
  
    
  
Chapter 2. Fourier Series of Periodic Signals 



2.1. Symmetry Properties of Periodic Signals*



 A signal has even symmetry of it satisfies:
(2.1)
          
            x
            (
            t
            )
            =
            x
            (
            –
            t
            )
          
        
 and odd symmetry if it satisfies
(2.2)
          
            x
            (
            t
            )
            =
            –
            x
            (
            –
            t
            )
          
        
 Figure 2.1 shows pictures of periodic even and odd symmetric signals.
If x(t) is an odd symmetric periodic signal, then we must have:
(2.3)

 This is easy to see if we choose t0=–T/2.
 [image: ]

Figure 2.1. 
(a) Even-symmetric, and (b) odd-symmetric periodic signals. Note that the integral over any period of an odd-symmetric periodic signal is zero.

 We also note that the product of two even signals is also even while the product of an even signal and an odd signal must be odd. Finally, the product of two odd signals must be even. For example, suppose xo(t) has odd symmetry and xe(t) has even symmetry. Their product has odd symmetry because if y(t)=xo(t)xe(t), then y(–t)=xo(–t)xe(–t)=–y(t).

2.2. Trigonometric Form of the Fourier Series*



 A major goal of this book is to develop tools which will enable us to study the frequency content of signals. An important first step is the Fourier Series.
The Fourier Series enables us to completely characterize the frequency content of a periodic signal[2]. A periodic signal x(t) can be expressed in terms of the Fourier Series, which is given by:
(2.4)

 where
(2.5)

 is the fundamental frequency of the periodic signal.
Examination of Equation 2.4 suggests that periodic signals can be represented as a sum of suitably scaled cosine and sine waveforms at frequencies of Ω0,2Ω0,3Ω0,.... The cosine and sine terms at frequency nΩ0 are called the nth harmonics. Evidently, periodic signals contain only the fundamental frequency and its harmonics. A periodic signal cannot contain a frequency that is not an integer multiple of its fundamental frequency.
 In order to find the Fourier Series, we must compute the Fourier Series coefficients. These are given by
(2.6)

(2.7)

(2.8)

 From our discussion of even and odd symmetric signals, it is clear that if x(t) is even, then  must be odd and so bn=0. Also if, x(t) has odd symmetry, then  also has odd symmetry and hence an=0 (see exercise ???). Moreover, if a signal is even, since  is also even, if we use the fact that for any even symmetric periodic signal v(t),
(2.9)

 then setting t0=–T/2 in Equation 2.7 gives,
(2.10)

 This can sometimes lead to a savings in the number of integrals that must be computed. Similarly, if x(t) has odd symmetry, we have
(2.11)

 Example 2.1 Consider the signal in Figure 2.2. This signal has even symmetry, hence all of the bn=0. We compute a0 using,
(2.12)

 which we recognize as the area of one period, divided by the period. Hence, a0=τ/T. Next, using Equation 2.7 we get
(2.13)

 Note how the limits of integration only go from –τ/2 to τ/2 since x(t) is zero everywhere else. Evaluating this integral leads to
(2.14)

 Figure 2.3 shows the first few Fourier Series coefficients for τ=1/2 and T=1. If we attempt to reconstruct x(t) based on only a limited number (say, N) of Fourier Series coefficients, we have
(2.15)

 Figures Figure 2.4 and Figure 2.5 show  for N=10, and N=50, respectively.
The ringing characteristic is known as Gibb's phenomenon and disappears only as N approaches ∞.
 The following example looks at the Fourier series of an odd-symmetric signal, a sawtooth signal.
 Example 2.2 Now let's compute the Fourier series for the signal in Figure 2.6. The signal is odd-symmetric, so all of the an are zero. The period is T=3/2, hence Ω0=4π/3.
Using Equation 2.8, the bn coefficients are found by computing the following integral,
(2.16)

 After integrating by parts, we get
(2.17)

 These are plotted in Figure 2.7 and approximations of x(t) using N=10 and N=50 coefficients are shown in Figures Figure 2.8 and Figure 2.9, respectively.
 [image: ]

Figure 2.2. 
Example "Trigonometric Form of the Fourier Series". This signal is sometimes called a pulse train.
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Figure 2.3. 
Fourier Series coefficients for Example "Trigonometric Form of the Fourier Series".

 [image: ]

Figure 2.4. 
Approximation to x(t) based on the first 10 Fourier Series coefficients for Example "Trigonometric Form of the Fourier Series".

 [image: ]

Figure 2.5. 
Fourier Series coefficients for Example "Trigonometric Form of the Fourier Series".
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Figure 2.6. 
Example "Trigonometric Form of the Fourier Series". Sawtooth signal.

 [image: ]

Figure 2.7. 
Fourier Series coefficients for Example "Trigonometric Form of the Fourier Series".

 [image: ]

Figure 2.8. 
Approximation to x(t) based on the first 10 Fourier Series coefficients for Example "Trigonometric Form of the Fourier Series".

 [image: ]

Figure 2.9. 
Fourier Series coefficients for Example "Trigonometric Form of the Fourier Series".

 References

2.3. Half-Wave Symmetry*



Half-Wave Symmetry



 Periodic signals having half-wave symmetry have the property
(2.18)

 It turns out that signals with this type of symmetry only have odd-numbered harmonics, the even harmonics are zero. To see this, lets look at the formula for the coefficients an:
(2.19)

 Making the substitution τ=t–T/2 in I2 gives
(2.20)

 The quantity  can be simplified using the trigonometric identity
(2.21)
          
            cos
            (
            u
            ±
            v
            )
            =
            cos
            (
            u
            )
            cos
            (
            v
            )
            ∓
            sin
            (
            u
            )
            sin
            (
            v
            )
          
        
 We have
(2.22)

 Therefore

(2.23)

 and we can write:
(2.24)

 From this expression we find that an=0 whenever n is even. In fact, we have
(2.25)

 A similar derivation leads to
(2.26)

 A good choice of t0 can lead to a considerable savings in time when calculating the Fourier Series of half-wave symmetric signals.
Note that half-wave symmetric signals need not have odd or even symmetry for the above formulae to apply. If a signal has half-wave symmetry and in addition has odd or even symmetry, then some additional simplification is possible. Consider the case when a half-wave symmetric signal also has even symmetry. Then clearly bn=0, and Equation 2.25 applies. However since the integrand in Equation 2.25 is the product of two even signals, x(t) and , it too has even symmetry. Therefore, instead of integrating from, say, –T/4 to T/4, we need only integrate from 0 to T/4 and multiply the result by 2. Therefore the formula for an for an even, half-wave symmetric signal becomes:
(2.27)

(2.28)
          
            bn
            =
            0
          
        
 For an odd half-wave symmetric signals, a similar argument leads to
(2.29)
          
            an
            =
            0
          
        
(2.30)



2.4. Convergence of the Fourier Series*



 Consider the trigonometric form of the Fourier series
(2.31)

 It is important to state under what conditions this series (the right-hand side of Equation 2.31) will actually converge to x(t). The nature of the convergence also needs to be specified. There are several ways of defining the convergence of a series.
 	 Uniform convergence: define the finite sum:

(2.32)


where N is finite. Then the series converges uniformly if the absolute value of x(t)–xN(t) satisfies

(2.33)|x (t) – xN (t)|<ϵ

for all values of t and some small positive constant ϵ.


	 Point-wise convergence: as with uniform convergence, we require that

(2.34)|x (t) – xN(t) (t)|<ϵ

for all t. The main difference between uniform and point-wise convergence is that for the latter, the number of terms in the summation N(t) needed to get the error below ϵ may vary for different values of t.


	 Mean-squared convergence: here, the series converges if for all t:

(2.35)


Gibb's phenomenon, mentioned in some of the examples above, is an example of mean-squared convergence of the series. The overshoot in Gibb's phenomenon occurs only at abrupt discontinuities. Moreover, the height of the overshoot stays the same independently of the number of terms in the series, N. The overshoot merely becomes less noticeable because it becomes more and more narrow as N increases.




 Dirichlet has given a series of conditions which are necessary for a periodic signal to have a Fourier series. If these conditions are met, then
 	 the Fourier series has point-wise convergence for all t at which x(t) is continuous.


	 where x(t) has a discontinuity, then the series converges to the midpoint between the two values on either side of the discontinuity.




 The Dirichlet Conditions are:
 	 x(t) has to be absolutely integrable on any period:

(2.36)


	 x(t) can have only a finite number of discontinuities on any period.


	 x(t) can have only a finite number of extrema on any period.




 Most periodic signals of practical interest satisfy these conditions.
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2.5. Complex Form of the Fourier Series*



 The trigonometric form of the Fourier Series, shown in Equation 2.4 can be converted into a more convenient form by doing the following substitutions:
(2.37)

(2.38)

 After some straight-forward rearranging, we obtain
(2.39)

 Keeping in mind that an and bn are only defined for positive values of n, lets sum over the negative integers in the second summation:
(2.40)

 Next, let's assume that an and bn are defined for both positive and negative n. In this case, we find that an=a–n and bn=–b–n, since
(2.41)

 and
(2.42)

 Using this fact, we can rewrite Equation 2.40 as
(2.43)

 If we define[3]c0≡a0, and
(2.44)

 then we can rewrite Equation 2.43 as
(2.45)

 which is called the complex form of the Fourier Series.
Note that since a–n=an and b–n=–bn, we have
(2.46)
          
            c
                –
                n
              
            =
            c*
                n
              
          
        
 This means that
(2.47)
          
            |c
                  –
                  n
                |
            =
            |cn|
          
        
 and
(2.48)
          
            ∠
            c
                –
                n
              
            =
            –
            ∠
            cn
          
        
 Next, we must find formulas for finding the cn given x(t). We first look at a property of complex exponentials:
(2.49)

 To see this, we note that
(2.50)

 It's easy to see that kΩ0 also has period T, hence the integral is over k periods of  and . Therefore, if k≠0, then
(2.51)

 otherwise
(2.52)

 We use Equation 2.49 to derive an equation for cn as follows. Consider the integral
(2.53)

 Substituting the complex form of the Fourier Series of x(t) in Equation 2.53, (using k as the index of summation) we obtain
(2.54)

 Rearranging the order of integration and summation, combining the exponents, and using Equation 2.49 gives
(2.55)

 Using this result, we find that
(2.56)

 Example 2.1 Let's now find the complex form of the Fourier Series for the signal in Example Section 2.2. The integral to be evaluated is
(2.57)

 Integrating by parts yields
(2.58)

 Figure 2.10 shows the magnitude of the coefficients, |cn|. Note that the complex Fourier Series coefficients have even symmetry as was mentioned earlier.
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Figure 2.10. 
Fourier Series coefficients for Example "Complex Form of the Fourier Series".

 Can the basic formula for computing the cn in Equation 2.56 be simplified when x(t) has either even, odd, or half-wave symmetry? The answer is yes. We simply use the fact that
(2.59)

 and solve for an and bn using the formulae given above for even, odd, or half-wave symmetric signals. This avoids having to integrate complex quantities. This can also be seen by noting that (setting t0=T/2 in Equation 2.56):
(2.60)

 Alternately, if x(t) has half-wave symmetry, we can use Equation 2.60, Equation 2.24, and Equation 2.25 to get
(2.61)

 Unlike the trigonometric form, we cannot simplify this further if x(t) is even or odd symmetric since e–jnΩ0t has neither even nor odd symmetry.
 Example 2.2 In this example we will look at the effect of adjusting the period of a pulse train signal. Consider the signal depicted in Figure 2.11.
 [image: ]

Figure 2.11. 
Pulse train having period T used in Example "Complex Form of the Fourier Series".

 The Fourier Series coefficients for this signal are given by
(2.62)

 Figure 2.12 shows the magnitude of |cn|, the amplitude spectrum, for T=1 and τ=1/2 as well as the Fourier Series for the signal based on the first 30 coefficients
(2.63)

 Similar plots are shown in Figures Figure 2.13, and Figure 2.14, for T=4, and T=8, respectively.
  [image: ]
(a)

  [image: ]
(b)


Figure 2.12. 
Example "Complex Form of the Fourier Series", T=1,τ=1/2: (top) Fourier Series coefficient magnitudes, (b) .

  [image: ]
(a)

  [image: ]
(b)


Figure 2.13. 
Example "Complex Form of the Fourier Series", T=4,τ=1/2: (top) Fourier Series coefficient magnitudes, (b) .

  [image: ]
(a)

  [image: ]
(b)


Figure 2.14. 
Example "Complex Form of the Fourier Series", T=8,τ=1/2: (top) Fourier Series coefficient magnitudes, (b) .

 This example illustrates several important points about the Fourier Series:
As the period T increases, Ω0 decreases in magnitude (this is obvious since Ω0=2π/T). Therefore, as the period increases, successive Fourier Series coefficients represent more closely spaced frequencies. The frequencies corresponding to each n are given by the following table:
Table 2.1. 	
                
                  n
                
              	
                
                  Ω
                
              
	0	0
	
                
                  
                    ±
                    1
                  
                
              	
                
                  
                    ±
                    Ω0
                  
                
              
	
                
                  
                    ±
                    2
                  
                
              	
                
                  
                    ±
                    2
                    Ω0
                  
                
              
	
                
                  ⋮
                
              	
                
                  ⋮
                
              
	
                
                  
                    ±
                    n
                  
                
              	
                
                  
                    ±
                    n
                    Ω0
                  
                
              


 This table establishes a relation between n and the frequency variable Ω. In particular, if T=1, we have Ω0=2π and
Table 2.2. 	
                
                  n
                
              	
                
                  Ω
                
              
	0	0
	
                
                  
                    ±
                    1
                  
                
              	
                
                  
                    ±
                    2
                    π
                  
                
              
	
                
                  
                    ±
                    2
                  
                
              	
                
                  
                    ±
                    4
                    π
                  
                
              
	
                
                  ⋮
                
              	
                
                  ⋮
                
              
	
                
                  
                    ±
                    n
                  
                
              	
                
                  
                    ±
                    2
                    n
                    π
                  
                
              


 If T=T, then Ω0=π/2 and
Table 2.3. 	
                
                  n
                
              	
                
                  Ω
                
              
	0	0
	
                
                  
                    ±
                    1
                  
                
              	
                
                  
                    ±
                    π
                    /
                    2
                  
                
              
	
                
                  
                    ±
                    2
                  
                
              	
                
                  
                    ±
                    π
                  
                
              
	
                
                  ⋮
                
              	
                
                  ⋮
                
              
	
                
                  
                    ±
                    n
                  
                
              	
                
                  
                    ±
                    n
                    π
                    /
                    2
                  
                
              


 and if T=8, we have Ω0=π/4 and
Table 2.4. 	
                
                  n
                
              	
                
                  Ω
                
              
	0	0
	
                
                  
                    ±
                    1
                  
                
              	
                
                  
                    ±
                    π
                    /
                    4
                  
                
              
	
                
                  
                    ±
                    2
                  
                
              	
                
                  
                    ±
                    π
                    /
                    2
                  
                
              
	
                
                  ⋮
                
              	
                
                  ⋮
                
              
	
                
                  
                    ±
                    n
                  
                
              	
                
                  
                    ±
                    n
                    π
                    /
                    4
                  
                
              


 Note that in all three cases, the first zero coefficient corresponds to the value of n for which Ω=4π. Also, as T gets bigger, the cn appear to resemble more closely spaced samples of a continuous function of frequency (since the nΩ are more closely spaced). Can you determine what this function is?
 As we shall see, by letting the period T get large (infinitely large), we will derive the Fourier Transform in the next chapter.
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2.6. Parseval's Theorem for the Fourier Series*



 Recall that in Chapter 1, we defined the power of a periodic signal as
(2.64)

 where T is the period. Using the complex form of the Fourier series, we can write
(2.65)

 where we have used the fact that x(t)2=x(t)x(t)*, i.e. since x(t) is real x(t)=x(t)*. Applying Equation 1.19 and Equation 1.20 gives
(2.66)

 Substituting this quantity into Equation 2.64 gives
(2.67)

 It is straight-forward to show that
(2.68)

 This leads to Parseval's Theorem for the Fourier series:
(2.69)

 which states that the power of a periodic signal is the sum of the magnitude of the complex Fourier series coefficients.

2.7. The Fourier Series: Exercises*



 	 Show that an even-symmetric periodic signal has Fourier Series coefficients bn=0 while an odd-symmetric signal has an=0.


	 Find the trigonometric form of the Fourier Series of the periodic signal shown in Figure 2.15.


	 Find the trigonometric form of the Fourier Series for the periodic signal shown in Figure 2.16.


	 Find the trigonometric form of the Fourier Series for the periodic signal shown in Figure 2.17 for τ=1, T=10.


	 Suppose that x(t)=5+3cos(5t)–2sin(3t)+cos(45t).

 	 Find the period of this periodic signal.


	 Find the trigonometric form of the Fourier Series.





	 Find the complex form of the Fourier Series of the periodic signal shown in Figure 2.15.


	 Find the complex form of the Fourier Series of the periodic signal shown in Figure 2.16.


	 Find the complex form of the Fourier Series for the signal in Figure 2.17 using:

 	 τ=1, T=10.


	 τ=1, T=100.





For each case plot the magnitude of the Fourier Series coefficients. You may use Matlab or some other programming language to do this.


	 Show that

(2.70)




 [image: ]

Figure 2.15. 
Signal for problems 2 and 1.
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Figure 2.16. 
Signal for problem 3 and 2.

 [image: ]

Figure 2.17. 
Pulse train signal for problems 4 and 6.


Solutions



    
      [image: Signals, Systems, and Society]
    

  Chapter 3. The Fourier Transform 



3.1. Derivation of the Fourier Transform*



 Let's begin by writing down the formula for the complex form of the Fourier Series:
(3.1)

 as well as the corresponding Fourier Series coefficients:
(3.2)

 As was mentioned in Chapter 2, as the period T gets large, the Fourier Series coefficients represent more closely spaced frequencies. Lets take the limit as the period T goes to infinity. We first note that the fundamental frequency approaches a differential
(3.3)

 consequently
(3.4)

 The nth harmonic, nΩ0, in the limit approaches the frequency variable Ω
(3.5)
          
            n
            Ω0
            →
            Ω
          
        
 From equation Equation 3.2, we have
(3.6)
          
            cn
            T
            →
            ∫∞
                –
                ∞
              
            x
            
              (
              t
              )
            
            e
                –
                j
                Ω
                t
              
            d
            t
          
        
 The right hand side of Equation 3.6 is called the Fourier Transform of x(t):
(3.7)
          
            X
            
              (
              j
              Ω
              )
            
            ≡
            ∫∞
                –
                ∞
              
            x
            
              (
              t
              )
            
            e
                –
                j
                Ω
                t
              
            d
            t
          
        
 Now, using Equation 3.6, Equation 3.4, and Equation 3.5 in equation Equation 3.1 gives
(3.8)

 which corresponds to the inverse Fourier Transform. Equations Equation 3.7 and Equation 3.8 represent what is known as a transform pair. The following notation is used to denote a Fourier Transform pair
(3.9)
          
            x
            (
            t
            )
            ↔
            X
            (
            j
            Ω
            )
          
        
 We say that x(t) is a time domain signal while X(jΩ) is a frequency domain signal. Some additional notation which is sometimes used is
(3.10)
          
            X
            
              (
              j
              Ω
              )
            
            =
            F
            {x ( t )}
          
        
 and
(3.11)
          
            x
            
              (
              t
              )
            
            =
            F
                –
                1
              
            {X ( j Ω )}
          
        
 References

3.2. Properties of the Fourier Transform*



Properties of the Fourier Transform



 The Fourier Transform (FT) has several important properties which will be useful:
 	 Linearity:
(3.12)αx1(t)+βx2(t)↔αX1(jΩ)+βX2(jΩ)

where α and β are constants. This property is easy to verify by plugging the left side of Equation 3.12 into the definition of the FT.


	 Time shift:
(3.13)x(t–τ)↔e–jΩτX(jΩ)

To derive this property we simply take the FT of x(t–τ)
(3.14)∫∞–∞x(t–τ)e–jΩtdt

using the variable substitution γ=t–τ leads to

(3.15)t=γ+τ

and

(3.16)dγ=dt

We also note that if t=±∞ then τ=±∞. Substituting Equation 3.15, Equation 3.16, and the limits of integration into Equation 3.14 gives

(3.17)


which is the desired result.


	 Frequency shift:
(3.18)


Deriving the frequency shift property is a bit easier than the time shift property. Again, using the definition of FT we get:

(3.19)


	 Time reversal:

(3.20)x(–t)↔X(–jΩ)

To derive this property, we again begin with the definition of FT:

(3.21)∫∞–∞x(–t)e–jΩtdt

and make the substitution γ=–t. We observe that dt=–dγ and that if the limits of integration for t are ±∞, then the limits of integration for γ are ∓γ. Making these substitutions into Equation 3.21 gives

(3.22)


Note that if x(t) is real, then X(–jΩ)=X(jΩ)*.


	 Time scaling:
Suppose we have y(t)=x(at),a>0. We have

(3.23)Y(jΩ)=∫∞–∞x(at)e–jΩtdt

Using the substitution γ=at leads to

(3.24)


	 Convolution: The convolution integral is given by

(3.25)y(t)=∫∞–∞x(τ)h(t–τ)dτ

The convolution property is given by

(3.26)Y(jΩ)↔X(jΩ)H(jΩ)

To derive this important property, we again use the FT definition:

(3.27)


Using the time shift property, the quantity in the brackets is e–jΩτH(jΩ), giving

(3.28)


Therefore, convolution in the time domain corresponds to multiplication in the frequency domain.


	 Multiplication (Modulation):
(3.29)


Notice that multiplication in the time domain corresponds to convolution in the frequency domain. This property can be understood by applying the inverse Fourier Transform ??? to the right side of Equation 3.29

(3.30)


The quantity inside the brackets is the inverse Fourier Transform of a frequency shifted Fourier Transform,

(3.31)


	 Duality:
The duality property allows us to find the Fourier transform of time-domain signals whose functional forms correspond to known Fourier transforms, X(jt). To derive the property, we start with the inverse Fourier transform:


(3.32)


Changing the sign of t and rearranging,

(3.33)2πx(–t)=∫∞–∞X(jΩ)e–jΩtdΩ

Now if we swap the t and the Ω in Equation 3.33, we arrive at the desired result

(3.34)2πx(–Ω)=∫∞–∞X(jt)e–jΩtdt

The right-hand side of Equation 3.34 is recognized as the FT of X(jt), so we have

(3.35)X(jt)↔2πx(–Ω)



 The properties associated with the Fourier Transform are summarized in Table 3.1.
Table 3.1. Fourier Transform properties.	Property	
                
                  
                    y
                    (
                    t
                    )
                  
                
              	
                
                  
                    Y
                    (
                    j
                    Ω
                    )
                  
                
              
	Linearity	
                
                  
                    α
                    x1
                    
                      (
                      t
                      )
                    
                    +
                    β
                    x2
                    
                      (
                      t
                      )
                    
                  
                
              	
                
                  
                    α
                    X1
                    
                      (
                      j
                      Ω
                      )
                    
                    +
                    β
                    X2
                    
                      (
                      j
                      Ω
                      )
                    
                  
                
              
	Time Shift	
                
                  
                    x
                    (
                    t
                    –
                    τ
                    )
                  
                
              	
                
                  
                    X
                    
                      (
                      j
                      Ω
                      )
                    
                    e
                        –
                        j
                        Ω
                        τ
                      
                  
                
              
	Frequency Shift	
                
                  
                    x
                    
                      (
                      t
                      )
                    
                    e
                        j
                        Ω0
                        t
                      
                  
                
              	
                
              
	Time Reversal	
                
                  
                    x
                    (
                    –
                    t
                    )
                  
                
              	
                
                  
                    X
                    (
                    –
                    j
                    Ω
                    )
                  
                
              
	Time Scaling	
                
                  
                    x
                    (
                    a
                    t
                    )
                  
                
              	
                
              
	Convolution	
                
                  
                    x
                    (
                    t
                    )
                    *
                    h
                    (
                    t
                    )
                  
                
              	
                
                  
                    X
                    (
                    j
                    Ω
                    )
                    H
                    (
                    j
                    Ω
                    )
                  
                
              
	Modulation	
                
                  
                    x
                    (
                    t
                    )
                    w
                    (
                    t
                    )
                  
                
              	
                
              
	Duality	
                
                  
                    X
                    (
                    j
                    t
                    )
                  
                
              	
                
                  
                    2
                    π
                    x
                    (
                    –
                    Ω
                    )
                  
                
              




3.3. Symmetry Properties of the Fourier Transform*



 When x(t) is real, the Fourier transform has conjugate symmetry, X(–jΩ)=X(jΩ)*. It is not hard to see this:
(3.36)

 where the second equality uses the definition of a Riemann integral as the limiting case of a summation, and the fact that the complex conjugate of a sum is equal to the sum of the complex conjugates. The third equality used the fact that the complex conjugate of a product is equal to the product of complex conjugates.
 Letting X(jΩ)=a(jΩ)+jb(jΩ), it follows that
(3.37)
        
          X
          (
          –
          j
          Ω
          )
          =
          a
          (
          –
          j
          Ω
          )
          +
          j
          b
          (
          –
          j
          Ω
          )
        
      
 and
(3.38)
        
          X
          
              (
              j
              Ω
              )
            *
          =
          a
          
            (
            j
            Ω
            )
          
          –
          j
          b
          
            (
            j
            Ω
            )
          
        
      
 Equating Equation 3.37 and Equation 3.38 gives a(jΩ)=a(–jΩ) and b(–jΩ)=–b(jΩ), which implies that the real and imaginary parts of X(jΩ) have even and odd symmetry, respectively. A consequence of this is that |X ( j Ω )|=|X (jΩ)*|=|X ( – j Ω )|, that is, the magnitude of the Fourier transform has even symmetry. It can similarly be shown that the phase of the Fourier transform has odd symmetry.

3.4. The Unit Impulse Function*



The Unit Impulse Function



 The unit impulse is very useful in the analysis of signals, linear systems, and sampling. Consider the plot of a rectangular pulse in Figure 3.1. Note the height of the pulse is 1/τ and the width of the pulse is τ. So we can write
(3.39)
          
            ∫∞
                –
                ∞
              
            xp
            
              (
              t
              )
            
            d
            t
            =
            1
          
        
 As we let τ get small, then the width of the pulse gets successively narrower and its height gets progressively higher. In the limit as τ approaches zero, we have a pulse which has infinite height, and zero width, yet its area is still one. We define the unit impulse function as
(3.40)

 [image: ]

Figure 3.1. 
Rectangular pulse, xp(t) approaches the unit impulse function, δ(t), as τ approaches zero.

 The area under δ(t) is one, and so we can write
(3.41)
          
            ∫∞
                –
                ∞
              
            δ
            
              (
              t
              –
              τ
              )
            
            d
            t
            =
            1
          
        
 If we multiply the unit impulse by a constant, K, its area is now equal to that constant, i.e.
(3.42)
          
            ∫∞
                –
                ∞
              
            K
            δ
            
              (
              t
              –
              τ
              )
            
            d
            t
            =
            K
          
        
 The area of the unit impulse is usually indicated by the number shown next to the arrow as seen in Figure 3.2.
 [image: ]

Figure 3.2. 
Kδ(t–τ).

 Suppose we multiply the signal x(t) with a time-shifted unit impulse, δ(t–τ). The product is a unit impulse, having an area of x(τ). This is illustrated in Figure 3.3.
 [image: ]

Figure 3.3. 
Sifting property of unit impulse, the product of the two signals, x(t) and δ(t–τ), is x(τ)δ(t–τ). Consequently, the area under x(τ)δ(t–τ) is x(τ).

 In other words,
(3.43)
          
            ∫∞
                –
                ∞
              
            x
            
              (
              t
              )
            
            δ
            
              (
              t
              –
              τ
              )
            
            d
            t
            =
            x
            
              (
              τ
              )
            
          
        
 Equation Equation 3.43 is called the sifting property of the unit impulse. As we will see, the sifting property of the unit impulse will be very useful.


3.5. The Unit Step Function*



 The unit step function is defined as
(3.44)

 This function is useful for defining signals which we wish to start at t=0. In other words, often, we would like for signals to be zero for negative values of t. We can force this situation by simply multiplying by u(t).

3.6. Fourier Transform of Common Signals*



Fourier Transform of Common Signals



 Next, we'll derive the FT of some basic continuous-time signals. Table 3.2 summarizes these transform pairs.
Rectangular pulse



 Let's begin with the rectangular pulse
(3.45)

 The pulse function, rect(t,τ) is shown in Figure 3.4. Evaluating the Fourier transform integral with x(t)=rect(t,τ) gives
(3.46)

 A plot of X(jΩ) is shown in Figure 3.4.
 [image: ]

Figure 3.4. 
Fourier transform pair showing the rectangular pulse signal (left) and its Fourier transform, the sinc function (right).

 Note that when Ω=0, X(jΩ)=τ.
We now have the following transform pair:
(3.47)


Impulse



 The unit impulse function was described in a previous section. From the sifting property of the impulse function we find that
(3.48)

 or
(3.49)
            
              δ
              (
              t
              )
              ↔
              1
            
          

Complex Exponential



 The complex exponential function, x(t)=ejΩ0t, has a Fourier transform which is difficult to evaluate directly. It is easier to start with the Fourier transform itself and work backwards using the inverse Fourier transform. Suppose we want to find the time-domain signal which has Fourier transform . We can begin by using the inverse Fourier transform ???
(3.50)

 This result follows from the sifting property of the impulse function. By linearity, we can then write
(3.51)


Cosine



 The cosine signal can be expressed in terms of complex exponentials using Euler's Identity
(3.52)

 Applying linearity and the Fourier transform of complex exponentials to the right side of Equation 3.52, we quickly get:
(3.53)


Real Exponential



 The real exponential function is given by x(t)=e–αtu(t), where α>0. To find its FT, we start with the definition
(3.54)

 therefore,
(3.55)


The Unit Step Function



 In a previous section, we looked at the unit step function,
(3.56)

 A closely related signal is the signum function, defined by
(3.57)

 from which it follows that
(3.58)
            
              u
              (
              t
              )
              =
              (
              s
              g
              n
              (
              t
              )
              +
              1
              )
              /
              2
            
          
 The signum function can be described as follows:
(3.59)

 Since we already have the Fourier transform of the exponential signal,
(3.60)

 Using Equation 3.58 and linearity then leads to
(3.61)

Table 3.2. Some common Fourier transform pairs.	
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 When working problems involving finding the Fourier transform, it is often preferable to use a table of transform pairs rather than to recalculate the Fourier transform from scratch. Often, transform pairs in can be combined with known Fourier transform properties to find new Fourier transforms.
 Example 3.1 Find the Fourier transform of:
y(t)=2e5tu(–t). Clearly, we can write y(t)=x(–t) where x(t)=2e–5tu(t). Therefore, we can combine the known transform of x(t) from Table 3.2, namely,
(3.62)

 with the time reversal property:
(3.63)
            
              x
              
                (
                –
                t
                )
              
              ↔
              X
              
                  (
                  j
                  Ω
                  )
                *
            
          
 to get the answer:
(3.64)




3.7. Fourier Transform of Periodic Signals*



 If the signal of interest is periodic with period T, then it has a Fourier Series:
(3.65)

 Using the linearity of the Fourier Transform, we have
(3.66)

 where  corresponds to the Fourier Transform of the signal within the brackets.

3.8. Filters*



 Filters are devices which are commonly found in electronic gadgets. When you adjust the bass (low frequency) or treble (high frequency) settings on your MP3 player, you are adjusting the characteristics of a filter. A more technical name for a filter is a linear system . A filter is represented by a box having a single input (usually x(t)) and a single output (say, y(t)) as seen in Figure 3.5.
 [image: Filters]

Figure 3.5. 
Continuous-time filter.

 We can denote the operation the filter has on the input using the following notation:
(3.67)
          
            y
            
              (
              t
              )
            
            =
            L
            [x ( t )]
          
        
 The types of filters we will consider in this book are linear and time-invariant.
A filter is time-invariant if given that y(t)=L[x ( t )], then y(t–τ)=L[x ( t – τ )]. In other words, if the input to the filter is delayed by τ, then the output is also delayed by τ.
A filter is linear if given that y1(t)=L[x1 (t)] and y2(t)=L[x2 (t)] then
(3.68)
          
            α
            y1
            
              (
              t
              )
            
            +
            β
            y2
            
              (
              t
              )
            
            =
            L
            [α x1 
                (
                t
                )
               + β x2 
                (
                t
                )
              ]
          
        
 Equation Equation 3.68 is often referred to as the superposition principle. We can use linearity and time invariance to derive the mathematical operation which the filter performs on the input, x(t). To do this we begin with the assumption that
(3.69)
          
            h
            
              (
              t
              )
            
            =
            L
            [δ ( t )]
          
        
 The signal h(t) is called the impulse response of the filter. From time invariance, we have
(3.70)
          
            h
            
              (
              t
              –
              τ
              )
            
            =
            L
            [δ ( t – τ )]
          
        
 Now we can use linearity to find the filter output when the input is x(τ)δ(t–τ), where x(τ) is a constant
(3.71)
          
            x
            (
            τ
            )
            h
            (
            t
            –
            τ
            )
            =
            L
            [
            x
            (
            τ
            )
            δ
            (
            t
            –
            τ
            )
            ]
          
        
 We can extend the linearity property further by noting that
(3.72)

 where we can assume that the constants τn are ordered so that τi<τk,i<k and Δn≡τn–τn–1. In Equation 3.72, we are simply multiplying each  by the constant , so once again linearity should prevail. Now if we take the limit Δn→0, we obtain
(3.73)

 Using the sifting property of the unit impulse in the right side of Equation 3.73 gives
(3.74)
          
            ∫∞∞
            x
            
              (
              τ
              )
            
            h
            
              (
              t
              –
              τ
              )
            
            d
            τ
            =
            L
            [x ( t )]
          
        
 So it follows that the filter performs the following operation on the input, x(t):
(3.75)

 The integral in Equation 3.75 is called the convolution integral. A change of variables can be used to show that
(3.76)
          
            ∫∞
                –
                ∞
              
            h
            
              (
              τ
              )
            
            x
            
              (
              t
              –
              τ
              )
            
            d
            τ
            =
            ∫∞
                –
                ∞
              
            x
            
              (
              τ
              )
            
            h
            
              (
              t
              –
              τ
              )
            
            d
            τ
          
        
 which means that the order in which two signals are convolved is unimportant. A short-hand notation for convolution is
(3.77)
          
            ∫∞
                –
                ∞
              
            x
            
              (
              τ
              )
            
            h
            
              (
              t
              –
              τ
              )
            
            d
            τ
            ≡
            x
            
              (
              t
              )
            
            *
            h
            
              (
              t
              )
            
          
        

3.9. Properties of Convolution Integrals*



 We list several important properties and their proofs.
 	 Commutative Property:
(3.78)x(t)*h(t)=h(t)*x(t)

Lets start with

(3.79)


and make the substitution γ=t–τ. It follows that

(3.80)


	 Associative Property:
(3.81)[x (t) * h1 (t)]*h2(t)=x(t)*[h1 (t) * h2 (t)]

To prove this property we begin with an expression for the left-hand side of Equation 3.81

(3.82)∫∞–∞x(τ)h1(t–τ)dτ*h2(t)

where we have expressed x(t)*h1(t) as a convolution integral. Expanding the second convolution gives

(3.83)∫∞–∞[∫∞–∞ x (τ) h1 (γ–τ) d τ]h2(t–γ)dγ

Reversing the order of integration gives

(3.84)∫∞–∞x(τ)[∫∞–∞ h1 (γ–τ) h2 (t–γ) d γ]dτ

Using the variable substitution φ=γ–τ and integrating over φ in the inner integral gives the final result:

(3.85)∫∞–∞x(τ)[∫∞–∞ h1 (φ) h2 (t–τ–φ) d γ]dτ

where the inner integral is recognized as h1(t)*h2(t) evaluated at t=t–τ, which is required for the convolution with x(t).


	 Distributive Property:
(3.86)x(t)*[h1 (t) + h2 (t)]=x(t)*h1(t)+x(t)*h2(t)

This property is easily proven from the definition of the convolution integral.


	 Time-Shift Property:
If y(t)=x(t)*h(t) then

Again, the proof is trivial.





3.10. Evaluation of Convolution Integrals*



 The key to evaluating a convolution integral such as
(3.87)
          
            x
            
              (
              t
              )
            
            *
            h
            
              (
              t
              )
            
            =
            ∫∞
                –
                ∞
              
            x
            
              (
              τ
              )
            
            h
            
              (
              t
              –
              τ
              )
            
            d
            τ
          
        
 is to realize that as far as the integral is concerned, the variable t is a constant and the integral is over the variable τ. Therefore, for each t, we are finding the area of the product x(τ)h(t–τ). Let's look at an example that illustrates how this works.
 Example 3.1 
Find the convolution of x(t)=u(t) and h(t)=e–tu(t). The convolution integral is given by
(3.88)
          
            h
            
              (
              t
              )
            
            *
            x
            
              (
              t
              )
            
            =
            ∫∞
                –
                ∞
              
            e
                –
                τ
              
            u
            
              (
              τ
              )
            
            u
            
              (
              t
              –
              τ
              )
            
            d
            τ
          
        
 Figure 3.6 shows the graph of e–τu(τ), e–tu(t), and their product. From the graph of the product, it is easy to see the the convolution integral becomes
(3.89)

  [image: ]
(a)

  [image: ]
(b)

  [image: ]
(c)


Figure 3.6. 
Graphs of signals used in Example ???.

 Signals which can be expressed in functional form should be convolved as in the above example. Other signals may not have an easy functional representation but rather may be piece-wise linear. In order to convolve such signals, one must evaluate the convolution integral over different intervals on the t-axis so that each distinct interval corresponds to a different expression for x(t)*h(t). The following example illustrates this:
 Example 3.2 
Suppose we attempt to convolve the unit step function x(t)=u(t) with the trapezoidal function
(3.90)

 From Figure 3.7, it can be seen that on the interval 0≤t<1, the product x(t–τ)h(τ) is an equilateral triangle with area t2/2. On the interval 1≤t<2, the area of x(t–τ)h(τ) is t–1/2. This latter area results by adding the area of an equilateral triangle having a base of 1, and the area of a rectangle having a base of t–1 and a height of 1. For all values of t greater than 2, the convolution is 1.5 since x(t–τ)h(τ)=h(τ) and h(τ) is a trapezoid having an area of 1.5. Finally, for t<0, the convolution is zero since x(t–τ)h(τ)=0.
  [image: ]
(a)

  [image: ]
(b)


Figure 3.7. 
Graphs of signals used in Example ???.


3.11. Frequency Response*



 Recall from Section 3.2 that the convolution integral
(3.91)
          
            y
            
              (
              t
              )
            
            =
            ∫∞
                –
                ∞
              
            x
            
              (
              τ
              )
            
            h
            
              (
              t
              –
              τ
              )
            
            d
            τ
          
        
 has the Fourier Transform:
(3.92)
          
            Y
            (
            j
            Ω
            )
            =
            H
            (
            j
            Ω
            )
            X
            (
            j
            Ω
            )
          
        
 where H(jΩ) and X(jΩ) are the Fourier Transforms of h(t) and x(t), respectively. Solving for H(jΩ) gives the frequency response:
(3.93)

 The frequency response, the Fourier Transform of the impulse response of a filter, is useful since it gives a highly descriptive representation of the properties of the filter. The frequency response can be considered to be the gain of the filter, expressed as a function of frequency. The magnitude of the frequency response evaluated at Ω=Ω0,  gives the factor the frequency component of x(t) at Ω=Ω0 would be scaled by. The phase of the frequency response at Ω=Ω0,  gives the phase shift the component of x(t) at Ω=Ω0 would undergo. This idea will be discussed in greater detail in ???. A lowpass filter is a filter which only passes low frequencies, while attenuating or filtering out higher frequencies. A highpass filter would do just the opposite, it would filter out low frequencies and allow high frequencies to pass. Figure 3.8 shows examples of these various filter types.
 [image: ]

Figure 3.8. 
Different filter types: (a) lowpass, (b) bandpass, (c) highpass.


3.12. The Sinusoidal Steady State Response*



 It is useful to see what the effect of the filter is on a sinusoidal signal, say . If y(t) is the output of the filter, then we can write
(3.94)

 Using the Euler formula for , right hand side of Equation 3.94 can be written as:
(3.95)

 This integral can be split into two separate integrals, and written as:
(3.96)

 The first of the two integrals can be recognizes as the Fourier Transform of the impulse response evaluated at Ω=Ω0. The second integral is just the complex conjugate of the first integral. Therefore Equation 3.96 can be written as:
(3.97)

 Since the second term in Equation 3.97 is the complex conjugate of the first term, we can express Equation 3.97 as:
(3.98)

 or expressing  in terms of polar coordinates:
(3.99)

 Therefore, we find that the filter output is given by
(3.100)

 This is called the sinusoidal steady state response. It tells us that when the input to a linear, time-invariant filter is a cosine, the filter output is a cosine whose amplitude has been scaled by  and that has been phase shifted by . The same result applies to an input that is an arbitrarily phase shifted cosine (e.g. a sine wave).
 Example 3.1 
Find the output of a filter whose impulse response is h(t)=e–5tu(t) and whose input is given by x(t)=cos(2t). It can be readily seen that the frequency response of the filter is
(3.101)

 and therefore |H ( j 2 )|=0.1857 and ∠H(j2)=–0.3805. Therefore, using Equation 3.100:
(3.102)
          
            y
            (
            t
            )
            =
            0
            .
            1857
            cos
            (
            2
            t
            –
            0
            .
            3805
            )
          
        

3.13. Parallel and Cascaded Filters*



 In some applications, such as graphic equalizers, it is useful to place filters in parallel as shown in Figure 3.9. Can the parallel combination of filters be characterized by a single equivalent filter heq(t)? The answer is yes and results by noting that
(3.103)

 Therefore, the last equation in Equation 3.103 shows that
(3.104)

 [image: ]

Figure 3.9. 
Parallel filter structure. We wish to find an equivalent filter with impulse response heq(t).

 The equivalent transfer function for the parallel filter structure is given by
(3.105)

 Next we wish to find an equivalent filter for the cascaded structure shown in Figure 3.10.
 [image: ]

Figure 3.10. 
Cascaded filter structure. We wish to find an equivalent filter with impulse response heq(t).

 This can be done by finding an expression for the intermediate value y1(t):
(3.106)
          
            y1
            
              (
              t
              )
            
            =
            ∫∞
                –
                ∞
              
            x
            
              (
              t
              –
              τ
              )
            
            h1
            
              (
              τ
              )
            
            d
            τ
          
        
 The output of the cascaded structure is given by
(3.107)
          
            y
            
              (
              t
              )
            
            =
            ∫∞
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                ∞
              
            y1
            
              (
              t
              –
              γ
              )
            
            h2
            
              (
              γ
              )
            
            d
            γ
          
        
 substituting Equation 3.106 into Equation 3.107 gives
(3.108)
          
            y
            
              (
              t
              )
            
            =
            ∫∞
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                ∞
              
            [∫∞
                  –
                  ∞
                 x 
                (
                t
                –
                γ
                –
                τ
                )
               h1 
                (
                τ
                )
               d τ]
            h2
            
              (
              γ
              )
            
            d
            γ
          
        
 Reversing the order of integration and rearranging slightly gives
(3.109)
          
            y
            
              (
              t
              )
            
            =
            ∫∞
                –
                ∞
              
            ∫∞
                –
                ∞
              
            x
            
              (
              t
              –
              γ
              –
              τ
              )
            
            h1
            
              (
              τ
              )
            
            h2
            
              (
              γ
              )
            
            d
            γ
            d
            τ
          
        
 Now let ξ=γ+τ, solving for τ gives τ=ξ–γ and dξ=dτ. Substituting these quantities into Equation 3.109 leads to
(3.110)
          
            y
            
              (
              t
              )
            
            =
            ∫∞
                –
                ∞
              
            x
            
              (
              t
              –
              ξ
              )
            
            [∫∞
                  –
                  ∞
                 h1 
                (
                ξ
                –
                γ
                )
               h2 
                (
                γ
                )
               d γ]
            d
            ξ
          
        
 Notice that we can factor x(t–ξ) from the inner integral since x(t–ξ) does not depend on γ. The integral in the brackets is recognized as h1(t)*h2(t) evaluated at ξ. Therefore for the cascaded system, the equivalent impulse response is given by
(3.111)
          
            heq
            
              (
              t
              )
            
            =
            ∫∞
                –
                ∞
              
            h1
            
              (
              t
              –
              γ
              )
            
            h2
            
              (
              γ
              )
            
            d
            γ
          
        
 This can be generalized to any number of cascaded filters giving
(3.112)
          
            heq
            
              (
              t
              )
            
            =
            h1
            
              (
              t
              )
            
            *
            h1
            
              (
              t
              )
            
            *
            ⋯
            *
            hN
            
              (
              t
              )
            
          
        

3.14. First Order Filters*



 A first-order lowpass filter has the frequency response
(3.113)

 The frequency at which the frequency response magnitude has dropped to  is called the corner frequency[4]. The frequency response magnitude and phase are plotted in Figure 3.11. It is common to express the frequency response magnitude in units of decibels (dB) using the formula
(3.114)
          
            20
            l
            o
            g10
            |H ( j Ω )|
          
        
 At the corner frequency for a first order lowpass filter, the frequency response magnitude is  or roughly -3 dB.
From the section called “The Unit Step Function”, it can easily be seen that the impulse response for the first-order lowpass filter is given by
(3.115)
          
            hLP
            
              (
              t
              )
            
            =
            Ωc
            e
                –
                Ωc
                t
              
            u
            
              (
              t
              )
            
          
        
 A first-order highpass filter is given by
(3.116)

 Notice that
(3.117)

 This makes sense since a highpass filter can be constructed by taking the filter input x(t) and subtracting from it a lowpass filtered version of x(t). The impulse response of the first-order highpass filter therefore becomes:
(3.118)
          
            hHP
            
              (
              t
              )
            
            =
            δ
            
              (
              t
              )
            
            –
            Ωc
            e
                –
                Ωc
                t
              
            u
            
              (
              t
              )
            
          
        
 [image: ]

Figure 3.11. 
Frequency response magnitude and phase for a first-order lowpass filter (Ωc=1 rad/sec).

 [image: ]

Figure 3.12. 
Frequency response magnitude and phase for a first-order highpass filter (Ωc=1 rad/sec).

 First order filters can be easily implemented using linear circuit elements like resistors, capacitors, and inductors. Figure 3.13 shows a first order filter based on a resistor and a capacitor. Since the impedance for a resistor and capacitor are R and 1/jΩC, respectively, voltage division leads to a frequency response of
(3.119)

 Therefore the corner frequency for this filter is .
Similarly, a first-order highpass filter can be implemented using a resistor and capacitor as shown in Figure 3.14. This filter has a frequency response of
(3.120)

 The corner frequency for the highpass filter is seen to be .
 [image: ]

Figure 3.13. 
Circuit implementation of a first-order lowpass filter having Ωc=1/R1C1.

 [image: ]

Figure 3.14. 
Circuit implementation of a first-order highpass filter having Ωc=1/R2C2.

 Now one might be tempted to apply the results of Section 3.13 to build a bandpass filter by cascading the lowhpass and highpass circuits in Figures Figure 3.13 and Figure 3.14, respectively. Theory would predict that the equivalent frequency response of this circuit is given by
(3.121)
          
            Heq
            
              (
              j
              Ω
              )
            
            =
            HLP
            
              (
              j
              Ω
              )
            
            HHP
            
              (
              j
              Ω
              )
            
          
        
 Unfortunately, this is not possible since the circuit elements in the lowpass and highpass filters interact with one another and therefore affect the overall behavior of the circuit. This interaction between the two circuits is called loading will be studied in greater detail in the exercises. To get theoretical behavior, it is necessary to use a voltage follower circuit, between the lowpass filter from the highpass circuits. The voltage follower circuit is usually an active circuit (requires external power supply) that has very high input impedance and very low output impedance. This eliminates any loading effects which would normally occur between the lowpass and highpass filter circuits.

3.15. Parseval's Theorem for the Fourier Transform*



 In Chapter 2, we looked at a version of Parseval's theorem for the Fourier series. Here, we will look at a similar version of this theorem for the Fourier transform. Recall that the energy of a signal is given by
(3.122)
          
            ex
            =
            ∫∞
                –
                ∞
              
            x
            
                (
                t
                )
              2
            d
            t
          
        
 If the energy is finite then x(t) is an energy signal, as described in Chapter 1. Suppose x(t) is an energy signal, then the autocorrelation function is defined as
(3.123)
          
            rx
            
              (
              t
              )
            
            =
            x
            
              (
              t
              )
            
            *
            x
            
              (
              –
              t
              )
            
          
        
 It can be shown that rx(t) is an even function of t and that rx(0)=ex(see Exercises). The Fourier transform of rx(t) is given by X(jΩ)X(jΩ)*=|X ( j Ω )|2. If follows that
(3.124)

 Which is Parseval's theorem for the Fourier transform.

3.16. The Fourier Transform: Excercises*



Exercises



 	 Find the Fourier transform of the following signals. Sketch the graph of the Fourier transform if it is real, otherwise, sketch the magnitude and phase fo the Fourier transform:

 	 x(t)=4e–0.2tu(t)

	 x(t)=4e0.2tu(–t)

	 x(t)=4e–0.2(t–10)u(t–10)

	 x(t)=δ(t–5)

	 x(t)=rect(t,1)

	 x(t)=4e–j0.2t

	 x(t)=cos(10πt)

	 x(t)=6

	 




	 Find the convolution of the following pairs of signals:

 	 
 [image: Exercises]

Figure 3.15. 


	 
 [image: Exercises]

Figure 3.16. 





	 Find the output of the filter whose transfer function is

(3.125)


and whose input is x(t)=u(t). Hint, find the impulse response h(t) corresponding to H(jΩ) and convolve it with the input.


	 Show that if v(t)=L[u ( t )], then

(3.126)∫∞∞v(t)dt=L[∫∞∞ u (t) d t]

Hint: Integrate both sides of v(t)=L[u ( t )]. Then express the right hand integral as the limit of a sum (as in a calculus textbook). Then by linearity, you can exchange the sum and the L[·].


	 Find an expression for the convolution of x(t)=u(t) and h(t)=sin(8t)u(t)

	 Find an expression for the convolution of x(t)=rect(t–0.5,1) and h(t)=e–tu(t).


	 Find the Fourier transform of the periodic signal in problem 2, Chapter 2.


	 Consider a filter having the impulse response

(3.127)h(t)=e–2tu(t)

Sketch the frequency response (both magnitude and phase) of the filter and find the output of the filter when the input is x(t)=cos(10t).


	 Repeat the previous problem for the impulse response given by

(3.128)


	 Suppose that two filters having impulse responses h1(t) and h2(t) are cascaded (i.e. connected in series). Find the impulse response of the equivalent filter assuming h1(t)=10e–10tu(t) and h2(t)=5e–5tu(t).


	 Design a first-order lowpass filter having a corner frequency of 100 Hz. Use a 100kΩ resistor. Plot both the magnitude and phase of the filter's frequency response.


	 Design a first-order highpass filter having a corner frequency of 1000 Hz. Use a 0.01μF capacitor. Plot both the magnitude and phase of the filter's frequency response.


	 The following problems are associated with the circuits in Figure 3.17:

 [image: ]

Figure 3.17. 
Problem 13.

 	 Find the frequency response of the circuit in Figure 3.17(a), and sketch its magnitude and phase.


	 Find the frequency response of the circuit in Figure 3.17(b) and sketch its magnitude and phase.


	 Find the frequency response of the filter in Figure 3.17(c), sketch its magnitude and phase and show that it is not the product of the frequency responses for problems a and b.









Solutions
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Chapter 1. Introduction to Continuous-Time Signals



1.1. Continuous-Time Signals: Introduction*



 The Merrian-Webster dictionary defines a signal as:
 
        
 A detectable physical quantity or impulse (as a voltage,
current, or magnetic field strength) by which messages or information
can be transmitted.


      
 These are the types of signals which will be of interest in this
book.
Indeed, signals are not only the means by which we perceive the world around
us, they also enable individuals to communicate with one another on a massive
scale.
So while our primary emphasis in this book will be on the theoretical foundations
of signal processing, we will also try to give examples of the tremendous
impact that signals and systems have on society.
We will focus on two broad classes of signals, discrete-time and continuous-time. We will consider
discrete-time signals later on in this book. For now, we will focus
our attention on continuous-time signals. Fortunately,
continuous-time signals have a very convenient mathematical
representation. We represent a continuous-time signal as a function
x(t) of the real variable t. Here, t represents continuous time and we can assign to t any unit of time we deem
appropriate (seconds, hours, years, etc.). We do not have to make
any particular assumptions about x(t) such as boundedness (a
signal is bounded if it has a finite value). Some of the signals we
will work with are in fact, not bounded (i.e. they take on an
infinite value). However most of the continuous-time signals we will
deal with in the real world are bounded.
 [image: Continuous-Time Signals: Introduction]

Figure 1.1. 
Temperature signal recorded in Dallas, Texas from Aug. 16 to
Aug. 22, 2002.

 We actually encounter signals every day. Suppose we sketch a graph of
the temperature outside the Jerry Junkins Electrical Engineering
Building on the SMU campus as a function of time. The graph might
look something like in Figure 1.1. This is an example of a
signal which represents the physical quantity temperature as it
changes with time during the course of a week. Figure 1.2 shows another common signal, the speech
signal. Human speech signals are often measured by converting sound
(pressure) waves into an electrical potential using a microphone. The speech signal therefore corresponds to the air pressure measured at the
point in space where the microphone was located when the speech was
recorded. The large deviations which the speech signal undergoes
corresponds to vowel sounds such as “ahhh" or “eeeeh" (voiced
sounds) while the smaller portions correspond to sounds such as “th"
or “sh" (unvoiced sounds). In Figure 1.3, we see yet
another signal called an electrocardiogram (EKG). The EKG is a
voltage which is generated by the heart and measured by subtracting
the voltage recorded from two points on the human body as seen in
Figure 1.4. Since the heart generates very low-level
voltages, the difference signal must be amplified by a high-gain
amplifier.
 [image: Continuous-Time Signals: Introduction]

Figure 1.2. 
Speech signal.

 [image: Continuous-Time Signals: Introduction]

Figure 1.3. 
Human electrocardiogram (EKG) signal.

 [image: Continuous-Time Signals: Introduction]

Figure 1.4. 
Measurement of the electrocardiogram (EKG).


1.2. Signal Power, Energy, and Frequency*



 Signals can be characterized in several different ways. Audio signals (music,
speech, and really, any kind of sound we can hear) are particularly
useful because we can use our existing notion of “loudness" and
“pitch" which we normally associate with an audio signal to develop
ways of characterizing any kind of signal. In terms of audio signals,
we use “power" to characterize the loudness of a sound. Audio
signals which have greater power sound “louder" than signals which
have lower power (assuming the pitch of the sounds are within the
range of human hearing). Of course, power is related to the amplitude, or size of the signal. We can
develop a more precise definition of power. The signal power is defined
as:
(1.1)

 The energy of this signal is similarly defined
(1.2)
          
            ex
            =
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                –
                ∞
              
            
              x2
              
                (
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                )
              
              d
              t
            
          
        
 We can see that power has units of energy per unit time. Strictly speaking, the units for energy depend on the units assigned to the signal. If x(t) is a voltage, than the units for ex would be volts2-seconds. Notice also that some signals may not have finite energy. As we will see shortly, periodic signals do not have finite energy. Signals having a finite energy are sometimes called energy signals. Some signals that have infinite energy however can have finite power. Such signals are sometimes called power signals.
 We use the concept of “frequency" to characterize the pitch of audio
signals. The frequency of a signal is closely related to the
variation of the signal with time. Signals which change rapidly with
time have higher frequencies than signals which are changing slowly
with time as seen Figure 1.5.
As we shall see, signals can also
be represented in terms of their frequencies, X(jΩ), where Ω is a frequency variable.
Devices which enable us to view the frequency content of a signal in real-time are called spectrum analyzers.
 [image: ]

Figure 1.5. 
The signal y(t) contains a greater amount of high frequencies than x(t).

 Something to keep in mind is that the signals shown in Figures
Figure 1.1, Figure 1.2, and Figure 1.3 each have
different units (degrees Fahrenheit, pressure, and voltage,
respectively). So while we can compare relative frequencies between
these signals, it doesn't make much sense to compare their power
since each signal has different units. We will take a more formal
look at the frequency of signals starting in Chapter 2.

1.3. Basic Signal Operations*



 We will be considering the following basic operations on signals:
 	 Time shifting:

(1.3)y(t)=x(t–τ)

The effect that a time shift has on the appearance of a signal is seen in Figure 1.6. If τ is a positive number, the time shifted signal, x(t–τ) gets shifted to the right, otherwise it gets shifted left.


	 Time reversal:

(1.4)y(t)=x(–t)

Time reversal flips the signal about t=0 as seen in Figure 1.6.


	 Addition: any two signals can be added to form a third signal,

(1.5)z(t)=x(t)+y(t)

	 Time scaling:

(1.6)y(t)=x(Ωt)

Time scaling “compresses" the signal if Ω>1 or “stretches" it if Ω<1 (see Figure 1.7).


	 Multiplication by a constant, α:

(1.7)y(t)=αx(t)

	 Multiplication of two signals, their product
is also a signal.

(1.8)z(t)=x(t)y(t)

Multiplication of signals has many useful applications in wireless communications.


	 Differentiation:

(1.9)


	 Integration:

(1.10)y(t)=∫x(t)dt



 There is another very important signal operation called convolution which we will look at in detail in Chapter 3. As we shall see, convolution is a combination of several of the above operations.
 [image: ]

Figure 1.6. 
(a) original signal, (b) time-shift, (c) time-reversal.

 [image: ]

Figure 1.7. 
(a) original signal, (b) Ω>1, (c) Ω<1.


1.4. Complex Numbers and Complex Arithmetic*



 Before we begin studying signals, we need to review some basic
aspects of complex numbers and complex arithmetic. The rectangular coordinate representation of a complex number z is
z has the form:
(1.11)
          
            z
            =
            a
            +
            j
            b
          
        
 where a and b are real numbers and . The real
part of z is the number a, while the imaginary part of z
is the number b. We also note that jb(jb)=–b2 (a real number)
since j(j)=–1. Any number having the form
(1.12)
          
            z
            =
            j
            b
          
        
 where b is a real number is an imaginary number. A complex number can also be represented in polar coordinates
(1.13)
          
            z
            =
      