
  
    
  
Chapter 8. Travel Guide



Travel Guide



Reproducible Computational Science



 This book covers the whole spectrum from theorems on
functions of continuous variables to fast discrete algorithms
and their applications.
???
argues that models based on continuous
time functions give useful asymptotic results for understanding
the behavior of discrete algorithms. Still,
a mathematical analysis alone is often unable to fully predict
the behavior and suitability of algorithms for
specific signals.
Experiments are necessary and such experiments
should be reproducible, just like experiments in
other fields of science (DonohoB:95).
 The reproducibility of experiments requires having complete software and full source code for
inspection, modification, and application under varied parameter settings. Following this
perspective, computational algorithms presented in this book are available as MATLAB subroutines
or in other software packages. Figures can be reproduced and the source code is available.
Software demonstrations and selected exercise solutions are available at http://wavelet-tour.com. For the instructor, solutions are available at
www.elsevierdirect.com/9780123743701.

Book Road Map



 Some redundancy is introduced between sections
to avoid imposing a linear progression through the book.
The preface describes several possible programs
for a sparse signal-processing course.
 All theorems are explained in the text and reading the proofs is
not necessary to understand the results. Most of the book's
theorems are proved in detail, and important techniques are
included. Exercises at the end of each chapter give examples of
mathematical, algorithmic, and numeric applications, ordered by
level of difficulty from 1 to 4, and selected solutions can be
found at http://wavelet-tour.com.
 The book begins with
Chapters 2 and 3, which
review the Fourier transform and linear discrete signal processing.
They provide the necessary background for
readers with no signal-processing background.
Important properties of linear operators, projectors, and vector
spaces can be found in the Appendix.
Local time-frequency transforms and dictionaries
are presented in Chapter 4; 
the wavelet and windowed Fourier transforms are introduced and
compared.
The measurement of instantaneous frequencies
illustrates the limitations of time-frequency resolution.
Dictionary stability and redundancy are introduced in
Chapter 5 through the frame theory, with examples
of windowed Fourier, wavelet, and curvelet frames.
Chapter 6 explains the relationship
between wavelet coefficient amplitude
and local signal regularity. It is applied to
the detection of singularities and edges and to
the analysis of multifractals.
 Wavelet bases and fast filter bank algorithms are important tools
presented in Chapter 7.
An overdose of orthonormal bases can strike the reader while
studying the construction and properties of
wavelet packets and local cosine bases in
Chapter 8. It is thus important to
read Chapter 9,
which describes sparse approximations in bases.
Signal-compression and denoising applications
described in Chapters 10 and 11
give life to most
theoretical and algorithmic results in the book.
These chapters offer a practical perspective on the relevance of
linear and nonlinear signal-processing algorithms.
Chapter 12 introduces sparse decompositions in
redundant dictionaries and their applications. The resolution of inverse problems
is studied in Chapter 13, with super-resolution,
compressive sensing, and source separation.



Solutions


Chapter 2. Introduction to "A Wavelet tour of Signal Processing"



Sparse Representations



 Signals carry overwhelming amounts of data in which relevant information is often more difficult
to find than a needle in a haystack. Processing is faster and simpler in a sparse representation
where few coefficients reveal the information we are looking for. Such representations can be
constructed by decomposing signals over elementary waveforms chosen in a family called a dictionary. But the search for the Holy Grail of an ideal sparse transform adapted to all
signals is a hopeless quest. The discovery of wavelet orthogonal bases and local time-frequency
dictionaries has opened the door to a huge jungle of new transforms. Adapting sparse
representations to signal properties, and deriving efficient processing operators, is therefore
a necessary survival strategy.
 An orthogonal basis is a dictionary of minimum size
that can yield a sparse representation if designed
to concentrate the signal energy over a set of few vectors.
This set gives a geometric signal description.
Efficient signal compression and noise-reduction algorithms are then
implemented with diagonal operators computedwith fast algorithms.
But this is not always optimal.
 In natural languages, a richer dictionary helps to build shorter and more precise sentences.
Similarly, dictionaries of vectors that are larger than bases are needed to build sparse
representations of complex signals. But choosing is difficult and requires more complex
algorithms. Sparse representations in redundant dictionaries can improve pattern recognition,
compression, and noise reduction, but also the resolution of new inverse problems. This includes
superresolution, source separation, and compressive sensing.
 This first chapter is a sparse book representation,
providing the story line and the main ideas. It gives a sense of
orientation for choosing a path to travel.


Solutions


Chapter 6. Sparsity in Redundant Dictionaries



 In natural languages, large dictionaries are needed to refine ideas
with short sentences, and they evolve with usage.
Eskimos have eight different words
to describe snow quality, whereas a single word is typically sufficient in a
Parisian dictionary.Similarly, large signal dictionaries of vectors are needed to construct
sparse representations of complex signals. However,
computing and optimizing a signal approximation by choosing
the best M dictionary vectors is much more difficult.
 [image: Sparsity in Redundant Dictionaries]

Figure 6.1. 
A local cosine basis divides the time axis
with smooth windows gp(t) and
translates these windows into frequency.

Frame Analysis and Synthesis



 Suppose that a sparse family of vectors  has
been selected to approximate a signal .
An approximation can be recovered
as an orthogonal projection in
the space Vλ generated by these vectors.
We then face one of the following twoproblems.
 	 In a dual-synthesis problem, the orthogonal projection 
of  in Vλ must be computed from dictionary coefficients,
, provided by an analysis operator.
 This is the case when a signal transform 
is calculated in some large dictionary and a subset of inner products
are selected. Such inner products may correspond to
coefficients above a threshold or local maxima values.


	 In a dual-analysis problem, the decomposition
coefficients of  must be computed
on a family of selected vectors . This
problem appears when sparse representation algorithms
select vectors as opposed to inner products.
This is the case for
pursuit algorithms, which compute
approximation supports in highly redundant dictionaries.




 The frame theory gives energy equivalence conditions
to solve both problems with stable operators.
A family  is a frame of the space V it generates
if there exists B≥A>0 such that
(6.1)

 The representation is stable since
any perturbation of frame coefficients
implies a modification of similar magnitude
on h. Chapter 5
proves that the existence of a dual frame
 that solves both the
dual-synthesis and dual-analysisproblems:
(6.2)

  
Algorithms are provided to calculate these decompositions.
The dual frame is also stable:
(6.3)

 The frame bounds A and B are redundancy factors.
If the vectors  are normalized and
linearly independent, then A≤1≤B. Such a dictionary
is called a Riesz basis of V and the dual frame is biorthogonal:
(6.4)

 When the basis is orthonormal, then both bases are equal.
Analysis and synthesis problems are then identical.
 The frame theory is also used to construct redundant dictionaries
that define complete, stable, and redundant signal representations,
where V is then the whole signal space. The frame bounds
measure the redundancy of such dictionaries.
Chapter 5 studies the construction of
windowed Fourier and wavelet frame dictionaries by sampling
their time, frequency, and scaling parameters,
while controlling frame bounds.
In two dimensions, directional wavelet frames include wavelets
sensitive to directional image structures such as textures or edges.
 To improve the sparsity of images having edges along regular geometric
curves, Candès and Donoho (CandesD:99)
introduced curvelet frames, with elongated waveforms having
different directions, positions, and scales.
Images with piecewise regular edges have representations that are
asymptotically more sparse by thresholding curvelet
coefficients than wavelet coefficients.

Ideal Dictionary Approximations



 In a redundant dictionary
,  we would like to find the best
approximation support λ with
M=|λ| vectors, which minimize the error . Chapter 12
proves that
it is equivalent to find λT, which minimizes the
corresponding approximation Lagrangian
(6.5)

 
for some multiplier T.


 Compression and denoising are two applications of redundant dictionary
approximations. When compressing signals by quantizing
dictionary coefficients,
the distortion rate varies, like the
Lagrangian Equation 6.5, with a multiplier
T that depends on the quantization step. Optimizing the coder
is thus equivalent to minimizing this approximation Lagrangian.
For sparse representations, most of the bits are devoted
to coding the geometry of the sparse approximation set λT in γ.
 Estimators reducing noise from observations X=f+W are also
optimized by finding a best orthogonal projector over a set of
dictionary vectors.
The model selection theory of Barron, Birgé, and Massart
(massart-birge-barron) proves that finding ,
which minimizes this same Lagrangian
L0(T,X,λ),
defines an estimator that has a risk on the same order as
the minimum approximation error  up to a logarithmic
factor.  This is similar to the optimality result obtained for
thresholding estimators in an orthonormal basis.
 The bad news is that minimizing the approximation Lagrangian L0
is an NP-hard problem and is therefore computationally intractable.
It is necessary therefore to find algorithms that are sufficiently fast
to compute suboptimal, but “good enough,” solutions.
Dictionaries of Orthonormal Bases



 To reduce the complexity of optimal approximations,
the search can be reduced to subfamilies of
orthogonal dictionary vectors.
In a dictionary of orthonormal bases, any family of orthogonal dictionary
vectors can be complemented to form an orthogonal basis
B included in D. As a result, the best
approximation of  from orthogonal vectors in B is obtained
by thresholding the coefficients of  in
a “best basis” in D.
 For tree dictionaries of orthonormal bases obtained by
a recursive split of orthogonal vector spaces, the fast, dynamic programming
algorithm of Coifman and Wickerhauser (CoifmanMW:92)
finds such a best basis with O(P) operations, where P is the
dictionary size.
 Wavelet packet and local cosine bases are examples of
tree dictionaries of time-frequency
orthonormal bases of size P=Nlog2N.
A best basis is a
time-frequency tiling that is the best match to the
signal time-frequency structures.
 To approximate geometrically regular edges,
wavelets are not as efficient
as curvelets, but wavelets provide more sparse representations of
singularities that are not distributed along geometrically regular curves.
Bandlet dictionaries,
introduced by Le Pennec,
Mallat, and Peyré (bandelets-siam, bandlets-peyre),
are dictionaries of orthonormal bases that can adapt
to the variability of images' geometric regularity.
Minimax optimal asymptotic rates are derived for compression and denoising.


Pursuit in Dictionaries



 Approximating signals only from orthogonal vectors
brings rigidity that limits the ability to
optimize the representation.
Pursuit algorithms remove this constraint with flexible procedures
that search for sparse, although not necessarily optimal, dictionary
approximations. Such approximations are computed by optimizing
the choice of dictionary vectors .
Matching Pursuit



 Matching pursuit algorithms introduced by Mallat and Zhang (MallatZ:93)
are greedy algorithms that optimize approximations by selecting
dictionary vectors one by one.
The vector in φp0∈D that best approximates a signal  is
(6.6)

 and the residual approximation error is
(6.7)

 A matching pursuit further approximates the residue
Rf by selecting another best vector φp1 from the dictionary and
continues this process over next-order residues Rmf,
which produces a signal decomposition:
(6.8)

 The approximation from the M-selected
vectors 
can be refined with an orthogonal back projection on the space
generated by these vectors.
An orthogonal matching pursuit further improves this decomposition
by orthogonalizing progressively the projection directions φpm
during the decompositon.
The resulting decompositions are applied to compression,
denoising, and pattern recognition of various types of signals, images,
and videos.

Basis Pursuit



 Approximating  with a minimum number of
nonzero coefficients  in a dictionary D
is equivalent to minimizing the 10 norm ∥a∥0, which gives
the number of nonzero coefficients.
This 10 norm is highly nonconvex, which explains why the
resulting minimization is NP-hard.
Donoho and Chen (DonohoC:95) thus proposed
replacing the 10 norm by the 11 norm
, which is convex.
The resulting
basis pursuit algorithm computes a synthesis operator
(6.9)

 This optimal solution
is calculated with a linear programming algorithm.
A basis pursuit is computationally more intense than a
matching pursuit, but it is a more global optimization
that yields representations that can be moresparse.
 In approximation, compression, or denoising applications,
 is recovered with an error bounded by a precision parameter
ϵ. The optimization Equation 6.10 is thus relaxed
by finding a synthesis such that
(6.10)

 
This is a convex minimization problem, with a
solution calculated by minimizing the corresponding 11 Lagrangian
(6.11)

 where T is a Lagrange multiplier that depends on ϵ.
This is called an 11 Lagrangian pursuit in this book.
A solution  is computed with iterative
algorithms that are guaranteed to converge.
The number of nonzero coordinates of
 typically decrea-ses as T increases.

Incoherence for Support Recovery



 Matching pursuit and 11 Lagrangian pursuits are optimal if
they recover the approx-imation support λT, which minimizes
the approximation Lagrangian
(6.12)

 where  is the orthogonal projection of  in the
space Vλ generated by .
This is not always true and depends on λT.
An Exact Recovery Criteria
proved byTropp (tropp-multi-omp)
guarantees that pursuit algorithms do recover the optimal
supportλT if 
(6.13)

 where  is the biorthogonal basis of
 in VΛT. This criterion implies that
dictionary vectors
φq outside λT should have a small inner product with
vectors in λT.
 This recovery is stable relative to noise perturbations if
 has Riesz bounds that are not too far from 1.
These vectors should be nearly orthogonal and hence have
small inner products. These small inner-product conditions are
interpreted as a form of incoherence.
A stable recovery of λT is possible if vectors in λT are
incoherent with respect to other dictionary vectors and are incoherent
between themselves. It depends on the geometric
configuration of λT in γ.
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  Chapter 3. Computational Harmonic Analysis



 Fourier and wavelet bases are the journey's starting point. They decompose signals over oscillatory
waveforms that reveal many signal properties and
provide a path to sparse
representations.
Discretized signals often have a very large size N≥106,
and thus can only be processed by fast algorithms,
typically implemented with O(NlogN) operations and memories.
Fourier and wavelet transforms illustrate the strong connection
between well-structured mathematical tools andfast
algorithms.
The Fourier Kingdom



 The Fourier transform is everywhere in
physics and mathematics because it diagonalizes
time-invariant convolution operators. It rules over
linear time-invariant signal processing, the building blocks of which
are frequency filtering operators.
 Fourier analysis represents
any finite energy function 
as a sum of sinusoidal waves eiωt:
(3.1)

  
The amplitude  of each sinusoidal
wave eiωt is equal to its correlation with ,
also called Fourier transform:
(3.2)

 
The more regular , the faster the decay of the sinusoidal wave amplitude  when frequency ω increases.
 When  is defined only on an interval, say [0,1],
then the Fourier transform
becomes a decomposition in a Fourier orthonormal basis
 of L2(R)[0,1]. If  is uniformly
regular, then its Fourier transform
coefficients also have a fast decay when the frequency 2πm increases,
so it can be easily approximated with few low-frequency
Fourier coefficients. The Fourier transform therefore defines a
sparse representation of uniformly regular functions.
 Over discrete signals, the Fourier transform is a
decomposition in a discrete orthogonal Fourier basis 
of CN, which has properties similar to a Fourier transform on functions. Its embedded
structure leads to fast Fourier transform (FFT) algorithms, which compute discrete Fourier
coefficients with O(NlogN) instead of N2. This FFT algorithm is a cornerstone of
discrete signal processing.
 As long as we are satisfied with linear time-invariant operators
or uniformly regular signals, the Fourier transform provides
simple answers to most questions. Its richness makes it suitable
for a wide range of applications such as signal transmissions or
stationary signal processing. However, to represent a transient
phenomenon—a word pronounced at a particular time, an apple
located in the left corner of an image—the Fourier transform
becomes a cumbersome tool that requires many coefficients to
represent a localized event. Indeed, the support of eiωt covers the whole real line, so  depends on the
values  for all times t∈R. This global “mix” of
information makes it difficult to analyze or represent any local
property of  from .

Wavelet Bases



 Wavelet bases, like Fourier bases, reveal the signal regularity
through the amplitude of coefficients, and their structure leads
to a fast computational algorithm. However, wavelets are
well localized and few coefficients are needed to represent local
transient structures. As opposed to a Fourier basis, a
wavelet basis defines a sparse representation of piecewise regular
signals, which may include transients and singularities. In
images, large wavelet coefficients are located in the neighborhood
of edges and irregular textures.
 The story began in 1910, when Haar (Haar:10) constructed a
piecewise constantfunction 
(3.3)

 the dilations and translations of which
generate an orthonormal basis
(3.4)

 of the space L2(R) of signals having a finite energy
(3.5)

 Let us write —the inner product in L2(R).
 Any finite energy signal  can thus be represented
by its wavelet inner-product coefficients 
(3.6)

 and recovered by summing them in this wavelet orthonormal basis:
(3.7)

 Each Haar wavelet  has a zero average over
its support .
If  is locally regular and  is small,
then it is nearly constant over this interval and
the wavelet coefficient  is
nearly zero. This means that large wavelet coefficients
are located at sharp signal transitions only.
 With a jump in time, the story continues in 1980, when Strömberg
(Stromberg:81) found a piecewise linear function
ψ that also generates an orthonormal basis
and gives better approximations of smooth functions.
Meyer was not aware of this result, and
motivated by the work of Morlet and Grossmann over continuous
wavelet transform, he tried
to prove that there exists
no regular wavelet ψ that generates an orthonormal
basis. This attempt was a failure since he ended up constructing a
whole family of orthonormal wavelet bases,
with functions ψ
that are infinitely continuously differentiable (Meyer:86).
This was the fundamental impulse that led to a widespread
search for new orthonormal wavelet bases, which culminated
in the celebrated Daubechies wavelets
 of compact support
(Daubechies:88).
 The systematic theory for constructing orthonormal wavelet bases
was established by Meyer and Mallat through
the elaboration of
multiresolution signal approximations (Mallat:89b), as presented in Chapter 7.
It was inspired by original ideas developed in computer vision
by Burt and Adelson (BurtA:83)
to analyze images at several resolutions. Digging deeper into the properties
of orthogonal wavelets
and multiresolution approximations
brought to light
a surprising link with filter banks
constructed with conjugate mirror filters,
and a fast wavelet transform algorithm decomposing
signals of size N with O(N) operations (Mallat:89).
Filter Banks



 Motivated by speech compression, in 1976
Croisier, Esteban, and Galand (CroisierEG:76) introduced
an invertible
filter bank, which decomposes
a discrete signal  into two signals of half its size
using a filtering and subsampling procedure. 
They showed that  can be recovered
from these subsampled signals by canceling
the aliasing terms with a particular class of filters called
conjugate mirror filters.
This breakthrough led to a 10-year research effort to build
a complete filter bank theory. Necessary and sufficient
conditions for decomposing a signal in subsampled
components with a filtering scheme,
and recovering the same signal with an inverse transform, were established by
Smith and Barnwell (SmithB:84),
Vaidyanathan (Vaidyanathan:87), andVetterli (Vetterli:86).
 The multiresolution theory of Mallat (Mallat:89b) and Meyer
(Meyer:92c) proves that any conjugate mirror filter
characterizes a wavelet ψ that generates an orthonormal
basis of L2(R), and that a fast discrete wavelet transform is
implemented by cascading these conjugate mirror filters
(Mallat:89). The equivalence between this continuous time
wavelet theory and discrete filter banks led to a new fruitful
interface between digital signal processing and harmonic analysis,
first creating a culture shock that is now well resolved.

Continuous versus Discrete and Finite



 Originally, many signal processing engineers were wondering
what is the point of considering wavelets and signals as functions,
since all computations are performed over
discrete signals with conjugate mirror filters.
Why bother with the convergence of infinite convolution
cascades if in practice
we only compute a finite number of convolutions?
Answering these important questions is necessary in order
to understand why this book alternates between theorems on
continuous time functions and discrete algorithms applied to
finite sequences.
 A short answer would be “simplicity.”
In L2(R), a wavelet basis is
constructedby dilating and translating a single
function ψ.
Several important theorems relate
the amplitude of wavelet coefficients to the local regularity
of the signal .
Dilations are not defined over discrete sequences, and
discrete wavelet bases are therefore more complex to describe.
The regularity of a discrete sequence is not well defined either, which
makes it more difficult to interpret the amplitude of wavelet coefficients.
A theory of
continuous-time functions gives
asymptotic results for discrete sequences with sampling
intervals decreasing to zero. This theory is useful because
these asymptotic results are precise enough to understand the
behavior of discrete algorithms.
 But continuous time or space models are not sufficient
for elaborating discrete signal-processing algorithms.
The transition between continuous and discrete signals must
be done with great care to maintain important properties such as orthogonality.
Restricting the constructions to finite discrete signals
adds another layer of complexity because of border problems.
How these border issues affect numerical implementations is
carefully addressed once the properties of the bases are thoroughly
understood.

Wavelets for Images



 Wavelet orthonormal bases of images can be constructed
from wavelet orthonormal bases of one-dimensional signals.
Three mother wavelets
ψ1(x), ψ2(x), and ψ3(x),
with ,
are dilated by 
and translated by  with .
This yields an orthonormal basis
of the space  of finite energy functions :
(3.8)

 The support of a wavelet  is a square
of width proportional to the scale .Two-dimensional wavelet bases are discretized to define
orthonormal bases of images including N pixels.
Wavelet coefficients are calculated with the fast O(N)
algorithm described in Chapter 7.
 Like in one dimension,
a wavelet coefficient  has
a small amplitude if  is regular over the
support of .
It has a large amplitude near sharp transi-tions such as edges.
Figure (b) is the array of N wavelet coefficients.
Each direction k and scale  corresponds to a
subimage, which shows in black the position of the largest coefficients
above a threshold: .
 [image: ]

Figure 3.1. 
(a) Discrete image  of N=2562 pixels.
(b) Array of N orthogonal wavelet coefficients
 for k=1,2,3, and 4 scales ;
black points correspond to .
(c) Linear approximation from the N/16 wavelet coefficients
at the three largest scales.
(d) Nonlinear approximation from the M=N/16
wavelet coefficients of largest amplitude shown in (b).




Solutions


A Wavelet Tour of Signal Processing, The Sparse Way
Table of Contents
	Chapter 1. Preface to "A Wavelet tour of Signal Processing"	1.1. 	Preface to the Sparse Edition	New Additions
	Teaching
	Sparse Course Programs
	Acknowledgments






	Chapter 2. Introduction to "A Wavelet tour of Signal Processing"	2.1. 	Sparse Representations




	Chapter 3. Computational Harmonic Analysis	3.1. 	The Fourier Kingdom
	Wavelet Bases	Filter Banks
	Continuous versus Discrete and Finite
	Wavelets for Images






	Chapter 4. Approximation and Processing in Bases	4.1. 	Stochastic versus Deterministic Signal Models
	Sampling with Linear Approximations	Sampling Theorems
	Linear Approximation Error


	Sparse Nonlinear Approximations	Approximation by Thresholding
	Sparsity with Regularity


	Compression
	Denoising	Bayes versus Minimax
	Thresholding Estimators






	Chapter 5. Time-Frequency Dictionaries	5.1. 	Heisenberg Uncertainty
	Windowed Fourier Transform
	Continuous Wavelet Transform	Varying Time-Frequency Resolution
	Multiscale Zooming


	Time-Frequency Orthonormal Bases	Wavelet Packet Bases
	Local Cosine Bases






	Chapter 6. Sparsity in Redundant Dictionaries	6.1. 	Frame Analysis and Synthesis
	Ideal Dictionary Approximations	Dictionaries of Orthonormal Bases


	Pursuit in Dictionaries	Matching Pursuit
	Basis Pursuit
	Incoherence for Support Recovery






	Chapter 7. Inverse Problems	7.1. 	Diagonal Inverse Estimation	Singular Value Decompositions
	Diagonal Thresholding Estimation


	Super-resolution and Compressive Sensing	Geometric Conditions for Super-resolution
	Compressive Sensing with Randomness
	Blind Source Separation






	Chapter 8. Travel Guide	8.1. 	Travel Guide	Reproducible Computational Science
	Book Road Map






	Index


About Connexions

                    Since 1999, Connexions has been pioneering a global system where anyone can create course materials and make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and learning environment open to anyone interested in education, including students, teachers, professors and lifelong learners. We connect ideas and facilitate educational communities. Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12 schools, distance learners, and lifelong learners. Connexions materials are in many languages, including English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. 
                

Chapter 1. Preface to "A Wavelet tour of Signal Processing"




Additional figures, numerical and programming tools as well as exercises for this book may be found at http://www.wavelet-tour.com/
.


Preface to the Sparse Edition



 I can not help but find striking resemblances between scientific
communities and schools
of fish. We interact in conferences and through articles,
we move together while a global
trajectory emerges from individual contributions.
Some of us like to be at the center of the school,
others prefer to wander around, and few swim in
multiple directions in front.
To avoid dying by starvation in
a progressively narrower and specialized domain,
a scientific community needs to move on.
Computational harmonic analysis is still well alive
because it went beyond wavelets. Writing such a book is about
decoding the trajectory of the school, and gathering the pearls that have
been uncovered on the way.
Wavelets are not any more the central topic, despite the original title.
It is just an important tool, as the Fourier transform is.
Sparse representation and processing are now at the core.
 In the 80's, many researchers
were focused on building time-frequency decompositions, trying to avoid
the uncertainty barrier, and hoping to discover
the ultimate representation.
Along the way came the construction of wavelet orthogonal
bases, which opened new perspectives through collaborations with physicists
and mathematicians.
Designing orthogonal bases with Xlets became a popular sport, with
compression and noise reduction applications.
Connections with approximations and sparsity also became more apparent.
The search for sparsity has taken over, leading to new grounds,
where orthonormal bases are replaced by redundant dictionaries
of waveforms. Geometry is now also becoming more apparent through sparse
approximation supports in dictionaries.
 During these last 7 years, I also encountered the industrial world.
With a lot of naiveness, some bandlets and more
mathematics, we created a start-up
with Christophe Bernard, Jérome Kalifa and Erwan Le Pennec.
It took us some time to learn
that in 3 months good engineering should produce
robust algorithms that operate
in real time, as opposed to the 3 years we were
used to have for writing new ideas with promissing perspectives.
Yet, we survived because mathematics is
a major source of industrial innovations for signal processing.
Semi-conductor technology offers amazing
computational power and flexibility.
However, ad-hoc algorithms often do not scale easily and
mathematics accelerates
the trial and error development process. Sparsity
decreases computations, memory and data
communications. Although it brings beauty,
mathematical understanding is not a luxury.
It is required by increasingly
sophisticated information processing devices.
New Additions



 Putting sparsity at the center of the book implied rewriting many parts
and adding sections. Chapter 12 and
Chapter 13 are new. They introduce
sparse representations in redundant dictionaries, and inverse
problems, super-resolution and compressive sensing. Here is
a small catalogue of new elements in this third edition.
 • Radon transform and tomography.
 • Lifting for wavelets on surfaces, bounded domains and fast
computations.
 • JPEG-2000 image compression.
 • Block thresholding for denoising.
 • Geometric representations with
adaptive triangulations, curvelets and bandlets.
 • Sparse approximations in redundant dictionaries with
pursuits algorithms.
 • Noise reduction with model selection, in redundant dictionaries.
 • Exact recovery of sparse approximation supports in dictionaries.
 • Multichannel signal representations and processing.
 • Dictionary learning.
 • Inverse problems and super-resolution.
 • Compressive sensing.
 • Source separation.

Teaching



 This book is intended as a graduate textbook.
Its evolution is also the result of
teaching courses in electrical engineering and applied mathematics.
A new web site
provides softwares for reproducible experimentations, exercise solutions,
together with teaching material such as slides with figures, and
Matlab softwares for numerical classes: http://wavelet-tour.com.
 More exercises have been added at the end of each chapter, ordered
by level of difficulty.
Level1 exercises are direct applications of the course.
Level2 requires more thinking.
Level3 includes some technical derivations.
Level4 are projects at the interface of research, that are
possible topics for a final course project or an independent study.
More exercises and projects can be found in the web site.

Sparse Course Programs



 The Fourier transform and analog to digital conversion through
linear sampling approximations provide a common ground for all courses
(Chapters 2 and 3).
It introduces basic signal representations, and reviews important
mathematical and algorithmic tools needed afterwards.
Many trajectories are then possible to explore and teach sparse
signal processing.
The following list gives several topics that can orient the course
structure, with elements that can be covered along the way.
 
          Sparse representations with bases and applications
        
 • Principles of linear and non-linear approximations in
bases (Chapter 9).
 • Lipschitz regularity and wavelet coefficients decay
(Chapter 6).
 • Wavelet bases
(Chapter 7).
 • Properties of linear and non-linear wavelet basis approximations
(Chapter 9).
 • Image wavelet compression
(Chapter 10).
 • Linear and non-linear diagonal denoising
(Chapter 11).
 
          Sparse time-frequency representations
        
 • Time-frequency wavelet and windowed Fourier
ridges for audio processing (Chapter 4).
 • Local cosine bases
(Chapter 8).
 • Linear and non-linear approximations in bases
(Chapter 9).
 • Audio compression
(Chapter 10).
 • Audio denoising and block thresholding
(Chapter 11).
 • Compression and denoising in redundant time-frequency
dictionaries, with best bases or pursuit algorithms
(Chapter 12).
 
          Sparse signal estimation
        
 • Bayes versus minimax, and linear versus non-linear estimations
(Chapter 11).
 • Wavelet bases
(Chapter 7).
 • Linear and non-linear approximations in bases
(Chapter 9).
 • Thresholding estimation
(Chapter 11).
 • Minimax optimality
(Chapter 11).
 • Model selection for denoising in redundant dictionaries
(Chapter 12).
 • Compressive sensing
(Chapter 13).
 
          Sparse compression and information theory
        
 • Wavelet orthonormal bases
(Chapter 7).
 • Linear and non-linear approximations in bases
(Chapter 9).
 • Compression and sparse transform codes in bases
(Chapter 10).
 • Compression in redundant dictionaries
(Chapter 12).
 • Compressive sensing
(Chapter 13).
 • Source separation
(Chapter 13).
 
          Dictionary representations and inverse problems
        
 • Frames and Riesz bases
(Chapter 5).
 • Linear and non-linear approximations in bases
(Chapter 9).
 • Ideal redundant dictionary approximations
(Chapter 12).
 • Pursuit algorithms and dictionary incoherence
(Chapter 12).
 • Linear and thresholding inverse estimators
(Chapter 13).
 • Super-resolution and source separation
(Chapter 13).
 • Compressive sensing
(Chapter 13).
 
          Geometric sparse processing
        
 • Time-frequency spectral lines and ridges
(Chapter 4).
 • Frames and Riesz bases
(Chapter 5).
 • Multiscale edge representations with wavelet maxima
(Chapter 6).
 • Sparse approximation supports in bases
(Chapter 9).
 • Approximations with geometric regularity, curvelets
and bandlets (Chapters 9 and 12).
 • Sparse signal compression and geometric bit budget
(Chapters 10 and 12).
 • Exact recovery of sparse approximation supports
(Chapter 12).
 • Super-resolution
(Chapter 13).
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