT by almost a factor of two!
 The initial combining operations for both short-length DFTs involve parallel groups of two time samples,

  x(n)

and
.
One of these so-called
  butterfly operations is illustrated in Figure 3.31.
There are
	
butterflies per  stage, each requiring a complex addition and subtraction followed
by one  twiddle-factor multiplication by

 on the lower output branch.

	
 [image: New Operation Counts]
Figure 3.31. 
DIF butterfly: twiddle factor after length-2 DFT


          It is worthwhile to note that the initial add/subtract part of the
      DIF butterfly is actually a length-2 DFT!
      The theory of multi-dimensional index maps
      shows that this must be the case, and that FFTs of any factorable
      length may consist of successive stages of shorter-length FFTs
      with twiddle-factor multiplications in between.
      It is also worth noting that this butterfly differs from the
      decimation-in-time radix-2 butterfly
      in that the twiddle factor multiplication occurs after the combining.

Radix-2 decimation-in-frequency algorithm



 The same radix-2 decimation in frequency can be applied recursively to the two
length- DFTs to save additional computation.
        When successively applied until
        the shorter and shorter DFTs reach length-2, the result is the
        radix-2 decimation-in-frequency FFT algorithm.
 
        
 [image: Radix-2 decimation-in-frequency algorithm]
Figure 3.32. 
Radix-2 decimation-in-frequency FFT for a length-8 signal


    
 The full radix-2 decimation-in-frequency decomposition illustrated in Figure 3.32
requires
	  
	    M=log2N
	  
          stages, each with
	  
          butterflies per stage.
          Each butterfly requires
          1
	  complex multiply and
          2
	  adds per butterfly.
The total cost of the algorithm is thus

 Computational cost of radix-2 DIF FFT
	
	   complex multiplies
	

	
	  
	    Nlog2N
	   complex adds
	





 This is a remarkable savings over direct computation of the DFT.
For example, a length-1024 DFT would require 1048576
complex multiplications and 1047552 complex additions
with direct computation, but only 5120 complex multiplications and 10240 complex
additions using the radix-2 FFT, a savings by a factor of 100 or more.
The relative savings increase with longer FFT lengths, and are less for shorter lengths.
Modest additional reductions in computation can be achieved by noting that certain twiddle factors,
namely
	
	  WN0
	,
	,
	,
	,
	,
        require no multiplications, or fewer real multiplies than other ones.
        By implementing special butterflies for these twiddle factors
        as discussed in FFT algorithm and programming tricks,
        the computational cost of the radix-2 decimation-in-frequency FFT can be reduced to
	
 	
	    
	      2Nlog2N−7N+12
	     real multiplies
	  

	
	    
	      3Nlog2N−3N+4
	     real additions
	  





The decimation-in-frequency FFT is a flow-graph
reversal of the decimation-in-time FFT:
it has the same twiddle factors (in reverse pattern) and the same operation counts.

In a decimation-in-frequency radix-2 FFT as illustrated in Figure 3.32,
the output is in  bit-reversed order (hence
      "decimation-in-frequency").
That is, if the frequency-sample index n
       is written as a binary number, the order is that
      binary number reversed.
The bit-reversal process is illustrated here.


 It is important to note that, if the input data are in order
before beginning the FFT computations, the outputs of each butterfly throughout the
computation can be placed in the same memory locations from which the inputs were fetched,
resulting in an  in-place algorithm that requires no extra memory to perform
the FFT.
Most FFT implementations are in-place, and overwrite the input data with the intermediate
values and finally the output.


Alternate FFT Structures*



 Bit-reversing the input in decimation-in-time (DIT) FFTs or the output in
       decimation-in-frequency (DIF)
       FFTs can sometimes be inconvenient or inefficient.
       For such situations, alternate FFT structures have been developed.
       Such structures involve the same mathematical computations as the
       standard algorithms, but alter the memory locations in which
       intermediate values are stored or the order of computation of the
       FFT butterflies.
    
 The structure in Figure 3.33 computes a
       decimation-in-frequency FFT,
       but remaps the memory usage so that the input
       is bit-reversed,
       and the output is in-order as in the conventional
       decimation-in-time FFT.
       This alternate structure is still considered a DIF FFT because
       the twiddle factors are applied as in the DIF FFT.
       This structure is useful if for some reason the DIF
       butterfly is preferred but it is easier to bit-reverse
       the input.
    
 [image: Figure (image1.png)]

Figure 3.33. 
Decimation-in-frequency radix-2   FFT with bit-reversed
	input.
        This is an in-place algorithm
        in which the same memory can be reused throughout the computation.

 
         There is a similar structure for the
         decimation-in-time FFT with
         in-order inputs and bit-reversed frequencies.
         This structure can be useful for
         fast convolution on machines
         that favor decimation-in-time algorithms because the
         filter can be stored in bit-reverse order, and then the inverse FFT
         returns an in-order result without ever bit-reversing any data.
         As discussed in Efficient FFT Programming Tricks,
         this may save several percent of the execution time.
    
 The structure in Figure 3.34 implements a
    decimation-in-frequency FFT
    that has both input and output in order.
    It thus avoids the need for bit-reversing altogether.
    Unfortunately, it destroys the in-place structure somewhat,
    making an FFT program more complicated and requiring more memory;
    on most machines the resulting cost exceeds the benefits.
    This structure can be computed in place if two
    butterflies are computed simultaneously.
 [image: Figure (image2.png)]

Figure 3.34. 
Decimation-in-frequency radix-2 FFT with in-order input and output. It can be computed in-place
	if two butterflies are computed simultaneously.

 The structure in Figure 3.35 has a constant
    geometry; the connections between memory locations are identical in each
    FFT stage.
    Since it is not in-place and requires bit-reversal, it is inconvenient for
    software implementation, but can be attractive for a highly parallel
    hardware implementation because the connections between stages can be
    hardwired.
    An analogous structure exists that has bit-reversed inputs and in-order
    outputs.
 [image: Figure (image3.png)]

Figure 3.35. 
This constant-geometry structure has the same interconnect
        pattern from stage to stage.
        This structure is sometimes useful for special hardware.



Radix-4 FFT Algorithms*



 The radix-4 decimation-in-time and decimation-in-frequency fast Fourier transforms
(FFTs) gain their speed by reusing the results of smaller,
intermediate computations to compute multiple DFT frequency outputs.
The radix-4 decimation-in-time algorithm rearranges the discrete Fourier transform (DFT) equation
into four parts: sums over all groups of every fourth discrete-time index

  n=[0, 4, 8, …, N−4]
,

  n=[1, 5, 9, …, N−3]
,

  n=[2, 6, 10, …, N−2]

and

  n=[3, 7, 11, …, N−1]

as in Equation.
(This works out only when the FFT length is a multiple of four.)
Just as in the radix-2 decimation-in-time FFT,
further mathematical manipulation shows that the length-N DFT
can be computed as the sum of the outputs of four
length-
DFTs, of the even-indexed and odd-indexed discrete-time samples, respectively,
where three of them are multiplied by so-called  twiddle factors
,
,
and
.

 
()

      
    
 This is called a  decimation in time because the
time samples are rearranged in alternating groups,
and a  radix-4 algorithm because there
are four groups.
Figure 3.36 graphically illustrates this form of the DFT computation.

 [image: Radix-4 DIT structure (image3.png)]

Figure 3.36. Radix-4 DIT structure
Decimation in time of a length-N DFT
          into four length-
          DFTs followed by a combining stage.
        

 Due to the periodicity with
	
of the short-length DFTs,
their outputs for frequency-sample k
are reused to compute

  X(k)
,
,
,
and
.
It is this reuse that gives the radix-4 FFT its efficiency.
The computations involved with each group of four frequency samples
constitute the  radix-4 butterfly, which is shown in
Figure 3.37.
	Through further rearrangement, it can be shown that this
      computation can be simplified to three twiddle-factor multiplies and a length-4 DFT!
      The theory of multi-dimensional index maps
      shows that this must be the case, and that FFTs of any factorable
      length may consist of successive stages of shorter-length FFTs
      with twiddle-factor multiplications in between.
      The length-4 DFT requires no multiplies and only eight complex additions
      (this efficient computation can be derived using a radix-2 FFT).
    
	  [image: Subfigure (a) (imageX.png)](a)

	  [image: Subfigure (b) (image1.png)](b)



Figure 3.37. 

	  The radix-4 DIT butterfly can be simplified to a length-4 DFT preceded
          by three twiddle-factor multiplies.
	

 If the FFT length
      
	N=4M
      ,
      the shorter-length DFTs can be further decomposed recursively in the same manner
      to produce the full  radix-4 decimation-in-time FFT.
      As in the radix-2 decimation-in-time FFT, each
      stage of decomposition creates additional savings in computation.
      To determine the total computational cost of the radix-4 FFT, note that
      there are
	
       stages, each with
	
        butterflies per stage.
        Each radix-4 butterfly requires 3
	complex multiplies and 8 complex
	additions.
        The total cost is then
 Radix-4 FFT Operation Counts
	
	 complex multiplies (75% of a radix-2 FFT)
      

	
	 complex adds (same as a radix-2 FFT)
      



 The radix-4 FFT requires only 75% as many complex multiplies as the radix-2 FFTs,
although it uses the same number of complex additions.
These additional savings make it a widely-used FFT algorithm.
 The decimation-in-time operation regroups the input samples at each successive
stage of decomposition, resulting in a "digit-reversed" input order.
That is, if the time-sample index n
       is written as a base-4 number, the order is that
      base-4 number reversed.
The digit-reversal process is illustrated for a length-
  N=64

example below.
Example 3.4. N = 64 = 4^3
      
Table 3.2. 	Original Number	Original Digit Order	Reversed Digit Order	Digit-Reversed Number
	0	000	000	0
	1	001	100	16
	2	002	200	32
	3	003	300	48
	4	010	010	4
	5	011	110	20
	⋮	⋮	⋮	⋮




 It is important to note that, if the input signal data are placed in digit-reversed order
before beginning the FFT computations, the outputs of each butterfly throughout the
computation can be placed in the same memory locations from which the inputs were fetched,
resulting in an  in-place algorithm that requires no extra memory to perform
the FFT.
Most FFT implementations are in-place, and overwrite the input data with the intermediate
values and finally the output.
A slight rearrangement within the radix-4 FFT introduced by Burrus [link] allows
the inputs to be arranged in bit-reversed rather than digit-reversed order.
 A radix-4 decimation-in-frequency FFT can be derived
similarly to the radix-2 DIF FFT,
by separately computing all four groups of every fourth output
frequency sample.
The DIF radix-4 FFT is a flow-graph reversal of the DIT radix-4 FFT, with the same
operation counts and twiddle factors in the reversed order.
The output ends up in digit-reversed order for an in-place DIF algorithm.
Exercise 5.
 
	 
	  How do we derive a radix-4 algorithm when
	  
	    N=4M2
	  ?
	

      


          Perform a radix-2 decomposition for one stage, then radix-4 decompositions of all
          subsequent shorter-length DFTs.
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Split-radix FFT Algorithms*



 The split-radix algorithm, first clearly described and named by Duhamel and Hollman [link]
in 1984, required fewer total multiply and add operations
    operations than any previous power-of-two algorithm.
    (Yavne [link] first derived essentially the same algorithm in 1968,
    but the description was so atypical that the work was largely neglected.)
    For a time many FFT experts thought it to be optimal in terms of total complexity,
    but even more efficient variations have more recently been discovered by
    Johnson and Frigo [link].
    
 The split-radix algorithm can be derived by careful examination of the radix-2 and radix-4 flowgraphs as in Figure 1 below.  While in most places the radix-4 algorithm has fewer nontrivial twiddle factors, in some places the radix-2 actually lacks twiddle factors present in the radix-4 structure or those twiddle factors simplify to multiplication by

  –ⅈ
,
which actually requires only additions.  By mixing radix-2 and radix-4 computations appropriately, an algorithm of lower complexity than either can be derived.
	 <db:title>radix-2</db:title> [image: radix-2 (image1.png)](a)

	 <db:title>radix-4</db:title> [image: radix-4 (image2.png)](b)



Figure 3.38. Motivation for split-radix algorithm
See Decimation-in-Time (DIT) Radix-2 FFT and Radix-4 FFT Algorithms for more information on these algorithms.
      

 An alternative derivation notes that radix-2 butterflies of the form shown in Figure 2 can merge twiddle factors from two successive stages to eliminate one-third of them; hence, the split-radix algorithm requires only about two-thirds as many multiplications as a radix-2 FFT.
	  [image: Subfigure (a) (image3.png)](a)

	  [image: Subfigure (b) (image4.png)](b)



Figure 3.39. 
Note that these two butterflies are equivalent

 The split-radix algorithm can also be derived by mixing the radix-2 and
      radix-4 decompositions.
    
(3.3)DIT Split-radix derivation


 Figure 3 illustrates the resulting split-radix butterfly.
 [image: Decimation-in-Time Split-Radix Butterfly (image5.png)]

Figure 3.40. Decimation-in-Time Split-Radix Butterfly
The split-radix butterfly mixes radix-2 and radix-4 decompositions and is L-shaped

 Further decomposition of the half- and quarter-length DFTs yields the full split-radix algorithm.  The mix of different-length FFTs in different parts of the flowgraph results in a somewhat irregular algorithm; Sorensen et al. [link] show how to adjust the computation such that the data retains the simpler radix-2 bit-reverse order.
A decimation-in-frequency split-radix FFT can be derived analogously.
 [image: Figure (image6.png)]

Figure 3.41. 
The split-radix transform has L-shaped butterflies

 The multiplicative complexity of the split-radix algorithm is only about two-thirds that of the radix-2 FFT, and is better than the radix-4 FFT or any higher power-of-two radix as well.  The additions within the complex twiddle-factor multiplies are similarly reduced, but since the underlying butterfly tree remains the same in all power-of-two algorithms, the butterfly additions remain the same and the overall reduction in additions is much less.
Table 3.3. Operation Counts	 	Complex M/As	Real M/As (4/2)	Real M/As (3/3)
	Multiplies	
	      
	    	
	      
	    	
	      
		Nlog2N−3N+4
	      
	    
	Additions	
	      
		O[Nlog2N]
	      
	    	
	      
	    	
	      
		3Nlog2N−3N+4
	      
	    


 Comments
	
	The split-radix algorithm has a somewhat irregular structure.  Successful
	progams have been written (Sorensen [link]) for uni-processor machines,
	but it may be difficult to efficiently code the split-radix algorithm
        for vector or multi-processor machines.
      

	
	G. Bruun's algorithm [link] requires only
	
	    N−2
	
        more operations than the split-radix algorithm and has a regular structure,
        so it might be better for multi-processor or special-purpose hardware.
      

	
        The execution time of FFT programs generally depends more on compiler- or hardware-friendly
        software design than on the exact computational complexity.
        See Efficient FFT Algorithm and Programming Tricks
        for further pointers and links to good code.
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Efficient FFT Algorithm and Programming Tricks*



 The use of FFT algorithms such as the
radix-2 decimation-in-time or
decimation-in-frequency methods
result in tremendous savings in computations when computing the
discrete Fourier transform.
While most of the speed-up of FFTs comes from this,
careful implementation can provide additional savings ranging
from a few percent to several-fold increases in program speed.
Precompute twiddle factors



 The twiddle factor, or
,
 terms
        that multiply the intermediate data in the FFT algorithms consist of cosines and sines
        that each take the equivalent of several multiplies to compute.
        However, at most N unique
        twiddle factors can appear in any FFT or DFT algorithm.
        (For example, in the radix-2 decimation-in-time FFT,
        only
        
        twiddle factors
	
        are used.)
        These twiddle factors can be precomputed once and stored
        in an array in computer memory, and accessed in the FFT
        algorithm by  table lookup.
        This simple technique yields very substantial savings and
        is almost always used in practice.

Compiler-friendly programming



 On most computers, only some of the total computation time
        of an FFT is spent performing the FFT butterfly computations;
        determining indices, loading and storing data, computing
        loop parameters and other operations consume the majority
        of cycles.
        Careful programming that allows the compiler to generate
        efficient code can make a several-fold improvement in the
        run-time of an FFT.
        The best choice of radix in terms of program speed may depend more on characteristics
        of the hardware (such as the number of CPU registers) or
        compiler than on the exact number of computations.
        Very often the manufacturer's library codes are carefully
        crafted by experts who know intimately both the hardware
        and compiler architecture and how to get the most performance
        out of them, so use of well-written FFT libraries is
        generally recommended.
        Certain freely available programs and libraries are also
        very good.
        Perhaps the best current general-purpose library is the
        FFTW package;
        information can be found at
        http://www.fftw.org.
        A paper by Frigo and Johnson [link] describes many of the key issues in developing
        compiler-friendly code.
       

Program in assembly language



 While compilers continue to improve, FFT programs written directly
in the assembly language of a specific machine are often
several times faster than the best compiled code.
This is particularly true for DSP microprocessors, which have
special instructions for accelerating FFTs that compilers don't use.
(I have myself seen differences of up to 26 to 1 in favor of assembly!)
Very often, FFTs in the manufacturer's or high-performance third-party libraries
are hand-coded in assembly.
For DSP microprocessors, the codes developed by
Meyer, Schuessler, and Schwarz [link]
are perhaps the best ever developed;
while the particular processors are now obsolete, the techniques
remain equally relevant today.
Most DSP processors provide special instructions and a
hardware design favoring the radix-2 decimation-in-time algorithm,
which is thus generally fastest on these machines.

Special hardware



 Some processors have special hardware accelerators or co-processors
      specifically designed to accelerate FFT computations.
      For example, AMI Semiconductor's Toccata ultra-low-power DSP microprocessor family,
      which is widely used in digital hearing aids, have on-chip FFT accelerators; it is always faster and more power-efficient to use such accelerators and whatever radix they prefer.
 In a surprising number of applications, almost all of the computations
     are FFTs.
     A number of special-purpose chips are designed to specifically
     compute FFTs, and are used in specialized high-performance
     applications such as radar systems.
     Other systems, such as OFDM-based
     communications receivers, have special FFT hardware built
     into the digital receiver circuit.
     Such hardware can run many times faster, with much less power
     consumption, than FFT programs on general-purpose processors.

Effective memory management



 Cache misses or excessive data movement between registers and memory
        can greatly slow down an FFT computation.
        Efficient programs such as the FFTW package
        are carefully designed to minimize these inefficiences.
        In-place algorithms reuse the data
        memory throughout the transform, which can reduce cache misses for
        longer lengths.
      

Real-valued FFTs



 FFTs of real-valued signals require only half as many computations as with complex-valued data.
    There are several methods for reducing the computation,
    which are described in more detail in
        Sorensen et al. [link]
    
 	Use DFT symmetry properties to do two real-valued DFTs at once with one FFT program

	Perform one stage of the radix-2 decimation-in-time decomposition
        and compute the two length-
         DFTs using the above approach.
      

	Use a direct  real-valued FFT algorithm; see H.V. Sorensen
      et.al. [link]
      




      

Special cases



 Occasionally only certain DFT frequencies are needed,
        the input signal values are mostly zero, the signal
        is real-valued (as discussed above), or other special
        conditions exist for which faster algorithms can be
        developed.
        Sorensen and Burrus [link]
        describe slightly faster algorithms for pruned
        or zero-padded data.
        Goertzel's algorithm is useful
        when only a few DFT outputs are needed.
        The running FFT can be faster
        when DFTs of highly overlapped blocks of data are needed,
        as in a spectrogram.


Higher-radix algorithms



 Higher-radix algorithms, such as the radix-4, radix-8, or split-radix FFTs,
        require fewer computations and can produce modest but worthwhile savings.
        Even the split-radix FFT
        reduces the multiplications by only 33% and the additions
        by a much lesser amount relative to the radix-2 FFTs;
        significant improvements in program speed are often
        due to implicit loop-unrolling or other compiler benefits
        than from the computational reduction itself!
      

Fast bit-reversal



 Bit-reversing the input
        or output data can consume several percent of the total
        run-time of an FFT program.
        Several fast bit-reversal algorithms have been developed
        that can reduce this to two percent or less, including
        the method published by D.M.W. Evans [link].
      

Trade additions for multiplications



 When FFTs first became widely used, hardware multipliers
        were relatively rare on digital computers, and multiplications
        generally required many more cycles than additions.
        Methods to reduce multiplications, even at the expense
        of a substantial increase in additions, were often beneficial.
        The prime factor algorithms
        and the Winograd Fourier transform algorithms,
        which required fewer multiplies and considerably more additions
        than the power-of-two-length algorithms,
        were developed during this period.
        Current processors generally have high-speed pipelined
        hardware multipliers, so trading multiplies for additions
        is often no longer beneficial.
        In particular, most machines now support single-cycle
        multiply-accumulate (MAC) operations, so balancing the
        number of multiplies and adds and combining them into
        single-cycle MACs generally results in the fastest code.
        Thus, the prime-factor and Winograd FFTs are rarely used
        today unless the application requires FFTs of a specific length.
      
 It is possible to implement a complex multiply with
	3 real multiplies and 5 real adds rather than the usual
        4 real multiplies and 2 real adds:
	
	  (C+ⅈS)(X+ⅈY)=CX−SY+ⅈ(CY+SX)
	
	but alernatively
	
	  Z=C(X−Y)
	
	
	  D=C+S
	
	
	  E=C−S
	

	
	  CX−SY=EY+Z
	
	
	  CY+SX=DX−Z
	
              In an FFT,
	D and
	E 
        come entirely from the twiddle factors,
        so they can be precomputed and stored in a look-up table.
        This reduces the cost of the complex twiddle-factor multiply
        to 3 real multiplies and 3 real adds, or one less and one more,
        respectively, than the conventional 4/2 computation.

Special butterflies



 Certain twiddle factors,
        namely
	
        WN0=1
	,
	,
	,
	,
	, etc., can be implemented
with no additional operations, or with fewer real operations than
a general complex multiply.
Programs that specially implement such butterflies in the most
efficient manner throughout the algorithm can reduce the
computational cost by up to several N
multiplies and additions in a length-N
FFT.
      

Practical Perspective



 When optimizing FFTs for speed, it can be important to maintain
perspective on the benefits that can be expected from
any given optimization.
The following list categorizes the various techniques by potential
benefit;
these will be somewhat situation- and machine-dependent, but clearly
one should begin with the most significant and put the most effort
where the pay-off is likely to be largest.
 Methods to speed up computation of DFTs
	Tremendous Savings: 
        
 	
	  FFT 
	  ( savings)
          




	

	Substantial Savings: 
	  (
	    ≥2
	  )
	  
 	Table lookup of cosine/sine

	Compiler tricks/good programming

	Assembly-language programming

	Special-purpose hardware

	Real-data FFT for real data (factor of 2)

	Special cases




	

	Minor Savings: 
	  
	  
 	radix-4, split-radix (-10% - +30%)

	special butterflies

	
	      3-real-multiplication complex multiply
	    

	Fast bit-reversal (up to 6%)




	




Fact
On general-purpose machines, computation is only part
      of the total run time.  Address generation, indexing, data
      shuffling, and memory access take up much or most of the cycles.
    


Fact
A well-written radix-2 program will run much faster than a poorly written
      split-radix program!
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3.4. Fast Convolution*



Fast Circular Convolution



 
	Since, 
	
	
	 
	  y(n)  
	 
	can be computed as 
	 
	  y(n)=IDFT[DFT[x(n)]DFT[h(n)]]
	
	

	
 Cost
	 
 Direct
	
		  N2
		 complex multiplies. 
	      

	
		  N(N−1)
		 complex adds.
	      




	  

	 Via FFTs
	3 FFTs + N multipies.

	 complex multiplies.

	
		  3(Nlog2N)
		 complex adds.







	If H(k)
	 can be precomputed, cost is only 2 FFts +
	N multiplies.
      

Fast Linear Convolution



 
	DFT produces cicular convolution. For linear convolution, we
	must zero-pad sequences so that circular wrap-around always
	wraps over zeros.  
 [image: Figure (figure6.png)]

Figure 3.42. 

 
	To achieve linear convolution using fast circular convolution,
	we must use zero-padded DFTs of length
	
	  N≥L+M−1
	 
      
 [image: Figure (Figure7.png)]

Figure 3.43. 

 
	Choose shortest convenient 
	
	  N
	
	(usually smallest power-of-two greater than or equal to 
	
	  L+M−1
	  
	)

	
	  y(n)=IDFTN[DFTN[x(n)]DFTN[h(n)]]
	
	

There is some inefficiency when compared to circular convolution due to longer zero-padded DFTs. Still, 
	  
	  savings over direct computation.



      

Running Convolution



  Suppose 
	
	  L=∞
	, as in a real time filter application, or 

	
	  (L  ≫  M)
	. There are efficient block methods for computing fast convolution.
      
Overlap-Save (OLS) Method



 
	  Note that if a length-M filter
	  
	    h(n)
	  
	  is circularly convulved with a
	  length-N segment of a signal
	  
	    x(n)
	  ,
	  
	  
 [image: Figure (figure4.png)]
Figure 3.44. 


	  
	  the first 
	  
	    M−1
	  
	  samples are wrapped around and thus is
	  incorrect. However, for
	  
	    M−1≤n≤N−1 ,the convolution is linear
	  convolution, so these samples are correct. Thus
	  
	    N−M+1
	   good outputs are produced for each
	  length-N circular convolution.
	
 
	  The Overlap-Save Method: Break long signal into successive
	  blocks of
	  
	    N  
	  
	  samples, each block overlapping the previous block by 
	  
	    M−1
	   samples. Perform circular convolution of each
	  block with filter
	  
	    h(m)
	  . Discard first 
	  
	    M−1
	  
	  points in each output block, and concatenate the remaining
	  points to create 
	    y(n)
	  .   
	  
	  
 [image: Figure (Figure1.png)]
Figure 3.45. 


	
 
	  Computation cost for a length-N equals

	  
	    2n
	   FFT per output sample is (assuming precomputed
	  
	    H(k)
	  ) 2 FFTs and N multiplies

	   

	   
	
 
	  Compare to  
	  
	    M
	   mults, 

	  
	    M−1
	   adds per output point for direct method. For a given
	  
	    M
	  , optimal 
	  
	    N
	   can be determined by finding 
	  
	    N
	   minimizing operation counts. Usualy, optimal 
	  
	    N
	   is 

	  
	    4M≤Nopt≤8M
	  .
	

Overlap-Add (OLA) Method



 
	  Zero-pad length-L blocks by 
	  
	    M−1
	   samples.
	  
 [image: Figure (figure5.png)]
Figure 3.46. 



	
 
	  Add successive blocks, overlapped by 
	  
	    M−1
	   samples, so that the tails sum to produce the
	  complete linear convolution.
	  
 [image: Figure (Figure2.png)]
Figure 3.47. 


	  Computational Cost: Two length 
	  
	    N=L+M−1
	   FFTs and
	  
	    M
	    mults and
	  
	    M−1
	   adds per 
	  
	    L
	   output points; essentially the sames as OLS method.

	



3.5. Chirp-z Transform*



 
      Let
      
	zk=AW–k
      , where

      
	A=Aoⅇⅈθo
      , 
      
	W=Woⅇ–(ⅈφo)
      .

    
 
      We wish to compute M samples, 
      
	k=[0, 1, 2, …, M−1]
      
      of

      

      
 [image: Figure (figure3.png)]
Figure 3.48. 

 

    
 
      Note that 
      , So

      


      


    
 
      Thus, 
      
	X(zk)
      
      can be compared by
      
 	 Premultiply 
	  
	    x(n) 
	   by 

	  , 

	  
	    n=[ 0 ,  1,  …, N−1]
	   to make

	  
	    y(n) 
	  
	  
	

	 Linearly convolve with 
	  
	  
	

	 Post multiply by to get 
	   to get 
	  
	    X(zk)
	  .
	




    
 
      1. and 3. require N
      and M operations respectively.
      2. can be performed efficiently
      using fast convolution.

      
 [image: Figure (figure8.png)]
Figure 3.49. 


    
 
       
      is required only for
      
	–((N−1))≤n≤M−1 
      , so this linear convolution can be implemented with 
      
	L≥N+M−1 
       FFTs.

      


	Wrap 
	 around L
	when implementing with circular convolution.
      



      So, a weird-length DFT can be implemented relatively efficiently
      using power-of-two algorithms via the chirp-z transform.
    
 
      Also useful for "zoom-FFTs".
    

3.6. FFTs of prime length and Rader's conversion*



 The power-of-two FFT algorithms, such as the radix-2
and radix-4 FFTs, and the common-factor
and prime-factor FFTs, achieve great reductions in computational complexity
of the DFT when the length, N,
is a composite number.
DFTs of prime length are sometimes needed, however, particularly for the short-length DFTs in
common-factor or prime-factor algorithms.
The methods described here, along with the composite-length algorithms, allow fast computation
of DFTs of any length.
 There are two main ways of performing DFTs of prime length:
	
 	Rader's conversion, which is most efficient, and the

	Chirp-z transform, which is simpler and more general.




Oddly enough, both work by turning prime-length DFTs into convolution!
The resulting convolutions can then be computed efficiently by either
	
 	fast convolution via composite-length FFTs (simpler) or by

	Winograd techniques (more efficient)



Rader's Conversion



  Rader's conversion is a one-dimensional index-mapping scheme that turns a
	length-N DFT
	(N prime) into a
	length-(
	
	  N−1
	) convolution and a few additions.
        Rader's conversion works only for prime-length N.
      
 An  index map simply rearranges the order of the sum operation in the
        DFT definition.
        Because addition is a commutative operation, the same mathematical result is produced
        from any order, as long as all of the same terms are added once and only once.  (This is
        the condition that defines an index map.)
	Unlike the multi-dimensional index maps used in deriving
        common factor and prime-factor FFTs,
        Rader's conversion uses a one-dimensional index map in a finite group of
        N integers:
	
	  k=(rm)modN
	
      
Fact from number theory



 
	  If N is prime, there exists an
	  integer "r" called a
	   primitive root, such that the index map
	  
	    k=(rm)modN
	  , 
	  
	    m=[0, 1, 2, …, N−2]
	  , uniquely generates all elements 
	  
	    k=[1, 2, 3, …, N−1]
	  
	
Example 3.5. 
 
	    
	      N=5
	    , 
	    
	      r=2
	    
	    
	      (20)mod5=1
	    
	    
	      (21)mod5=2
	     
	    
	      (22)mod5=4
	    
	    
	      (23)mod5=3
	    
	  



Another fact from number theory



 
	  For N prime, the inverse of
	  r (i.e.
	  
	    (r-1r)modN=1
	   is also a primitive root (call it
	  
	    r-1
	  ).
	
Example 3.6. 
 
	      N=5
	    ,
	    
	      r=2
	    
	    
	      r-1=3
	    
	    
	      (2×3)mod5=1
	    
	    
	      (30)mod5=1
	    
	    
	      (31)mod5=3
	    
	    
	      (32)mod5=4
	    
	    
	      (33)mod5=2
	    
	  


 So why do we care?  Because we can use these facts to turn a
	  DFT into a convolution!
	

Rader's Conversion



 Let
	  
	    n=(r–m)modN  ,  
		m=[0, 1, …, N−2]∧n∈[1, 2, …, N−1]
	        
	  ,
	  
	    k=(rp)modN  ,  
		p=[0, 1, …, N−2]∧k∈[1, 2, …, N−1]
	        
	  
	  
          where for convenience

        in the DFT equation.
	  For
	  
	    k≠0
	  
	  
()

	  where 
	  
	    l=[0, 1, …, N−2]
	    
	
Example 3.7. 
 
	      N=5
	    ,
	    
	      r=2
	    ,
	    
	      r-1=3
	    
	    
	    
            where for visibility the matrix entries represent only the power, m of the corresponding
            DFT term
    
      WNm
    
	    Note that the 4-by-4 circulant matrix
	    
            corresponds to a length-4 circular convolution.
	  


 Rader's conversion turns a prime-length DFT into a few adds
	  and a composite-length
	  (
	    N−1
	  ) circular convolution, which can be computed
	  efficiently using either
	  
 	fast convolution via FFT and IFFT

	index-mapped convolution algorithms and short
	    Winograd convolution alogrithms. (Rather complicated, and trades fewer multiplies
            for many more adds, which may not be worthwile on most modern processors.) See R.C. Agarwal and J.W. Cooley [link]




	


Winograd minimum-multiply convolution and DFT algorithms



 S. Winograd has proved that a
	  length-N circular or linear
	  convolution or DFT requires less than
	  
	    2N
	   multiplies (for real data), or
	  
	    4N
	   real multiplies for complex data. (This doesn't
	  count multiplies by rational fractions, like
	  3 or
	   or 
	  , which can be computed with additions and one
	  overall scaling factor.) Furthermore, Winograd showed how to
	  construct algorithms achieving these counts. Winograd
	  prime-length DFTs and convolutions have the following
	  characteristics:
	  
 	Extremely efficient for small
	      N
	      (
		N<20
	      )
	    

	The number of adds becomes huge
	    for large N.
	    




	  Thus Winograd's minimum-multiply FFT's are useful only for
	  small N. They are
	  very important for Prime-Factor
	  Algorithms, which generally use Winograd modules to
	  implement the short-length DFTs.  Tables giving the
	  multiplies and adds necessary to compute Winograd FFTs for
	  various lengths can be found in C.S. Burrus (1988) [link]. Tables and FORTRAN
	  and TMS32010 programs for these short-length transforms can
	  be found in C.S. Burrus and
	  T.W. Parks (1985) [link]. The theory and derivation of these
	  algorithms is quite elegant but requires substantial
	  background in number theory and abstract algebra.
	  Fortunately for the practitioner, all of the short
	  algorithms one is likely to need have already been derived
	  and can simply be looked up without mastering the
	  details of their derivation.
      

Winograd Fourier Transform Algorithm (WFTA)



 
        The Winograd Fourier Transform Algorithm (WFTA) is
	a technique that recombines the short Winograd modules in a
	prime-factor FFT into a composite-N structure with
	fewer multiplies but more adds. While theoretically interesting,
        WFTAs are complicated and different for every length, and on modern
        processors with hardware multipliers the trade of multiplies for many
        more adds is very rarely useful in practice today.
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3.7. Choosing the Best FFT Algorithm*



Choosing an FFT length



 The most commonly used FFT algorithms by far are the
power-of-two-length FFT algorithms. 
The Prime Factor Algorithm (PFA) and Winograd Fourier Transform Algorithm (WFTA) require somewhat fewer multiplies, but the overall difference 
usually isn't sufficient to warrant the extra difficulty.
This is particularly true now that most processors have single-cycle pipelined hardware multipliers,
so the total operation count is more relevant.
As can be seen from the following table, for similar lengths the split-radix algorithm is comparable
in total operations to the Prime Factor Algorithm, and is considerably better than the WFTA, although the
PFA and WTFA require fewer multiplications and more additions.
Many processors now support single cycle multiply-accumulate (MAC) operations; in the power-of-two algorithms all multiplies can be combined with adds in MACs, so the number of additions is the most
relevant indicator of computational cost.


Table 3.4. Representative FFT Operation Counts	 	FFT length	Multiplies (real)	Adds(real)	Mults + Adds
	Radix 2	1024	10248	30728	40976
	Split Radix	1024	7172	27652	34824
	Prime Factor Alg	1008	5804	29100	34904
	Winograd FT Alg	1008	3548	34416	37964




The Winograd Fourier Transform Algorithm is particularly  difficult to program and is rarely used in practice. 
For applications in which the transform length is somewhat arbitrary (such
as fast convolution or general spectrum analysis), the length is usually chosen to be a power of two.
When a particular length is required (for example, in the USA each carrier has exactly 416 frequency channels in each band in the AMPS cellular telephone standard), a Prime Factor Algorithm for all the relatively prime 
terms is preferred, with a Common Factor Algorithm for other non-prime lengths.
Winograd's short-length modules 
should be used for the prime-length factors that are not powers of two.
The chirp z-transform offers a universal way to compute
any length DFT (for example, Matlab reportedly uses this method for lengths other than a power of two), at a few times higher cost than that of a CFA or PFA optimized for that specific length.
The chirp z-transform, along with Rader's conversion, assure us that algorithms of

   O(NlogN) 
  complexity
exist for any DFT length

 N
.


Selecting a power-of-two-length algorithm



 The choice of a power-of-two algorithm may not just depend on computational complexity.
The latest extensions of the split-radix algorithm offer the lowest known power-of-two FFT operation counts, but the 10%-30% difference may not make up for other factors such as regularity of structure or data flow, FFT programming tricks, or special hardware features.
For example, the decimation-in-time radix-2 FFT is the fastest FFT on Texas Instruments' TMS320C54x DSP microprocessors, because this processor family has special assembly-language instructions that accelerate this particular algorithm.
On other hardware, radix-4 algorithms may be more efficient.
Some devices, such as AMI Semiconductor's Toccata ultra-low-power DSP microprocessor family, have on-chip FFT accelerators; it is always faster and more power-efficient to use these accelerators and whatever radix they prefer.
For fast convolution, the decimation-in-frequency algorithms may be preferred because the bit-reversing can be bypassed; however, most DSP microprocessors provide zero-overhead bit-reversed indexing hardware and prefer decimation-in-time algorithms, so this may not be true for such machines.
Good, compiler- or hardware-friendly programming always matters more than modest differences in raw operation counts, so manufacturers' or good third-party FFT libraries are often the best choice.
The module FFT programming tricks references some good, free FFT software (including the FFTW package) that is carefully coded to be compiler-friendly; such codes are likely to be considerably faster than codes written by the casual programmer.

Multi-dimensional FFTs



 Multi-dimensional FFTs pose additional possibilities and problems.
The orthogonality and separability of multi-dimensional DFTs allows them to be efficiently computed by a series of one-dimensional FFTs along each dimension.
(For example, a two-dimensional DFT can quickly be computed by performing FFTs of each row of the data matrix
followed by FFTs of all columns, or vice-versa.)
 Vector-radix FFTs have been developed with higher efficiency per sample than row-column algorithms.
Multi-dimensional datasets, however, are often large and frequently exceed the cache size of the processor, and excessive cache misses may increase the computational time greatly, thus overwhelming any minor complexity reduction from a vector-radix algorithm.
Either vector-radix FFTs must be carefully programmed to match the cache limitations of a specific processor, or a row-column approach should be used with matrix transposition in between to ensure data locality for high cache utilization throughout the computation.

Few time or frequency samples



 FFT algorithms gain their efficiency through intermediate computations that can be reused to compute many DFT frequency samples at once.
Some applications require only a handful of frequency samples to be computed; when that number is of order less than 
   O(logN) 
 ,
direct computation of those values via Goertzel's algorithm is faster.
This has the additional advantage that any frequency, not just the equally-spaced DFT frequency samples,
can be selected.
Sorensen and Burrus [link] developed algorithms for when most input samples are zero or only a block of DFT frequencies are needed, but the computational cost is of the same order.

 Some applications, such as time-frequency analysis via the short-time Fourier transform or spectrogram, require DFTs of overlapped blocks of discrete-time samples.
When the step-size between blocks is less than
 
   O(logN) 
 ,
the running FFT will be most efficient.
(Note that any window must be applied via frequency-domain convolution,
which is quite efficient for sinusoidal windows such as the Hamming window.)
For step-sizes of 
 
   O(logN) 
  or greater,
computation of the DFT of each successive block via an FFT is faster.
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