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Chapter 1

Introduction1

1.1 Introduction

The tools, ideas, and insights from linear algebra, abstract algebra, and functional analysis can be extremely
useful to signal processing and system theory in various areas of engineering, science, and social science.
Indeed, many important ideas can be developed from the simple operator equation

Ax = b (1.1)

by considering it in a variety of ways. If x and b are vectors from the same or, perhaps, di�erent vector
spaces and A is an operator, there are three interesting questions that can be asked which provide a setting
for a broad study.

1. Given A and x , �nd b . The analysis or operator problem or transform.
2. Given A and b , �nd x . The inverse or control problem or deconvolution or design.
3. Given x and b , �nd A . The synthesis or design problem or parameter identi�cation.

Much can be learned by studying each of these problems in some detail. We will generally look at the �nite
dimensional problem where (1.1) can more easily be studied as a �nite matrix multiplication [82], [84], [65],
[87] 

a11 a12 a13 · · · a1N

a21 a22 a23

a31 a32 a33

...
...

aM1 · · · aMN





x1

x2

x3

...

xN


=



b1

b2

b3
...

bM


(1.2)

but will also try to indicate what the in�nite dimensional case might be [49], [94], [71], [68].
An application to signal theory is in [44], to optimization [61], and multiscale system theory [8]. The

inverse problem (number 2 above) is the basis for a large study of pseudoinverses, approximation, optimiza-
tion, �lter design, and many applications. When used with the l2 norm [59], [10] powerful results can be
optained analytically but used with other norms such as l∞, l1, l0 (a pseudonorm), an even larger set of
problems can be posed and solved [2], [5].

A development of vector space ideas for the purpose of presenting wavelet representations is given in [30],
[23]. An interesting idea of unconditional bases is given by Donoho [36].

1This content is available online at <http://cnx.org/content/m19560/1.4/>.
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2 CHAPTER 1. INTRODUCTION

Linear regression analysis can be posed in the form of (1.1) and (1.2) where the M rows of A are the
vectors of input data from M experiments, entries of x are the N weights for the N components of the
inputs, and the M values of b are the outputs [2]. This can be used in machine learning problems [9], [52]. A
problem similar to the design or synthesis problem is that of parameter identi�cation where a model of some
system is posed with unknown parameters. Then experiments with known inputs and measured outputs are
run to identify these parameters. Linear regression is also an example of this [2], [9].

Dynamic systems are often modelled by ordinary di�erential equation where b is set to be the time
derivative of x to give what are called the linear state equations:

ẋ = Ax (1.3)

or for di�erence equations and discrete-time or digital signals,

x (n+ 1) = Ax (n) (1.4)

which are used in digital signal processing and the analysis of certain algorithms. State equations are
useful in feedback control as well as in simulation of many dynamical systems and the eigenvalues and other
properties of the square matix A are important indicators of the performance [97], [35].

The ideas of similarity transformations, diagonalization, the eigenvalue problem, Jordon normal form,
singular value decomposition, etc. from linear algebra [82], [84], [53] are applicable to this problem.

Various areas in optimization and approximation use vector space math to great advantage [61], [59].
This booklet is intended to point out relationships, interpretations, and tools in linear algebra, matrix

theory, and vector spaces that scientists and engineers might �nd useful. It is not a stand-alone linear
algebra book. Details, de�nitions, and formal proofs can be found in the references. A very helpful source
is Wikipedia.

There is a variety software systems to both pose and solve linear algebra problems. A particularly
powerful one is Matlab [65] which is, in some ways, the gold standard since it started years ago a purely
numerical matrix package. But there are others such as Octave, SciLab, LabVIEW, Mathematica, Maple,
etc.

Available for free at Connexions <http://cnx.org/content/col10636/1.5>



Chapter 2

A Matrix Times a Vector1

2.1 A Matrix Times a Vector

In this chapter we consider the �rst problem posed in the introduction

Ax = b (2.1)

where the matrix A and vector x are given and we want to interpret and give structure to the calculation
of the vector b . Equation (2.1) has a variety of special cases. The matrix A may be square or may be
rectangular. It may have full column or row rank or it may not. It may be symmetric or orthogonal or
non-singular or many other characteristics which would be interesting properties as an operator. If we view
the vectors as signals and the matrix as an operator or processor, there are two interesting interpretations.

• The operation (2.1) is a change of basis or coordinates for a �xed signal. The signal stays the same,
the basis (or frame) changes.

• The operation (2.1) alters the characteristics of the signal (processes it) but within a �xed basis system.
The basis stays the same, the signal changes.

An example of the �rst would be the discrete Fourier transform (DFT) where one calculates frequency
components of a signal which are coordinates in a frequency space for a given signal. The de�nition of the
DFT from [22] can be written as a matrix-vector operation by c = Wx which, for w = e−j2π/N and N = 4,
is 

c0

c1

c2

c3

 =


w0 w0 w0 w0

w0 w1 w2 w3

w0 w2 w4 w6

w0 w3 w6 w9




x0

x1

x2

x3

 (2.2)

An example of the second might be convolution where you are processing or �ltering a signal and staying
in the same space or coordinate system.

y0

y1

y2
...

 =


h0 0 0 · · · 0

h1 h0 0

h2 h1 h0

...
...




x0

x1

x2

...

 . (2.3)

1This content is available online at <http://cnx.org/content/m19559/1.7/>.
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4 CHAPTER 2. A MATRIX TIMES A VECTOR

A particularly powerful sequence of operations is to �rst change the basis for a signal, then process the
signal in this new basis, and �nally return to the original basis. For example, the discrete Fourier transform
(DFT) of a signal is taken followed by setting some of the Fourier coe�cients to zero followed by taking the
inverse DFT.

Another application of (2.1) is made in linear regression where the input signals are rows of A and the
unknown weights of the hypothesis are in x and the outputs are the elements of b .

2.2 Change of Basis

Consider the two views:

1. The operation given in (2.1) can be viewed as x being a set of weights so that b is a weighted sum of
the columns of A . In other words, b will lie in the space spanned by the columns of A at a location
determined by x . This view is a composition of a signal from a set of weights as in (2.6) and (2.8)
below. If the vector ai is the i

th column of A, it is illustrated by

Ax = x1


...

a1

...

+ x2


...

a2

...

+ x3


...

a3

...

 = b. (2.4)

2. An alternative view has x being a signal vector and with b being a vector whose entries are inner
products of x and the rows of A. In other words, the elements of b are the projection coe�cients of x
onto the coordinates given by the rows of A. The multiplication of a signal by this operator decomposes
the signal and gives the coe�cients of the decomposition. If aj is the j

th row of A we have:

b1 =
[
· · ·a1 · · ·

]
...

x
...

 b2 =
[
· · ·a2 · · ·

]
...

x
...

 etc. (2.5)

Regression can be posed from this view with the input signal being the rows of A.

These two views of the operation as a decomposition of a signal or the recomposition of the signal to or from
a di�erent basis system are extremely valuable in signal analysis. The ideas from linear algebra of subspaces,
inner product, span, orthogonality, rank, etc. are all important here. The dimensions of the domain and
range of the operators may or may not be the same. The matrices may or may not be square and may or
may not be of full rank [50], [85].

2.2.1 A Basis and Dual Basis

A set of linearly independent vectors xn forms a basis for a vector space if every vector x in the space can
be uniquely written

x =
∑
n

an xn (2.6)

and the dual basis is de�ned as a set vectors x̃n in that space allows a simple inner product (denoted by
parenthesis: (x,y)) to calculate the expansion coe�cients as

an = (x, x̃n) = xTx̃n (2.7)

Available for free at Connexions <http://cnx.org/content/col10636/1.5>



5

A basis expansion has enough vectors but none extra. It is e�cient in that no fewer expansion vectors will
represent all the vectors in the space but is fragil in that losing one coe�cient or one basis vector destroys
the ability to exactly represent the signal by (2.6). The expansion (2.6) can be written as a matrix operation

Fa = x (2.8)

where the columns of F are the basis vectors xn and the vector a has the expansion coe�cients an as entries.
Equation (2.7) can also be written as a matrix operation

F̃ x = a (2.9)

which has the dual basis vectors as rows of F̃. From (2.8) and (2.9), we have

FF̃x = x (2.10)

Since this is true for all x,

F F̃ = I (2.11)

or

F̃ = F−1 (2.12)

which states the dual basis vectors are the rows of the inverse of the matrix whose columns are the basis
vectors (and vice versa). When the vector set is a basis, F is necessarily square and from (2.8) and (2.9),
one can show

F F̃ = F̃ F. (2.13)

Because this system requires two basis sets, the expansion basis and the dual basis, it is called biorthogonal.

2.2.2 Orthogonal Basis

If the basis vectors are not only independent but orthonormal, the basis set is its own dual and the inverse
of F is simply its transpose.

F−1 = F̃ = FT (2.14)

When done in Hilbert spaces, this decomposition is sometimes called an abstract Fourier expansion [50],
[48], [93].

2.2.3 Parseval's Theorem

Because many signals are digital representations of voltage, current, force, velocity, pressure, �ow, etc., the
inner product of the signal with itself (the norm squared) is a measure of the signal energy q.

q = (x,x) = ||x||2 = xTx =
N−1∑
n=0

x2
n (2.15)

Parseval's theorem states that if the basis system is orthogonal, then the norm squared (or �energy�) is
invarient across a change in basis. If a change of basis is made with

c = Ax (2.16)

Available for free at Connexions <http://cnx.org/content/col10636/1.5>



6 CHAPTER 2. A MATRIX TIMES A VECTOR

then

q = (x,x) = ||x||2 = xTx =
N−1∑
n=0

x2
n = K (c, c) = K||c||2 = KcTc = K

N−1∑
k=0

c2k (2.17)

for some constant K which can be made unity by normalization if desired.
For the discrete Fourier transform (DFT) of xn which is

ck =
1
N

N−1∑
n=0

xne
−j2πnk/N (2.18)

the energy calculated in the time domain: q =
∑
nx

2
n is equal to the norm squared of the frequency

coe�cients: q =
∑
kc

2
k, within a multiplicative constant of 1/N . This is because the basis functions of the

Fourier transform are orthogonal: �the sum of the squares is the square of the sum� which means means the
energy calculated in the time domain is the same as that calculated in the frequency domain. The energy
of the signal (the square of the sum) is the sum of the energies at each frequency (the sum of the squares).
Because of the orthogonal basis, the cross terms are zero. Although one seldom directly uses Parseval's
theorem, its truth is what make sense in talking about frequency domain �ltering of a time domain signal.
A more general form is known as Plancherel theorem [29].

If a transformation is made on the signal with a non-orthogonal basis system, then Parseval's theorem
does not hold and the concept of energy does not move back and forth between domains. We can get around
some of these restrictions by using frames rather than bases.

2.2.4 Frames and Tight Frames

In order to look at a more general expansion system than a basis and to generalize the ideas of orthogonality
and of energy being calculated in the original expansion system or the transformed system, the concept of
frame is de�ned. A frame decomposition or representation is generally more robust and �exible than a basis
decomposition or representation but it requires more computation and memory [1], [91], [29]. Sometimes a
frame is called a redundant basis or representing an underdetermined or underspeci�ed set of equations.

If a set of vectors, fk, span a vector space (or subspace) but are not necessarily independent nor orthogonal,
bounds on the energy in the transform can still be de�ned. A set of vectors that span a vector space is called
a frame if two constants, A and B exist such that

0 < A||x||2 ≤
∑
k

| (fk,x) |2 ≤ B||x||2 <∞ (2.19)

and the two constants are called the frame bounds for the system. This can be written

0 < A||x||2 ≤ ||c||2 ≤ B||x||2 <∞ (2.20)

where

c = Fx (2.21)

If the fk are linearly independent but not orthogonal, then the frame is a non-orthogonal basis. If the fk are
not independent the frame is called redundant since there are more than the minimum number of expansion
vectors that a basis would have. If the frame bounds are equal, A = B, the system is called a tight frame and
it has many of features of an orthogonal basis. If the bounds are equal to each other and to one, A = B = 1,
then the frame is a basis and is tight. It is, therefore, an orthogonal basis.

So a frame is a generalization of a basis and a tight frame is a generalization of an orthogonal basis. If ,
A = B, the frame is tight and we have a scaled Parseval's theorem:

A||x||2 =
∑
k

| (fk,x) |2 (2.22)

Available for free at Connexions <http://cnx.org/content/col10636/1.5>
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If A = B > 1, then the number of expansion vectors are more than needed for a basis and A is a measure of
the redundancy of the system (for normalized frame vectors). For example, if there are three frame vectors
in a two dimensional vector space, A = 3/2.

A �nite dimensional matrix version of the redundant case would have F in (2.8) with more columns than
rows but with full row rank. For example

 a00 a01 a02

a10 a11 a12



x0

x1

x2

 =

 b0

b1

 (2.23)

has three frame vectors as the columns of A but in a two dimensional space.
The prototypical example is called the Mercedes-Benz tight frame where three frame vectors that are

120◦ apart are used in a two-dimensional plane and look like the Mercedes car hood ornament. These three
frame vectors must be as far apart from each other as possible to be tight, hence the 120◦ separation. But,
they can be rotated any amount and remain tight [91], [57] and, therefore, are not unique.

 1 −0.5 −0.5

0 0.866 −0.866



x0

x1

x2

 =

 b0

b1

 (2.24)

In the next section, we will use the pseudo-inverse of A to �nd the optimal x for a given b.
So the frame bounds A and B in (2.19) are an indication of the redundancy of the expansion system fk

and to how close they are to being orthogonal or tight. Indeed, (2.19) is a sort of approximate Parseval's
theorem [95], [31], [73], [56], [29], [91], [42], [58].

The dual frame vectors are also not unique but a set can be found such that (2.9) and, therefore, (2.10)
hold (but (2.13) does not). A set of dual frame vectors could be found by adding a set of arbitrary but
independent rows to F until it is square, inverting it, then taking the �rst N columns to form F̃ whose rows
will be a set of dual frame vectors. This method of construction shows the non-uniqueness of the dual frame
vectors. This non-uniqueness is often resolved by optimizing some other parameter of the system [31].

If the matrix operations are implementing a frame decomposition and the rows of F are orthonormal,
then F̃ = FT and the vector set is a tight frame [95], [31]. If the frame vectors are normalized to ||xk|| = 1,
the decomposition in (2.6) becomes

x =
1
A

∑
n

(x, x̃n) xn (2.25)

where the constant A is a measure of the redundancy of the expansion which has more expansion vectors
than necessary [31].

The matrix form is

x =
1
A

FFT x (2.26)

where F has more columns than rows. Examples can be found in [24].

2.2.5 Sinc Expansion as a Tight Frame

The Shannon sampling theorem [20] can be viewied as an in�nite dimensional signal expansion where the
sinc functions are an orthogonal basis. The sampling theorem with critical sampling, i.e. at the Nyquist
rate, is the expansion:

g (t) =
∑
n

g (Tn)
sin
(
π
T (t− Tn)

)
π
T (t− Tn)

(2.27)

Available for free at Connexions <http://cnx.org/content/col10636/1.5>



8 CHAPTER 2. A MATRIX TIMES A VECTOR

where the expansion coe�cients are the samples and where the sinc functions are easily shown to be
orthogonal.

Over sampling is an example of an in�nite-dimensional tight frame [64], [24]. If a function is over-
sampled but the sinc functions remains consistent with the upper spectral limit W , using A as the amount
of over-sampling, the sampling theorem becomes:

AW =
π

T
, for A ≥ 1 (2.28)

and we have

g (t) =
1
A

∑
n

g (Tn)
sin
(
π
AT (t− Tn)

)
π
AT (t− Tn)

(2.29)

where the sinc functions are no longer orthogonal. In fact, they are no longer a basis as they are not
independent. They are, however, a tight frame and, therefore, have some of the characteristics of an orthog-
onal basis but with a �redundancy" factor A as a multiplier in the formula [24] and a generalized Parseval's
theorem. Here, moving from a basis to a frame (actually from an orthogonal basis to a tight frame) is almost
invisible.

2.2.6 Frequency Response of an FIR Digital Filter

The discrete-time Fourier transform (DTFT) of the impulse response of an FIR digital �lter h (n) is its
frequency response. The discrete Fourier transform (DFT) of h (n) gives samples of the frequency response
[20]. This is a powerful analysis tool in digital signal processing (DSP) and suggests that an inverse (or
pseudoinverse) method could be useful for design [20].

2.2.7 Conclusions

Frames tend to be more robust than bases in tolerating errors and missing terms. They allow �exibility is
designing wavelet systems [31] where frame expansions are often chosen.

In an in�nite dimensional vector space, if basis vectors are chosen such that all expansions converge very
rapidly, the basis is called an unconditional basis and is near optimal for a wide class of signal representation
and processing problems. This is discussed by Donoho in [37].

Still another view of a matrix operator being a change of basis can be developed using the eigenvec-
tors of an operator as the basis vectors. Then a signal can decomposed into its eigenvector components
which are then simply multiplied by the scalar eigenvalues to accomplish the same task as a general matrix
multiplication. This is an interesting idea but will not be developed here.

2.3 Change of Signal

If both x and b in (2.1) are considered to be signals in the same coordinate or basis system, the matrix
operator A is generally square. It may or may not be of full rank and it may or may not have a variety of
other properties, but both x and b are viewed in the same coordinate system and therefore are the same
size.

One of the most ubiquitous of these is convolution where the input to a linear, shift invariant system
with impulse response h (n) is calculated by (2.1) if A is the convolution matrix and x is the input [20].

y0

y1

y2
...

 =


h0 0 0 · · · 0

h1 h0 0

h2 h1 h0

...
...




x0

x1

x2

...

 . (2.30)

Available for free at Connexions <http://cnx.org/content/col10636/1.5>
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It can also be calculated if A is the arrangement of the input and x is the the impulse response.
y0

y1

y2
...

 =


x0 0 0 · · · 0

x1 x0 0

x2 x1 x0

...
...




h0

h1

h2

...

 . (2.31)

If the signal is periodic or if the DFT is being used, then what is called a circulate is used to represent
cyclic convolution. An example for N = 4 is the Toeplitz system

y0

y1

y2

y3

 =


h0 h3 h2 h1

h1 h0 h3 h2

h2 h1 h0 h3

h3 h2 h1 h0




x0

x1

x2

x3

 . (2.32)

One method of understanding and generating matrices of this sort is to construct them as a product of �rst
a decomposition operator, then a modi�cation operator in the new basis system, followed by a recomposition
operator. For example, one could �rst multiply a signal by the DFT operator which will change it into
the frequency domain. One (or more) of the frequency coe�cients could be removed (set to zero) and the
remainder multiplied by the inverse DFT operator to give a signal back in the time domain but changed by
having a frequency component removed. That is a form of signal �ltering and one can talk about removing
the energy of a signal at a certain frequency (or many) because of Parseval's theorem.

It would be instructive for the reader to make sense out of the cryptic statement �the DFT diagonalizes
the cyclic convolution matrix" to add to the ideas in this note.

2.4 Factoring the Matrix A

For insight, algorithm development, and/or computational e�ciency, it is sometime worthwhile to factor
A into a product of two or more matrices. For example, the DFT matrix [22] illustrated in (2.2) can be
factored into a product of fairly sparce matrices. If fact, the fast Fourier transform (FFT) can be derived
by factoring the DFT matrix into Nlog (N) factors (if N = 2m), each requiring order N multiplies. This is
done in [22].

Using eigenvalue theory [85], a full rank square matrix can be factored into a product

AV = VΛ (2.33)

where V is a matrix with columns of the eigenvectors of A and Λ is a diagonal matrix with the eigenvalues
along the diagonal. The inverse is a method to �diagonalize" a matrix

Λ = V−1AV (2.34)

If a matrix has �repeated eigenvalues", in other words, two or more of the N eigenvalues have the same
value but less than N indepentant eigenvectors, it is not possible to diagonalize the matrix but an �almost"
diagonal form called the Jordan normal form can be acheived. Those details can be found in most books on
matrix theory [83].

A more general decompostion is the singular value decomposition (SVD) which is similar to the eigenvalue
problem but allows rectangular matrices. It is particularly valuable for expressing the pseudoinverse in a
simple form and in making numerical calculations [88].
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2.5 State Equations

If our matrix multiplication equation is a vector di�erential equation (DE) of the form

ẋ = Ax (2.35)

or for di�erence equations and discrete-time signals or digital signals,

x (n+ 1) = Ax (n) (2.36)

an inverse or even pseudoinverse will not solve for x . A di�erent approach must be taken [41] and di�erent
properties and tools from linear algebra will be used. The solution of this �rst order vector DE is a coupled
set of solutions of �rst order DEs. If a change of basis is made so that A is diagonal (or Jordan form),
equation (2.35) becomes a set on uncoupled (or almost uncoupled in the Jordan form case) �rst order DEs
and we know the solution of a �rst order DE is an exponential. This requires consideration of the eigenvalue
problem, diagonalization, and solution of scalar �rst order DEs [41].

State equations are often used to model or describe a system such as a control system or a digital �lter
or a numerical algorithm [41], [98].
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Chapter 3

General Solutions of Simultaneous
Equations1

The second problem posed in the introduction is basically the solution of simultaneous linear equations [60],
[3], [6] which is fundamental to linear algebra [54], [86], [66] and very important in diverse areas of applications
in mathematics, numerical analysis, physical and social sciences, engineering, and business. Since a system
of linear equations may be over or under determined in a variety of ways, or may be consistent but ill
conditioned, a comprehensive theory turns out to be more complicated than it �rst appears. Indeed, there
is a considerable literature on the subject of generalized inverses or pseudo-inverses. The careful statement
and formulation of the general problem seems to have started with Moore [69] and Penrose [74], [75] and
developed by many others. Because the generalized solution of simultaneous equations is often de�ned in
terms of minimization of an equation error, the techniques are useful in a wide variety of approximation and
optimization problems [11], [62] as well as signal processing.

The ideas are presented here in terms of �nite dimensions using matrices. Many of the ideas extend to
in�nite dimensions using Banach and Hilbert spaces [77], [72], [96] in functional analysis.

3.1 The Problem

Given an M by N real matrix A and an M by 1 vector b, �nd the N by 1 vector x when

a11 a12 a13 · · · a1N

a21 a22 a23

a31 a32 a33

...
...

aM1 · · · aMN





x1

x2

x3

...

xN


=



b1

b2

b3
...

bM


(3.1)

or, using matrix notation,

Ax = b (3.2)

If b does not lie in the range space of A (the space spanned by the columns of A), there is no exact solution
to (3.2), therefore, an approximation problem can be posed by minimizing an equation error de�ned by

ε = Ax− b. (3.3)

1This content is available online at <http://cnx.org/content/m19561/1.5/>.
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12 CHAPTER 3. GENERAL SOLUTIONS OF SIMULTANEOUS EQUATIONS

A generalized solution (or an optimal approximate solution) to (3.2) is usually considered to be an x that
minimizes some norm of ε. If that problem does not have a unique solution, further conditions, such as also
minimizing the norm of x, are imposed. The l2 or root-mean-squared error or Euclidean norm is

√
εT∗ε and

minimization sometimes has an analytical solution. Minimization of other norms such as l∞ (Chebyshev) or
l1 require iterative solutions. The general lp norm is de�ned as q where

q = ||x||p =

(∑
n

|x (n) |p
)1/p

(3.4)

for 1 < p < ∞ and a �pseudonorm" (not convex) for 0 < p < 1. These can sometimes be evaluated using
IRLS (iterative reweighted least squares) algorithms [13], [17], [89], [46], [33].

If there is a non-zero solution of the homogeneous equation

Ax = 0, (3.5)

then (3.2) has in�nitely many generalized solutions in the sense that any particular solution of (3.2) plus
an arbitrary scalar times any non-zero solution of (3.5) will have the same error in (3.3) and, therefore, is
also a generalized solution. The number of families of solutions is the dimension of the null space of A.

This is analogous to the classical solution of linear, constant coe�cient di�erential equations where the
total solution consists of a particular solution plus arbitrary constants times the solutions to the homogeneous
equation. The constants are determined from the initial (or other) conditions of the solution to the di�erential
equation.

3.2 Ten Cases to Consider

Examination of the basic problem shows there are ten cases [60] listed in Figure 1 to be considered. These
depend on the shape of the M by N real matrix A, the rank r of A, and whether b is in the span of the
columns of A.

• 1a. M = N = r: One solution with no error, ε.
• 1b. M = N > r: b ∈ span{A}: Many solutions with ε = 0.
• 1c. M = N > r: b not ∈ span{A}: Many solutions with the same minimum error.
• 2a. M > N = r: b ∈ span{A}: One solution ε = 0.
• 2b. M > N = r: b not ∈ span{A}: One solution with minimum error.
• 2c. M > N > r: b ∈ span{A}: Many solutions with ε = 0.
• 2d. M > N > r: b not ∈ span{A}: Many solutions with the same minimum error.
• 3a. N > M = r: Many solutions with ε = 0.
• 3b. N > M > r: b ∈ span{A}: Many solutions with ε = 0
• 3c. N > M > r: b not ∈ span{A}: Many solutions with the same minimum error.

Figure 1. Ten Cases for the Pseudoinverse.
Here we have:

• case 1 has the same number of equations as unknowns (A is square, M = N),
• case 2 has more equations than unknowns, therefore, is over speci�ed (A is taller than wide, M > N),

• case 3 has fewer equations than unknowns, therefore, is underspeci�ed (A is wider than tall N > M).

This is a setting for frames and sparse representations.
In case 1a and 3a, b is necessarily in the span of A. In addition to these classi�cations, the possible

orthogonality of the columns or rows of the matrices gives special characteristics.
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3.3 Examples

Case 1: Here we see a 3 x 3 square matrix which is an example of case 1 in Figure 1 and 2.
a11 a12 a13

a21 a22 a23

a31 a32 a33



x1

x2

x3

 =


b1

b2

b3

 (3.6)

If the matrix has rank 3, then the b vector will necessarily be in the space spanned by the columns of A
which puts it in case 1a. This can be solved for x by inverting A or using some more robust method. If the
matrix has rank 1 or 2, the b may or may not lie in the spanned subspace, so the classi�cation will be 1b or
1c and minimization of ||x||22 yields a unique solution.

Case 2: If A is 4 x 3, then we have more equations than unknowns or the overspeci�ed or overdetermined
case. 

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43



x1

x2

x3

 =


b1

b2

b3

b4

 (3.7)

If this matrix has the maximum rank of 3, then we have case 2a or 2b depending on whether b is in the
span of A or not. In either case, a unique solution x exists which can be found by (3.15) or (3.21). For case
2a, we have a single exact solution with no equation error, ε = 0 just as case 1a. For case 2b, we have a
single optimal approximate solution with the least possible equation error. If the matrix has rank 1 or 2, the
classi�cation will be 2c or 2d and minimization of ||x||22 yelds a unique solution.

Case 3: If A is 3 x 4, then we have more unknowns than equations or the underspeci�ed case.


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34



x1

x2

x3

x4

 =


b1

b2

b3

 (3.8)

If this matrix has the maximum rank of 3, then we have case 3a and b must be in the span of A . For
this case, many exact solutions x exist, all having zero equation error and a single one can be found with
minimum solution norm ||x|| using (3.17) or (3.22). If the matrix has rank 1 or 2, the classi�cation will be
3b or 3c.

3.4 Solutions

There are several assumptions or side conditions that could be used in order to de�ne a useful unique solution
of (3.2). The side conditions used to de�ne the Moore-Penrose pseudo-inverse are that the l2 norm squared
of the equation error ε be minimized and, if there is ambiguity (several solutions with the same minimum
error), the l2 norm squared of x also be minimized. A useful alternative to minimizing the norm of x is to
require certain entries in x to be zero (sparse) or �xed to some non-zero value (equality constraints).

In using sparsity in posing a signal processing problem (e.g. compressive sensing), an l1 norm can be
used (or even an l0 �pseudo norm�) to obtain solutions with zero components if possible [40], [78].

In addition to using side conditions to achieve a unique solution, side conditions are sometimes part of
the original problem. One interesting case requires that certain of the equations be satis�ed with no error
and the approximation be achieved with the remaining equations.
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14 CHAPTER 3. GENERAL SOLUTIONS OF SIMULTANEOUS EQUATIONS

3.5 Moore-Penrose Pseudo-Inverse

If the l2 norm is used, a unique generalized solution to (3.2) always exists such that the norm squared of
the equation error εT∗ε and the norm squared of the solution xT∗x are both minimized. This solution is
denoted by

x = A+b (3.9)

where A+ is called the Moore-Penrose inverse [3] of A (and is also called the generalized inverse [6] and the
pseudoinverse [3])

Roger Penrose [75] showed that for all A, there exists a unique A+ satisfying the four conditions:

AA+A = A (3.10)

A+AA+ = A+ (3.11)

[
AA+

]∗ = AA+ (3.12)

[
A+A

]∗ = A+A (3.13)

There is a large literature on this problem. Five useful books are [60], [3], [6], [25], [76]. The Moore-Penrose
pseudo-inverse can be calculated in Matlab [67] by the pinv(A,tol) function which uses a singular value
decomposition (SVD) to calculate it. There are a variety of other numerical methods given in the above
references where each has some advantages and some disadvantages.

3.6 Properties

For cases 2a and 2b in Figure 1, the following N by N system of equations called the normal equations[3], [60]
have a unique minimum squared equation error solution (minimum εT ε). Here we have the over speci�ed case
with more equations than unknowns. A derivation is outlined in "Derivations" (Section 3.8.1: Derivations),
equation (3.28) below.

AT∗Ax = AT∗b (3.14)

The solution to this equation is often used in least squares approximation problems. For these two cases
ATA is non-singular and the N by M pseudo-inverse is simply,

A+ =
[
AT∗A

]−1
AT∗. (3.15)

A more general problem can be solved by minimizing the weighted equation error, εTWTWε where W is
a positive semi-de�nite diagonal matrix of the error weights. The solution to that problem [6] is

A+ =
[
AT∗WT∗WA

]−1
AT∗WT∗W. (3.16)

For the case 3a in Figure 1 with more unknowns than equations, AAT is non-singular and has a unique
minimum norm solution, ||x||. The N by M pseudoinverse is simply,

A+ = AT∗[AAT∗]−1
. (3.17)

with the formula for the minimum weighted solution norm ||x|| is

A+ =
[
WTW

]−1
AT
[
A
[
WTW

]−1
AT
]−1

. (3.18)
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For these three cases, either (3.15) or (3.17) can be directly calculated, but not both. However, they are
equal so you simply use the one with the non-singular matrix to be inverted. The equality can be shown
from an equivalent de�nition [3] of the pseudo-inverse given in terms of a limit by

A+ = lim
δ→0

[
AT∗A + δ2I

]−1
AT∗ = lim

δ→0
AT∗[AAT∗ + δ2I

]−1
. (3.19)

For the other 6 cases, SVD or other approaches must be used. Some properties [3], [25] are:

• [A+]+ = A
• [A+]∗ = [A∗]+

• [A∗A]+ = A+A∗+

• λ+ = 1/λ for λ 6= 0 else λ+ = 0
• A+ = [A∗A]+A∗ = A∗[AA∗]+

• A∗ = A∗AA+ = A+AA∗

It is informative to consider the range and null spaces [25] of A and A+

• R (A) = R (AA+) = R (AA∗)
• R (A+) = R (A∗) = R (A+A) = R (A∗A)
• R (I −AA+) = N (AA+) = N (A∗) = N (A+) = R(A)⊥

• R (I −A+A) = N (A+A) = N (A) = R(A∗)⊥

3.7 The Cases with Analytical Soluctions

The four Penrose equations in (3.11) are remarkable in de�ning a unique pseudoinverse for any A with
any shape, any rank, for any of the ten cases listed in Figure 1. However, only four cases of the ten have
analytical solutions (actually, all do if you use SVD).

• If A is case 1a, (square and nonsingular), then

A+ = A−1 (3.20)

• If A is case 2a or 2b, (over speci�ed) then

A+ =
[
ATA

]−1
AT (3.21)

• If A is case 3a, (under speci�ed) then

A+ = AT
[
AAT

]−1
(3.22)

Figure 2. Four Cases with Analytical Solutions
Fortunately, most practical cases are one of these four but even then, it is generally faster and less error

prone to use special techniques on the normal equations rather than directly calculating the inverse matrix.
Note the matrices to be inverted above are all r by r (r is the rank) and nonsingular. In the other six cases
from the ten in Figure 1, these would be singular, so alternate methods such as SVD must be used [60], [3],
[6].

In addition to these four cases with �analytical� solutions, we can pose a more general problem by asking
for an optimal approximation with a weighted norm [6] to emphasize or de-emphasize certain components
or range of equations.
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• If A is case 2a or 2b, (over speci�ed) then the weighted error pseudoinverse is

A+ =
[
AT∗WT∗WA

]−1
AT∗WT∗W (3.23)

• If A is case 3a, (under speci�ed) then the weighted norm pseudoinverse is

A+ =
[
WTW

]−1
AT
[
A
[
WTW

]−1
AT
]−1

(3.24)

Figure 3. Three Cases with Analytical Solutions and Weights
These solutions to the weighted approxomation problem are useful in their own right but also serve as

the foundation to the Iterative Reweighted Least Squares (IRLS) algorithm developed in the next chapter.

3.8 Geometric interpretation and Least Squares Approximation

A particularly useful application of the pseudo-inverse of a matrix is to various least squared error approx-
imations [60], [11]. A geometric view of the derivation of the normal equations can be helpful. If b does
not lie in the range space of A, an error vector is de�ned as the di�erence between Ax and b. A geometric
picture of this vector makes it clear that for the length of ε to be minimum, it must be orthogonal to the
space spanned by the columns of A. This means that A∗ε = 0. If both sides of (3.2) are multiplied by A∗,
it is easy to see that the normal equations of (3.14) result in the error being orthogonal to the columns of
A and, therefore its being minimal length. If b does lie in the range space of A, the solution of the normal
equations gives the exact solution of (3.2) with no error.

For cases 1b, 1c, 2c, 2d, 3a, 3b, and 3c, the homogeneous equation (3.5) has non-zero solutions. Any
vector in the space spanned by these solutions (the null space of A) does not contribute to the equation error
ε de�ned in (3.3) and, therefore, can be added to any particular generalized solution of (3.2) to give a family
of solutions with the same approximation error. If the dimension of the null space of A is d, it is possible
to �nd a unique generalized solution of (3.2) with d zero elements. The non-unique solution for these seven
cases can be written in the form [6].

x = A+b +
[
I−A+A

]
y (3.25)

where y is an arbitrary vector. The �rst term is the minimum norm solution given by the Moore-Penrose
pseudo-inverse A+ and the second is a contribution in the null space of A. For the minimum ||x||, the vector
y = 0.

3.8.1 Derivations

To derive the necessary conditions for minimizing q in the overspeci�ed case, we di�erentiate q = εTε with
respect to x and set that to zero. Starting with the error

q = εTε = [Ax− b]T [Ax− b] = xTATAx− xTATb− bTAx + bTb (3.26)

q = xTATAx− 2xTATb + bTb (3.27)

and taking the gradient or derivative gives

∇xq = 2ATAx− 2ATb = 0 (3.28)

which are the normal equations in (3.14) and the pseudoinverse in (3.15) and (3.21).
If we start with the weighted error problem

q = εTWTWε = [Ax− b]TWTW [Ax− b] (3.29)
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using the same steps as before gives the normal equations for the minimum weighted squared error as

ATWTWAx = ATWTWb (3.30)

and the pseudoinverse as

x =
[
ATWTWA

]−1
ATWTWb (3.31)

To derive the necessary conditions for minimizing the Euclidian norm ||x||2 when there are few equations
and many solutions to (3.1), we de�ne a Lagrangian

L (x, µ) = ||Wx||22 + µT (Ax− b) (3.32)

take the derivatives in respect to both x and µ and set them to zero.

∇xL = 2WTWx + ATµ = 0 (3.33)

and

∇µL = Ax− b = 0 (3.34)

Solve these two equation simultaneously for x eliminating µ gives the pseudoinverse in (3.17) and (3.22)
result.

x =
[
WTW

]−1
AT
[
A
[
WTW

]−1
AT
]−1

b (3.35)

Because the weighting matrices W are diagonal and real, multiplication and inversion is simple. These
equations are used in the Iteratively Reweighted Least Squares (IRLS) algorithm described in the next
chapter.

3.9 Regularization

To deal with measurement error and data noise, a process called �regularization" is sometimes used [45], [11],
[70].

3.10 Least Squares Approximation with Constraints

The solution of the overdetermined simultaneous equations is generally a least squared error approximation
problem. A particularly interesting and useful variation on this problem adds inequality and/or equality
constraints. This formulation has proven very powerful in solving the constrained least squares approximation
part of FIR �lter design [80]. The equality constraints can be taken into account by using Lagrange multipliers
and the inequality constraints can use the Kuhn-Tucker conditions [43], [86], [63]. The iterative reweighted
least squares (IRLS) algorithm described in the next chapter can be modi�ed to give results which are an
optimal constrained least p-power solution [15], [19], [17].

3.11 Conclusions

There is remarkable structure and subtlety in the apparently simple problem of solving simultaneous equa-
tions and considerable insight can be gained from these �nite dimensional problems. These notes have
emphasized the l2 norm but some other such as l∞ and l1 are also interesting. The use of sparsity [78] is
particularly interesting as applied in Compressive Sensing [4], [38] and in the sparse FFT [51]. There are also
interesting and important applications in in�nite dimensions. One of particular interest is in signal analysis
using wavelet basis functions [32]. The use of weighted error and weighted norm pseudoinverses provide a
base for iterative reweighted least squares (IRLS) algorithms.
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Chapter 4

Approximation with Other Norms and
Error Measures1

4.1 Approximation with Other Norms and Error Measures

Most of the discussion about the approximate solutions to Ax = b are about the result of minimizing the l2
equation error ||Ax − b||2 and/or the l2 norm of the solution ||x||2 because in some cases that can be done
by analytic formulas and also because the l2 norm has a energy interpretation. However, both the l1 and the
l∞[28] have well known applications that are important [34], [21] and the more general lp error is remarkably
�exible [14], [18]. Donoho has shown [39] that l1 optimization gives essentially the same sparsity as the true
sparsity measure in l0.

In some cases, one uses a di�erent norm for the minimization of the equation error than the one for
minimization of the solution norm. And in other cases, one minimizes a weighted error to emphasize some
equations relative to others [7]. A modi�cation allows minimizing according to one norm for one set of
equations and another for a di�erent set. A more general error measure than a norm can be used which used
a polynomial error [18] which does not satisfy the scaling requirement of a norm, but is convex. One could
even use the so-called lp norm for 1 > p > 0 which is not even convex but is an interesting tool for obtaining
sparse solutions.

1This content is available online at <http://cnx.org/content/m45576/1.1/>.
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CHAPTER 4. APPROXIMATION WITH OTHER NORMS AND ERROR

MEASURES

Figure 4.1: Di�erent lp norms: p = .2, 1, 2, 10.

Note from the �gure how the l10 norm puts a large penalty on large errors. This gives a Chebyshev-like
solution. The l0.2 norm puts a large penalty on small errors making them tend to zero. This (and the l1
norm) give a sparse solution.

4.2 The Lp Norm Approximation

The IRLS (iterative reweighted least squares) algorithm allows an iterative algorithm to be built from the
analytical solutions of the weighted least squares with an iterative reweighting to converge to the optimal lp
approximation [12].

4.2.1 The Overdetermined System with more Equations than Unknowns

If one poses the lp approximation problem in solving an overdetermined set of equations (case 2 from Chapter
3), it comes from de�ning the equation error vector

e = Ax− b (4.1)

and minimizing the p-norm

||e||p =

(∑
n

|en|p
)1/p

(4.2)
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or

||e||pp =
∑
n

|en|p (4.3)

neither of which can we minimize easily. However, we do have formulas [7] to �nd the minimum of the
weighted squared error

||We||22 =
∑
n

w2
n|en|2 (4.4)

one of which is derived in , equation and is

x =
[
ATWTWA

]−1
ATWTWb (4.5)

where W is a diagonal matrix of the error weights, wn. From this, we propose the iterative reweighted least
squared (IRLS) error algorithm which starts with unity weighting, W = I, solves for an initial x with (4.5),
calculates a new error from(4.1), which is then used to set a new weighting matrix W

W = diag(wn)(p−2)/2
(4.6)

to be used in the next iteration of (4.5). Using this, we �nd a new solution x and repeat until convergence
(if it happens!).

This core idea has been repeatedly proposed and developed in di�erent application areas over the past
50 years with a variety of success [12]. Used in this basic form, it reliably converges for 2 < p < 3. In 1990,
a modi�cation was made to partially update the solution each iteration with

x (k) = q
^
x (k) + (1− q) x (k − 1) (4.7)

where
^
x is the new weighted least squares solution of which is used to partially update the previous value

x (k − 1) using a convergence up-date factor 0 < q < 1 which gave convergence over a larger range of around
1.5 < p < 5 but but it was slower.

A second improvement showed that a speci�c up-date factor of

q =
1

p− 1
(4.8)

signi�cantly increased the speed of convergence. With this particular factor, the algorithm becomes a form
of Newton's method which has quadratic convergence.

A third modi�cation applied homotopy [16], , , [81] by starting with a value for p which is equal to 2
and increasing it each iteration (or each few iterations) until it reached the desired value, or, in the case of
p < 2, decrease it. This made a signi�cant increase in both the range of p that allowed convergence and in
the speed of calculations. Some of the history and details can be found applied to digital �lter design in [14],
[18].

A Matlab program that implements these ideas applied to our pseudoinverse problem with more equations
than unknowns (case 2a) is:

%~m-file~IRLS1.m~to~find~the~optimal~solution~to~Ax=b

%~~minimizing~the~L_p~norm~||Ax-b||_p,~using~IRLS.

%~~Newton~iterative~update~of~solution,~x,~for~~M~>~N.

%~~For~2<p<infty,~use~homotopy~parameter~K~=~1.01~to~2

Available for free at Connexions <http://cnx.org/content/col10636/1.5>



22
CHAPTER 4. APPROXIMATION WITH OTHER NORMS AND ERROR

MEASURES

%~~For~0<p<2,~use~K~=~approx~0.7~-~0.9

%~~csb~10/20/2012

function~x~=~IRLS1(A,b,p,K,KK)

if~nargin~<~5,~KK=10;~~end;

if~nargin~<~4,~K~=~2;~~end;

if~nargin~<~3,~p~=~10;~end;

pk~=~2;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%~Initial~homotopy~value

x~~=~pinv(A)*b;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%~Initial~L_2~solution

E~=~[];

for~k~=~1:KK~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%~Iterate

~~~if~p~>=~2,~pk~=~min([p,~K*pk]);~~~~~~~~~~~%~Homotopy~change~of~p

~~~~~~else~pk~=~max([p,~K*pk]);~end

~~~e~~=~A*x~-~b;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%~Error~vector

~~~w~~=~abs(e).^((pk-2)/2);~~~~~~~~~~~~~~~~~~%~Error~weights~for~IRLS

~~~W~~=~diag(w/sum(w));~~~~~~~~~~~~~~~~~~~~~~%~Normalize~weight~matrix

~~~WA~=~W*A;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%~apply~weights

~~~x1~~=~(WA'*WA)\(WA'*W)*b;~~~~~~~~~~~~~~~~~%~weighted~L_2~sol.

~~~q~~=~1/(pk-1);~~~~~~~~~~~~~~~~~~~~~~~~~~~~%~Newton's~parameter

~~~if~p~>~2,~x~=~q*x1~+~(1-q)*x;~nn=p;~~~~~~~%~partial~update~for~p>2

~~~~~~else~x~=~x1;~nn=2;~end~~~~~~~~~~~~~~~~~%~no~partial~update~for~p<2

~~~ee~=~norm(e,nn);~~~E~=~[E~ee];~~~~~~~~~~~~%~Error~at~each~iteration

end

plot(E)

This can be modi�ed to use di�erent p's in di�erent bands of equations or to use weighting only when the
error exceeds a certain threshold to achieve a constrained LS approximation [14], [18], [90]. Our work was
originally done in the context of �lter design but others have done similar things in sparsity analysis [47],
[34], [92].

This is presented as applied to the overdetermined system (Case 2a and 2b) but can also be applied to
other cases. A particularly important application of this section is to the design of digital �lters.
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4.2.2 The Underdetermined System with more Unknowns than Equations

If one poses the lp approximation problem in solving an underdetermined set of equations (case 3 from
Chapter 3), it comes from de�ning the solution norm as

||x||p =

(∑
n

|x (n) |p
)1/p

(4.9)

and �nding x to minimizing this p-norm while satisfying Ax = b.
It has been shown this is equivalent to solving a least weighted norm problem for speci�c weights.

||x||p =

(∑
n

w(n)2|x (n) |2
)1/2

(4.10)

The development follows the same arguments as in the previous section but using the formula [79], [7]
derived in

x =
[
WTW

]−1
AT
[
A
[
WTW

]−1
AT
]−1

b (4.11)

with the weights, w (n), being the diagonal of the matrix, W, in the iterative algorithm to give the minimum
weighted solution norm in the same way as (4.5) gives the minimum weighted equation error.

A Matlab program that implements these ideas applied to our pseudoinverse problem with more unknowns
than equations (case 3a) is:

%~m-file~IRLS2.m~to~find~the~optimal~solution~to~Ax=b

%~~minimizing~the~L_p~norm~||x||_p,~using~IRLS.

%~~Newton~iterative~update~of~solution,~x,~for~~M~<~N.

%~~For~2<p<infty,~use~homotopy~parameter~K~=~1.01~to~2

%~~For~0<p<2,~use~K~=~approx~0.7~to~0.9

%~~csb~10/20/2012

function~x~=~IRLS2(A,b,p,K,KK)

if~nargin~<~5,~KK=~10;~~end;

if~nargin~<~4,~K~=~.8;~~end;

if~nargin~<~3,~p~=~1.1;~end;

pk~=~2;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%~Initial~homotopy~value

x~~=~pinv(A)*b;~~~~~~~~~~~~~~~~~~~~~~~~~%~Initial~L_2~solution

E~=~[];
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for~k~=~1:KK

~~~if~p~>=~2,~pk~=~min([p,~K*pk]);~~~~~~%~Homotopy~update~of~p

~~~~~~else~pk~=~max([p,~K*pk]);~end

~~~W~~=~diag(abs(x).^((2-pk)/2)+0.00001);~~%~norm~weights~for~IRLS

~~~AW~=~A*W;~~~~~~~~~~~~~~~~~~~~~~~~~~~~%~applying~new~weights

~~~x1~=~W*AW'*((AW*AW')\b);~~~~~~~~~~~~~%~Weighted~L_2~solution

~~~q~~=~1/(pk-1);~~~~~~~~~~~~~~~~~~~~~~~%~Newton's~parameter

~~~if~p~>=~2,~x~=~q*x1~+~(1-q)*x;~nn=p;~%~Newton's~partial~update~for~p>2

~~~~~~else~x~=~x1;~nn=1;~end~~~~~~~~~~~~%~no~Newton's~partial~update~for~p<2

~~~ee~=~norm(x,nn);~~E~=~[E~ee];~~~~~~~~%~norm~at~each~iteration

end;

plot(E)

This approach is useful in sparse signal processing and for frame representation.

4.3 The Chebyshev, Minimax, or L∞ Appriximation

The Chebyshev optimization problem minimizes the maximum error:

εm = max
n
|ε (n) | (4.12)

This is particularly important in �lter design. The Remez exchange algorithm applied to �lter design as the
Parks-McClellan algorithm is very e�cient [21]. An interesting result is the limit of an ||x||p optimization as
p → ∞ is the Chebyshev optimal solution. So, the Chebyshev optimal, the minimax optimal, and the L∞
optimal are all the same [28], [21].

A particularly powerful theorem which characterizes a solution to Ax = b is given by Cheney [28] in
Chapter 2 of his book:

• A Characterization Theorem: For anM by N real matrix, A withM > N , every minimax solution
x is a minimax solution of an appropriate N +1 subsystem of the M equations. This optimal minimax
solution will have at least N + 1 equal magnitude errors and they will be larger than any of the errors
of the other equations.

This is a powerful statement saying an optimal minimax solution will have out ofM , at least N+1 maximum
magnitude errors and they are the minimum size possible. What this theorem doesn't state is which of the
M equations are the N + 1 appropriate ones. Cheney develops an algorithm based on this theorem which
�nds these equations and exactly calculates this optimal solution in a �nite number of steps. He shows how
this can be combined with the minimum ||e||p using a large p, to make an e�cient solver for a minimax or
Chebyshev solution.

This theorem is similar to the Alternation Theorem [21] but more general and, therefore, somewhat more
di�cult to implement.
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4.4 The L1 Approximation and Sparsity

The sparsity optimization is to minimize the number of non-zero terms in a vector. A �pseudonorm", ||x||0,
is sometimes used to denote a measure of sparsity. This is not convex, so is not really a norm but the convex
(in the limit) norm ||x||1 is close enough to the ||x||0 to give the same sparsity of solution [39]. Finding
a sparse solution is not easy but interative reweighted least squares (IRLS) [18], [90], weighted norms [47],
[34], and a somewhat recent result is called Basis Pursuit [26], [27] are possibilities.

This approximation is often used with an underdetermined set of equations (Case 3a) to obtain a sparse
solution x.

Using the IRLS algorithm to minimize the lp equation error often gives a sparse error if one exists. Using
the algorithm in the illustrated Matlab program with p = 1.1 on the problem in Cheney [28] gives a zero
error in equation 4 while using no larger p gives any zeros.
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Chapter 5

Constructing the Operator (Design)1

5.1 Constructing the Operator (un�nished)

Solving the third problem posed in the introduction to these notes is rather di�erent from the other two. Here
we want to �nd an operator or matrix that when multiplied by x gives b . Clearly a solution to this problem
would not be unique as stated. In order to pose a better de�ned problem, we generally give a set or family
of inputs x and the corresponding outputs b . If these families are independent, and if the number of them
is the same as the size of the matrix, a unique matrix is de�ned and can be found by solving simultaneous
equations. If a smaller number is given, the remaining degrees of freedom can be used to satisfy some other
criterion. If a larger number is given, there is probably no exact solution and some approximation will be
necessary.

If the unknown operator matrix is of dimension M by N , then we take N inputs xk for k = 1, 2, · · · , N ,
each of dimension N and the corresponding N outputs bk, each of dimension M and form the matrix
equation:

AX = B (5.1)

where A is the M by N unknown operator, X is the N by N input matrix with N columns which are the
inputs xk and B is the M by N output matrix with columns bk. The operator matrix is then determined
by:

A = BX−1 (5.2)

if the inputs are independent which means X is nonsingular.
This problem can be posed so that there are more (perhaps many more) inputs and outputs than N with

a resulting equation error which can be minimized with some form of pseudoinverse.
Linear regression can be put in this form. If our matrix equation is

Ax = b (5.3)

where A is a row vector of unknown weights and x is a column vector of known inputs, then b is a scaler
inter product. If a seond experiment gives a second scaler inner product from a second column vector of
known inputs, then we augment X to have two rows and b to be a length-2 row vector. This is continued
for N experiment to give (5.3) as a 1 by N row vector times an M by N matrix which equals a 1 by M row
vector. It this equation is transposed, it is in the form of (5.3) which can be approximately solved by the
pesuedo inverse to give the unknown weights for the regression.

Alternatively, the matrix may be constrained by structure to have less than N2 degrees of freedom. It
may be a cyclic convolution, a non cyclic convolution, a Toeplitz, a Hankel, or a Toeplitz plus Hankel matrix.

1This content is available online at <http://cnx.org/content/m19562/1.4/>.
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A problem of this sort came up in research on designing e�cient prime length fast Fourier transform
(FFT) algorithms where x is the data and b is the FFT of x . The problem was to derive an operator that
would make this calculation using the least amount of arithmetic. We solved it using a special formulation
[55] and Matlab.
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