
  
    
  
Chapter 8. Radicals



8.1. Radical Concepts*



 The concept of a radical (or root) is a familiar one, and was reviewed in the conceptual explanation of logarithms in the previous chapter. In this chapter, we are going to explore some possibly unfamiliar properties of radicals, and solve equations involving radicals.

8.2. Properties of Radicals*



 What is ? Many students will answer quickly that the answer is (x+3) and have a very difficult time believing this answer is wrong. But it is wrong.
   is x*



[1] 



and  
 is 3, but  
 is not (x+3).
 Why not? Remember that  
 is asking a question: “what squared gives the answer x2+9 
?” So (x+3) is not an answer, because (x+3)2
=x2+6x+9, not x2+9 
.
 As an example, suppose x=4. So . But (x+3)=7.
Common Error
If two numbers are added or subtracted under a square root, you cannot split them up. In symbols:  
 or, to put it another way, 




  
 cannot, in fact, be simplified at all. It is a perfectly valid function, but cannot be rewritten in a simpler form.
 How about  
? By analogy to the previous discussion, you might expect that this cannot be simplified either. But in fact, it can be simplified:
 
 Why? Again,  is asking “what squared gives the answer  9x2  ?” The answer is 3x because (3x)2=9x2 .
 Similarly, , because 
.
On the other hand...
If two numbers are multiplied or divided under a square root, you can split them up. In symbols: , 



8.3. Simplifying Radicals*



Simplifying Radicals



 The property 
=
 can be used to simplify radicals. The key is to break the number inside the root into two factors, one of which is a perfect square.
Example 8.1. Simplifying a Radical
Table 8.1. 	
						
							
						
						 
	
						=
											
						 because 25•3 is 75, and 25 is a perfect square
					
	
						
=

										
						 because 
						
							
						
						
=

						
							
						
						
							
						
					
	
						
=
5

						
							
						
						 because 
									=5
					




 So we conclude that 
=5
. You can confirm this on your calculator (both are approximately 8.66).
 We rewrote 75 as 
25
•
3
 because 25 is a perfect square. We could, of course, also rewrite 75 as 
5
•
15
, but—although correct—that would not help us simplify, because neither number is a perfect square.
Example 8.2. Simplifying a Radical in Two Steps
Table 8.2. 	
								 
	
				
=

									  because 
9
•
20
 is 180, and 9 is a perfect square
			
	
				
=

													 because 
				
					
				
				
=

				
					
				
				
					
				
			
	
				
=
3

									 So far, so good. But wait! We’re not done!
			
	
				
=
3

									 There’s another perfect square to pull out!
			
	
				
=
3

								 
	
				
=
3
(
2
)

					
			
	
				
=
6

									 Now we’re done.
			




 The moral of this second example is that 	
		after
	
	you simplify, you should always look to see if you can simplify 
		again
	.
 A secondary moral is, try to pull out the biggest perfect square you can. We could have jumped straight to the answer if we had begun by rewriting 180 as 

36
•
5
.
 This sort of simplification can sometimes allow you to combine radical terms, as in this example:
Example 8.3. Combining Radicals
Table 8.3. 	
						
							
						
						
–

						
							
						
						
	
						
=
5

						
							
						
						
–2

						
							
						
							 We found earlier that 
						
							
						
						
=
5

						
							
						
						. Use the same method to confirm that 
						
							
						
						
=
2

						
							
						
						.
					
	
						
=
3

						
							
						
							 5 of anything minus 2 of that same thing is 3 of it, right?
					




 
        That last step may take a bit of thought. It can only be used when the radical is the same. Hence, 
        
          
        
        +
        
          
        
         cannot be simplified at all. We were able to simplify 
        
          
        
        –
        
          
        
         only by making the radical in both cases the 
        
          same
        
        .
      
 So why does 5
–2

=
3

? It may be simplest to think about verbally: 5 of these things, minus 2 of the same things, is 3 of them. But you can look at it more formally as a factoring problem, if you see a common factor of 
.
 
5


–2

 
=
 

(
5
–
2
)
=
 

(
3
).
 Of course, the process is exactly the same if variable are involved instead of just numbers!
Example 8.4. Combining Radicals with Variables
Table 8.4. 	
											 
	
					
						=x3+x5						 Remember the definition of fractional exponents!
					
	
													 As always, we simplify radicals by factoring them inside the root...
					
	
												 and then breaking them up...
					
	
										 and then taking square roots outside!
					
	
												 Now that the radical is the same, we can combine.
					




Rationalizing the Denominator



 It is always possible to express a fraction with no square roots in the denominator.
 Is it always desirable? Some texts are religious about this point: “You should never have a square root in the denominator.” I have absolutely no idea why. To me, 
 looks simpler than 
; I see no overwhelming reason for forbidding the first or preferring the second.
 However, there are times when it is useful to remove the radicals from the denominator: for instance, when adding fractions. The trick for doing this is based on the basic rule of fractions: if you multiply the top and bottom of a fraction by the same number, the fraction is unchanged. This rule enables us to say, for instance, that 
 is exactly the same number as 
=
.
 In a case like 
, therefore, you can multiply the top and bottom by 
.
  =  = 

 What about a more complicated case, such as 
? You might think we could simplify this by multiplying the top and bottom by 
(
1
+

), but that doesn’t work: the bottom turns into (1+3)2
=
1
+
2


+
3
, which is at least as ugly as what we had before.
 The correct trick for getting rid of 
(
1
+

) is to multiply it by 
(
1
–

). These two expressions, identical except for the replacement of a+ by a-, are known as  conjugates. What happens when we multiply them? We don’t need to use FOIL if we remember that
 
 Using this formula, we see that
 
 So the square root does indeed go away. We can use this to simplify the original expression as follows.
Example 8.5. Rationalizing Using the Conjugate of the Denominator
 


 As always, you may want to check this on your calculator. Both the original and the simplified expression are approximately 1.268.
 Of course, the process is the same when variables are involved.
Example 8.6. Rationalizing with Variables
  = 
 = 

	


 Once again, we multiplied the top and the bottom by the conjugate of the denominator: that is, we replaced a- with a+. The formula  enabled us to quickly multiply the terms on the bottom, and eliminated the square roots in the denominator.



8.4. Radical Equations*



 When solving equations that involve radicals, begin by asking yourself: is there an x under the square root? The answer to this question will determine the way you approach the problem.
 If there is not an x under the square root—if only numbers are under the radicals—you can solve much the same way you would solve with no radicals at all.
Example 8.7. Radical Equation with No Variables Under Square Roots
Table 8.5. 		Sample problem: no variables under radicals
	 	Get everything with an x on one side, everything else on the other
	 	Factor out the x
	 	Divide, to solve for x




 The key thing to note about such problems is that you do not have to square both sides of the equation.  may look ugly, but it is just a number—you could find it on your calculator if you wanted to—it functions in the equation just the way that the number 10, or , or π would.
 If there is an 
x
 under the square root, the problem is completely different. You will have to square both sides to get rid of the radical. However, there are two important notes about this kind of problem.
 	Always get the radical alone, on one side of the equation, before squaring.

	Squaring both sides can introduce false answers—so it is important to check your answers after solving!



 Both of these principles are demonstrated in the following example.
Example 8.8. Radical Equation with Variables under Square Roots
Table 8.6. 	 	Sample problem with variables under radicals
	
 	Isolate the radical before squaring!
	x+2=(2x+1)2 	Now, square both sides
	

x+2=4x2+4x+1	Multiply out. Hey, it looks like a quadratic equation now!
	
x+2=4x2+4x+1	As always with quadratics, get everything on one side.
	(4x–1)(x+1)=0	Factoring: the easiest way to solve quadratic equations.
	 or x=-1	Two solutions. Do they work? Check in the original equation!


Table 8.7. 	Check 
	Check 
x
=
–1




		
		
		

	
	-2=-4 Not equal!
		 




 So the algebra yielded two solutions:  and –1. Checking, however, we discover that only the first solution is valid. This problem demonstrates how important it is to check solutions whenever squaring both sides of an equation.
 If variables under the radical occur more than once, you will have to go through this procedure multiple times. Each time, you isolate a radical and then square both sides.
Example 8.9. Radical Equation with Variables under Square Roots Multiple Times
Table 8.8. 	
	 Sample problem with variables under radicals multiple times
	
      	Isolate one radical. (I usually prefer to start with the bigger one.)
	
	 Square both sides. The two-radical equation is now a one-radical equation.
	
      	 
	
      3=x	 Isolate the remaining radical, then square both sides again..
	
      9=x	In this case, we end up with only one solution. But we still need to check it.


Table 8.9. Check x=9	
	
	
4
–
3
=
1





 Remember, the key to this problem was recognizing that variables under the radical occurred in the original problem two times. That cued us that we would have to go through the process—isolate a radical, then square both sides—twice, before we could solve for x. And whenever you square both sides of the equation, it’s vital to check your answer(s)!
When good math leads to bad answers



 Why is it that—when squaring both sides of an equation—perfectly good algebra can lead to invalid solutions? The answer is in the redundancy of squaring. Consider the following equation:
 
–5
=
5
 False. But square both sides, and we get...
 25 = 25 True. So squaring both sides of a false equation can produce a true equation.
 To see how this affects our equations, try plugging x=-1 into the various steps of the first example.
Example 8.10. Why did we get a false answer of x=–1 in Example 1?
Table 8.10. 		Does x=-1 work here? No, it does not.
	 	How about here? No, x=-1  produces the false equation 1=–1.
	x+2=(2x+1)2	Suddenly, x=-1  works. (Try it!)


 When we squared both sides, we “lost” the difference between 1 and –1, and they “became equal.” From here on, when we solved, we ended up with x=-1 as a valid solution.


 Test your memory: When you square both sides of an equation, you can introduce false answers. We have encountered one other situation where good algebra can lead to a bad answer. When was it?
 Answer: It was during the study of absolute value equations, such as |2x+3|=-11x+42. In those equations, we also found the hard-and-fast rule that you must check your answers as the last step.
 What do these two types of problem have in common? The function |x| actually has a lot in common with x2. Both of them have the peculiar property that they always turn -a and a into the same response. (For instance, if you plug –3 and 3 into the function, you get the same thing back.) This property is known as being an  even function. Dealing with such “redundant” functions leads, in both cases, to the possibility of false answers.
 The similarity between these two functions can also be seen in the graphs: although certainly not identical, they bear a striking resemblance to each other. In particular, both graphs are symmetric about the y-axis, which is the fingerprint of an “even function”.
 
	  [image: Graph of x-squared.](a)

	  [image: Graph of the absolute value of x.](b)



Figure 8.1. 





Solutions


Chapter 2. Inequalities and Absolute Values



2.1. Inequalities*



 The symbols for inequalities are familiar:
 	x<7 “ x  is less than 7”

	x>7 “ x  is greater than 7” 

	x≤7 “ x  is less than or equal to 7” 

	x≥7 “ x  is greater than or equal to 7” 



 If you have trouble remembering which is which, it may be helpful to remember that the larger side of the

        
            
              
                
                  <
                
              
            
            
          
      

symbol always goes with the larger number. Hence, when you write 
x<7 you can see that the 7 is the larger of the two numbers. Some people think of the


        
            
              
                
                  <
                
              
            
            
          
      

symbol as an alligator’s mouth, which always opens toward the largest available meal!
 Visually, we can represent these inequalities on a number line. An open circle

		
			○
		
	
is used to indicate a boundary that is not a part of the set; a closed circle

		●
	
is used for a boundary that is a part of the set.
	  [image: A number line w/ the shaded interval (-∞, 7)](a) 
Includes all numbers less than 7, but not 7;
            
               x 
              <
               7 
            
;
            
              
                (
                –
                ∞
                ,
                 7 
                )
              
            

	  [image: A number line w/ the shaded interval (-∞, 7]](b) 
Includes all numbers less than 7, and 7 itself;
            
               x 
              ≤
               7 
            
;
            
              
                (
                –
                ∞
                ,
                 7 
                ]
              
            



Figure 2.1. 

AND and OR



 More complicated intervals can be represented by combining these symbols with the logical operators  AND and  OR.
 For instance, “
x≥3 AND 
x<6” indicates that


        
            
              
                x
              
            
            
          
      

must be both greater-than-or-equal-to 3, and less-than 6. A number only belongs in this set if it meets both conditions. Let’s try a few numbers and see if they fit.
Table 2.1. 	Sample number	
                  
                    
                        
                          
                            
                              x
                              ≥
                              3
                            
                          
                        
                        
                      
                  
                	
                  
                    
                        
                          
                            
                              x
                              <
                              6
                            
                          
                        
                        
                      
                  
                	x≥3 AND 
x<6 (both true)
	
                  
                    
                        
                          
                            
                              x
                              =
                              8
                            
                          
                        
                        
                      
                  
                	

                  Yes
                	
   
                  No
                	
  
                  No
                
	
                  
                    
                        
                          
                            
                              x
                              =
                              0
                            
                          
                        
                        
                      
                  
                	
 
                  No
                	
    
                  Yes
                	

                  No
                
	
                  
                    
                        
                          
                            
                              x
                              =
                              4
                            
                          
                        
                        
                      
                  
                	

                  Yes
                	

                  Yes
                	

                  Yes
                


 We can see that a number must be between 3 and 6 in order to meet this AND condition.
 [image: A number line w/ the shaded interval [3, 6)]

Figure 2.2. 

  
     x 
    ≥
     3 
      AND  
     x 
    <
     6 
  


All numbers that are greater-than-or-equal-to 3, and are also less than 6;

  
     3 
    ≤
     x 
    <
     6 
  


 This type of set is sometimes represented concisely as 
3≤x<6, which visually communicates the idea that 
x is between 3 and 6. This notation always indicates an AND relationship.
 “
x<3 OR 
x≥6” is the exact opposite. It indicates that 
x must be either less-than 3, or greater-than-or-equal-to 6. Meeting both conditions is OK, but it is not necessary.
Table 2.2. 	Sample number	
                  
                    
                        
                          
                            
                              x
                              <
                              3
                            
                          
                        
                        
                      
                  
                	
                  
                    
                        
                          
                            
                              x
                              ≥
                              6
                            
                          
                        
                        
                      
                  
                	x<3 OR 
x≥6 (either one or both true)
	
                  
                    
                        
                          
                            
                              x
                              =
                              8
                            
                          
                        
                        
                      
                  
                	
            
                  No
                	

                  Yes
                	

                  Yes
                
	
                  
                    
                        
                          
                            
                              x
                              =
                              0
                            
                          
                        
                        
                      
                  
                	
 
                  Yes
                	
          
                   No
                	
  
                  Yes
                
	
                  
                    
                        
                          
                            
                              x
                              =
                              4
                            
                          
                        
                        
                      
                  
                	
                
                  No
                	
             
                  No
                	
     
                  No
                


 Visually, we can represent this set as follows:
 [image: The number line with (-infinity,3) and [6,infinity] intervals shaded.]

Figure 2.3. 
All numbers that are either less than 3, or greater-than-or-equal-to 6;

  
     x 
    <
     3 
        OR    
     x 
    ≥
     6 
  


 Both of the above examples are meaningful ways to represent useful sets. It is possible to put together many combinations that are perfectly logical, but are not meaningful or useful. See if you can figure out simpler ways to write each of the following conditions.
 	x≥3 AND 
x>6

	x≥3 OR 
x>6

	x<3 AND 
x>6

	x>3 OR 
x<6



 If you are not sure what these mean, try making tables of numbers like the ones I made above. Try a number below 3, a number between 3 and 6, and a number above 6. See when each condition is true. You should be able to convince yourself of the following:
 	The first condition above is filled by any number greater than 6; it is just a big complicated way of writing 
x>6.

	Similarly, the second condition is the same as 
x≥3.

	The third condition is never true.

	The fourth condition is always true.



 I have to pause here for a brief philosophical digression. The biggest difference between a good math student, and a poor or average math student, is that the good math student works to understand things; the poor student tries to memorize rules that will lead to the right answer, without actually understanding them.
 The reason this unit (Inequalities and Absolute Values) is right here at the beginning of the book is because it distinguishes sharply between these two kinds of students. Students who try to understand things will follow the previous discussion of AND and OR and will think about it until it makes sense. When approaching a new problem, they will try to make logical sense of the problem and its solution set.
 But many students will attempt to learn a set of mechanical rules for solving inequalities. These students will often end up producing nonsensical answers such as the four listed above. Instead of thinking about what their answers mean, they will move forward, comfortable because “it looks sort of like the problem the teacher did on the board.”
 If you have been accustomed to looking for mechanical rules to follow, now is the time to begin changing your whole approach to math. It’s not too late!!! Re-read the previous section carefully, line by line, and make sure each sentence makes sense. Then, as you work problems, think them through in the same way: not “whenever I see this kind of problem the answer is an and” but instead “What does AND mean? What does OR mean? Which one correctly describes this problem?”
 All that being said, there are still a few hard-and-fast rules that I will point out as I go. These rules are useful—but they do not relieve you of the burden of thinking.
 One special kind of OR is the symbol 
±. Just as 

        
            
              
                
                  ≥
                
              
            
            
          
      
means “greater than OR equal to,” 
± means “plus OR minus.” Hence, if 
x2=9, we might say that 
x=±3; that is, 
x can be either 3, or –3.
 Another classic sign of “blind rule-following” is using this symbol with inequalities. What does it mean to say 
x<±3? If it means anything at all, it must mean “
x<3 OR 
x<−3”; which, as we have already seen, is just a sloppy shorthand for 
x<3. If you find yourself using an inequality with a 
± sign, go back to think again about the problem.
Hard and fast rule

Inequalities and the 
± symbol don’t mix.




Solving Inequalities



 Inequalities are solved just like equations, with one key exception.
Hard and fast rule

Whenever you multiply or divide by a negative number, the sign changes.



 You can see how this rule affects the solution of a typical inequality problem:
Table 2.3. 	
          
            
                
                  
                    
                      
                        3x
                        +
                        4
                      
                      >
                      
                        5x
                        +
                        10
                      
                    
                  
                
                
              
          
        	  An “inequality” problem
        
	
          
            
                
                  
                    
                      
                        
                          −
                          2x
                        
                        +
                        4
                      
                      >
                      10
                    
                  
                
                
              
          
        	  subtract
5⁢  x 
from both sides
        
	
          
            
                
                  
                    
                      
                        −
                        2x
                      
                      >
                      6
                    
                  
                
                
              
          
        	  subtract 4 from both sides
        
	
          
            
                
                  
                    
                      x
                      <
                      
                        −
                        3
                      
                    
                  
                
                
              
          
        	  divide both sides by –2, and change sign!
        


 As always, being able to solve the problem is important, but even more important is knowing what the solution means. In this case, we have concluded that any number less than –3 will satisfy the original equation, 
3x+4>5x+10. Let’s test that.
Table 2.4. 	x=−4:
	3(−4)+4>5(−4)+10	−8>−10	
Yes.
    
	x=−2:	
3(−2)+4>5(−2)+10	−2>0	
    No.



 As expected, 
x=−4 (which is less than –3) works; 
x=−2 (which is not) does not work.
 Why do you reverse the inequality when multiplying or dividing by a negative number? Because negative numbers are backward! 5 is greater than 3, but –5 is less than –3. Multiplying or dividing by negative numbers moves you to the other side of the number line, where everything is backward.
 [image: A number line illustration demonstrating the effects of multiplying and/or dividing an inequality by a negative number.]

Figure 2.4. 
Multiplying by -1 moves you "over the rainbow" to the land where everything is backward!



2.2. Absolute Value Equations*



 Absolute value is one of the simplest functions—and paradoxically, one of the most problematic.
 On the face of it, nothing could be simpler: it just means “whatever comes in, a positive number comes out.”
(2.1)

(2.2)
          
              
                
                  
                    
                      ∣
                      −
                      5
                    
                    
                      ∣
                      =
                      5
                    
                  
                
              
              
            
        
 Absolute values seem to give us permission to ignore the whole nasty world of negative numbers and return to the second grade when all numbers were positive.
 But consider these three equations. They look very similar—only the number changes—but the solutions are completely different.
Table 2.5. Three Simple Absolute Value Equations	
        
          
              
                
                  
                    ∣
                    x
                    
                      ∣
                      =
                      10
                    
                  
                
              
              
            
        
      	  
          
              
                
                  
                    ∣
                    x
                    
                      ∣
                      =
                      
                        −
                        10
                      
                    
                  
                
              
              
            
        
      	  
          
              
                
                  
                    ∣
                    x
                    
                      ∣
                      =
                      0
                    
                  
                
              
              
            
        
      
	x=10 works.  
	x=10 doesn’t work.  	
x=0 is the only solution.
	Hey, so does 
x=−10!	
Neither does 
x=−10.
    	 
	Concisely, 
x=±10.	
Hey...absolute values are never negative!
    	 


 We see that the first problem has two solutions, the second problem has no solutions, and the third problem has one solution. This gives you an example of how things can get confusing with absolute values—and how you can solve things if you think more easily than with memorized rules.
 For more complicated problems, follow a three-step approach.
 	Do the algebra to isolate the absolute value.

	Then, think it through like the simpler problems above.

	Finally, do more algebra to isolate x.



 In my experience, most problems with this type of equation do not occur in the first and third step. And they do not occur because students try to think it through (second step) and don’t think it through correctly. They occur because students try to take “shortcuts” to avoid the second step entirely.
Example 2.1.  Absolute Value Equation (No Variable on the Other Side)
 
  
   
    
     3 
    ⁢
      
        |
          
             2 
            ⁢
             x 
          
        +
         1 
        |
      
    
    –
     7 
   
    =
     5 
 
 	Step 1:: 

Algebraically isolate the absolute value
 	

 
    
     3 
    ⁢
      
        |
          
             2 
            ⁢
             x 
          
        +
         1 
        |
      
    
    =
     12 
  
  


	


    
      
        |
          
             2 
            ⁢
             x 
          
        +
         1 
        |
      
    
    =
     4 
  






	Step 2:: 

Think!
 	For the moment, forget about the quantity 

          
             2 
            ⁢
             x 
          
        +
         1 
       ; just think of it as something. The absolute value of “something” is 4. So, in analogy to what we did before, the “something” can either be 4, or –4. So that gives us two possibilities...

	
       
          
            
              
                
                  
                    2x
                    +
                    1
                  
                  =
                  4
                
              
            
            
          
      


	
      
          
            
              
                
                  
                    2x
                    +
                    1
                  
                  =
                  
                    −
                    4
                  
                
              
            
            
          
      






	Step 3:: 

Algebraically solve (both equations) for x
 	
          
             2 
            ⁢
             x 
          
=3 or 
          
             2 
            ⁢
             x 
          
=−5

	 or 
      
    





 So this problem has two answers:  and  
      
    


Example 2.2.  Absolute Value Equation (No Variable on the Other Side)
 
 	Step 1: 
Algebraically isolate the absolute value: 

(2.3)

(2.4)
6
|
x
–
2
|
=
-15

(2.5)



	 Step 2: Think!: The absolute value of “something” is

      
. But wait—absolute values are never negative! It can’t happen! So we don’t even need a third step in this case: the equation is impossible.


	No solution.



 The “think” step in the above examples was relatively straightforward, because there were no variables on the right side of the equation. When there are variables on the right side, you temporarily “pretend” that the right side of the equation is a positive number, and break the equation up accordingly. However, there is a price to be paid for this slight of hand: you have to check your answers, because they may not work even if you do your math correctly.
Example 2.3.  Absolute Value Equation with Variables on Both Sides
 
          
              
                
                  
                    ∣
                    
                      2x
                      +
                      3
                    
                    
                      ∣
                      =
                      
                        −
                        11
                      
                    
                    
                      x
                      +
                      42
                    
                  
                
              
              
            
        
      
 We begin by approaching this in analogy to the first problem above, 
∣x∣=10. We saw that 

        
            
              
                x
              
            
            
          
      
could be either 10, or –10. So we will assume in this case that

        
            
              
                
                  2x
                  +
                  3
                
              
            
            
          
      
can be either

        
            
              
                
                  
                    −
                    11
                  
                  
                    x
                    +
                    42
                  
                
              
            
            
          
      
, or the negative of that, and solve both equations.
 	(2.6)

2
x
+
3

=
-11
x
+
42


	(2.7)
13
x
+
3
=
42


	(2.8)
13
x
=
39



	(2.9)
x
=
3



 	(2.10)
2
x
+
3
=
–
(
–
11
x
+
42
)



	(2.11)
2
x
+
3
=
11
x
–
42


	(2.12)
-9
x
+
3
=
-42


	(2.13)
-9
x
=
-45


	(2.14)
x
=
5



 So we have two solutions: x=3 and x=5. Do they both work? Let’s try them both.
 Problem One
	
          
              
                
                  
                    ∣
                    2
                    (
                    3
                    
                      )
                      +
                      3
                    
                    
                      ∣
                      =
                      
                        −
                        11
                      
                    
                    (
                    3
                    
                      )
                      +
                      42
                    
                  
                
              
              
            
        . 
      
 	
∣9∣=9. 

  ✓








 Problem Two
	 
         
          
              
                
                  
                    ∣
                    2
                    (
                    5
                    
                      )
                      +
                      3
                    
                    
                      ∣
                      =
                      
                        −
                        11
                      
                    
                    (
                    5
                    
                      )
                      +
                      42
                    
                  
                
              
              
            
        . 
  
 	

∣13∣=−13.

  ✗










 We see in this case that the first solution, 
x=3, worked; the second, 
x=5, did not. So the only solution to this problem is 
x=3.
 However, there was no way of knowing that in advance. For such problems, the only approach is to solve them twice, and then test both answers. In some cases, both will work; in some cases, neither will work. In some cases, as in this one, one will work and the other will not.
Hard and fast rule
 Whenever an absolute value equation has variables on both sides, you have to check your answer(s). Even if you do all the math perfectly, your answer(s) may not work. 


 OK, why is that? Why can you do all the math right and still get a wrong answer?
 Remember that the problem 
∣x∣=10 has two solutions, and 
∣x∣=−10 has none. We started with the problem 
∣2x+3∣=−11x+42. OK, which is that like? Is the right side of the equation like 10 or –10? If you think about it, you can convince yourself that it depends on what
x
is. After you solve, you may wind up with an 
x-value that makes the right side positive; that will work. Or, you may wind up with an 
x-value that makes the right side negative; that won’t work. But you can’t know until you get there.

2.3. Absolute Value Inequalities*



 Here’s one of my favorite problems:
 
        
          
              
                
                  
                    ∣
                    x
                    
                      ∣
                      <
                      10
                    
                  
                
              
              
            
        
      
 Having seen that the solution to 
∣x∣=10 is 
∣x∣=±10, many students answer this question 
∣x∣<±10. However, this is not only wrong: it is, as discussed above, relatively meaningless. In order to approach this question you have to—you guessed it!—step back and think.
 Here are two different, perfectly correct ways to look at this problem.
 	What numbers work? 4 works. –4 does too. 0 works. 13 doesn’t work. How about –13? No: if 
x=−13 then 
∣x∣=13, which is not less than 10. By playing with numbers in this way, you should be able to convince yourself that the numbers that work must be somewhere between –10 and 10. This is one way to approach the answer.

	The other way is to think of absolute value as representing distance from 0. 
∣5∣ and 
∣−5∣ are both 5 because both numbers are 5 away from 0. In this case, 
∣x∣<10 means “the distance between x and 0 is less than 10”—in other words, you are within 10 units of zero in either direction. Once again, we conclude that the answer must be between –10 and 10.



 [image: Number line showing the interval from (-10,10)]

Figure 2.5. 

All numbers whose absolute value is less than 10;

  
    –
     10 
    <
     x 
    <
     10 
   


 It is not necessary to use both of these methods; use whichever method is easier for you to understand.
 More complicated absolute value problems should be approached in the same three steps as the equations discussed above: algebraically isolate the absolute value, then think, then algebraically solve for

        
            
              
                x
              
            
            
          
      
. However, as illustrated above, the think step is a bit more complicated with inequalities than with equations.
Example 2.4.  Absolute Value Inequality 
 −3(∣2x+3∣−8)<−15
 	Step 1:: 

Algebraically isolate the absolute value
 	 ∣2x+3∣−8>5 (don’t forget to switch the inequality when dividing by –3!) 

	
∣2x+3∣>13 



 
	Step 2:: 

Think!
 	 As always, forget the 
2x+3 in this step. The absolute value of something is greater than 13. What could the something be? 

	 We can approach this in two ways, just as the previous absolute value inequality. The first method is trying numbers. We discover that all numbers greater than 13 work (such as 14, 15, 16)—their absolute values are greater than 13. Numbers less than –13 (such as –14,–15,–16) also have absolute values greater than 13. But in-between numbers, such as –12, 0, or 12, do not work.

	 The other approach is to think of absolute value as representing distance to 0. The distance between something and 0 is greater than 13. So the something is more than 13 away from 0—in either direction.

	 Either way, we conclude that the something must be anything greater than 13, OR less than –13!
 [image: Number line showing the interval from (-infinity,-13) and (13, infinity)]

Figure 2.6. 

The absolute value of something is greater than 13;


  
    something 
    <
    –
     13 
  

OR

  
    something 
    >
    –
     13 
  


 



 
	Step 3:: 

Algebraically solve (both inequalities) for 
x
(2.15)



 [image: Number line showing the interval from (-infinity,-8) and (5, infinity)]

Figure 2.7. 

Any  x -value which is less than –8 or greater than 5 will make the original inequality true;

  
     x 
    <
    –
     8 
  

OR

  
     x 
    >
     5 
  




 



 Many students will still resist the think step, attempting to figure out “the rules” that will always lead from the question to the answer. At first, it seems that memorizing a few rules won’t be too hard: “greater-than problems always lead to  OR answers” and that kind of thing. But those rules will fail you when you hit a problem like the next one.
Example 2.5. Absolute Value Inequality
 
        
            
              
                
                  
                    
                      ∣
                      
                        x
                        −
                        3
                      
                      ∣
                    
                    +
                    10
                  
                  >
                  7
                
              
            
            
          
      
 	Step 1:: 

Algebraically isolate the absolute value
     	
        
        
            
              
                
                  
                    ∣
                    
                      x
                      −
                      3
                    
                    ∣
                  
                  >
                  
                    −
                    3
                  
                
              
            
            
          
      
      




  
	Step 2:: 

Think!
   	The absolute value of something is greater than –3.  What could the something be?  2 works.  –2 also works.  And 0.  And 7.  And –10.  And...hey!  Absolute values are always positive, so the absolute value of anything is greater than –3!





 
All numbers work




2.4. Graphing Absolute Values*



 You can graph 
y=∣x∣ easily enough by plotting points. The characteristic V shape is illustrated below, with a couple of sample points highlighted.
 [image: Graph showing the absolute value of x.]

Figure 2.8. 

  
     y 
    =
    |
     x 
    |
  


 Of course, this shape is subject to the same permutations as any other function! A few examples are given below.
	  [image: Graph of the absolute value of x+5, the same as above but shifted to the left 5 units (x+5).](a) 
 
  
    |
     x 
    –
     5 
    |
  
  +
   1 
 

Moves right 5, up 1


	  [image: Graph of the absolute value of -|x|+1, the same as first but vertically flipped and shifted up 1 unit.](b) 
 
  
    –
    |
     x 
    |
  
  +
   1 
 

Flips over  x  -axis, moves up 1


	  [image: Graph of the absolute value of 2|x+5|, the same as first vertically stretched by a factor of 2 (skinnier).](c) 
 
   2 
  ⁢
  
    |
     x 
    +
     5 
    |
  
 

5 left, vertically stretched




Figure 2.9. 


2.5. Graphing Inequalities*



 In general, the graph of an inequality is a shaded area.
 Consider the graph 
y=∣x∣ shown above. Every point on that V-shape has the property that its y-value is the absolute value of its x­-value. For instance, the point
      
        
            
              
                
                  
                    (
                    −
                    3,3
                  
                  )
                
              
            
            
          
      
    is on the graph because 3 is the absolute value of –3.
 The inequality 

  
     y 
    <
    |
     x 
    |
  
 means the y-value is less than the absolute value of the x-value. This will occur anywhere underneath the above graph. For instance, the point

      
          
            
              
                
                  
                    (
                    −
                    3,1
                  
                  )
                
              
            
            
          
      
meets this criterion; the point

    
      
          
            
              
                
                  
                    (
                    −
                    3,4
                  
                  )
                
              
            
            
          
      
    
does not. If you think about it, you should be able to convince yourself that all points below the above graph fit this criterion.
 [image: A Graph of the absolute value of x. All values of x and y are shaded that lie below the graph line.]

Figure 2.10. 

  
     y 
    <
    |
     x 
    |
  


 The dotted line indicates that the graph 
y=∣x∣ is not actually a part of our set. If we were graphing 
y≤∣x∣ the line would be complete, indicating that those points would be part of the set.

2.6. "Piecewise Functions" and Absolute Value*



 What do you get if you put a positive number into an absolute value? Answer: you get that same number back. 
∣5∣=5. 
∣π∣=π. And so on. We can say, as a generalization, that 
∣x∣=x; but only if x is positive.
 OK, so, what happens if you put a negative number into an absolute value? Answer: you get that same number back, but made positive. OK, how do you make a negative number positive? Mathematically, you multiply it by –1. 
∣−5∣=−(−5)=5. 
∣−π∣=−(−π)=π. We can say, as a generalization, that 
∣x∣=−x; but only if x is negative.
 So the absolute value function can be defined like this.
(2.16)The “Piecewise” Definition of Absolute Value


 If you’ve never seen this before, it looks extremely odd. If you try to pin that feeling down, I think you’ll find this looks odd for some combination of these three reasons.
 	The whole idea of a “piecewise function”—that is, a function which is defined differently on different domains—may be unfamiliar. Think about it in terms of the function game. Imagine getting a card that says “If you are given a positive number or 0, respond with the same number you were given. If you are given a negative number, multiply it by –1 and give that back.” This is one of those “can a function do that?” moments. Yes, it can—and, in fact, functions defined in this “piecewise manner” are more common than you might think.

	The 
−x looks suspicious. “I thought an absolute value could never be negative!” Well, that’s right. But if 
x is negative, then 
−x is positive. Instead of thinking of the 
−x as “negative 
x” it may help to think of it as “change the sign of 
x.”

	Even if you get past those objections, you may feel that we have taken a perfectly ordinary, easy to understand function, and redefined it in a terribly complicated way. Why bother?



 Surprisingly, the piecewise definition makes many problems easier. Let’s consider a few graphing problems.
 You already know how to graph 
y=∣x∣. But you can explain the V shape very easily with the piecewise definition. On the right side of the graph (where 
x≥0), it is the graph of 
y=x. On the left side of the graph (where 
x<0), it is the graph of 
y=−x.
	  [image: Line with a negative slope of 1 passing through the origin](a) 
 
     y 
    =
    –
     x 
 

The whole graph is shown, but the only part we care about is on the left, where x<0

	  [image: A line with a positive slope of 1 with y-intercept 0](b) 
 
     y 
    =
     x 
 

The whole graph is shown, but the only part we care about is on the right, where x≥0

	  [image: Graph showing the absolute value of x with cusp at (0,0).](c) 
 
     y 
    =
    |
     x 
    |
 

Created by putting together the relevant parts of the other two graphs. 



Figure 2.11. 

 Still, that’s just a new way of graphing something that we already knew how to graph, right? But now consider this problem: graph 
y=x+∣x∣. How do we approach that? With the piecewise definition, it becomes a snap.
(2.17)

 So we graph 
y=2x on the right, and 
y=0 on the left. (You may want to try doing this in three separate drawings, as I did above.)
 [image: Combined peice-wise Graph]

Figure 2.12. 

  
     y 
    =
  
     x 
    +
    |
     x 
    |
  
 


 Our final example requires us to use the piecewise definition of the absolute value for both x and y.
Example 2.6.  Graph |x|+|y|=4 
 We saw that in order to graph 
∣x∣ we had to view the left and right sides separately. Similarly, 
∣y∣ divides the graph vertically.

 	On top, where 
y≥0, 
∣y∣=y.

	Where 
y<0, on the bottom, 
∣y∣=−y.



Since this equation has both variables under absolute values, we have to divide the graph both horizontally and vertically, which means we look at each quadrant separately.
∣x∣+∣y∣=4
Table 2.6. 	Second Quadrant	First Quadrant
	x≤0, so 
∣x∣=−x	x≥0, so 
∣x∣=x

	y≥0, so 
∣y∣=y
	y≥0, so 
∣y∣=y

	(−x)+y=4	x+y=4
	y=x+4	y=−x+4
	Third Quadrant	Fourth Quadrant
	x≤0, so 
∣x∣=−x
	x≥0, so 
∣x∣=x

	y≤0, so 
∣y∣=−y
	y≤0, so 
∣y∣=−y

	(−x)+(−y)=4	x+(−y)=4
	y=−x−4	y=x−4


Now we graph each line, but only in its respective quadrant. For instance, in the fourth quadrant, we are graphing the line 
y=x−4. So we draw the line, but use only the part of it that is in the fourth quadrant.
 [image: Graph]
Figure 2.13. 

Repeating this process in all four quadrants, we arrive at the proper graph.

 [image: Graph]
Figure 2.14. 
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                      ∣
                      y
                      ∣
                    
                  
                  =
                  4
                
              
            
            
          
      




Solutions


Chapter 6. Logarithms



6.1. Logarithm Concepts*



 Suppose you are a biologist investigating a population that doubles every year. So if you start with 1 specimen, the population can be expressed as an exponential function: 
p(t)=2t where 
t is the number of years you have been watching, and 
p is the population.
 Question: How long will it take for the population to exceed 1,000 specimens?
 We can rephrase this question as: “2 to what power is 1,000?” This kind of question, where you know the base and are looking for the exponent, is called a logarithm.
 log21000 (read, “the logarithm, base two, of a thousand”) means “2, raised to what power, is 1000?”
 In other words, the logarithm always asks “What exponent should we use?” This unit will be an exploration of logarithms.
A few quick examples to start things off



Table 6.1. 	Problem	Means	The answer is	because
	

log2
8

	2 to what power is 8?	3	

23
 is 8
	

log2
16

	2 to what power is 16?	4	

24
 is 16
	

log2
10

	2 to what power is 10?	somewhere between 3 and 4		

23
=
8

 and 

24
=
16


	

log8
2

	
8 to what power is 2?	

	


	

log10
10,000
	
10 to what power is 10,000?	
4	

104
=
10,000

	

	10 to what power is  ?	–2	

	
 
log5
0
	5 to what power is 0?	There is no answer	

5something
 will never be 0


 
As you can see, one of the most important parts of finding logarithms is being very familiar with how exponents work!



6.2. The Logarithm Explained by Analogy to Roots*



 The logarithm may be the first really new concept you’ve encountered in Algebra II. So one of the easiest ways to understand it is by comparison with a familiar concept: roots.
 Suppose someone asked you: “Exactly what does root mean?” You do understand roots, but they are difficult to define. After a few moments, you might come up with a definition very similar to the “question” definition of logarithms given above. 
 means “what number cubed is 8?”
 Now the person asks: “How do you find roots?” Well...you just play around with numbers until you find one that works. If someone asks for 
, you just have to know that 
52=25. If someone asks for 
, you know that has to be bigger than 5 and smaller than 6; if you need more accuracy, it’s time for a calculator.
 All that information about roots applies in a very analogous way to logarithms.
Table 6.2. 	 	Roots	Logs
	The question	 means “what number, raised to the a power, is x?” As an equation, 
?a=x	logax means “
a, raised to what power, is 
x?” As an equation, 
a?=x
	Example that comes out even	
              
            	
              
                
                    
                      
                        
                          log
                              
                                2
                              
                            
                          
                            8
                            =
                            3
                          
                        
                      
                    
                    
                  
              
            
	Example that doesn’t	 is a bit more than 2	log210 is a bit more than 3
	Out of domain example	does not exist (
x2 will never give 
−4)	log2(0) and 
log2(−1) do not exist (
2x will never give 0 or a negative answer)



6.3. Rewriting Logarithm Equations as Exponent Equations*



 Both root equations and logarithm equations can be rewritten as exponent equations.
  can be rewritten as 
32=9. These two equations are the same statement about numbers, written in two different ways. 
 asks the question “What number squared is 9?” So the equation 
asks this question, and then answers it: “3 squared is 9.”
 We can rewrite logarithm equations in a similar way. Consider this equation:
(6.1)

 If you are asked to rewrite that logarithm equation as an exponent equation, think about it this way. The left side asks: “3 to what power is 
?” And the right side answers: “3 to the 
−1power is 
.” 
.
 [image: Log 3 of one-third equals -1]

Figure 6.1. 

 These two equations, 
and 
, are two different ways of expressing the same numerical relationship.

6.4. The Logarithm Defined as an Inverse Function*



  can be defined as the inverse function of 
x2. Recall the definition of an inverse function—
f−1(x) is defined as the inverse of 
f1(x) if it reverses the inputs and outputs. So we can demonstrate this inverse relationship as follows:
Table 6.3. 	 is the inverse function of 
x2
	
              
                
                    
                      
                        
                          3
                          →
                          x
                              
                                2
                              
                            
                          →
                          9
                        
                      
                    
                    
                  
              
            
	
              
            


 Similarly, 
log2x is the inverse function of the exponential function 
2x.
Table 6.4. 	log2x is the inverse function of 
2x
	
              
                
                    
                      
                        
                          3
                          →
                          2
                              
                                x
                              
                            
                          →
                          8
                        
                      
                    
                    
                  
              
            
	
              
                
                    
                      
                        
                          8
                          →
                          log
                              
                                2
                              
                            
                          x
                          →
                          2
                        
                      
                    
                    
                  
              
            


 (You may recall that during the discussion of inverse functions, 
2x was the only function you were given that you could not find the inverse of. Now you know!)
 In fact, as we noted in the first chapter, 
is not a perfect inverse of 
x2, since it does not work for negative numbers. 
(−3)2=9, but 
 is not 
−3. Logarithms have no such limitation: 
log2x is a perfect inverse for 
2x.
 The inverse of addition is subtraction. The inverse of multiplication is division. Why do exponents have two completely different kinds of inverses, roots and logarithms? Because exponents do not commute. 
32 and 
23 are not the same number. So the question “what number squared equals 10?” and the question “2 to what power equals 10?” are different questions, which we express as 
 and 
log210, respectively, and they have different answers. 
x2 and 
2x are not the same function, and they therefore have different inverse functions 
 and 
log210.

6.5. Properties of Logarithms*



 Just as there are three fundamental laws of exponents, there are three fundamental laws of logarithms.
(6.2)

(6.3)

(6.4)
        
            
              
                
                  log
                      
                        x
                      
                    
                  (
                  a
                      
                        b
                      
                    
                  
                    )
                    =
                    b
                  
                  log
                      
                        x
                      
                    
                  a
                
              
            
            
          
      
 As always, these algebraic generalizations hold for any 
a, 
b, and 
x.
Example 6.1. Properties of Logarithms
 	Suppose you are given these two facts: 
	log45=1.16
	log410=1.66


	Then we can use the laws of logarithms to conclude that: 
	log4(50)=log45+log410=2.82
	log4(2)=log410−log45=0.5
	log4(100,000)=5log410=8.3





All three of these results can be found quickly, and without a calculator. Note that the second result could also be figured out directly, since



 These properties of logarithms were very important historically, because they enabled pre-calculator mathematicians to perform multiplication (which is very time-consuming and error prone) by doing addition (which is faster and easier). These rules are still useful in simplifying complicated expressions and solving equations.
Example 6.2. Solving an equation with the properties of logarithms
Table 6.5. 	
              
                
                    
                      
                        
                          log
                              
                                2
                              
                            
                          
                            x
                            −
                            log
                                
                                  x
                                
                              
                          
                          (
                          
                            x
                            −
                            1
                          
                          
                            )
                            =
                            5
                          
                        
                      
                    
                    
                  
              
            	
              The problem
            
	
              
            	
              Second property of logarithms
            
	
              
            	
              Rewrite the log as an exponent. (2-to-what is?
              
               2-to-the-5!)
            
	
              
                
                    
                      
                        
                          
                            x
                            =
                            32
                          
                          (
                          
                            x
                            −
                            1
                          
                          )
                        
                      
                    
                    
                  
              
            	
              Multiply. We now have an easy equation to solve.
            
	
              
                
                    
                      
                        
                          
                            x
                            =
                            32
                          
                          
                            x
                            −
                            32
                          
                        
                      
                    
                    
                  
              
            	 
	
              
                
                    
                      
                        
                          
                            −
                            31
                          
                          
                            x
                            =
                            
                              −
                              32
                            
                          
                        
                      
                    
                    
                  
              
            	 
	
              
            	 




Proving the Properties of Logarithms



 If you understand what an exponent is, you can very quickly see why the three rules of exponents work. But why do logarithms have these three properties?
 As you work through the text, you will demonstrate these rules intuitively, by viewing the logarithm as a counter. (
log28 asks “how many 2s do I need to multiply, in order to get 8?”) However, these rules can also be rigorously proven, using the laws of exponents as our starting place.
Table 6.6. 	Proving the First Law of Logarithms, 

	
                
                  
                      
                        
                          
                            
                              m
                              =
                              log
                                  
                                    x
                                  
                                
                            
                            a
                          
                        
                      
                      
                    
                
              	
                I’m just inventing 
                
                  
                      
                        
                          m
                        
                      
                      
                    
                
                 to represent this log
              
	
                
                  
                      
                        
                          
                            x
                                
                                  m
                                
                              
                            =
                            a
                          
                        
                      
                      
                    
                
              	
                Rewriting the above expression as an exponent. (
                
                  
                      
                        
                          
                            log
                                
                                  x
                                
                              
                            a
                          
                        
                      
                      
                    
                
                 asks “
                
                  
                      
                        
                          x
                        
                      
                      
                    
                
                 to what power is 
                
                  
                      
                        
                          a
                        
                      
                      
                    
                
                ?” And the equation answers: “
                
                  
                      
                        
                          x
                        
                      
                      
                    
                
                 to the 
                
                  
                      
                        
                          m
                        
                      
                      
                    
                
                 is 
                
                  
                      
                        
                          a
                        
                      
                      
                    
                
                .”)
              
	
                
                  
                      
                        
                          
                            
                              n
                              =
                              log
                                  
                                    x
                                  
                                
                            
                            b
                          
                        
                      
                      
                    
                
              	
                Similarly, 
                
                  
                      
                        
                          n
                        
                      
                      
                    
                
                 will represent the other log.
              
	
                
                  
                      
                        
                          
                            x
                                
                                  n
                                
                              
                            =
                            b
                          
                        
                      
                      
                    
                
              	 
	
                
              	
                Replacing 
                
                  
                      
                        
                          a
                        
                      
                      
                    
                
                 and 
                
                  
                      
                        
                          b
                        
                      
                      
                    
                
                 based on the previous equations
              
	
                
                  
                      
                        
                          
                            
                              
                              =
                              log
                                  
                                    x
                                  
                                
                            
                            (
                            x
                                
                                  
                                    m
                                    +
                                    n
                                  
                                
                              
                            )
                          
                        
                      
                      
                    
                
              	
                This is the key step! It uses the first law of exponents. Thus you can see that the properties of logarithms come directly from the laws of exponents.
              
	
                
                  
                      
                        
                          
                            
                            =
                            
                              m
                              +
                              n
                            
                          
                        
                      
                      
                    
                
              	
                
                  
                      
                        
                          
                            
                              
                              =
                              log
                                  
                                    x
                                  
                                
                            
                            (
                            x
                                
                                  
                                    m
                                    +
                                    n
                                  
                                
                              
                            )
                          
                        
                      
                      
                    
                
                 asks the question: “
                
                  
                      
                        
                          x
                        
                      
                      
                    
                
                 to what power is 
                
                  
                      
                        
                          x
                              
                                
                                  m
                                  +
                                  n
                                
                              
                            
                        
                      
                      
                    
                
                ?” Looked at this way, the answer is obviously 
                
                  
                      
                        
                          
                            (
                            
                              m
                              +
                              n
                            
                            )
                          
                        
                      
                      
                    
                
                . Hence, you can see how the logarithm and exponential functions cancel each other out, as inverse functions must.
              
	
                
                  
                      
                        
                          
                            
                              
                              =
                              log
                                  
                                    x
                                  
                                
                            
                            
                              a
                              +
                              log
                                  
                                    x
                                  
                                
                            
                            b
                          
                        
                      
                      
                    
                
              	
                Replacing 
                
                  
                      
                        
                          m
                        
                      
                      
                    
                
                 and 
                
                  
                      
                        
                          n
                        
                      
                      
                    
                
                 with what they were originally defined as. Hence, we have proven what we set out to prove.
              


 To test your understanding, try proving the second law of logarithms: the proof is very similar to the first. For the third law, you need invent only one variable, 
m=logxa. In each case, you will rely on a different one of the three rules of exponents, showing how each exponent law corresponds to one of the logarithms laws.


6.6. Common Logarithms*



 When you see a root without a number in it, it is assumed to be a square root. That is, 
is a shorthand way of writing 
. This rule is employed because square roots are more common than other types.
 When you see a logarithm without a number in it, it is assumed to be a base 10 logarithm. That is, 
log(1000) is a shorthand way of writing 
log10(1000). A base 10 logarithm is also known as a “common” log.
 Why are common logs particularly useful? Well, what is 
log10(1000)? By now you know that this asks the question “10 to what power is 1000?” The answer is 3. Similarly, you can confirm that:
(6.5)
        
            
              
                
                  log
                  (
                  10
                  
                    )
                    =
                    1
                  
                
              
            
            
          
      
(6.6)
        
            
              
                
                  log
                  (
                  100
                  
                    )
                    =
                    2
                  
                
              
            
            
          
      
(6.7)
        
            
              
                
                  log
                  (
                  1,
                  000
                  ,
                  000
                  
                    )
                    =
                    6
                  
                
              
            
            
          
      
 We can also follow this pattern backward:
(6.8)
        
            
              
                
                  log
                  (
                  1
                  
                    )
                    =
                    0
                  
                
              
            
            
          
      
(6.9)

(6.10)

 and so on. In other words, the common log tells you the order of magnitude of a number: how many zeros it has. Of course, 
log10(500) is difficult to determine exactly without a calculator, but we can say immediately that it must be somewhere between 2 and 3, since 500 is between 100 and 1000.

6.7. Graphing Logarithmic Functions*



 Suppose you want to graph the function 
y=log2(x). You might start by making a table that looks something like this:
Table 6.7. 	
              
                
                    
                      
                        x
                      
                    
                    
                  
              
            	
              
                
                    
                      
                        
                          
                            y
                            =
                            log
                                
                                  2
                                
                              
                          
                          (
                          x
                          )
                        
                      
                    
                    
                  
              
            
	1	0
	2	1
	3	um....I’m not sure
	4	2
	5	can I use a calculator?


 This doesn’t seem to be the right strategy. Many of those numbers are just too hard to work with.
 So, you start looking for numbers that are easy to work with. And you remember that it’s important to look at numbers that are less than 1, as well as greater. And eventually, you end up with something more like this.
 
Table 6.8. 	
              
                
                    
                      
                        x
                      
                    
                    
                  
              
            	
              
                
                    
                      
                        
                          
                            y
                            =
                            log
                                
                                  2
                                
                              
                          
                          (
                          x
                          )
                        
                      
                    
                    
                  
              
            
		−3
		−2
		−1
	1	0
	2	1
	4	2
	8	3


As long as you keep putting powers of 2 in the 
x column, the 
y column is very easy to figure.
 In fact, the easiest way to generate this table is to recognize that it is the table of 
y=2x values, only with the 
x and 
y coordinates switched! In other words, we have re-discovered what we already knew: that 
y=2x and 
y=log2(x) are inverse functions.
 When you graph it, you end up with something like this:
 [image: Coordinate plane graphing the log (base-2) of x]

Figure 6.2. 

        
            
              
                
                  
                    y
                    =
                    log
                        
                          2
                        
                      
                  
                  (
                  x
                  )
                
              
            
            
          
      

 As always, you can learn a great deal about the log function by reading the graph.
 	The domain is 
x>0. (You can’t take the log of 0 or a negative number—do you remember why?).

	The range, on the other hand, is all numbers. Of course, all this inverses the function 
2x, which has a domain of all numbers and a range of 
y>0.

	As 
x gets closer and closer to 0, the function dives down to smaller and smaller negative numbers. So the 
y-axis serves as an “asymptote” for the graph, meaning a line that the graph approaches closer and closer to without ever touching.

	As 
x moves to the right, the graph grows—but more and more slowly. As 
x goes from 4 to 8, the graph goes up by 1. As 
x goes from 8 to 16, the graph goes up by another 1. It doesn’t make it up another 1 until 
x reaches 32...and so on.



 This pattern of slower and slower growth is one of the most important characteristics of the log. It can be used to “slow down” functions that have too wide a range to be practical to work with.
Example 6.3. Using the log to model a real world problem
 Lewis Fry Richardson (1881–1953) was a British meteorologist and mathematician. He was also an active Quaker and committed pacifist, and was one of the first men to apply statistics to the study of human conflict. Richardson catalogued 315 wars between 1820 and 1950, and categorized them by how many deaths they caused. At one end of the scale is a deadly quarrel, which might result in 1 or 2 deaths. At the other extreme are World War I and World War II, which are responsible for roughly 10 million deaths each.
 [image: Number line showing the number of deaths on a large time line scale]

Figure 6.3. 

 As you can see from the chart above, working with these numbers is extremely difficult: on a scale from 0 to 10 Million, there is no visible difference between (say) 1 and 100,000. Richardson solved this problem by taking the common log of the number of deaths. So a conflict with 1,000 deaths is given a magnitude of 
log(1000)=3. On this scale, which is now the standard for conflict measurement, the magnitudes of all wars can be easily represented.
 [image: Number line showing the same number of human deaths on a logarithmic scale]

Figure 6.4. 

 Richardson’s scale makes it practical to chart, discuss, and compare wars and battles from the smallest to the biggest. For instance, he discovered that each time you move up by one on the scale—that is, each time the number of deaths multiplies by 10—the number of conflicts drops in a third. (So there are roughly three times as many “magnitude 5” wars as “magnitude 6,” and so on.)
 The log is useful here because the logarithm function itself grows so slowly that it compresses the entire 1-to-10,000,000 range into a 0-to-7 scale. As you will see in the text, the same trick is used—for the same reason—in fields ranging from earthquakes to sound waves.



Solutions



    
      [image: Advanced Algebra II: Conceptual Explanations]
    

  Chapter 3. Simultaneous Equations



3.1. Distance, Rate and Time*



 If you travel 30 miles per hour for 4 hours, how far do you go? A little common sense will tell you that the answer is 120 miles.
 This relationship is captured in the following equation:
  where...
 	d is distance traveled (sometimes the letter x is used instead, for position)

	r is the rate, or speed (sometimes the letter v is used, for velocity)

	t is the time



 This is presented here because it forms the basis for many common simultaneous equations problems.

3.2. Simultaneous Equations by Graphing*



 Consider the equation 
. How many 
(x,y) pairs are there that satisfy this equation? Answer: 
(0,0), 
(1,2), 
(4,4), and 
(9,6) are all solutions; and there is an infinite number of other solutions. (And don’t forget non-integer solutions, such as 
(,1)!)
 Now, consider the equation 
. How many pairs satisfy this equation? Once again, an infinite number. Most equations that relate two variables have an infinite number of solutions.
 To consider these two equations “simultaneously” is to ask the question: what 
(x,y) pairs make both equations true? To express the same question in terms of functions: what values can you hand the functions 
 and 
 that will make these two functions produce the same answer?
 [image: Gearbox showing two functions to consider if the result can be the same at some value x.]

Figure 3.1. 
 What number goes into both functions and makes them give the same answer? Is there even such a number? Is there more than one such number? 

 At first glance, it is not obvious how to approach such a question-- it is not even obvious how many answers there will be.
 One way to answer such a question is by graphing. Remember, the graph of 
 is the set of all points that satisfy that relationship; and the graph of 
 is the set of all points that satisfy that relationship. So the intersection(s) of these two graphs is the set of all points that satisfy both relationships.
 How can we graph these two? The second one is easy: it is a line, already in 
 format. The 
y-intercept is

 and the slope is 1. We can graph the first equation by plotting points; or, if you happen to know what the graph of 
 looks like, you can stretch the graph vertically to get 
, since all the 
y-values will double. Either way, you wind up with something like this:
 [image: Graph of two functions illustrating the points at which they value of the functions are equal (where the graphs intersect)]

Figure 3.2. 

 We can see that there are two points of intersection. One occurs when 
x is barely greater than 0 (say, 
x=0.1), and the other occurs at approximately 
x=3. There will be no more points of intersection after this, because the line will rise faster than the curve.
Exercise 1.
 
		 
      
 
      

	

 From graphing...
 x=0.1, 
x=3




 Graphing has three distinct advantages as a method for solving simultaneous equations.
 	It works on any type of equations.

	It tells you how many solutions there are, as well as what the solutions are.

	It can help give you an intuitive feel for why the solutions came out the way they did.



 However, graphing also has two disadvantages.
 	It is time-consuming.

	It often yields solutions that are approximate, not exact—because you find the solutions by simply “eyeballing” the graph to see where the two curves meet.



 For instance, if you plug the number 3 into both of these functions, will you get the same answer?
 
        
      
 
        
      
 Pretty close! Similarly, 
, which is quite close to 0.6. But if we want more exact answers, we will need to draw a much more exact graph, which becomes very time-consuming. (Rounded to three decimal places, the actual answers are 0.086 and 2.914.)
 For more exact answers, we use analytic methods. Two such methods will be discussed in this chapter:  substitution and  elimination. A third method will be discussed in the section on Matrices.

3.3. Substitution*



 Here is the algorithm for substitution.
 	Solve one of the equations for one variable.

	Plug this variable into the other equation.

	Solve the second equation, which now has only one variable.

	Finally, use the equation you found in step (1) to find the other variable.



Example 3.1.  Solving Simultaneous Equations by Substitution 
 3x+4y=1
 2x−y=8
 	The easiest variable to solve for here is the y in the second equation.  
	 −y=−2x+8 
	 y=2x−8 


	Now, we plug that into the other equation: 
 
	3x+4(2x−8)=1 

 

	We now have an equation with only x in it, so we can solve for x.
 
	 3x+8x−32=1
	 11x=33 
	 x=3 

 

	Finally, we take the equation from step (1), 
y=2x−8, and use it to find 
y.
 
	 y=2(3)−8=−2 

 



 So 
(3,−2) is the solution. You can confirm this by plugging this pair into both of the original equations.


  Why does substitution work? 
 We found in the first step that 
y=2x−8. This means that 
y and 
2x−8 are equal in the sense that we discussed in the first chapter on functions—they will always be the same number, in these equations—they are the same. This gives us permission to simply replace one with the other, which is what we do in the second (“substitution”) step.

3.4. Elimination*



 Here is the algorithm for elimination.
 	Multiply one equation (or in some cases both) by some number, so that the two equations have the same coefficient for one of the variables.

	Add or subtract the two equations to make that variable go away.

	Solve the resulting equation, which now has only one variable.

	Finally, plug back in to find the other variable.



Example 3.2.  Solving Simultaneous Equations by Elimination 
 3x+4y=1
 2x−y=8
 	1: The first question is: how do we get one of these variables to have the same coefficient in both equations? To get the 
x coefficients to be the same, we would have to multiply the top equation by 2 and the bottom by 3. It is much easier with 
y; if we simply multiply the bottom equation by 4, then the two 
y values will both be multiplied by 4.
 	 3x+4y=1 
	 8x−4y=32 

 
	2: Now we either add or subtract the two equations. In this case, we have 
4y on top, and 
−4y on the bottom; so if we add them, they will cancel out. (If the bottom had a 
+4y we would have to subtract the two equations to get the "
y"s to cancel.)
  	 11x+0y=33 

 
	3-4:  Once again, we are left with only one variable. We can solve this equation to find that 
x=3 and then plug back in to either of the original equations to find 
y=−2 as before. 



 
        Why does elimination work?
      
 As you know, you are always allowed to do the same thing to both sides of an equation. If an equation is true, it will still be true if you add 4 to both sides, multiply both sides by 6, or take the square root of both sides.
 Now—consider, in the second step above, what we did to the equation 
3x+4y=1. We added something to both sides of this equation. What did we add? On the left, we added 
8x−4y; on the right, we added 32. It seems that we have done something different to the two sides.
 However, the second equation gives us a guarantee that these two quantities, 
8x−4y and 32, are in fact the same as each other. So by adding 
8x−4y to the left, and 32 to the right, we really have done exactly the same thing to both sides of the equation 
3x+4y=1.

3.5. Special Cases*



 Consider the two equations:
(3.1)
        
            
              
                
                  
                    2x
                    +
                    3y
                  
                  =
                  8
                
              
            
            
          
      
(3.2)
        
            
              
                
                  
                    4x
                    +
                    6y
                  
                  =
                  3
                
              
            
            
          
      
 Suppose we attempt to solve these two equations by elimination. So, we double the first equation and subtract, and the result is:
(3.3)

 Hey, what happened? 0 does not equal 13, no matter what 
x
 is. Mathematically, we see that these two equations have no simultaneous solution. You asked the question “When will both of these equations be true?” And the math answered, “Hey, buddy, not until 0 equals 13.”
 No solution.
 Now, consider these equations:
(3.4)

 Once again, we attempt elimination, but the result is different:
(3.5)

 What happened that time? 
0=0 no matter what 
x is. Instead of an equation that is always false, we have an equation that is always true. Does that mean these equations work for any x and 
y? Clearly not: for instance, 
(1,1) does not make either equation true. What this means is that the two equations are the same: any pair that solves one will also solve the other. There is an infinite number of solutions.
 Infinite number of solutions.
 All of this is much easier to understand graphically! Remember that one way to solve simultaneous equations is by graphing them and looking for the intersection. In the first case, we see that original equations represented two parallel lines. There is no point of intersection, so there is no simultaneous equation.
 [image: Graph showing two functions as parallel lines as they do not cross. For every x, there is no value that will give the same result for both functions.]

Figure 3.3. 

 In the second case, we see that the original equations represented the same line, in two different forms. Any point on the line is a solution to both equations.
 [image: Graph illustrating two functions in two different forms but representing the same line. For every value x, the function will yield the same result when written in slope-intersect form.]

Figure 3.4. 

General Rule
If you solve an equation and get a mathematical impossibility such as 

 
  
     0 
    =
     13 
  
 

, there is no solution.  If you get a mathematical tautology such as

 
  
     0 
    =
     0 
  
 

, there is an infinite number of solutions.



3.6. Word Problems*



 Many students approach math with the attitude that “I can do the equations, but I’m just not a ‘word problems’ person.”  No offense, but that’s like saying “I’m pretty good at handling a tennis racket, as long as there’s no ball involved.”  The only point of handling the tennis racket is to hit the ball.  The only point of math equations is to solve problems.  So if you find yourself in that category, try this sentence instead: “I’ve never been good at word problems.  There must be something about them I don’t understand, so I’ll try to learn it.”
 Actually, many of the key problems with word problems were discussed in the very beginning of the “Functions” unit, in the discussion of variable descriptions.  So this might be a good time to quickly re-read that section.  If you can correctly identify the variables, you’re half-way through the hard part of a word problem.  The other half is translating the sentences of the problem into equations that use those variables.
 Let’s work through an example, very carefully.
Example 3.3. Simultaneous Equation Word Problem
 
A roll of dimes and a roll of quarters lie on the table in front of you.  There are three more quarters than dimes.  But the quarters are worth three times the amount that the dimes are worth.  How many of each do you have?

 	Identify and label the variables.

 	There are actually two different, valid ways to approach this problem.  You could make a variable that represents the number of dimes; or you could have a variable that represents the value of the dimes.  Either way will lead you to the right answer.  However, it is vital to know which one you’re doing!  If you get confused half-way through the problem, you will end up with the wrong answer.





Table 3.1. 	Let’s try it this way:
	d is the number of dimes
	q is the number of quarters





	Translate the sentences in the problem into equations.
 
	“There are three more quarters than dimes” 

  →
  q
  =
  d
  +
  3

	“The quarters are worth three times the amount that the dimes are worth”

      
        
            
              
                
                  →
                  25
                  
                    q
                    =
                    3
                  
                  (
                  10
                  d
                  )
                
              
            
            
          
      
    
	
This second equation relies on the fact that if you have 
      
        
            
              
                q
              
            
            
          
      
     quarters, they are worth a total of 
      
        
            
              
                
                  25
                  q
                
              
            
            
          
      
     cents.


	Solve.
 
	We can do this by elimination or substitution.  Since the first equation is already solved for 
      
        
            
              
                q
              
            
            
          
      
    , I will substitute that into the second equation and then solve.



Table 3.2. 	
      
        
            
              
                
                  25
                  
                    (
                        d
                        +
                        3
                      )
                    =
                    3
                  
                  (
                      10
                      d
                    )
                
              
            
            
          
      
    
	
      
        
            
              
                
                  25
                  
                    
                      d
                      +
                      75
                    
                    =
                    30
                  
                  d
                
              
            
            
          
      
    
	
      
        
            
              
                
                  75
                  =
                  5d
                
              
            
            
          
      
    
	
      
        
            
              
                
                  d
                  =
                  15
                
              
            
            
          
      
    
	
      
        
            
              
                
                  q
                  =
                  18
                
              
            
            
          
      
    





 So, did it work?  The surest check is to go all the way back to the original problem—not the equations, but the words.  We have concluded that there are 15 dimes and 18 quarters.
 “There are three more quarters than dimes.” ✓
 “The quarters are worth three times the amount that the dimes are worth.” 
      
        
            
              
                →
              
            
            
          
      
     Well, the quarters are worth 
      
        
            
              
                
                  
                    
                      18
                      ⋅
                      25
                    
                    =
                    $
                  
                  4
                  .
                  50
                
              
            
            
          
      .  The dimes are worth 
      
        
            
              
                
                  
                    
                      15
                      ⋅
                      10
                    
                    =
                    $
                  
                  1
                  .
                  50
                
              
            
            
          
      .  ✓



3.7. Using Letters as Numbers*



 Toward the end of this chapter, there are some problems in substitution and elimination where letters are used in place of numbers. For instance, consider the following problem:
(3.6)

(3.7)

 What do we do with those "a"s? Like any other variable, they simply represent an unknown number. As we solve for 
x, we will simply leave 
a as a variable.
 This problem lends itself more naturally to elimination than to substitution, so I will double the top equation and then subtract the two equations and solve.
(3.8)

(3.9)

 As always, we can solve for the second variable by plugging into either of our original equations.
(3.10)

(3.11)
        
            
              
                
                  
                    2y
                    +
                    1
                  
                  =
                  7
                
              
            
            
          
      
(3.12)
        
            
              
                
                  y
                  =
                  3
                
              
            
            
          
      
 There is no new math here, just elimination. The real trick is not to be spooked by the 
a
, and do the math just like you did before.
 And what does that mean? It means we have found a solution that works for those two equations, regardless of a. We can now solve the following three problems (and an infinite number of others) without going through the hard work.
Table 3.3. 	If a=5,	If a=10,	If a=–3,
	The original equations become:	The original equations become:	The original equations become:
	
      
    	
      
    	
      
    
	And the solution is:	And the solution is:	And the solution is:
	
      
    	
      
    	
      
    


 The whole point is that I did not have to solve those three problems—by elimination, substitution, or anything else. All I had to do was plug 
a into the general answer I had already found previously. If I had to solve a hundred such problems, I would have saved myself a great deal of time by going through the hard work once to find a general solution!
 Mathematicians use this trick all the time. If they are faced with many similar problems, they will attempt to find a general problem that encompasses all the specific problems, by using variables to replace the numbers that change. You will do this in an even more general way in the text, when you solve the “general” simultaneous equations where all the numbers are variables. Then you will have a formula that you can plug any pair of simultaneous equations into to find the answer at once. This formula would also make it very easy, for instance, to program a computer to solve simultaneous equations (computers are terrible at figuring things out, but they’re great at formulas).

Solutions


How to Use Advanced Algebra II



 Over a period of time, I have developed a set of in-class assignments, homeworks, and lesson plans, that work for me and for other people who have tried them.  The complete set comprises three separate books that work together:

 	The Homework and Activities Book contains in-class and homework assignments that are given to the students day-by-day.

	The Concepts Book provides conceptual explanations, and is intended as a reference or review guide for students; it is not used when teaching the class.

	The Teacher's Guide provides lesson plans; it is your guide to how I envisioned these materials being used when I created them (and how I use them myself).





 Instructors should note that this book probably contains more information than you will be able to cover in a single school year.  I myself do not teach from every chapter in my own classes, but have chosen to include these additional materials to assist you in meeting your own needs. As you will likely need to cut some sections from the book, I strongly recommend that you spend time early on to determine which modules are most important for your state requirements and personal teaching style.
 One more warning is important: these materials were designed for an Advanced Algebra II course.  For such a course, I hope this will provide you with ready-to-use textbook and lesson plans.  If you are teaching a Standard or Remedial-level course, these materials will still be useful, but you will probably have to cut or reduce some of the most conceptual material, and supplement it with more drill-and-practice than I provide.
 The following table of contents provides a list of topics covered in this course with links to each module.  You can use these links to move between the books or to jump ahead to any topic.
Table 1. 	 	Conceptual Explanations
[col10624]	Activities & Homework
[col10686]	Teacher's Guide
[col10687]
	Functions	 	 	 
	Introduction	 	 	[m19335]
	Function Concepts	[m18192]	 	 
	What is a Variable?	[m18194]	 	 
	What is a Function?	[m18189]	 	 
	The Rule of Consistency	[m19190]	 	 
	Four Ways to Represent a Function	[m18195]	 	 
	Domain and Range	[m18191]	 	 
	The Function Game	 	[m19121]	[m19342]
	The Function Game: Introduction	 	[m19125]	 
	The Function Game: Leader's Sheet	 	[m19126]	 
	The Function Game: Answer Sheet	 	[m19124]	 
	Functions in the Real World	[m18193]	 	[m19331]
	Homework: Functions in the Real World	 	[m19115]	 
	Function Notation	[m18188]	 	 
	Algebraic Generalizations	[m18186]	[m19114]	[m19332]
	Homework: Algebraic Generalizations	 	[m19108]	 
	Graphing	[m18196]	 	[m19334]
	Homework: Graphing	 	[m19116]	 
	Horizontal and Vertical Permutations	 	[m19110]	[m19339]
	Homework: Horizontal and Vertical Permutations I	 	[m19119]	 
	Homework: Horizontal and Vertical Permutations II	 	[m31952]	 
	Sample Test: Functions I	 	[m19122]	[m19340]
	Lines	[m18197]	[m19113]	[m19337]
	Homework: Graphing Lines	 	[m19118]	 
	Composite Functions	[m18187]	[m19109]	[m19333]
	Homework: Composite Functions	 	[m19107]	 
	Inverse Functions	[m18198]	[m19112]	[m19336]
	Homework: Inverse Functions	 	[m19120]	 
	TAPPS Exercise: How do I Solve That For y?	 	[m19123]	 
	Sample Test: Functions II	 	[m19117]	 
	Inequalities and Absolute Values	 	 	 
	Introduction	 	 	[m19432]
	Inequalities	[m18205]	[m19158]	[m19430]
	Homework: Inequalities	 	[m19154]	 
	Inequality Word Problems	 	[m19163]	[m19428]
	Absolute Value Equations	[m18201]	[m19148]	[m19426]
	Homework: Absolute Value Equations	 	[m19151]	 
	Absolute Value Inequalities	[m18207]	[m19151]	[m19431]
	Homework: Absolute Value Inequalities	 	[m19155]	 
	Graphing Absolute Values	[m18199]	 	 
	Graphing Inequalities	[m18208]	 	 
	Graphing Inequalities and Absolute Values	 	[m19150]	[m19433]
	"Piecewise Functions" and Absolute Value	[m18200]	 	 
	Homework: Graphing Inequalities and Absolute Values	 	[m19153]	 
	Sample Test: Inequalities and Absolute Values	 	[m19166]	 
	Simultaneous Equations	 	 	 
	Introduction to Simultaneous Equations	 	 	[m19497]
	Distance, Rate, and Time	[m18211]	[m19288]	 
	Simultaneous Equations by Graphing	[m18209]	[m19291]	 
	Homework: Simultaneous Equations by Graphing	 	[m19291]	 
	Substitution	[m18211]	 	 
	Elimination	[m18215]	 	 
	Special Cases	[m18213]	 	 
	Word Problems	[m18210]	 	 
	Using Letters as Numbers	[m18214]	 	 
	Simultaneous Equations	 	[m19293]	[m19498]
	Homework: Simultaneous Equations	 	[m19289]	 
	The "Generic" Simultaneous Equation	 	[m19294]	[m19499]
	Sample Test: 2 Equations and 2 Unknowns	 	[m19292]	 
	Quadratics	 	 	 
	Introduction	 	 	[m19469]
	Multiplying Binomials	[m18224]	[m19247]	[m19472]
	Homework: Multiplying Binomials	 	[m19253]	 
	Factoring	[m18227]	[m19243]	[m19466]
	Solving Quadratic Equations by Factoring	[m18222]	 	 
	Homework: Factoring Expressions	 	[m19248]	 
	Introduction to Quadratic Equations	 	[m19246]	[m19470]
	Homework: Introduction to Quadratic Equations	 	[m19251]	 
	Solving Quadratic Equations by Completing the Square	[m18217]	 	 
	Completing the Square	 	[m19242]	[m19465]
	Homework: Completing the Square	 	[m19249]	 
	The Quadratic Formula	[m18231]	 	 
	The "Generic" Quadratic Equation	 	[m19262]	[m19480]
	Homework: Solving Quadratic Equations	 	[m19256]	 
	Sample Test: Quadratic Equations I	 	[m19259]	 
	Different Types of Solutions to Quadratic Equations	[m18216]	 	 
	Graphing Quadratic Functions	[m18228]	[m19245]	[m19468]
	Graphing Quadratic Functions II	 	[m19244]	[m19467]
	Homework: Graphing Quadratic Functions II	 	[m19250]	 
	Solving Problems by Graphing Quadratic Equations	[m18220]	[m19260]	[m19479]
	Homework: Solving Problems by Graphing Quadratic Equations	 	[m19255]	 
	Quadratic Inequalities	[m18230]	[m19257]	 
	Homework: Quadratic Inequalities	 	[m19254]	[m19473]
	Sample Test: Quadratics II	 	[m19258]	 
	Exponents	 	 	 
	Introduction	 	 	[m19325]
	Exponent Concepts	[m18232]	 	 
	Laws of Exponents	[m18235]	 	 
	Zero, Negative Numbers, and Fractions as Exponents	[m18234]	 	 
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Chapter 9. Imaginary Numbers



9.1. Imaginary Numbers Concepts*



 (-1)2=1

 12=1
 Whether you square a positive or a negative number, the answer is positive. It is impossible to square any number and get a negative answer.
 So what is 
? Since it asks the question “What number squared is –1?”, and since nothing squared ever gives the answer –1, we say that the question has no answer. More generally, we say that the domain of 
 is all numbers x such that x≥0. –1 is not in the domain.
 However, it turns out that for a certain class of problems, it is useful to define a new kind of number that has the peculiar property that when you square them, you do get negative answers.
 
Definition of i
The definition of the imaginary number i is that it is the square root of –1:
 i =
  or, equivalently, i2+-1
 i is referred to as an “imaginary number” because it cannot represent real quantities such as “the number of rocks” or “the length of a stick.” However, surprisingly, imaginary numbers can be useful in solving many real world problems!
 I often like to think of x as being like a science fiction story. Many science fiction stories are created by starting with one false premise, such as “time travel is possible” or “there are men on Mars,” and then following that premise logically to see where it would lead. With imaginary numbers, we start with the premise that “a number exists whose square is –1.” We then follow that premise logically, using all the established rules of math, to see where it leads.
 
 "The imaginary number is a fine and wonderful resource of the human spirit, almost an amphibian between being and not being."




 -Gottfried Wilhelm Leibniz




9.2. Playing with i*



 Let’s begin with a few very simple exercises designed to show how we apply the normal rules of algebra to this new, abnormal number.
Table 9.1. 	A few very simple examples of expressions involving i
	Simplify:	i•5
	Answer:	5i
	 	 
	Simplify:	i+5i
	Answer:	6i (Add anything to 5 of itself, and you get 6 of it.  Or, you can think of this as “pulling out” an i as follows: i+5i=i(1+5)=6i)

	 	 
	Simplify:	2i+3
	Answer:	You can't simplify it.


 Now let's try something a little more involved.
Table 9.2. 	Example: Simplify the expression (3+2i)2
		because(x+a)2=x2+2ax+a2as always
	= 9+12i–4	(2i)2=(2i)(2i)=(2)(2)(i)(i)=4i2 =–4
	= 5+12i	 we can combine the 9 and –4, but not the 12i.


 It is vital to remember that i is not a variable, and this is not an algebraic generalization. You cannot plug i=3 into that equation and expect anything valid to come out. The equation (3+2i)2=5+12i has been shown to be true for only one number: that number is i, the square root of –1.
 In the next example, we simplify a radical using exactly the same technique that we used in the unit on radicals, except that 

a
–
1
 is thrown into the picture.
Table 9.3. 	
Example: Simplify 

				
	
					 = 

					as always, factor out the perfect squares
	
= 

					
					then split it, because=

				
	=2i
						=2, 
=i, andis just
				
	Check
	Is 2i
					 really the square root of –20? If it is, then when we square it, we should get –20.
	
					 [image: graphics1.png]
 It works!


 The problem above has a very important consequence. We began by saying “You can’t take the square root of any negative number.” Then we defined i as the square root of –1. But we see that, using i, we can now take the square root of any negative number.

9.3. Complex Numbers*



 A “complex number” is the sum of two parts: a real number by itself, and a real number multiplied by i. It can therefore be written as a+bi, where a and b are real numbers.
 The first part, a, is referred to as the real part. The second part, bi, is referred to as the imaginary part.
Table 9.4. 	Examples of complex numbers a+bi (a is the “real part”; bi is the “imaginary part”)
	3+2i	a=3, b=2
	π	a=π, b=0(no imaginary part: a “pure real number”)
	-i	a=0, b=-1 (no real part: a “pure imaginary number”)


 Some numbers are not obviously in the form a+bi. However, any number can be put in this form.
Table 9.5. 	Example 1: Putting a fraction into a+bi form (i in the numerator)
	 is a valid complex number. But it is not in the form a+bi, and we cannot immediately see what the real and imaginary parts are.
	To see the parts, we rewrite it like this:
	=
–

	Why does that work? It’s just the ordinary rules of fractions, applied backward. (Try multiplying and then subtracting on the right to confirm this.) But now we have a form we can use:
	 a=
, 
	So we see that fractions are very easy to break up, if the i is in the numerator. An i in the denominator is a bit trickier to deal with.


Table 9.6. 	Example 2: Putting a fraction into a+bi form (i in the denominator)
	 = 
	Multiplying the top and bottom of a fraction by the same number never changes the value of the fraction: it just rewrites it in a different form.
	= 
	Because i•i  is i2, or –1.
	=-i	This is not a property of i, but of –1. Similarly, =
–5.
	: a=0, b=-1	since we rewrote it as -i, or 0–1i


 Finally, what if the denominator is a more complicated complex number? The trick in this case is similar to the trick we used for rationalizing the denominator: we multiply by a quantity known as the complex conjugate of the denominator.
 
Definition of Complex Conjugate
The complex conjugate of the number a+bi is a–bi. In words, you leave the real part alone, and change the sign of the imaginary part.
 Here is how we can use the “complex conjugate” to simplify a fraction.
Table 9.7. 	Example: Using the Complex Conjugate to put a fraction into a+bi form
		The fraction: a complex number not currently in the form 
a
+
b
i

	=
	Multiply the top and bottom by the complex conjugate of the denominator
	=
	Remember, 
	=
	, which we are subtracting from 9
	=
	Success! The top has i, but the bottom doesn’t. This is easy to deal with.
	=
+
	Break the fraction up, just as we did in a previous example.
	=
+
 	So we’re there! a=
 and



 Any number of any kind can be written as a+bi. The above examples show how to rewrite fractions in this form. In the text, you go through a worksheet designed to rewrite 
 as three different complex numbers. Once you understand this exercise, you can rewrite other radicals, such as 
, in a+bi form.

9.4. Equality and Inequality in Complex Numbers*



 What does it mean for two complex numbers to be equal? As always, equality asserts that two things are exactly the same. 7+3i is not equal to 7, or to 3i, or to 7–3i, or to 3+7i. It is not equal to anything except 7+3i.
 
Definition of Equality
Two complex numbers are equal to each other only if their real parts are equal, and their imaginary parts are equal.
 So if we say that two complex numbers equal each other, we are actually making two separate, independent statements. We can use this, for instance, to solve for two separate variables.
Table 9.8. 	Example: Complex Equality
	If 3x+4yi+7=4x+8i, what are x and y?
	Normally, it is impossible to solve one equation for two unknowns. But this is really two separate equations!
	Real part on the left = real part on the right:	3x+7=4x
	Imaginary part on the left = imaginary part on the right:	4y=8
	We can now solve both of these equations trivially.	x=7, y=2


 And what about inequalities? The answer may surprise you: there are no inequalities with complex numbers, at least not in the form we’re seeing.
 The real numbers have the property that for any two real numbers a and b, exactly one of the following three statements must be true: a=b, a>b, or a<b. This is one of those properties that seems almost too obvious to bother with. But it becomes more interesting when you realize that the complex numbers do not have that property. Consider two simple numbers, i and 1. Which of the following is true?
 	i = 1 
 [image: graphics1.png]

	i > 1 
 [image: graphics2.png]

	i < 1 
 [image: graphics3.png]



 None of them is true. It is not generally possible to describe two complex numbers as being “greater than” or “less than” each other.
 Visually, this corresponds to the fact that all the real numbers can be laid out on a number line: “greater than” means “to the right of” and so on. The complex numbers cannot be laid out on a number line. They are sometimes pictured on a 2-dimensional graph, where the real part is the x coordinate and the imaginary part is the y coordinate. But one point on a graph is neither greater than, nor less than, another point!

9.5. Quadratic Equations and Complex Numbers*



 In the unit on quadratic equations and complex numbers, we saw that a quadratic equation can have two answers, one answer, or no answers.
 We can now modify this third case. In cases where we described “no answers” there are actually two answers, but both are complex! This is easy to see if you remember that we found “no answers” when the discriminant was negative—that is, when the quadratic formula gave us a negative answer in the square root.
 As an example, consider the equation:
 2x2+3x+5=0
 The quadratic equation gives us:
  = 

 This is the point where, in the “old days,” we would have given up and declared “no answer.” Now we can find two answers—both complex.
  = 

 So we have two answers. Note that the two answers are complex conjugates of each other—this relationship comes directly from the quadratic formula.

9.6. A Few “Extra for Experts” Thoughts on Imaginary Numbers*



Illegal Operations



 So far, we have seen three different illegal operations in math.
 	You cannot take the square root of a negative number. (Hence, the domain of 
 is x≥0.)

	You cannot divide by zero. (Hence, the domain of 
 is x≠0.)

	You cannot take the log of 0 or a negative number. (Hence, the domain of log(x) is x>0.)



 Imaginary numbers give us a way of violating the first restriction. Less obviously, they also give us a way of violating the third restriction: with imaginary numbers, you can take the log of a negative number.
 So, how about that second restriction? Do you ever reach a point in math where the teacher admits “OK, we really can divide by 0 now”? Can we define a new imaginary number 
?
 The answer is emphatically no: you really can’t divide by 0. If you attempt to define an imaginary way around this problem, all of math breaks down. Consider the following simple example:
Table 9.9. 	
5
•
0
=
3
•
0
	That’s true
	
5
=
3
	Divide both sides by 0


 You see? Dividing by 0 takes us from true conclusions to false ones.
 The astonishing thing about the definition 
i
=

 is that, although it is imaginary and nonsensical, it is consistent: it does not lead to any logical contradictions. You can find many ways to simplify 
 and it will always reduce to –i in the end. Division by zero can never be consistent in this way, so it is always forbidden.
 A great deal of Calculus is concerned with getting around this problem, by dividing by numbers that are very close to zero.

The World of Numbers



 When you first learn about numbers, you learn the counting numbers:
Table 9.10. 	1,2,3,4...	counting numbers


 These numbers are perfect for answering questions such as “How many sticks do I have?” “How many days until Christmas?” “How many years old are you?”
 For other questions, however, you run into limitations. In measuring temperature, for instance, we find that we need lower numbers than 1. Hence, we arrive at a broader list:
Table 9.11. 	...–4,–3,–2,–1,0,1,2,3,4...	integers


 The addition of 0 and the negative numbers gives us a new, broader set. The original idea of numbers is now seen as a special case of this more general idea; the original set is a subset of this one.
 Still, if we are measuring lengths of sticks, we will find that often they fall between our numbers. Now we have to add fractions, or decimals, to create the set of rational numbers. I can no longer list the set, but I can give examples.
Table 9.12. 	, –3, 
, 0, 2.718, 0.14141414...	rational numbers


 The word “rational” implies a ratio, or fraction: the ratio of two integers. Hence, we define our new, broader set (rational numbers) in terms of our older, more limited set (integers). Rational numbers can be expressed as either fractions, or as decimals (which either end after a certain number of digits, or repeat the same loop of digits forever).
 This set seems to be all-inclusive, but it isn’t: certain numbers cannot be expressed in this form.
Table 9.13. 	, π	irrational numbers


 The square root of any non-perfect square is “irrational” and so is π. They can be approximated as fractions, but not expressed exactly. As decimals, they go on forever but do not endlessly repeat the same loop.
 If you take the rationals and irrationals together, you get the real numbers. The real numbers are all the numbers represented on a number line.
 [image: A number line showing all real numbers.]

Figure 9.1. 
All the numbers on a number line are the real numbers

 Now, with this unit, we have added the final piece of the puzzle, the complex numbers. A complex number is any number a+bi where a and b are real numbers. Hence, just as our definition of rational numbers was based on our definition of integers, so our definition of complex numbers is based on our definition of real numbers. And of course, if b=0 then we have a real number: the old set is a subset of the new.
 All of this can be represented in the following diagram.
 [image: A diagram showing the relationship between the different classes of numbers.]

Figure 9.2. 

 The diagram captures the vital idea of subsets: all real numbers are complex numbers, but not all complex numbers are real.
 Similarly, the diagram shows that if you take all the rational numbers, and all the irrational numbers, together they make up the set of real numbers.


Solutions


Chapter 12. Conics



12.1. Conic Concepts*



 So far, we have talked about how to graph two shapes: lines, and parabolas. This unit will discuss parabolas in more depth. It will also discuss circles, ellipses, and hyperbolas. These shapes make up the group called the conic sections: all the shapes that can be created by intersecting a plane with a double cone.
Table 12.1. 	
       [image: A picture of two cones connected at the tips.]

      	On the left is a double cone.If you intersect the double cone with a horizontal plane, you get a circle.If you tilt the plane a bit, you get an ellipse (as in the bad clip art picture on the right).If you tilt the plane more, so it never hits the other side of the cone, you get a parabola.If the plane is vertical, so it hits both cones, you get a hyperbola.	
             [image: A picture of a cone intersected with a plane.]

      


 We are going to discuss each of these shapes in some detail. Specifically, for each shape, we are going to provide...
 	A formal definition of the shape, and

	The formula for graphing the shape



 These two things—the definition, and the formula—may in many cases seem unrelated. But you will be doing work in the text exercises to show, for each shape, how the definition leads to the formula.

12.2. A Mathematical Look at Distance*



 The key mathematical formula for discussing all the shapes above is the distance between two points.
 Many students are taught, at some point, the “distance formula” as a magic (and very strange-looking) rule. In fact, the distance formula comes directly from a bit of intuition...and the Pythagorean Theorem.
 The intuition comes in finding the distance between two points that have one coordinate in common.
The distance between two points that have one coordinate in common



  [image: Two point on a Cartesian coordinate system: (2,3) and (6,3)]

 The drawing shows the points (2,3) and (6,3). Finding the distance between these points is easy: just count! Take your pen and move it along the paper, starting at (2,3) and moving to the right. Let’s see…one unit gets you over to (3,3); the next unit gets you to (4,3)...a couple more units to (6,3). The distance from (2,3) to (6,3) is 4.
 Of course, it would be tedious to count our way from (2,3) to (100,3). But we don’t have to—in fact, you may have already guessed the faster way—we subtract the x coordinates.
 	The distance from (2,3) to (6,3) is 
6
–
2
=
4


	The distance from (2,3) to (100,3) is 
100
–
2
=
98




 And so on. We can write this generalization in words:
Note
Whenever two points lie on a horizontal line, you can find the distance between them by subtracting their 
x
-coordinates.


 This may seem pretty obvious in the examples given above. It’s a little less obvious, but still true, if one of the 
x
 coordinates is negative.
  [image: Two point on a Cartesian coordinate system: (-3,1) and (2,1)]

 The drawing above shows the numbers (-3,1) and (2,1). You can see that the distance between them is 5 (again, by counting). Does our generalization still work? Yes it does, because subtracting a negative number is the same as adding a positive one.
 The distance from (-3,1) to (2,1) is 
2
–
(
-3
)
=
5

 How can we express this generalization mathematically? If two points lie on a horizontal line, they have two different x-coordinates: call them 
x1
 and 
x2
. But they have the same y-coordinate, so just call that y. So we can rewrite our generalization like this: “the distance between the points (
x1
,

y
) and (
x2
,

y
) is 
x2
–
x1
.” In our most recent example, 
x1
=
–3
, 
x2
=
2
, and 
y
=
1
. So the generalization says “the distance between the points (-3,1) and (2,1) is 
2
–
(
-3
)
”, or 5.
 But there’s one problem left: what if we had chosen 
x2
 and 

x1
 the other way? Then the generalization would say “the distance between the points (2,1) and (-3,1) is 
(
–3
)
-2
”, or -5. That isn’t quite right: distances can never be negative. We get around this problem by taking the absolute value of the answer. This guarantees that, no matter what order the points are listed in, the distance will come out positive. So now we are ready for the correct mathematical generalization:
 
Distance Between Two Points on a Horizontal Line
The distance between the points (
x1
,

y
) and (
x2
,

y
) is 
|
x2
–
x1
|

 You may want to check this generalization with a few specific examples—try both negative and positive values of 
x1
 and 

x2
. Then, to really test your understanding, write and test a similar generalization for two points that lie on a vertical line together. Both of these results will be needed for the more general case below.

The distance between two points that have no coordinate in common



 So, what if two points have both coordinates different? As an example, consider the distance from (–2,5) to (1,3).
  [image: Two point on a Cartesian coordinate system: (-2,5) and (1,3) and the distance between them.]

 The drawing shows these two points. The (diagonal) line between them has been labeled 
d
: it is this line that we want the length of, since this line represents the distance between our two points.
 The drawing also introduces a third point into the picture, the point (–2,3). The three points define the vertices of a right triangle. Based on our earlier discussion, you can see that the vertical line in this triangle is length 
|
5
–
3
|
=
2
. The horizontal line is length 
|
1
–
(
–2
)
|
=
3
.
 But it is the diagonal line that we want. And we can find that by using the Pythagorean Theorem, which tells us that 
d2
=
22
+
32
. So 


 If you repeat this process with the generic points (
x1
,

y1
) and (
x2
,

y2
) you arrive at the distance formula:
 
Distance between any two points
If 
d
 is the distance between the points (
x1
,

y1
) and (
x2
,
y1
), then 

 
x2
–
x1
 is the horizontal distance, based on our earlier calculation. 
y2
–
y1
 is the vertical distance, and the entire formula is simply the Pythagorean Theorem restated in terms of coordinates.
 And what about those absolute values we had to put in before? They were used to avoid negative distances. Since the distances in the above formulae are being squared, we no longer need the absolute values to insure that all answers will come out positive.


12.3. Circles*



The Definition of a Circle



 You’ve known all your life what a circle looks like. You probably know how to find the area and the circumference of a circle, given its radius. But what is the exact mathematical definition of a circle? Before you read the answer, you may want to think about the question for a minute. Try to think of a precise, specific definition of exactly what a circle is.
 Below is the definition mathematicians use.
 
Definition of a Circle

        The set of all points in a plane that are the same distance from a given point forms a circle. The point is known as the center of the circle, and the distance is known as the radius.
      
 Mathematicians often seem to be deliberately obscuring things by creating complicated definitions for things you already understood anyway. But if you try to find a simpler definition of exactly what a circle is, you will be surprised at how difficult it is. Most people start with something like “a shape that is round all the way around.” That does describe a circle, but it also describes many other shapes, such as this pretzel:
 [image: A pretzel.]
 So you start adding caveats like “it can’t cross itself” and “it can’t have any loose ends.” And then somebody draws an egg shape that fits all your criteria, and yet is still not a circle:
 [image: An egg shape.]
 So you try to modify your definition further to exclude that... and by that time, the mathematician’s definition is starting to look beautifully simple.
 But does that original definition actually produce a circle? The following experiment is one of the best ways to convince yourself that it does.
 Experiment: Drawing the Perfect Circle
	Lay a piece of cardboard on the floor.

	Thumbtack one end of a string to the cardboard.

	Tie the other end of the string to your pen.

	Pull the string as tight as you can, and then put the pen on the cardboard.

	Pull the pen all the way around the thumbtack, keeping the string taut at all times.



 The pen will touch every point on the cardboard that is exactly one string-length away from the thumbtack. And the resulting shape will be a circle. The cardboard is the plane in our definition, the thumbtack is the center, and the string length is the radius.
 The purpose of this experiment is to convince yourself that if you take all the points in a plane that are a given distance from a given point, the result is a circle. We’ll come back to this definition shortly, to clarify it and to show how it connects to the mathematical formula for a circle.

The Mathematical Formula for a Circle



 You already know the formula for a line: 
y
=
m
x
+
b
. You know that 

m
 is the slope, and 

b
 
is the y-intercept. Knowing all this, you can easily answer questions such as: “Draw the graph of 
y
=
2
x
–3
” 
or “Find the equation of a line that contains the points (3,5) and (4,4).” If you are given the equation 
3
x
+
2
y
=
6
, 
you know how to graph it in two steps: first put it in the standard 
y
=
m
x
+
b
 
form, and then graph it.
 All the conic sections are graphed in a similar way. There is a standard form which is very easy to graph, once you understand what all the parts mean. If you are given an equation that is not in standard form, you put it into the standard form, and then graph it.
 So, to understand the formula below, think of it as the 
y
=
m
x
+
b
 of circles.
 
Mathematical Formula for a Circle
 is a circle with center (
h,
k
) and radius 
r

 From this, it is very easy to graph a circle in standard form.
Example 12.1. Graphing a Circle in Standard Form
Table 12.2. 	Graph 	The problem. We recognize it as being a circle in standard form.
	


r2
=
10

	You can read these variables straight out of the equation, just as in 
y
=
m
x
+
b
. Question: how can we make our equation’s 
(
x
+
5
)
 look like the standard formula’s 
(
x
–
h
)
? Answer: if 
h
=
-5
. In general, 
h
 comes out the opposite sign from the number in the equation. Similarly, 
(
y
–
6
)
 tells us that 
k
 will be positive 6.
	Center: (–5,6) Radius:
	Now that we have the variables, we know everything we need to know about the circle.
	
        [image: A circle centered at (-5,6) with a radius of the square root of 10]

      	And we can graph it!
 is, of course, just a little over 3—so we know where the circle begins and ends.




 Just as you can go from a formula to a graph, you can also go the other way.
Example 12.2. Find the Equation for this Circle
Table 12.3. 	Find the equation for a circle with center at (15,-4) and radius 8.	The problem.
		The solution, straight from the formula for a circle.




 If a circle is given in nonstandard form, you can always recognize it by the following sign: it has both an 
x2
 and a 
y2
 term, and they have the same coefficient.
 	
–3
x2
–
3
y2
+
x
–
y
=
5
 is a circle: the 
x2
 and 
y2
 terms both have the coefficient –3

	
3
x2
–
3
y2
+
x
–
y
=
5
 is not a circle: the 
x2
 term has coefficient 3, and the 
y2
 has –3

	
3
x2
+
3
y
=
5
 is not a circle: there is no 
y2
 term



 Once you recognize it as a circle, you have to put it into the standard form for graphing. You do this by completing the square... twice!
Example 12.3. Graphing a Circle in Nonstandard Form
Table 12.4. 	Graph 
2
x2
+
2
y2
–
12
x
+
28
y
–
12
=
0
	The problem. The equation has both an 
x2
 and a 
y2
 term, and they have the same coefficient (a 2 in this case): this tells us it will graph as a circle.
	
x2
+
y2
–
6
x
+
14
y
–
6
=
0
	Divide by the coefficient (the 2). Completing the square is always easiest without a coefficient in front of the squared tem.
		Collect the x terms together and the y terms together, with the number on the other side.
		Complete the square for both x and y.
		Rewrite our perfect squares. We are now in the correct form. We can see that this is a circle with center at (3,–7) and radius 8. (*Remember How the signs change on h and 
k!)
	
      [image: A circle centered at (3,-7) with a radius of 8]

      	Once you have the center and radius, you can immediately draw the circle, as we did in the previous example.





Going From the Definition of a Circle to the Formula



 If you’re following all this, you’re now at the point where you understand the definition of a circle...and you understand the formula for a circle. But the two may seem entirely unconnected. In other words, when I said  is the formula for a circle, you just had to take my word for it.
 In fact, it is possible to start with the definition of a circle, and work from there to the formula, thus showing why the formula works the way it does.
 Let’s go through this exercise with a specific example. Suppose we want to find the formula for the circle with center at (–2,1) and radius 3. We will start with the definition: this circle is the set of all the points that are exactly 3 units away from the point (–2,1). Think of it as a club. If a point is exactly 3 units away from (–2,1), it gets to join the club; if it is not exactly 3 units away, it doesn’t get to join.
 [image: A circle with radious 3 centered at (-2,1)]

Figure 12.1. 

 You already know what the formula is going to be, but remember, in this exercise we’re not going to assume that formula—we’re going to assume nothing but the definition, and work our way to the formula. So here is our starting point, the definition for this circle:
 “The distance from (x,y) to (–2,1) is 3.”
 Any point (
x,
y) that meets this criterion is in our club. Using the distance formula that we developed above, we can immediately translate this English language definition into a mathematical formula. Recall that if xxxd is the distance between the points (
x1,

y1
) and (
x2
,

y1
), then  (Pythagorean Theorem). So in this particular case,
 
 Note that this corresponds perfectly to the formula given above. In fact, if you repeat this exercise more generically—using (
h
,

k
) as the center instead of (–2,1), and r as the radius instead of 3—then you end up with the exact formula given above, .
 For each of the remaining shapes, I’m going to repeat the pattern used here for the circle. First I will give the geometric definition and then the mathematical formula. However, I will not take the third step, of showing how the definition (with the distance formula) leads to the formula: you will do this, for each shape, in the exercises in the text.


12.4. Parabolas*



The Definition of a Parabola



 Based on the discussion of circles, you might guess that the definition of a parabola will take the form: “The set of all points that...” and you would be correct. But the definition of a parabola is more complicated than that of a circle.
 
Definition of a Parabola
Take a point (called the focus) and a horizontal line (the directrix) that does not contain that point. The set of all points in a plane that are the same distance from the focus as from the directrix forms a parabola.
      
 In the text, you begin with a specific example of this process. The focus is (0,3) and the directrix is the line 
y
=
–3
. If we use our “club” analogy again, we could say that this time, a point is a member of our club if its distance to (0,3) is the same as its distance to 

y
=
–3
.
 The resulting shape looks something like this:
 [image: Parabola with focus at (0,3)]

Figure 12.2. 

 You may recall that a circle is entirely defined by its center—but the center is not, itself, a part of the circle. In a similar way, the focus and directrix define a parabola; but neither the focus, nor any point on the directrix, is a part of the parabola. The vertex, on the other hand—the point located directly between the focus and the directrix—is a part of the parabola.
 One of the obvious questions you might ask at this point is—who cares? It’s pretty obvious that circles come up a lot in the real world, but parabolas? It turns out that parabolas are more useful than you might think. For instance, many telescopes are based on parabolic mirrors. The reason is that all the light that comes in bounces off the mirror to the focus. The focus therefore becomes a point where you can see very dim, distant objects.
 [image: A parabola]

Figure 12.3. 


The Formula of a Parabola



 We’ve already graphed parabolas in a previous chapter. As you may recall, we began with the simplest parabola, 
y
=
x2
, and permuted it.
 	
x2
+
k
 moves it up by 
k


	 moves it to the right by 
h


	Multiplying by a number in front stretches the graph vertically

	Multiplying by a negative number turns the graph upside-down.



 Putting it all together, we arrive at:
 
Mathematical Formula for a Vertical Parabola
 is a parabola with vertex (h,k). If a is positive, it opens up; if a is negative, it opens down.
 Parabolas can also be horizontal. For the most part, the concepts are the same. The simplest horizontal parabola is 
x
=
y2
, which has its vertex at the origin and opens to the right—from there, you can permute it. The directrix in this case is a vertical line.
 
Mathematical Formula for a Horizontal Parabola
 is a parabola with vertex (
h
,
k
). If a is positive, it opens to the right; if a is negative, it opens to the left.
 At this point, there are two useful exercises that you may want to try.
 First, compare the two equations. How are they alike, and how are they different?
 Second, consider the horizontal parabola equation as a set of permutations of the basic form 
x
=
y2
. What is k doing to the parabola, and why? How about h, and a?


12.5. Ellipses*



The Definition of an Ellipse



 An ellipse is a sort of squashed circle, sometimes referred to as an oval.
 
Definition of an Ellipse
Take two points. (Each one is a focus; together, they are the foci.) An ellipse is the set of all points in a plane that have the following property: the distance from the point to one focus, plus the distance from the point to the other focus, is some constant.
      
 They just keep getting more obscure, don’t they? Fortunately, there is an experiment you can do, similar to the circle experiment, to show why this definition leads to an elliptical shape.
 Experiment: Drawing the Perfect Ellipse
	Lay a piece of cardboard on the floor.

	Thumbtack one end of a string to the cardboard.

	Thumbtack the other end of the string, elsewhere on the cardboard. The string should not be pulled taut: it should have some slack.

	With your pen, pull the middle of the string back until it is taut.

	Pull the pen all the way around the two thumbtacks, keeping the string taut at all times.

	The pen will touch every point on the cardboard such that the distance to one thumbtack, plus the distance to the other thumbtack, is exactly one string length. And the resulting shape will be an ellipse. The cardboard is the “plane” in our definition, the thumbtacks are the “foci,” and the string length is the “constant distance.”



 [image: A picture demonstrating how to draw a perfect ellipse with thumbtacks and string.]

Figure 12.4. 

 Do ellipses come up in real life? You’d be surprised how often. Here is my favorite example. For a long time, the orbits of the planets were assumed to be circles. However, this is incorrect: the orbit of a planet is actually in the shape of an ellipse. The sun is at one focus of the ellipse (not at the center). Similarly, the moon travels in an ellipse, with the Earth at one focus.

The Formula of an Ellipse



 With ellipses, it is crucial to start by distinguishing horizontal from vertical.
Table 12.5. Mathematical Formula for an Ellipse with its Center at the Origin	Horizontal	Vertical
	
 (a>b)	
 (a>b)
	 [image: Picture of an horizontal ellipse with parts labeled]
	 [image: Picture of an vertical ellipse with parts labeled]



 And of course, the usual rules of permutations apply. For instance, if we replace x with x–h, the ellipse moves to the right by h. So we have the more general form:
Table 12.6. Mathematical Formula for an Ellipse with its Center at xxx(h,k)	Horizontal	Vertical
	
 (a>b)	
 (a>b)


 The key to understanding ellipses is understanding the three constants a, b, and c.
Table 12.7. 	 	Horizontal Ellipse	Vertical Ellipse
	Where are the foci?	Horizontally around the center	Vertically around the center
	How far are the foci from the center?	
c
	
c

	What is the “major axis”?	The long (horizontal) way across	The long (vertical) way across
	How long is the major axis?	
2
a
	

2
a

	What is the “minor axis?”	The short (vertical) way across	The short (horizontal) way across
	How long is the minor axis?	
2
b
	
2
b

	Which is biggest?	a is biggest. 
a
>
b
, and 
a
>
c
.	
a
 is biggest. 
a
>
b
, and 
a
>
c
.
	crucial relationship	
a2
=
b2
+
c2
	
a2
=
b2
+
c2



 The following example demonstrates how all of these concepts come together in graphing an ellipse.
Example 12.4. Graphing an Ellipse
Table 12.8. 	Graph 
x2
+
9
y2
–
4
x
+
54
y
+
49
=
0

	The problem. We recognize this as an ellipse because it has an 

x2
 and a 

y2
 term, and they both have the same sign (both positive in this case) but different coefficients (3 and 2 in this case).
	
x2
–
4
x
+
9
y2
+
54
y
=
-49

	Group together the x terms and the 
y
 terms, with the number on the other side.
	
	Factor out the coefficients of the squared terms. In this case, there is no 

x2
 coefficient, so we just have to factor out the 9 from the 

y
 terms.
		Complete the square twice. Remember, adding 9 inside those parentheses is equivalent to adding 81 to the left side of the equation, so we must add 81 to the right side of the equation!
	
	Rewrite and simplify. Note, however, that we are still not in the standard form for an ellipse!
	

	Divide by 36. This is because we need a 1 on the right, to be in our standard form!
	Center: (2,–3)	We read the center from the ellipse the same way as from a circle.
	a=
6

b
=
2
	Since the denominators of the fractions are 36 and 4, 
a
 and 
b
 are 6 and 2. But which is which? The key is that, for ellipses, a is always greater than b. The larger number is a and the smaller is b.
	Horizontal ellipse	Going back to the equation, we see that the a2
 (the larger denominator) was under the 
x, and the b2 (the smaller) was under the y. This means our equation is a horizontal ellipse. (In a vertical ellipse, the 
a2
 would be under the
 
y
.)
	
 (approximately )	We need c if we are going to graph the foci. How do we find it? From the relationship 
a2
=
b2
+
c2
 which always holds for ellipses.
	
              [image: A horizontal ellipse centered at (2,-3).]


      	So now we can draw it. Notice a few features:
          
          The major axis is horizontal since this is a horizontal ellipse. It starts 
a to the left of center, and ends a to the right of center. So its length is 
2
a
, or 12 in this case.The minor axis starts 
b

 above the center and ends 
b
 below, so its length is 4.The foci are about  from the center. 






12.6. Hyperbolas*



The Definition of a Hyperbola



 A hyperbola is the strangest-looking shape in this section. It looks sort of like two back-to-back parabolas. However, those shapes are not exactly parabolas, and the differences are very important.
 Surprisingly, the definition and formula for a hyperbola are very similar to those of an ellipse.
 
Definition of a Hyperbola

        Take two points. (Each one is a focus; together, they are the foci.) A hyperbola is the set of all points in a plane that have the following property: the distance from the point to one focus, minus the distance from the point to the other focus, is some constant.
      
      
 The entire definition is identical to the definition of an ellipse, with one critical change: the word “plus” has been changed to “minus.”
 One use of hyperbolas comes directly from this definition. Suppose two people hear the same noise, but one hears it ten seconds earlier than the first one. This is roughly enough time for sound to travel 2 miles. So where did the sound originate? Somewhere 2 miles closer to the first observer than the second. This places it somewhere on a hyperbola: the set of all points such that the distance to the second point, minus the distance to the first, is 2.
 Another use is astronomical. Suppose a comet is zooming from outer space into our solar system, passing near (but not colliding with) the sun. What path will the comet make? The answer turns out to depend on the comet’s speed. 
Table 12.9. 	
                 [image: Image of comet trapped in the sun's gravitational pull]

              	
                 [image: Image of comet escaping the sun's gravitational pull]

              
	If the comet’s speed is low, it will be trapped by the sun’s gravitational pull. The resulting shape will be an elliptical orbit.	If the comet’s speed is high, it will escape the sun’s gravitational pull. The resulting shape will be half a hyperbola.


 We see in this real life example, as in the definitions, a connection between ellipses and hyperbolas.

The Formula of an Hyperbola



 With hyperbolas, just as with ellipses, it is crucial to start by distinguishing horizontal from vertical. It is also useful to pay close attention to which aspects are the same as ellipses, and which are different.
Table 12.10. Mathematical Formula for a Hyperbola with its Center at the Origin	Horizontal	Vertical
	
	

	 [image: A horizontal hyperbola with parts labeled.]
	 [image: A vertical hyperbola with parts labeled.]



 And of course, the usual rules of permutations apply. For instance, if we replace 
x
 with
 
x
–
h
, the hyperbola moves to the right by 
h
. So we have the more general form:
Table 12.11. Formula for a Hyperbola with its Center at xxx(h,k)	Horizontal	Vertical
	
	



 The key to understanding hyperbolas is understanding the three constants 
a, 

b
, and 
c
.
Table 12.12. 	 	Horizontal Hyperbola	Vertical Hyperbola
	Where are the foci?	Horizontally around the center	Vertically around the center
	How far are the foci from the center?	c	c
	What is the “transverse axis”?	The (horizontal) line from one vertex to the other	The (vertical) line from one vertex to the other
	How long is the transverse axis?	
2
a
	
2
a

	Which is biggest?	
c is biggest. 
c
>
a
, and 
c
>
b
.	c is biggest. 

c
>
a
, and 
c
>
b
.
	crucial relationship	
c2
=
a2
+
b2
	
c2
=
a2
+
b2



 Having trouble keeping it all straight? Let’s make a list of similarities and differences.
 Similarities between Hyperbolas and Ellipses
	The formula is identical, except for the replacement of a+ with a-.

	The definition of a is very similar. In a horizontal ellipse, you move horizontally a from the center to the edges of the ellipse. (This defines the major axis.) In a horizontal hyperbola, you move horizontally a from the center to the vertices of the hyperbola. (This defines the transverse axis.)

	b defines a different, perpendicular axis.

	The definition of c is identical: the distance from center to focus.



 Differences Between Hyperbolas and Ellipses
	The biggest difference is that for an ellipse, 
a
 is always the biggest of the three variables; for a hyperbola, 
c is always the biggest. This should be evident from looking at the drawings (the foci are inside an ellipse, outside a hyperbola). However, this difference leads to several other key distinctions.

	For ellipses, 
a2
=
b2
+
c2
. For hyperbolas, 

c2
=
a2
+
b2
.

	For ellipses, you tell whether it is horizontal or vertical by looking at which denominator is greater, since a must always be bigger than b. For hyperbolas, you tell whether it is horizontal or vertical by looking at which variable has a positive sign, the 
x2
 or the 
y2
. The relative sizes of 
a
 and 
b
 do not distinguish horizontal from vertical.



 In the example below, note that the process of getting the equation in standard form is identical with hyperbolas and ellipses. The extra last step—rewriting a multiplication by 4 as a division by —can come up with ellipses as easily as with hyperbolas. However, it did not come up in the last example, so it is worth taking note of here.
Example 12.5. Putting a Hyperbola in Standard Form
Table 12.13. 	Graph 
3
x2
–
12
y2
–
18
x
–
24
y
+
12
=
0
	The problem. We recognize this as a hyperbola because it has an 
x2
 and a 

y2
 term, and have different signs (one is positive and one negative).
	
3
x2
–
18
x
–
12
y2
–
24
y
=
-12
	Group together the 
x terms and the 
y terms, with the number on the other side.
		Factor out the coefficients of the squared terms. In the case of the 
y2
 for this particular equation, the coefficient is minus 12.
		Complete the square twice. Adding 9 inside the first parentheses adds 27; adding 1 inside the second set subtracts 12.
	
	Rewrite and simplify.
		Divide by 3, to get a 1 on the right. Note, however, that we are still not in standard form, because of the 4 that is multiplied by . The standard form has numbers in the denominator, but not in the numerator.
	
	Dividing by  is the same as multiplying by 4, so this is still the same equation. But now we are in standard form, since the number is on the bottom.




 However, the process of graphing a hyperbola is quite different from the process of graphing an ellipse. Even here, however, some similarities lurk beneath the surface.
Example 12.6. Graphing a Hyperbola in Standard Form
Table 12.14. 	Graph 

	The problem, carried over from the example above, now in standard form.
	Center: (3,–1)	Comes straight out of the equation, both signs changed, just as with circles and ellipses.
	
	The square roots of the denominators, just as with the ellipse. But how do we tell which is which? In the case of a hyperbola, the 
a
 always goes with the positive term. In this case, the 
x2
 term is positive, so the term under it is 

a2
. 
	Horizontal hyperbola	Again, this is because the 
x2
 term is positive. If the 
y2
 were the positive term, the hyperbola would be vertical, and the number under the 
y2
 term would be considered 
a2
.
	

	Remember that the relationship is different: for hyperbolas, 
c2
=
a2
+
b2

	
         [image: The first step, drawing the center of the hyperbola centered at (3,-1)]

      	Now we begin drawing. Begin by drawing the center at (3,–1). Now, since this is a horizontal ellipse, the vertices will be aligned horizontally around the center. Since 
a
=
1
, move 1 to the left and 1 to the right, and draw the vertices there.
	
                 [image: The second step, drawing the conjugate axis of the hyperbola centered at (3,-1)]

      	In the other direction—vertical, in this case—we have something called the “conjugate axis.” Move up and down by 
b
 ( in this case) to draw the endpoints of the conjugate axis. Although not part of the hyperbola, they will help us draw it.
	
                 [image: The third step, drawing a box around the conjugate axis of the hyperbola centered at (3,-1)]

      	Draw a box that goes through the vertices and the endpoints of the conjugate axis. The box is drawn in dotted lines to show that it is not the hyperbola.
	
                 [image: The fourth step, drawing the diagonal asymptotes through the box in step two of the hyperbola centered at (3,-1)]

      	Draw diagonal lines through the corners of the box—also dotted, because they are also not the hyperbola.These lines are called the asymptotes, and they will guide you in drawing the hyperbola. The further it gets from the vertices, the closer the hyperbola gets to the asymptotes. However, it never crosses them.
	
                 [image: The fifth step, drawing the lines of the hyperbola centered at (3,-1)]

      	Now, at last, we are ready to draw the hyperbola. Beginning at the vertices, approach—but do not cross!—the asymptotes. So you see that the asymptotes guide us in setting the width of the hyperbola, performing a similar function to the latus rectum in parabolas.




 The hyperbola is the most complicated shape we deal with in this course, with a lot of steps to memorize.
 But there is also a very important concept hidden in all that, and that is the concept of an asymptote. Many functions have asymptotes, which you will explore in far greater depth in more advanced courses. An asymptote is a line that a function approaches, but never quite reaches. The asymptotes are the easiest way to confirm that a hyperbola is not actually two back-to-back parabolas. Although one side of a hyperbola resembles a parabola superficially, parabolas do not have asymptotic behavior—the shape is different.
 Remember our comet? It flew into the solar system at a high speed, whipped around the sun, and flew away in a hyperbolic orbit. As the comet gets farther away, the sun’s influence becomes less important, and the comet gets closer to its “natural” path—a straight line. In fact, that straight line is the asymptote of the hyperbolic path.
 Before we leave hyperbolas, I want to briefly mention a much simpler equation: . This is the equation of a diagonal hyperbola. The asymptotes are the 
x
 and 

y
 axes.
 [image: A diagonal hyperbola.]

Figure 12.5. 


 Although the equation looks completely different, the shape is identical to the hyperbolas we have been studying, except that it is rotated 45°.


12.7. A Brief Recap: How Do You Tell What Shape It Is?*



Table 12.15. 	If it has...	Then it’s a...	Example	Horizontal or Vertical?
	No squared terms	Line	
2
x
+
3
y
=
7
	 
	One squared term	Parabola	
2
x2
–
10
x
+
7
y
=
9
	If you have an 
x2
 but no 
y2
, you’re a horizontal parabola. If you have a 
y2
 but no 
x2
, vertical.
	Two squared terms with the same coefficient	Circle	
3
x2
+
3
y2
+
6
x
+
3
y
=
2
	 
	Two squared terms with different coefficients but the same sign	Ellipse	
2
x2
+
3
y2
+
6
x
+
6
y
=
12
	The difference between vertical ellipses and horizontal is based on which squared term has the larger coefficient.
	Two squared terms with different signs	Hyperbola	
3
x2
–
3
y2
+
6
x
+
3
y
=
2
	The difference between vertical hyperbolas and horizontal is based on which squared term is positive.


 Note that all of this is based only on the squared terms! The other terms matter in terms of graphing, but not in terms of figuring out what shape it is.

Solutions
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Chapter 1. Functions



1.1. Function Concepts*



 The unit on functions is the most important in the Algebra II course, because it provides a crucial transition point. Roughly speaking…
 	Before Algebra I, math is about numbers.

	Starting in Algebra I, and continuing into Algebra II, math is about variables.

	Beginning with Algebra II, and continuing into Calculus, math is about functions.



 Each step builds on the previous step. Each step expands the ability of mathematics to model behavior and solve problems. And, perhaps most crucially, each step can be frightening to a student. It can be very intimidating for a beginning Algebra student to see an entire page of mathematics that is covered with letters, with almost no numbers to be found!
 Unfortunately, many students end up with a very vague idea of what variables are (“That’s when you use letters in math”) and an even more vague understanding of functions (“Those things that look like 

f
(
x
)
 or something”). If you leave yourself with this kind of vague understanding of the core concepts, the lessons will make less and less sense as you go on: you will be left with the feeling that “I just can’t do this stuff” without realizing that the problem was all the way back in the idea of a variable or function.
 The good news is, variables and functions both have very specific meanings that are not difficult to understand.

1.2. What is a Variable?*



 A variable is a letter that stands for a number you don’t know, or a number that can change.
 A few examples:
Example 1.1. Good Examples of Variable Definitions
 	“Let  p  be the number of people in a classroom.”

	“Let  A  be John’s age, measured in years.”

	“Let  h  be the number of hours that Susan has been working.”





 In each case, the letter stands for a very specific number.  However, we use a letter instead of a number because we don’t know the specific number.  In the first example above, different classrooms will have different numbers of people (so p can be different numbers in different classes); in the second example, John’s age is a specific and well-defined number, but we don’t know what it is (at least not yet); and in the third example, h will actually change its value every hour.  In all three cases, we have a good reason for using a letter: it represents a number, but we cannot use a specific number such as “–3” or “      ”.
Example 1.2. Bad Examples of Variable Definitions
 	“Let  n  be the nickels.”

	“Let  M  be the number of minutes in an hour.”





 The first error is by far the most common.  Remember that a variable always stands for a number.  “The nickels” are not a number.  Better definitions would be: “Let  n  be the number of nickels” or “Let  n  be the total value of the nickels, measured in cents” or “Let  n  be the total mass of the nickels, measured in grams.”
 The second example is better, because “number of minutes in an hour” is a number.  But there is no reason to call it “The Mysterious Mr. M” because we already know what it is.  Why use a letter when you just mean “60”?
 Bad variable definitions are one of the most common reasons that students get stuck on word problems—or get the wrong answer. The first type of error illustrated above leads to variable confusion: n will end up being used for “number of nickels” in one equation and “total value of the nickels” in another, and you end up with the wrong answer.  The second type of error is more harmless—it won’t lead to wrong answers—but it won’t help either.  It usually indicates that the student is asking the wrong question (“What can I assign a variable to?”) instead of the right question (“What numbers do I need to know?”)
Variables aren’t all called x.  Get used to it.



 Many students expect all variables to be named  x , with possibly an occasional guest appearance by  y .  In fact, variables can be named with practically any letter.  Uppercase letters, lowercase letters, and even Greek letters are commonly used for variable names.  Hence, a problem might start with “Let  H  be the home team’s score and  V  be the visiting team’s score.”

 
If you attempt to call both of these variables  x , it just won’t work.  You could in principle call one of them  x  and the other  y , but that would make it more difficult to remember which variable goes with which team.  It is important to become comfortable using a wide range of letters.  (I do, however, recommend avoiding the letter o whenever possible, since it looks like the number 0.)



1.3. What is a Function?*



 A function is neither a number nor a variable: it is a process for turning one number into another. For instance, “Double and then add 6” is a function. If you put a 4 into that function, it comes out with a 14. If you put a 
      
     into that function, it comes out with a 7.
 The traditional image of a function is a machine, with a slot on one side where numbers go in and a slot on the other side where numbers come out.
Table 1.1. A number goes in. A number comes out.
The function is the machine, the process that turns 4 into 14 or 5 into 16 or 100 into 206.	
              
                
                    
                      
                        
                          5
                          →
                        
                      
                    
                    
                  
              
            	

 [image: 2x+6 Gearbox]

      	
              
                
                    
                      
                        
                          →
                          16
                        
                      
                    
                    
                  
              
            


 The point of this image is that the function is not the numbers, but the machine itself—the process, not the results of the process.
 The primary purpose of “The Function Game” that you play on Day 1 is to get across this idea of a numerical process. In this game, one student (the “leader”) is placed in the role of a function. “Whenever someone gives you a number, you double that number, add 6, and give back the result.” It should be very clear, as you perform this role, that you are not modeling a number, a variable, or even a list of numbers. You are instead modeling a process—or an algorithm, or a recipe—for turning numbers into other numbers. That is what a function is.
 The function game also contains some more esoteric functions: “Respond with –3 no matter what number you are given,” or “Give back the lowest prime number that is greater than or equal to the number you were given.” Students playing the function game often ask “Can a function do that?” The answer is always yes (with one caveat mentioned below). So another purpose of the function game is to expand your idea of what a function can do. Any process that consistently turns numbers into other numbers, is a function.
 By the way—having defined the word “function” I just want to say something about the word “equation.” An “equation” is when you “equate” two things—that is to say, set them equal. So 
x2−3 is a function, but it is not an equation. 
x2−3=6 is an equation. An “equation” always has an equal sign in it.

1.4. The Rule of Consistency*



 There is only one limitation on what a function can do: a function must be consistent.
    
 For instance, the function in the above drawing is given a 5, and gives back a 16.  That means this particular function turns 5 into 16—always.  That particular function can never take in a 5 and give back a 14.  This “rule of consistency” is a very important constraint on the nature of functions.

This rule does not treat the inputs and outputs the same!

 For instance, consider the function 
      
          
            
              
                
                  y
                  =
                  x
                      
                        2
                      
                    
                
              
            
            
          
      .  This function takes both 3 and -3 and turns them into 9 (two different inputs, same output).  That is allowed.  However, it is not reversible!  If you take a 9 and turn it into both a 3 and a –3 (two different outputs, same input), you are not a function.
Table 1.2. If 3 goes in, 9 comes out.  If –3 goes in, 9 also comes out.  No problem: x2 is a function.		
 [image: x squared Gearbox]

	     
          
            
              
                
                  →
                  9
                
              
            
            
          
      


Table 1.3. If 9 goes in, both –3 and 3 come out.  This  violates the rule of consistency: no function can do this	     
          
            
              
                
                  →
                  9
                
              
            
            
          
      	
 [image: No function Gearbox]

	


 This asymmetry has the potential to cause a great deal of confusion, but it is a very important aspect of functions.

1.5. Four Ways to Represent a Function*



 Modern Calculus texts emphasize that a function can be expressed in four different ways.
 	Verbal -  This is the first way functions are presented in the function game: “Double and add six.”

	Algebraic -  This is the most common, most concise, and most powerful representation: 
      
          
            
              
                
                  2x
                  +
                  6
                
              
            
            
          
      
    .  Note that in an algebraic representation, the input number is represented as a variable (in this case, an       
          
            
              
                x
              
            
            
          
      ).

	Numerical - This can be done as a list of value pairs, as 
          
            
              
                
                  (
                  4
                  ,
                  14
                  )
                
              
            
            
          
      
    — meaning that if a 4 goes in, a 14 comes out.  (You may recognize this as      
          
            
              
                
                  (
                  x
                  ,
                  y
                  )
                
              
            
            
          
       points used in graphing.)


	Graphical - This is discussed in detail in the section on graphing.



 These are not four different types of functions: they are four different views of the same function.  One of the most important skills in Algebra is converting a function between these different forms, and this theme will recur in different forms throughout the text.

1.6. Domain and Range*



 Consider the function
. If this function is given a 9 it hands back a 3. If this function is given a 2 it hands back…well, it hands back
, which is approximately 1.4. The answer cannot be specified exactly as a fraction or decimal, but it is a perfectly good answer nonetheless.
 On the other hand, what if this function is handed –4? There is no 
, so the function has no number to hand back. If our function is a computer or calculator, it responds with an error message. So we see that this function is able to respond to the numbers 9 and 2, but it is not able to respond in any way to the number -4. Mathematically, we express this by saying that 9 and 2 are in the “domain” of the square root function, and –4 is not in the domain of this function.
	 Definition:  Domain 
	 The domain of a function is all the numbers that it can successfully act on. Put another way, it is all the numbers that can go into the function.



 A square root cannot successfully act on a negative number. We say that “The domain of 
 is all numbers   such that ” meaning that if you give this function zero or a positive number, it can act on it; if you give this function a negative number, it cannot.
 A subtler example is the function
. Does this function have the same domain as the previous function? No, it does not. If you hand this function a –4 it successfully hands back 
 (about 1.7). –4 is in the domain of this function. On the other hand, if you hand this function a –8 it attempts to take 
 and fails; –8 is not in the domain of this function. If you play with a few more numbers, you should be able to convince yourself that the domain of this function is all numbers x such that
x≥−7.
 You are probably familiar with two mathematical operations that are not allowed. The first is, you are not allowed to take the square root of a negative number. As we have seen, this leads to restrictions on the domain of any function that includes square roots.
 The second restriction is, you are not allowed to divide by zero. This can also restrict the domain of functions. For instance, the function
 has as its domain all numbers except 
x=2 and
x=−2. These two numbers both cause the function to attempt to divide by 0, and hence fail. If you ask a calculator to plug 
x=2 into this function, you will get an error message.
 So: if you are given a function, how can you find its domain? Look for any number that puts a negative number under the square root; these numbers are not in the domain. Look for any number that causes the function to divide by zero; these numbers are not in the domain. All other numbers are in the domain.
Table 1.4. 	Function	Domain	Comments
	
                
              	
                
                  
                      
                        
                          
                            x
                            ≥
                            
                           
                              0
                            
                          
                        
                      
                      
                    
                

              	You can take the square root of 0, or of any positive number, but you cannot take the square root of a negative number.
	
                
              	
                
                  
                      
                        
                          
                            x
                            ≥
                            
                              −
                              7
                            
                          
                        
                      
                      
                    
                
              	If you plug in any number greater than or equal to –7, you will be taking a legal square root. If you plug in a number less than –7, you will be taking the square root of a negative number.This domain can also be understood graphically: the graph
 has been moved 7 units to the left. See “horizontal permutations” below.
	
                
              	
                
                  
                      
                        
                          
                            x
                            ≠
                            0
                          
                        
                      
                      
                    
                
              	In other words, the domain is “all numbers except 0.” You are not allowed to divide by 0. You are allowed to divide by anything else.
	
                
              	
                
                  
                      
                        
                          
                            x
                            ≠
                            3
                          
                        
                      
                      
                    
                
              	If 
x=3 then you are dividing by 0, which is not allowed. If 
x=0you are dividing by –3, which is allowed. So be careful! The rule is not “when you are dividing, x cannot be 0.” The rule is “
x can never be any value that would put a 0 in the denominator.”
	
                
              	
                
                  
                      
                        
                          
                            x
                            ≠
                            
                              ±
                              2
                            
                          
                        
                      
                      
                    
                
              	Or, “
xcan be any number except 2 or –2.” Either of these
x values will put a 0 in the denominator, so neither one is allowed.
	
                
                  
                      
                        
                          
                            
                              
                                2
                                    
                                      x
                                    
                                  
                                +
                                x
                                    
                                      2
                                    
                                  
                              
                              −
                              3x
                            
                            +
                            4
                          
                        
                      
                      
                    
                
              	All numbers	You can plug any 
x value into this function and it will come back with a number.
	
                
              	
                
              	In words, the domain is all numbers greater than or equal to 3, except the number 5. Numbers less than 3 put negative numbers under the square root; 5 causes a division by 0.


 You can confirm all these results with your calculator; try plugging numbers into these functions, and see when you get errors!
 A related concept is range.
	 Definition:  Range 
	  The range of a function is all the numbers that it may possibly produce. Put another way, it is all the numbers that can come out of the function.



 To illustrate this example, let us return to the function
. Recall that we said the domain of this function was all numbers 
x such that
x≥−7; in other words, you are allowed to put any number greater than or equal to –7 into this function.
 What numbers might come out of this function? If you put in a –7 you get out a 0. (
) If you put in a –6 you get out 
. As you increase the 
          
            
              
                x
              
            
            
          
       value, the 
          
            
              
                y
              
            
            
          
       values also increase. However, if you put in 
x=−8 nothing comes out at all. Hence, the range of this function is all numbers 
y such that
y≥0. That is, this function is capable of handing back 0 or any positive number, but it will never hand back a negative number.
 It’s easy to get the words domain and range confused—and it’s important to keep them distinct, because although they are related concepts, they are different from each other. One trick that sometimes helps is to remember that, in everyday useage, “your domain” is your home, your land—it is where you begin. A function begins in its own domain. It ends up somewhere out on the range.
A different notation for domain and range



 Domains and ranges above are sometimes expressed as intervals, using the following rules:
 	Parentheses       
          
            
              
                
                  (
                  )
                
              
            
            
          
       mean “an interval starting or ending here, but not including this number”

	Square brackets 
          
            
              
                
                  [
                  ]
                
              
            
            
          
      
     mean “an interval starting or ending here, including this number”



 This is easiest to explain with examples.
Table 1.5. 	This notation...	...means this...	...or in other words
	
                  
                    
                        
                          
                            
                              
                                (
                                −
                                3,5
                              
                              )
                            
                          
                        
                        
                      
                  
                	All numbers between –3 and 5, not including –3 and 5.	
                  
                    
                        
                          
                            
                              
                                
                                  −
                                  3
                                
                                <
                                x
                              
                              <
                              5
                            
                          
                        
                        
                      
                  
                
	
                  
                    
                        
                          
                            
                              
                                [
                                −
                                3,5
                              
                              ]
                            
                          
                        
                        
                      
                  
                	All numbers between –3 and 5, including –3 and 5.	
                  
                    
                        
                          
                            
                              
                                
                                  −
                                  3
                                
                                ≤
                                x
                              
                              ≤
                              5
                            
                          
                        
                        
                      
                  
                
	
                  
                    
                        
                          
                            
                              
                                [
                                −
                                3,5
                              
                              )
                            
                          
                        
                        
                      
                  
                	All numbers between –3 and 5, including –3 but not 5.	
                  
                    
                        
                          
                            
                              
                                
                                  −
                                  3
                                
                                ≤
                                x
                              
                              <
                              5
                            
                          
                        
                        
                      
                  
                
	
                  
                    
                        
                          
                            
                              
                                (
                                −
                                ∞
                              
                              ,
                              10
                              ]
                            
                          
                        
                        
                      
                  
                	All numbers less than or equal to 10.	
                  
                    
                        
                          
                            
                              x
                              ≤
                              10
                            
                          
                        
                        
                      
                  
                
	
                  
                    
                        
                          
                            
                              (
                              23
                              ,
                              ∞
                              )
                            
                          
                        
                        
                      
                  
                	All numbers greater than 23.	
                  
                    
                        
                          
                            
                              x
                              >
                              23
                            
                          
                        
                        
                      
                  
                
	
                  
                    
                        
                          
                            
                              
                                (
                                −
                                ∞
                              
                              ,
                              4
                              )
                            
                          
                        
                        
                      
                  
                  
                    
                        
                          
                            
                              (
                              4,
                              ∞
                              )
                            
                          
                        
                        
                      
                  
                	All numbers less than 4, and all numbers greater than 4. In other words, all numbers except 4.	
                  
                    
                        
                          
                            
                              x
                              ≠
                              4
                            
                          
                        
                        
                      
                  
                




1.7. Functions in the Real World*



 Why are functions so important that they form the heart of math from Algebra II onward?
 Functions are used whenever one variable depends on another variable. This relationship between two variables is the most important in mathematics. It is a way of saying “If you tell me what  is, I can tell you what  is.” We say that  “depends on” , or      
        
            
              
                y
              
            
            
          
      
     “is a function of” .
 A few examples:
Example 1.3. Function Concepts -- Functions in the Real World
 	"The area of a circle depends on its radius."

	"The amount of money Alice makes depends on the number of hours she works."

	“Max threw a ball. The height of the ball depends on how many seconds it has been in the air.”





 In each case, there are two variables. Given enough information about the scenario, you could assert that if you tell me this variable, I will tell you that one. For instance, suppose you know that Alice makes $100 per day. Then we could make a chart like this.
Table 1.6. 	If Alice works this many days...	...she makes this many dollars
	0	0
	1	100
	1½	150
	8	800


 If you tell me how long she has worked, I will tell you how much money she has made. Her earnings “depend on” how long she works.
 The two variables are referred to as the dependent variable and the independent variable. The dependent variable is said to “depend on” or “be a function of” the independent variable. “The height of the ball is a function of the time.”
Example 1.4.   Bad Examples of Functional Relationships 
 	"The number of Trojan soldiers depends on the number of Greek soldiers."

	"The time depends on the height of the ball."





 The first of these two examples is by far the most common. It is simply not true. There may be a relationship between these two quantities—for instance, the sum of these two variables might be the total number of soldiers, and the difference between these two quantities might suggest whether the battle will be a fair one. But there is no dependency relationship—that is, no way to say “If you tell me the number of Greek soldiers, I will tell you the number of Trojan soldiers”—so this is not a function.
 The second example is subtler: it confuses the dependent and the independent variables. The height depends on the time, not the other way around. More on this in the discussion of “Inverse Functions".

1.8. Function Notation*



Function Notation



 Functions are represented in math by parentheses. When you write
f(x) 
you indicate that the variable
f is a function of—or depends on—the variable
x.
 For instance, suppose
f(x)=x2+3x . This means that f is a function that takes whatever you give it, and squares it, and multiplies it by 3, and adds those two quantities.
Table 1.7. 	
      	
 [image: x-squared plus 3x Gearbox]

	
      
    


 The notation 
f(7) means “plug the number 7 into the function
f.” It does not indicate that you are multiplying
f times 7. To evaluate
f(7) you take the function
f(x) and replace all occurrences of the variable x with the number 7. If this function is given a 7 it will come out with a 70.
 If we write
f(y)=y2+3y     we have not specified a different function. Remember, the function is not the variables or the numbers, it is the process. 
f(y)=y2+3y also means “whatever number comes in, square it, multiply it by 3, and add those two quantities.” So it is a different way of writing the same function.
 Just as many students expect all variables to be named
x, many students—and an unfortunate number of parents—expect all functions to be named
f. The correct rule is that—whenever possible—functions, like variables, should be named descriptively. For instance, if Alice makes $100/day, we might write:
 	Let m equal the amount of money Alice has made (measured in dollars)

	Let t equal the amount of time Alice has worked (measured in days)

	Then,
m(t)=100t



 This last equation should be read “
m is a function of 
t (or
m depends on
t). Given any value of the variable
t, you can multiply it by 100 to find the corresponding value of the variable m.”
 Of course, this is a very simple function! While simple examples are helpful to illustrate the concept, it is important to realize that very complicated functions are also used to model real world relationships. For instance, in Einstein’s Special Theory of Relativity, if an object is going very fast, its mass is multiplied by
. While this can look extremely intimidating, it is just another function. The speed 
v is the independent variable, and the mass 
m is dependent. Given any speed 
v you can determine how much the mass m is multiplied by.


1.9. Algebraic Generalizations*



 When you have a “generalization,” you have one broad fact that allows you to assume many specific facts as examples.
Example 1.5. 
 
Generalization: “Things fall down when you drop them.”
	
 Specific facts, or examples:
	Leaves fall down when you drop them

	Bricks fall down when you drop them

	Tennis balls fall down when you drop them





 If any one of the individual statements does not work, the generalization is invalid. (This generalization became problematic with the invention of the helium balloon.)
 Scientists tend to work empirically, meaning they start with the specific facts and work their way back to the generalization. Generalizations are valued in science because they bring order to apparently disconnected facts, and that order in turn suggests underlying theories.
 Mathematicians also spend a great deal of time looking for generalizations. When you have an “algebraic generalization” you have one algebraic fact that allows you to assume many numerical facts as examples.
 Consider, for instance, the first two functions in the function game.
 	Double the number, then add six.

	Add three to the number, then double.



 These are very different “recipes.” However, their inclusion in the function game is a bit unfair, because—here comes the generalization—these two functions will always give the same answer. Whether the input is positive or negative, integer or fraction, small or large, these two functions will mimic each other perfectly. We can express this generalization in words.
Example 1.6. 
 
		Generalization: If you plug a number into the function double and add six, and plug the same number into the function add three and double, the two operations will give the same answer.

	
 Specific facts, or examples:
	If you double –5 and add six; or, if you add –5 to 3 and then double; you end up with the same answer.

	If you double 13 and add six; or, if you add 13 to 3 and then double; you end up with the same answer.





 There is literally an infinite number of specific claims that fit this pattern. We don’t need to prove or test each of these claims individually: once we have proven the generalization, we know that all these facts must be true.
 We can express this same generalization pictorially by showing two “function machines” that always do the same thing.
Table 1.8. 	
      
    	   [image: Gearbox-2x+6]
	      


Table 1.9. 	
      
    	 [image: Gearbox-2(x+3)]
	
      
    


 But the most common way to express this generalization is algebraically, by asserting that these two functions equal each other.
(1.1)
        
            
              
                
                  
                    
                      2x
                      +
                      6
                    
                    =
                    2
                  
                  (
                  
                    x
                    +
                    3
                  
                  )
                
              
            
            
          
      
 Many beginning Algebra II students will recognize this as the distributive property. Given 
2(x+3) they can correctly turn it into 
2x+6. But they often fail to realize what this equality means—that given the same input, the two functions will always yield the same output.
Example 1.7. 
 Generalization:

      
        
            
              
                
                  
                    
                      2x
                      +
                      6
                    
                    =
                    2
                  
                  (
                  
                    x
                    +
                    3
                  
                  )
                
              
            
            
          
      
    
	
 Specific facts, or examples:
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                        13
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                    +
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                  =
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                        +
                        3
                      )
                  
                
              
            
            
          
      
    





 It’s worth stopping for a moment here to think about the 
= symbol. Whenever it is used, 
= indicates that two things are the same. However, the following two equations use the 
= in very different ways.
(1.2)
        
            
              
                
                  
                    2x
                        
                          2
                        
                      
                    +
                    5x
                  
                  =
                  3
                
              
            
            
          
      
(1.3)

 In the first equation, the 
= challenges you to solve for x. “Find all the 
x values that make this equation true.” The answers in this case are 
 and
x=−3. If you plug in either of these two 
x-values, you get a true equation; for any other 
x-value, you get a false equation.
 The second equation cannot be solved for 
x; the 
= sign in this case is asserting an equality that is true for any 
x-value. Let’s try a few.
Example 1.8. 
 Generalization:

      
    
	
  Specific facts, or examples:
Table 1.10. 	
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✓

    




 With a calculator, you can attempt more difficult values such as 
x=−26 or 
x=π; in every case, the two formulas will give the same answer. When we assert that two very different functions will always produce the same answers, we are making a very powerful generalization.
 Exception: 
x=−3 is outside the domain of one of these two functions. In this important sense, the two functions are not in fact equal. Take a moment to make sure you understand why this is true!
 Such generalizations are very important because they allow us to simplify.
 Suppose that you were told “I am going to give you a hundred numbers. For each number I give you, square it, then double the answer, then subtract eighteen, then divide by the original number plus three.” This kind of operation comes up all the time. But you would be quite relieved to discover that you can accomplish the same task by simply doubling each number and subtracting 6! The generalization in this case is 
; you will be creating exactly this sort of generalization in the chapter on Rational Expressions.

1.10. Graphing*



 Graphing, like algebraic generalizations, is a difficult topic because many students know how to do it but are not sure what it means.
 For instance, consider the following graph:
 [image: A parabola showing the graph of y=x-squared]

Figure 1.1. 

 If I asked you “Draw the graph of 
y=x2” you would probably remember how to plot points and draw the shape. 
 But suppose I asked you this instead: “Here’s a function, 
y=x2. And here’s a shape, that sort of looks like a U. What do they actually have to do with each other?” This is a harder question! What does it mean to graph a function?
 The answer is simple, but it has important implications for a proper understanding of functions. Recall that every point on the plane is designated by a unique 
(x,y) pair of coordinates: for instance, one point is 
(5,3). We say that its 
      
        
            
              
                x
              
            
            
          
      
    -value is 5 and its 
      
        
            
              
                y
              
            
            
          
      
    -value is 3. 
 A few of these points have the particular property that their 
      
        
            
              
                y
              
            
            
          
      
    -values are the square of their 
      
        
            
              
                x
              
            
            
          
      
    -values. For instance, the points 
(0,0), 
(3,9), and 
(−5,25) all have that property. 
(5,3) and 
(−2,−4) do not.
 The graph shown—the pseudo-U shape—is all the points in the plane that have this property. Any point whose 
        
            
              
                y
              
            
            
          
      -value is the square of its 
      
        
            
              
                x
              
            
            
          
      -value is on this shape; any point whose 
      
        
            
              
                y
              
            
            
          
      -value is not the square of its 
      
        
            
              
                x
              
            
            
          
      -value is not on this shape. Hence, glancing at this shape gives us a complete visual picture of the function 
y=x2 if we know how to interpret it correctly.
Graphing Functions



 Remember that every function specifies a relationship between two variables. When we graph a function, we put the independent variable on the 
      
        
            
              
                x
              
            
            
          
      -axis, and the dependent variable on the 
      
        
            
              
                y
              
            
            
          
      -axis.
 For instance, recall the function that describes Alice’s money as a function of her hours worked. Since Alice makes $12/hour, her financial function is 
m(t)=12t. We can graph it like this.
 [image: a graph depicting the function of Alice's pay.]

Figure 1.2. 

 This simple graph has a great deal to tell us about Alice’s job, if we read it correctly.
 	The graph contains the point 
(3,300).What does that tell us? That after Alice has worked for three hours, she has made $300.

	The graph goes through the origin (the point 
(0,0)). What does that tell us? That when she works 0 hours, Alice makes no money.

	The graph exists only in the first quadrant. What does that tell us? On the mathematical level, it indicates the domain of the function (
t≥0) and the range of the function (
m≥0). In terms of the situation, it tells us that Alice cannot work negative hours or make negative money.

	The graph is a straight line. What does that tell us? That Alice makes the same amount of money every day: every day, her money goes up by $100. ($100/day is the slope of the line—more on this in the section on linear functions.)



 Consider now the following, more complicated graph, which represents Alice’s hair length as a function of time (where time is now measured in weeks instead of hours).
 [image: A right slanted saw-tooth graph oscillating between 12 and 18 inches.]

Figure 1.3. 

 What does this graph 
h(t) tell us? We can start with the same sort of simple analysis.
 	The graph goes through the point 
(0,12).This tells us that at time
(t=0), Alice’s hair is 12" long.

	The range of this graph appears to be 
12≤h≤18. Alice never allows her hair to be shorter than 12" or longer than 18".



 But what about the shape of the graph? The graph shows a gradual incline up to 18", and then a precipitous drop back down to 12"; and this pattern repeats throughout the shown time. The most likely explanation is that Alice’s hair grows slowly until it reaches 18", at which point she goes to the hair stylist and has it cut down, within a very short time (an hour or so), to 12". Then the gradual growth begins again.

The rule of consistency, graphically



 Consider the following graph.
 [image: A horizontal parabola opening up to the right where x = y-squared.]

Figure 1.4. 

 This is our earlier “U” shaped graph (
y=x2) turned on its side. This might seem like a small change. But ask this question: what is 
y when
x=3? This question has two answers. This graph contains the points 
(3,−9) and 
(3,9). So when 
x=3, y is both 9 and –9 on this graph.
 This violates the only restriction on functions—the rule of consistency. Remember that the 
      
        
            
              
                x
              
            
            
          
      -axis is the independent variable, the 
      
        
            
              
                y
              
            
            
          
      -axis the dependent. In this case, one “input” value
(3) is leading to two different “output” values 
(−9,9) We can therefore conclude that this graph does not represent a function at all. No function, no matter how simple or complicated, could produce this graph.
 This idea leads us to the “vertical line test,” the graphical analog of the rule of consistency.
	 Definition: The Vertical Line Test
	 
If you can draw any vertical line that touches a graph in two places, then that graph violates the rule of consistency and therefore does not represent any function.



 It is important to understand that the vertical line test is not a new rule! It is the graphical version of the rule of consistency. If any vertical line touches a graph in two places, then the graph has two different 
      
        
            
              
                y
              
            
            
          
      -values for the same 
      
        
            
              
                x
              
            
            
          
      -value, and this is the only thing that functions are not allowed to do.

What happens to the graph, when you add 2 to a function?



 Suppose the following is the graph of the function 
y=f(x).
 [image: The sum of tow graphs. Likely a parabola and line.]

Figure 1.5. 

            
                
                  
                    
                      
                        y
                        =
                        f
                      
                      (
                      x
                      )
                    
                  
                
                
              
          ; Contains the following points (among others): (−3,2), 
(−1,−3), 
(1,2), 
(6,0)

 We can see from the graph that the domain of the graph is 
−3≤x≤6 and the range is 
−3≤y≤2.
 Question: What does the graph of y=f(x)+2        look like?
 This might seem an impossible question, since we do not even know what the function 
f(x) is. But we don’t need to know that in order to plot a few points.
Table 1.11. 	
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 If you plot these points on a graph, the pattern should become clear. Each point on the graph is moving up by two. This comes as no surprise: since you added 2 to each y-value, and adding 2 to a y-value moves any point up by 2. So the new graph will look identical to the old, only moved up by 2.
	  [image: The sum of two functions. Likely a parabola and line.](a) 
            
                
                  
                    
                      
                        y
                        =
                        f
                      
                      (
                      x
                      )
                    
                  
                
                
              
          

	  [image: The same graph as above shifted two places in the positive-y direction.](b) y=f(x)+2; All 
      
        
            
              
                y
              
            
            
          
      -values are 2 higher 



Figure 1.6. 

 In a similar way, it should be obvious that if you subtract 10 from a function, the graph moves down by 10. Note that, in either case, the domain of the function is the same, but the range has changed.
 These permutations work for any function. Hence, given the graph of the function 
 below (which you could generate by plotting points), you can produce the other two graphs without plotting points, simply by moving the first graph up and down.
	  [image: Curved square root graph originating from the origin (0,0) increasing to the right.](a) 

	  [image: Curved square root graph originating from the origin (0,4) increasing to the right.](b) 

	  [image: Curved square root graph originating from the origin (0,-1.5) increasing to the right.](c) 



Figur