
A Primer on Besov Spaces

By:
Albert Cohen





A Primer on Besov Spaces

By:
Albert Cohen

Online:
< http://cnx.org/content/col10679/1.2/ >

C O N N E X I O N S

Rice University, Houston, Texas



This selection and arrangement of content as a collection is copyrighted by Albert Cohen. It is licensed under the

Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).

Collection structure revised: September 9, 2009

PDF generated: October 26, 2012

For copyright and attribution information for the modules contained in this collection, see p. 15.



Table of Contents

1 Classical measures of smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Towards fractional smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Besov spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Characterization by approximation properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Besov spaces and nonlinear approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Attributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



iv

Available for free at Connexions <http://cnx.org/content/col10679/1.2>



Chapter 1

Classical measures of smoothness1

There exist many di�erent ways of measuring the smoothness of a function f . The most natural one is
certainly the order of di�erentiability, i.e. the maximal index m such that f (m) =

(
d
dx

)m
f is continuous. To

this particular measure of smoothness, we can associate a class of function spaces: if I is an interval of R,
we denote by Cm (I) the space of continuous functions which have bounded and continuous derivatives, up
to the order m. This space can be equipped with the norm

‖ f ‖Cm(I) := sup
l=0,··· ,m

sup
x∈I
|f (l) (x) |. (1.1)

for which it is a Banach space. (That is, the space is a vector space; the norm satis�es the triangle inequality;
‖ f ‖= 0 is possible only if f = 0; �nally, all Cauchy sequences converge: if we have a sequence with entries
fn ∈ Cm (I) for which ‖ fn − fn' ‖ can be made arbitrarily small simply by choosing n, n' su�ciently large,
then the fn (and all their derivatives up to the mth) converge uniformly to some function f in Cm (and its
derivatives).

In the case of a multivariate domain Ω ∈ Rd, we de�ne Cm (Ω) to be the space of continuous functions

which have bounded and continuous partial derivatives ∂αf := ∂|α|f

∂x
α1
1 ···∂x

αd
d

, for |α| := α1+· · ·+αd = 0, · · · ,m.

This space can also be equipped with the norm

‖ f ‖Cm(Ω) :=
∑
|α|≤m

sup
x∈Ω
|∂αf (x) |, (1.2)

for which it is a Banach space.
In many instances, one is somehow interested in measuring smoothness in an average sense: for this

purpose it is natural to introduce the Sobolev spacesWm,p (Ω) consisting of all functions f ∈ Lp with partial
derivatives up to order m in Lp. Here p is a �xed index in [1,+∞]. (Recall that ‖ f ‖Lp =

[∫
Ω
|f (x) |p

] 1
p if

p < +∞ and ‖ f ‖L∞ = supx∈Ω|f (x) |.) This space is also a Banach space, when equipped with the norm

‖ f ‖Wm,p :=

∑
|α≤m

‖ ∂αf ‖pLp

 1
p

. (1.3)

Note that the norm for Cm spaces coincides with the Wm,∞ norm.

1This content is available online at <http://cnx.org/content/m19614/1.3/>.
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Chapter 2

Towards fractional smoothness1

All the above spaces share the common feature that the regularity index is an integer. In many applications,
one is interested to allow fractional order of smoothness, in order to describe the regularity of a function
in a more precise way. The question thus arises of how to �ll the gaps between integer smoothness

classes. There are at least two instances where such a generalization is very natural:

• In the case of L2-Sobolev spaces Hm := Wm,2 and when Ω = Rd, we can de�ne an equivalent norm
based on the Fourier transform, since by Parseval's formula we have the norm equivalence

‖ f ‖2Hm∼
∫

Rd
(1 + |ω|)2m|

^
f (ω) |

2

dω. (2.1)

For a non-integer s ≥ 0, it is thus natural to de�ne the space Hs as the set of all L2 functions such
that

‖ f ‖2Hs :=
∫

Rd
(1 + |ω|)2s|

^
f (ω) |

2

dω, (2.2)

is �nite.
• In the case of Cm spaces, we note that supx∈Ω|f (x) − f (x− h) | ≤ C|h| if f ∈ C1 for any h ∈ Rd

whereas for an arbitrary function f ∈ C0, supx∈Ω|f (x) − f (x− h) | might go to zero arbitrarily slow
as |h| → 0. This motivates the de�nition of the Hölder spaceCs, 0 < s < 1 consisting of those f ∈ C0

such that
sup
x∈Ω
|f (x)− f (x− h) | ≤ C|h|s. (2.3)

If m < s < m+ 1, a natural de�nition of Cs is given by f ∈ Cm and ∂αf ∈ Cs−m, |α| = m. It can be
proved that this property can also be expressed by

sup
x∈Ω
|∆n

hf (x) | ≤ C|h|s, (2.4)

where n > s and ∆n
h is the n-th order �nite di�erence operator de�ned recursively by ∆1

hf (x) = f (x)−
f (x− h) and ∆n

hf (x) = ∆1
h

(
∆n−1
h

)
f (x) (for example ∆2

hf (x) = f (x) − 2f (x− h) + f (x− 2h)).
When s is not an integer, the spaces Cs that we have de�ned are also denoted as W s,∞. The space C∫
can be equiped with the norm

‖ f ‖Cs(Ω) := ‖ f ‖L∞(Ω) + sup
h∈Rd
|h|−s‖ ∆n

hf ‖L∞(Ω). (2.5)

1This content is available online at <http://cnx.org/content/m19616/1.3/>.
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4 CHAPTER 2. TOWARDS FRACTIONAL SMOOTHNESS

Let us give two important instances in which the above spaces appear in a natural way. The �rst is the study
of the restriction of a function f (x1, · · · , xd) to a manifold of lower dimension, for example the hyperplane
de�ned by xd = 0. If g (x1, · · · , xd−1) = f (x1, · · · , xd−1, 0) is such a restriction, then it is known that

f ∈ Hs
(
Rd for s > 1

2 implies that g ∈ Hs− 1
2
(
Rd−1

)
. The second one is the study of the Brownian motion

W (t) on an interval I, for which it is known that W (t) is almost surely in C
1
2−ε for all ε > 0.

Available for free at Connexions <http://cnx.org/content/col10679/1.2>



Chapter 3

Besov spaces1

The de�nition of �order of smoothness s in Lp� for s non-integer and p di�erent from 2 or ∞ is more subject
to arbitrary choices. Among others, one may consider:

• Sobolev spaces W s,p de�ned (if m < s < m+ 1) by

‖ f ‖W s,p :=

‖ f ‖pWm,p +
∑
|α|=m

∫
Ω×Ω

|∂αf (x)− ∂αf (y) |p

|x− y|(s−m)p+d
dxdy

 1
p

(3.1)

These spaces coincide with those de�ned by means of Fourier transform when p = 2 (see [33] for a
general treatment).

• Bessel-potential spaces Hs,p de�ned by means of the Fourier transform operator F ,

‖ f ‖Hs,p =
(
‖ f ‖pLp + ‖ F−1(1 + | · |s)Ff ‖pLp

) 1p
. (3.2)

These spaces coincides with the Sobolev spaces Wm,p when m is an integer and 1 < p < +∞ (see
[3], p.38), but their de�nition requires that Ω = Rd in order to apply the Fourier transform.

• Besov spaces Bsp,q, involving an extra parameter q that we de�ne below through �nite di�erences.
These spaces include most of those that we have listed so far as particular cases. As we shall see, one
of their main interest is that they can be exactly characterized by multiresolution approximation error,
as well as from the size properties of the wavelet coe�cients.

We de�ne the n-th order Lp modulus of smoothness of f by

ωn(f, t)Lp = sup
|h|≤t
‖ ∆n

hf ‖Lp(Ωh,n), (3.3)

where Ωh,n := {x ∈ Ω ; x− kh ∈ Ω, k = 0, · · · , n}. Here we measure the �size� of ∆n
hf in Lp-norm, where

we restrict to Lp (Ωh,n) to ensure that all the arguments x − kh occurring in the computation of ∆n
hf (x)

still live in Ω. For p, q ≥ 1, s > 0, the Besov spaces Bsp,q consists of those functions f ∈ Lp such that(
2sjωn

(
f, 2−j

)
Lp

)
j≥0
∈ `q. (3.4)

Here n is an integer strictly larger than s. A natural norm for such a space is then given by

‖ f ‖Bsp,q := ‖ f ‖Lp + ‖
(
2sjωn

(
f, 2−j

)
Lp

)
j≥0
‖
`q
. (3.5)

1This content is available online at <http://cnx.org/content/m19611/1.3/>.
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6 CHAPTER 3. BESOV SPACES

If q = ∞, the condition (3.4) simply means that ‖ ∆n
hf ‖Lp ≤ Ch−s for |h| ≤ 1. For q < ∞, the decay

condition on ∆n
hf is slightly stronger, since we require that the sequence

(
2sjωn

(
f, 2−j

)
Lp

)q
j≥0

i be summable.

The space Bsp,q also represents �s order of smoothness measured in Lp"; the parameter q allows a �ner tuning
on the degree of smoothness - one has Bsp,q1 ⊂ Bsp,q2 if q1 ≤ q2 - but plays a minor role in comparison to s
since clearly

Bs1p,q1 ⊂ B
s2
p,q2 , if s1 ≥ s2, (3.6)

regardless of the values of q1 and q2. Roughly speaking, smoothness of order s in Lp is expressed here by
the fact that, for n large enough, ωn(f, t)Lp goes to 0 like O (ts) as t→ 0.

Clearly Cs = Bs∞,∞ when s is not an integer. It can also be proved that when s is not an integer
W s,p = Bsp,p. These spaces are di�erent from one another for integer values of s, except when p = 2 in which
case Hs = Bs2,2 for all values of s (see [33], p.38).

Available for free at Connexions <http://cnx.org/content/col10679/1.2>



Chapter 4

Embeddings1

Sobolev, Besov and Bessel-potential spaces satisfy two obvious embedding relations:

• For �xed p (and arbitrary q in the case of Besov spaces), the spaces get larger as s decreases.
• In the case where Ω a bounded domain, for �xed s (and �xed q in the case of Besov spaces), the spaces

get larger as p decrease, since ‖ f ‖Lp1 ≤ C‖ f ‖Lp2 if p1 ≤ p2.

A less trivial type of embedding is known as Sobolev embedding. In the case of Sobolev spaces, it states
that the continuous embedding

W s1,p1 ⊂W s2,p2 if p1 ≤ p2 and s1 − s2 ≥ d (1/p1 − 1/p2) , (4.1)

holds except in the case where p2 = +∞ and s2 is an integer, for which one needs to assume s1 − s2 >
d (1/p1 − 1/p2). For example in the univariate case, any H1 function has also C1/2 smoothness. In the case
of Besov spaces the embedding relation are given by

Bs1p1,p1 ⊂ B
s2
p2,p2 if p1 ≤ p2 and s1 − s2 ≥ d (1/p1 − 1/p2) , (4.2)

with no other restrictions on the indices s1, s2 ≥ 0. In the case where Ω is a bounded domain, these
embedding are compact if and only if the strict inequality s1 − s2 > d (1/p1 − 1/p2) holds. The proof of
these embeddings can be found in [4] for Sobolev spaces and [34] for Besov spaces.

As an exercise, let us see how these embeddings can be used to derive the range of r such that Br2,q ([0, 1])
can contain discontinuous functions. If r > 1/2, then there exists ε > 0 such that r − 2ε > 1/2; We remark
that Br2,q ⊂ Br−ε2,q ⊂ Bε∞,∞ = Cε, so all functions in Br2,q are continuous. Therefore only Br2,q with r ≤ 1/2 can
contain discontinuous functions. In the limiting case r = 1/2, a closer inspection reveals that the functions

in B
1/2
2,q are continuous if q < ∞, while B

1/2
2,∞ includes discontinuous functions, such as the characteristic

funciton of an interval [0, a] for 0 < a < 1.

1This content is available online at <http://cnx.org/content/m19615/1.5/>.
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Chapter 5

Characterization by approximation

properties1

An important feature of Besov spaces is that they admit equivalent characterization by multiresolution
approximation properties and by wavelet decompositions.

Here we use the following standard notation (see [17] or [11] for a general treatment): if f is function we
denote by Pjf its projection onto the space Vj , and by Qjf = Pj+1f − Pjf its projection onto the detail
space Wj . The multiscale decomposition of f writes

f = P0f +
∑
j≥0

Qjf. (5.1)

The projectors Pj and Qj can be further expressed in terms of biorthogonal scaling functions and wavelets
bases:

Pjf :=
∑
|λ|=j

< f, ϕ̃λ > ϕλ and Qjf :=
∑
|λ|=j

< f, ψ̃λ > ψλ. (5.2)

Here we use the simpli�ed notation ϕλ with �|λ| = j� meaning that the functions are picked at resolution
j. In the case where Ω = Rd, these have the general from ϕλ (x) := ϕj,k (x) := 2dj/2ϕ

(
2jx− k

)
, bur for

a general domain Ω = Rd proper adaptations of these bases need to be done near the boundary. We can
therefore write

f =
∑

dλψλ, dλ :=< f, ψ̃λ >, (5.3)

where we include in this sum the wavelets at all levels j ≥ 0 and we incorporate the scaling function ϕλ at
the �rst level |λ| = 0.

Under certain assumptions that we shall discuss below, it is known that the Besov norm ‖ f ‖Bsp,q is

equivalent to

‖ P0f ‖Lp+ ‖
(
2sj ‖ f − Pjf ‖Lp

)
j≥0
‖`q , (5.4)

or to

‖ P0f ‖Lp+ ‖
(
2sj ‖ Qjf ‖Lp

)
j≥0
‖`q . (5.5)

1This content is available online at <http://cnx.org/content/m19613/1.3/>.
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10 CHAPTER 5. CHARACTERIZATION BY APPROXIMATION PROPERTIES

Using the equivalence ‖ Qjf ‖Lp ∼ 2(d/2−d/p)j‖ (dλ)|λ|=j ‖`p at each level to prove a third equivalent norm

in terms of the wavelet coe�cients:

‖
(

2sj2(d/2−d/p)j ‖ (dλ)|λ|=j‖`p
)
j≥0
‖`q . (5.6)

These equivalences mean that the modulus of smoothness ωn
(
f, 2−j

)
Lp

in the de�nition of Bsp,q can be
replaced either by ‖ f − Pjf ‖Lp or by ‖ Qjf ‖Lp . Their validity requires that the spaces Vj satisfy the
following two assumptions:

• The Vj must satisfy an approximation property that takes the form of a direct estimate

‖ f − Pjf ‖Lp ≤ Cωn
(
f, 2−j

)
Lp
. (5.7)

Such an estimate ensures that a smooth function will have a fast rate of approximation.
• They must also satisfy smoothness properties that takes the form of an inverse estimate

ωn(fj , t)Lp ≤ C
[
min

(
1, t2j

)]n‖ fj ‖Lp if fj ∈ Vj . (5.8)

Such an estimate takes into account the smoothness of the spaces Vj : it ensures that a function that
is approximated at a su�ciently fast rate rate by these spaces should also have some smoothness.

One can show that the direct estimate is satis�ed if and only if all polynomials up to order n − 1 can be
written as combinations of the scaling functions ϕλ in Vj , or equivalently if the dual wavelets ψ̃λ have n
vanishing moments. On the other hand, the inverse estimate requires that the scaling functions ϕλ that
generates Vj are smooth in the sense of belonging to Wn,p. Note that the direct estimate immediately
implies that the expression (5.4) is less than ‖ f ‖Bsp,q . A more re�ned mechanism, using the inverse estimate

(as well as some discrete Hardy inequalities) is used to prove the full equivalence between ‖ f ‖Bsp,q and (5.5)

or (5.6). We refer to chapter III in [11] for a detailed proof of these results.
These equivalences show that the convergence rate N−t/d (N = dim (Vj)) can be achieved by the linear

multiscale approximation process f 7→ Pf , if and only if the function has roughly �t derivatives in Lp�.

Available for free at Connexions <http://cnx.org/content/col10679/1.2>



Chapter 6

Besov spaces and nonlinear

approximation1

A natural idea for approximating a function f by wavelets is to retain in the N largest contributions in the
norm in which we plan to measure the error. In the case where this norm is Lp, this is given by

ANf :=
∑

λ∈EN,p(f)

dλψλ, (6.1)

where EN,p (f) is the set of indices of the N largest ‖ dλψλ‖Lp . This set depends on the function f , making
this approximation process nonlinear. Other instances of nonlinear approximation are discussed in [24].

An important result established in [30] states that ‖ f − ANf ‖Lp ∼ N−r/d is achieved for functions
f ∈ Brq,q where 1/q = 1/p + r/d. Note that this relation between p and q corresponds to a critical case of
the Sobolev embedding of Brq,q into Lp. In particular, Brq,q is not contained in Bεp,p for any ε > 0, so that
no decay rate can be achieved by a linear approximation process for all the functions f in the
space Brq,q. (For some functions in Brq,q, which happen to also lie in spaces for which an independent linear
approximation theorem can be written, it is of course possible to get a linear approximation rate; the point
here is that this is possible only via such additional information.)

Note also that for large values of r, the parameter q given by 1/q = 1/p+ r/d is smaller than 1. In such
a situation the space Bsq,q is not a Banach space any more and is only a quasi-norm (it fails to satisfy the
triangle inequality ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖). However, this space is still contained in L1 (by a Sobolev-type
embedding) and its characterization by means of wavelets coe�cients according to still holds. Letting q go
to zero as r goes to in�nity allows the presence of singularities in the functions of Brq,q even when r is large:
for example, a function which is piecewise Cn on an interval except at a �nite number of isolated points of
discontinuities belongs to all Brq,q for q < 1/s and r < n. This is a particular instance where a non-linear
approximation process will perform substantially better than a linear projection.

1This content is available online at <http://cnx.org/content/m19612/1.3/>.
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