

Chapter 8. Handling Keyboard Events

Click

KeyboardEvent02

(Click the "Back" button in your browser
to return to this page.)

Table of Contents

 	

Preface

 	

General

 	

Viewing tip

 	

Figures

	

Listings

			

		

	

Supplemental material

	

	

General background information

	

Preview

	

Discussion and sample code

 	

The MXML code

	

The ActionScript code

	

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

Preface

General

This tutorial lesson is part of a series of lessons dedicated to
object-oriented programming

(OOP)

 with ActionScript.

	All references to ActionScript in this lesson are references to version 3.0 or later.

Several ways to create and launch ActionScript programs

There are several ways to create and launch programs written in the
ActionScript programming language. Many of the lessons in this series will
use Adobe Flex as the launch pad for the sample ActionScript programs.

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3. The lesson titled

Using Flex 3 in
a Flex 4 World

 was added later to accommodate the release of Flash Builder
4.

(See

Baldwin's Flex programming
website

.)

 You should study those lessons before embarking on the
lessons in this series.

Some understanding of Flex MXML will be required

I also recommend that you study all of the lessons on

Baldwin's Flex programming
website

 in parallel with your study of these ActionScript lessons.
Eventually you will probably need to understand both ActionScript and Flex and
the relationships that exist between them in order to become a successful
ActionScript programmer.

Will emphasize ActionScript code

It is often possible to use either ActionScript code or Flex MXML code to
achieve the same result. Insofar as this series of lessons is concerned,
the emphasis will be on ActionScript code even in those cases where Flex MXML
code may be a suitable alternative.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. KeyboardEvent02 output at startup.

	

Figure 2

. KeyboardEvent02 output after clicking
	the Canvas and pressing a key.

	

Figure 3

. Project file structure for
	KeyboardEvent02.

Listings

 	

Listing 1

. Code for the file named Main.mxml.

	

Listing 2

. Beginning of the Driver Class.

	

Listing 3

. The constructor for the Driver
	class.

	

Listing 4

. The MouseEvent.CLICK listener.

	

Listing 5

. The KeyboardEvent.KEY_DOWN listener.

	

Listing 6

. Code for the file named Main.mxml.

	

Listing 7

. Source code for the class named
	Driver.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background
information

In the past few lessons, you have learned how to handle mouse events under a
variety of circumstances. Up to this point, however, I haven't discussed much if
anything about keyboard events.

Handling keyboard events differs from handling mouse events in one major
respect -- focus.

What is focus?

At any instant in time, only one object in only one application of
potentially many running applications can have the focus. The object
that has the focus is the only object that can respond to the keyboard.
Therefore, before an object can fire events of type

KeyboardEvent

,
that object must have the focus.

There is more than one way to cause an object to gain the focus. I will show
you one way in this lesson. Then I will show you how to handle events of type

KeyboardEvent

 fired by that object.

Preview

Run the ActionScript program named KeyboardEvent02

If you have the Flash Player plug-in

(version 10 or later)

 installed
in your browser, click

here

 to
run the program that I will explain in this lesson.

If you don't have the proper Flash Player installed, you should be notified
of that fact and given an opportunity to download and install the Flash Player
plug-in program.

Program output as startup

The image in Figure 1 is similar to what you should see in your browser when
you start the program named

KeyboardEvent02

 running.

 [image: Missing image]

Figure 8.1.

KeyboardEvent02 output at startup.

KeyboardEvent02 output at startup.

The objects

The yellow rectangle in Figure 1 is a

 Canvas

 object with a
yellow background color.

The text in the upper-left corner is the text on a

Label

object.

The text in the white rectangle is text in an object of the class

TextArea

. This object allows the user to enter text, but that isn't the
purpose of the object in this program. The purpose of the object in this program
is simply to provide an output consisting of multi-line operating instructions.

The operating instructions

At startup, the program will not respond to keyboard input. Clicking the
yellow

Canvas

 object with the mouse causes it to gain the focus.
Once it has the focus, the canvas will respond to keyboard input.

Output after clicking the Canvas and pressing a key

Figure 2 shows the program output after clicking the yellow

Canvas

object with the mouse and then pressing the "a" key.

 [image: Missing image]

Figure 8.2.

KeyboardEvent02 output after 			clicking the Canvas and pressing a key.

KeyboardEvent02 output after 			clicking the Canvas and pressing a key.

The output

As you can see, this caused the letter "a" to be displayed in a large font
size in the lower-left corner of the canvas. This will work for any of the
letter or number keys, with or without holding down the shift key. Other keys,
such as the arrow keys, don't produce a visible output however.

Discussion and sample code

The project file structure

The final project file structure, captured from the FlashDevelop project
window, is shown in Figure 3.

 [image: Missing image]

Figure 8.3.

Project file structure for 			KeyboardEvent02.

Project file structure for 			KeyboardEvent02.

Will explain in fragments

I will explain the code for
this program in fragments. Complete listings of the MXML code and the
ActionScript code are provided in Listing 6 and Listing 7 near the end of the
lesson.

The MXML code

The MXML code is shown in Listing 1 and again in Listing 6 near the end of
the lesson.

Example 8.1.
 <?xml version="1.0" encoding="utf-8"?>

<!--
KeyboardEvent02
See explanation in the file named Driver.as
-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

As is often the case in this series of lessons, the MXML file is very simple
because the program was coded almost entirely in ActionScript. The MXML code
simply instantiates an object of the

Driver

 class. From that
point forward, the behavior of the program is controlled by ActionScript code.

The ActionScript code

Beginning of the Driver class

The driver class begins in Listing 2.

Example 8.2.
 /*KeyboardEvent02 06/03/10
Illustrates the use of KeyboardEvent, charCode values,
absolute positioning on a Canvas object, focus, and a
TextArea object among other things.

See http://livedocs.adobe.com/flex/3/langref/flash/events
/KeyboardEvent.html
***/
package CustomClasses{
 import flash.events.KeyboardEvent;
 import flash.events.MouseEvent;
 import mx.containers.Canvas;
 import mx.controls.Label;
 import mx.controls.TextArea;

 public class Driver extends Canvas{
 //Instantiate and save references to the
 // objects needed by the program.
 private var instrArea:TextArea = new TextArea();
 private var targetLabel:Label = new Label();
 private var canvasLabel:Label = new Label();

Extending the Canvas class

With the possible exception of the fact that the

Driver

class extends the

Canvas

 class, there is nothing new in Listing
2. An object of the

Driver

 class is a

Canvas

object.

I elected to extend the

Canvas

 class because this makes it
possible to position objects added as children of that class using absolute
location coordinates.

The constructor for the Driver class

The constructor is shown in its entirety in Listing 3.

Example 8.3.
 public function Driver() {//constructor
 //Set the size of the Canvas object.
 this.width = 300;
 this.height = 120;

 //Prepare the TextArea and the labels.
 canvasLabel.text = "This is a 300x120 Canvas";

 instrArea.text = "First click the yellow canvas "
 + "with the mouse\nThen press a key to display "
 + "the character.";
 instrArea.width = 298;
 instrArea.height = 40;
 instrArea.x = 1;
 instrArea.y = 26;

 targetLabel.setStyle("fontSize", 30);
 targetLabel.x = 10;
 targetLabel.y = 78
 //Display an empty string at startup.
 targetLabel.text = "";

 //Add the labels and TextArea to the Canvas.
 this.addChild(canvasLabel);
 this.addChild(instrArea);
 this.addChild(targetLabel);

 //Set the Canvas background color to yellow.
 this.setStyle("backgroundColor", "0xFFFF00");

 //Register two event listeners on the canvas.
 this.addEventListener(
 MouseEvent.CLICK, clickHandler);
 this.addEventListener(
 KeyboardEvent.KEY_DOWN,eventHandler);

 } //end constructor

There are several things in Listing 3 that deserve an explanation beyond the
embedded comments.

Set the size

The constructor in Listing 3 begins by setting the

width

 and

height

 properties of the

Canvas

 object to set the overall
dimensions of the object in pixels.

Set the text for the upper-left Label object

The constructor sets the

text

 property of the

Label

object referred to by

canvasLabel

 to the small text shown in
the upper-left corner of Figure 1. Since the x and y coordinate values for this
object are not purposely set, they will each have a default value of zero. This will cause
them to be placed in the upper-left corner of the canvas as shown in Figure 1.

Set various properties for the TextArea object

Then the constructor sets various property values for the

TextArea

object, including its text, its dimensions, and its location coordinates. As I
mentioned earlier, the sole purpose of this object in this program is to provide
operating instructions.

Set various properties for the target Label object

The

Label

 object that is referred to by

targetLabel

in Listing 3 is used to display the character for the key that is pressed as
shown by the large lower-case "a" in Figure 2.

The constructor sets various properties for this object including a font size
of 30 points and an initial string value that is an empty string.

Add the objects to the Canvas

Then the constructor calls the

addChild

 method on the

Canvas

 object three times
in succession to add the three objects to the canvas in the locations specified
by their location coordinates.

Set the background color to yellow

The constructor sets the background color of the canvas to yellow. Otherwise,
it would be indistinguishable from the gray background color of the Flash
window.

Register event listeners

Finally, the constructor registers two event listeners on the

Canvas

object.

A MouseEvent.CLICK listener

The first event listener that is registered is one that will handle events of
the type

MouseEvent.CLICK

. As you will see shortly, this
handler causes the

Canvas

 object to gain the focus when the
user clicks the canvas with the mouse.

A KeyboardEvent.KEY_DOWN listener

The second listener that is registered is one that will handle events of the
type

KeyboardEvent.KEY_DOWN

 and display the character for the
key that is pressed as shown by the large lower-case "a" in Figure 2.

The MouseEvent.CLICK listener

This listener is shown in its entirety in Listing 4.

Example 8.4.
 private function clickHandler(event:MouseEvent):void {
 stage.focus = this;
 }//end clickHandler

As I explained earlier, the sole purpose of this event listener is to make it
possible for the user to cause the yellow canvas object to gain the focus.

Rather than attempt to explain the one statement in the method in Listing 4, I will
refer you to the page in the Adobe

documentation

 that explains it.

The KeyboardEvent.KEY_DOWN listener

The method shown in Listing 5 is executed each time any key is pressed.
However, some of the keys, such as the shift key, aren't represented by a character that
can be displayed.

Example 8.5.
 private function eventHandler(
 event:KeyboardEvent):void {
 targetLabel.text =
 String.fromCharCode(event.charCode);
 } //end eventHandler

The charCode property

Each time the method is called, it receives a reference to an object of type

KeyboardEvent

. This object encapsulates several types of information
about the key that was pressed. One such piece of information is a property
named

charCode

. Here is some of what the

documentation

 has to say about this property:

"Contains the character code value of the key pressed or
released. The character code values are English keyboard values. For example, if
you press Shift+3, charCode is # on a Japanese keyboard, just as it is on an
English keyboard."

The keyCode property

Another interesting property of the incoming object is the property named

keyCode

.
This property can be used to identity any key on the keyboard, including those
that are not represented by printable characters such as the shift key and the
arrow keys.

Modify the text in targetLabel

The objective of the code in Listing 5 is to modify the text in the label
referred to by

targetLabel

 to cause it to reflect the character
for the key that was pressed.

Convert charCode to a string

The

text

 property of the label is type

String

.
That means that the value of

charCode

 must be converted to type

String

.

This is accomplished by calling the static

fromCharCode

 method of the

String

 class.

Because this
is a static method, it can be called by joining its name to the name of the
class to which it belongs:

String

.

Assign the returned String value to the text property

The method returns a
reference to a

String

 object containing the character whose

charCode

 is passed as a parameter to the method. This string is then assigned to
the

text

 property of the target label, producing the output
shown in Figure 2.

Run the program

I encourage you to

run

 this program from the web.
Then copy the code from Listing 6 and Listing 7. Use that code to
create your own project. Compile and run the project. Experiment with
the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

Resources

I will publish a list containing links to ActionScript resources as a
separate document. Search for ActionScript Resources in the
Connexions search box.

Complete program listings

 Complete listings of the programs discussed in this lesson
are provided below.

Example 8.6.
 <?xml version="1.0" encoding="utf-8"?>

<!--
KeyboardEvent02
See explanation in the file named Driver.as
-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

Example 8.7.
 /*Prob04 06/03/10
Illustrates the use of KeyboardEvent, charCode values,
absolute positioning on a Canvas object, focus, and a
TextArea object among other things.

See http://livedocs.adobe.com/flex/3/langref/flash/events
/KeyboardEvent.html
***/
package CustomClasses{
 import flash.events.KeyboardEvent;
 import flash.events.MouseEvent;
 import mx.containers.Canvas;
 import mx.controls.Label;
 import mx.controls.TextArea;

 public class Driver extends Canvas{
 //Instantiate and save references to the
 // objects needed by the program.
 private var instrArea:TextArea = new TextArea();
 private var targetLabel:Label = new Label();
 private var canvasLabel:Label = new Label();
 //--//

 public function Driver() {//constructor
 //Set the size of the Canvas object.
 this.width = 300;
 this.height = 120;

 //Prepare the TextArea and the labels.
 canvasLabel.text = "This is a 300x120 Canvas";

 instrArea.text = "First click the yellow canvas "
 + "with the mouse\nThen press a key to display "
 + "the character.";
 instrArea.width = 298;
 instrArea.height = 40;
 instrArea.x = 1;
 instrArea.y = 26;

 targetLabel.setStyle("fontSize", 30);
 targetLabel.x = 10;
 targetLabel.y = 78
 //Display an empty string at startup.
 targetLabel.text = "";

 //Add the labels and TextArea to the Canvas.
 this.addChild(canvasLabel);
 this.addChild(instrArea);
 this.addChild(targetLabel);

 //Set the Canvas background color to yellow.
 this.setStyle("backgroundColor", "0xFFFF00");

 //Register two event listeners on the canvas.
 this.addEventListener(
 MouseEvent.CLICK, clickHandler);
 this.addEventListener(
 KeyboardEvent.KEY_DOWN,eventHandler);

 } //end constructor
 //--//

 //This method is executed when any key is pressed.
 // Note, however, that some keys, such as the shift
 // key, don't have displayable charCode values.
 private function eventHandler(
 event:KeyboardEvent):void {
 targetLabel.text =
 String.fromCharCode(event.charCode);
 } //end eventHandler
 //--//

 //This event handler is required to cause the Canvas
 // to gain the focus and respond to keyboard events.
 // See the URL listed earlier. (Note that focus can
 // also be gained by pressing the tab key.)
 private function clickHandler(event:MouseEvent):void {
 stage.focus = this;
 }//end clickHandler
 //--//

 } //end class
} //end package

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Handling Keyboard Events

	
Files:

 	
ActionScript0115\ActionScript0115.htm

	
ActionScript0115\Connexions\ActionScriptXhtml0115.htm

PDF disclaimer:

-end-

Solutions

Chapter 2. What is OOP and Why Should I Care?

Table of Contents

 	

Preface

 	

General

	

Viewing tip

 	

Figures

	

Listings

	

Supplemental material

	

What is object-oriented
 programming (OOP)?

	

Why should I care?

	

General background information

	

A slightly more technical
 description of OOP

 	

Encapsulation example

	

Inheritance example

	

Polymorphism example

	

Object-oriented
 programming vocabulary

	

Sample code

 	

A simple class named MyClass

	

A custom
	 component - NumericTextAreaA

	

Resources

	

Miscellaneous

Preface

General

Note that all references to ActionScript in this lesson are
			 references to version 3 or later.

This tutorial lesson is part of a continuing series of lessons dedicated to
object-oriented programming

(OOP)

 with ActionScript.

There are several ways to create and launch programs written in the
ActionScript programming language. Many of the lessons in this series will
use Adobe Flex as the launch pad for ActionScript programs. An earlier
lesson titled

The Default Application Container

 provided information on how to get started
programming with Adobe's Flex Builder 3.

(See

Baldwin's Flex programming website

.)

You should read that lesson before embarking on the lessons in this series.

One of the complicating factors

One of the complicating factors in using Adobe Flex as the launch pad for
ActionScript programs is the difficulty of understanding the relationships that
exist between Flex and ActionScript. I recommend that you study the
following lessons on

Baldwin's Flex programming website

that address that topic:

 	
114
 Integrating ActionScript and Flex

	
116
 Defining Custom MXML Components

	
118
 Defining Custom ActionScript Components

	
120
 Creating Online Tests using Custom ActionScript Components

I recommend that you also study all of the other lessons on

Baldwin's Flex programming website

in parallel with your study of these ActionScript lessons. Eventually you
will probably need to understand both technologies and the relationships that
exist between them in order to become a successful ActionScript programmer.

Another complicating factor

Another complicating factor is knowing whether to use ActionScript code or
Flex MXML code to achieve a particular objective. In many cases, either
will do the job.

Insofar as this series of lessons is concerned, the emphasis will be on
ActionScript code even in those cases where Flex MXML code may be a suitable
alternative.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and
listings while you are reading about them.

Figures

 	

Figure 1

. Guideline for OOP.

	

Figure 2

. Two objects of the class named MyClass.

	

Figure 3

.
An object of
 the class named NumericTextAreaA.

Listings

 	

Listing 1

. Class file named MyClass.as.

	

Listing 2

. Flex file named SimpleClass01.mxml.

	

Listing 3

.
The file
 named NumericTextArea01.mxml.

	

Listing 4

.
The class
 definition for NumericTextAreaA.

Supplemental material

I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

What is
object-oriented programming (OOP)?

If you Google this question, you will get hundreds of answers. Here is
my answer along with an anecdotal description.

Unlike earlier programming styles,

Object-oriented programming is a
programming style that mimics the way most people think and work

.

An anecdotal description

If you have ever assembled a child's playscape in your back yard, this
scenario should sound
familiar to you.

When you opened the large boxes containing the playscape, hundreds of objects
spilled onto the ground. Those objects may have consisted of braces,
chains, swing seats, slides, screws, nuts, bolts, washers, climbing ropes,
ladder rungs, and other assorted objects.

Atomic and non-atomic objects

I will refer to the kind of object that I have described in the above list as
atomic objects. What I mean by that is that they can't be easily
subdivided into smaller objects.

If you were lucky, some of the objects in the box may not have been atomic
objects. Instead they may have been pre-assembled arrangements of atomic
objects such as a climbing net composed of individual ropes tied together to
form a net.

Your job - assemble the objects

Your job was to assemble those hundreds of atomic and non-atomic objects into
a final object which you proudly referred to as

"The Playscape."

Objects working together

It has been said that a successful object-oriented program consists of a
bunch of cooperating software objects working together to achieve a specified
behavior. The overall behavior of the program is the combination of
behaviors of the individual objects. For example, some objects may acquire
input data, other objects may compute and produce output data, while other
objects may display the output data.

It could also be said that a playscape consists of a bunch of hardware
objects working together to achieve a specified behavior. The overall
behavior of the playscape is the combination of behaviors of the individual
objects. For example, the behavior of some of the braces is to stand
strong and not bend or break, while the behavior of a swing is to be flexible and move in a prescribed
way.

Creating a model

One of the tasks of an object-oriented programmer is to assemble software
objects into a model that often represents something that exists in the real
world. For a very visual example, you might be asked to create an
advertising web page showing an animated software model of the playscape that
you assembled in your back yard. With the playscape, you were simply
required to assemble the existing hardware objects. However, in the object-oriented
programming world, you must do more than just assemble objects.

Objects must be designed and manufactured

Getting back to the playscape, every one of the objects for the playscape was
manufactured before being shipped to you. Even before that, each object
was designed by someone and a set of manufacturing drawings was probably created
so that the object could be mass produced in a high-volume manufacturing facility.

A class is analogous to manufacturing drawings

In OOP, there is a direct analogy to the manufacturing drawings of the
hardware world. We call it a

class

. A class documents the
specifications for the construction of a particular type of software object.

A large library of classes

As an object-oriented programmer, you will typically have access to a large
library of existing classes from which you can construct different types of
software objects, such as buttons, sliders, etc. In addition, you will
often need to design and define new classes from which you can construct new
types of objects.

Why should I care?

Although ActionScript and Flex provide a large class library from which you
can construct objects

(components)

, you will probably need to create new
custom components from time to time as well.

ActionScript is usually required

Flex/MXML can be used to create simple custom components but ActionScript is
often needed to cause those components to have more interesting behavior.

Sometimes you can embed or include non-OO ActionScript code in a Flex MXML
file to achieve the desired behavior. Often, however, you will need to
create your new component almost entirely in ActionScript. You will need
to understand OOP in order to do that.

Start from scratch or extend an existing component
class

An understanding of OOP is particularly important if you need to create a new
component from scratch or create a new component by modifying the appearance
and/or behavior of a component for which a class already exists.

I will provide an example of a new custom component that extends an existing
component later in
this lesson.

Therefore, if you plan to create rich internet applications, games, or iPhone
applications using ActionScript, you will often need to understand OOP in order
to create custom components that your clients find interesting.

General background information

Some languages such as C do not readily support OOP. Other languages such as
C++ and ActionScript support OOP, but don't require you to use the
object-oriented features of the language. Still other languages such as Java and C# require you to program using OOP
techniques.

OOP is not enforced

Because ActionScript does not enforce a requirement for your code to be
object oriented

(OO)

, it is possible to learn to use major aspects of
ActionScript without ever learning to use the object-oriented features. This
approach simply requires you to learn how to use the rudimentary aspects of the
language.

The real challenge

The real challenge to becoming an ActionScript programmer is not simply to
learn the rudimentary aspects of the language. The real challenge lies in:

 	
Learning to productively use the large class library provided as part of
 the software development kit.

	
Learning to design and define new classes when needed.

	
Learning to design and program in the object-oriented paradigm.

Learn the library gradually

The first of these challenges can be met on a gradual basis. In other words,
it is not necessary to memorize the entire class library to produce useful OO
programs. However, it is necessary to learn how to use the library
documentation to find what you need.

Some things can't be learned gradually

The remaining two challenges cannot easily be met on a gradual basis. Many
aspects of OOP must be understood before a programmer can successfully write OO
programs

A slightly more
technical description of OOP

An introductory description of OOP can be based on the guideline in Figure 1.

	

The solution to the problem should resemble the problem, and observers
of the solution should be able to recognize the problem without
necessarily knowing about it in advance.

Figure 2.1.

Guideline for OOP.

Guideline for OOP.

For example, an OO program that deals with banking transactions should be
recognizable on the basis of the objects that it uses, such as deposit objects,
withdrawal objects, account objects, etc.

Flex is a good example

Many "application frameworks" are written according to the OOP paradigm.
Important among these is Adobe's Flex, which can be used to simplify the
development of the graphical user interface

(GUI)

 portions of
ActionScript programs.

Flex makes it possible to use uncomplicated XML syntax to access and use the
ActionScript class library. Adobe's Flash Builder 4 makes the process even
more straightforward by providing a largely drag-and-drop visual development
environment for creating the GUI portion of ActionScript programs.

All of the components that are available in Flex are objects created from
classes in the ActionScript library. Those classes have names like

Button

,

RadioButton

, and

NumericStepper

(see Figure 2)

.

Three important concepts

Any object-oriented language must support three very important concepts:

 	
Encapsulation,

	
Inheritance,

	
Polymorphism.

We use these three concepts extensively as we attempt to model the real-world
problems that we are trying to solve with our object-oriented programs. I
will provide brief descriptions of these concepts in the remainder of this
lesson and explain them in detail in future lessons.

Encapsulation example

Consider the steering mechanism of a car as a real-world example of

encapsulation.

During the past eighty years or so, the steering mechanism
for the automobile has evolved into an

object

in the OOP sense.

Only the interface is exposed

In particular, most of us know how to use the steering mechanism of an
automobile without having any idea whatsoever how it is implemented. All
most of us care about is the

interface

,

which we often refer to as a
steering wheel. We know that if we turn the steering wheel clockwise, the car
will turn to the right, and if we turn it counterclockwise, the car will turn to
the left.

How is it implemented?

Most of us don't know, and don't really care, how the steering mechanism is
actually implemented

"under the hood."

In fact, there are probably a
number of different implementations for various brands and models of
automobiles. Regardless of the brand and model, however, the human
interface is pretty much the same. Clockwise turns to the right,
counterclockwise turns to the left.

As in the steering mechanism for a car, a common approach in OOP is to

"hide the implementation"

and

"expose the interface"

 through

encapsulation.

Inheritance
example

Another important aspect of OOP is

inheritance

. Let's form an analogy
with the teenager who is building a hotrod. That teenager doesn't normally start
with a large chunk of steel and carve an engine out of it. Rather, the teenager
will usually start with an existing engine and make improvements to it.

In OOP lingo, that teenager

extends

 the existing engine,

derives

from the existing engine,

inherits

from the existing engine, or

subclasses

 the existing engine

(depending on which author is
describing the process)

.

Just like in

"souping up"

 an engine for a hotrod, a very common
practice in OOP is to create new improved objects by extending existing class
definitions.

Reuse, don't reinvent

One of the major arguments in favor of OOP is that it provides a formal
mechanism that encourages the reuse of existing programming elements. One of the
mottos of OOP is

"reuse, don't reinvent."

Polymorphism
example

A third important aspect of OOP is

polymorphism

. This is a Greek word
meaning something like

one name, many forms

. This is a little more
difficult to explain in non-programming terminology. However, we will stretch
our imagination a little and say that polymorphism is somewhat akin to the
automatic transmission in your car. In my Honda, for example, the automatic
transmission has four different

methods

or

functions

 known
collectively as

Drive

(in addition to the functions of Reverse, Park,
and Neutral)

.

Select Drive to go forward

As an operator of the automobile, I simply select

Drive

(meaning go
forward)

. Depending on various conditions at

runtime

, the automatic
transmission system decides which version of the

Drive

function to use in every specific situation. The specific version of the
function that is used is based on the current conditions

(speed, incline,
etc.)

. This is somewhat analogous to what we will refer to in a subsequent
tutorial lesson as

runtime polymorphism

.

Object-oriented programming
vocabulary

OOP involves a whole new vocabulary

(or jargon)

 which is different
from or supplemental to the vocabulary of procedural programming.

For example the object-oriented programmer defines an

abstract data type

by

encapsulating

its

implementation

and its

interface

into a

class

.

One or more

instances

of the class can then be

instantiated

.

An

instance

of a class is known as an

object

.

Every

object

has

state

and

behavior

where the

state

is determined by the current values stored in the object's

instance
variables

 and the

behavior

is determined by the

instance methods

of the class from which the

object

was

instantiated

.

Inherited abstract data types

are

derived classes

 or

subclasses

of

base classes

 or

super classes

. We

extend

super classes

to create

subclasses

.

Within the program, the code

instantiates objects

(creates instances
of classes)

 and sends

messages

to the

objects

 by invoking or
calling the class's

methods (or member functions)

.

If a program is "object oriented", it uses

encapsulation

,

inheritance

, and

polymorphism

. It defines

abstract data
types

,

encapsulates

those abstract data types into

classes

,

instantiates objects

, and

sends messages

 to the

objects

.

To make things even more confusing, almost every item or action used in the
OOP jargon has evolved to be described by several different terms. For example,
we can cause an object to

change its state

 by

sending it a message

,

calling its methods

, or

calling its member functions

. The term being
used often depends on the author who wrote the specific book that you happen to
be reading at the time.

Hopefully most of this terminology will become clear as we pursue these
lessons.

Sample code

We have reached the point in this discussion where I should provide some
examples of ActionScript 3 class definitions so that you can get a preview of
what lies ahead.

A simple class named MyClass

The code beginning with the word

public

 in Listing 1 is the definition of a very
simple class named

MyClass

. I don't expect this code to mean much
to you at this point. Suffice it to say that an object of this class is a
new GUI component consisting of a

Button

 object, a

RadioButton

object, and a

NumericStepper

 object, all contained in a

VBox

object.

Example 2.1.
 package Classes{
 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.RadioButton;
 import mx.controls.NumericStepper;

 public class MyClass extends VBox{
 //Constructor follows
 public function MyClass(){
 addChild(new Button());
 addChild(new RadioButton());
 addChild(new NumericStepper());
 setStyle("backgroundColor",0xFFFF00);
 }//end constructor
 }//end class
}//end package

A new data type

The definition of the class creates a new data type, which is unknown to the
compiler until it is defined by the programmer.

Two instances

(objects)

 of the class named
MyClass

Two objects of the new class named

MyClass

 are shown in Figure 2.
You should be able to spot the

Button

 object

(rectangular)

, the

RadioButton

object

(circular)

, and the

NumericStepper

 object in each of the two

MyClass

objects.

 [image: Missing image.]

Figure 2.2.

Two objects of the class named MyClass.

Two objects of the class named MyClass.

A yellow background

Normally you can't see a

VBox

 object. You can only see the
components that it contains. However, I included code in Listing 1 to set the background style of the

VBox

 object to yellow to make it possible for you to visually separate
the two new custom objects in Figure 2.

The Flex MXML file

Listing 2 shows the Flex file that was used to instantiate the two objects of
the class named

MyClass

 and to display them in the Flash Player window in
a browser.

Example 2.2.
 <?xml version="1.0" encoding="utf-8"?>

<!--SimpleClass01 -->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:classes="Classes.*">

 <classes:MyClass />
 <classes:MyClass />

</mx:Application>

The two lines of code beginning with the words

classes

 in Listing 2
cause the
two new objects to be instantiated and displayed.

Another custom component -
NumericTextAreaA

One of the standard Flex components is named

TextArea

. This
component is an object of the

ActionScript

 class having the same name.

A custom component that extends TextArea

As an example of creating a new custom component that extends an existing
class, I will present and discuss a new custom component that extends the

TextArea

 class. The new class is named

NumericTextAreaA.

An object of the

NumericTextAreaA

class behaves just like an object of the standard

TextArea

class except that the new component will only accept numeric characters, the
space character, the backspace character, and the return character. All
other characters are rejected when the user attempts to type them into the text
area.

An object of the class named
NumericTextAreaA

Figure 3 shows the visual manifestation of an object of this class with two
lines of numeric and space characters having been entered.

(The entry
of additional lines of text causes scroll bars to automatically appear.)

 [image: Missing image.]

Figure 2.3.

An object of the class named NumericTextAreaA.

An object of the class named NumericTextAreaA.

A class definition is probably required

It is possible to create simple custom components by embedding ActionScript
code in a Flex MXML file. However, I don't believe that it is possible to
create an object with this behavior without defining a new ActionScript class.
Even if it is possible, defining a new class is the approach that makes the most
sense to me.

The file named NumericTextArea01.mxml

The MXML code beginning with

cc

 in Listing 3 instantiates the object
shown in Figure 3.

Example 2.3.
 <?xml version="1.0" encoding="utf-8"?>
<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:NumericTextAreaA/>

</mx:Application>

The class definition for NumericTextAreaA

Listing 4 shows the class definition from which the object shown in Figure 3
was instantiated.

Example 2.4.
 /*This is a custom component. This class extends the
TextArea class. It recognizes only the following
characters:
0, 1, 2, 3, 4, 5, 6, 7, 8,9
space
backspace
return key

The next numeric character is appended onto the end of
the string in the text area regardless of the current
position of the cursor.

The backspace key deletes characters from the end of the
string, one character at a time.
***/

package CustomClasses{
 import mx.controls.TextArea;
 import mx.controls.Alert;
 import flash.events.*

 public class NumericTextAreaA extends TextArea{
 private var theText:String = "";

 public function NumericTextAreaA(){
 this.addEventListener("keyUp",processKey);
 }//end constructor

 private function processKey(
 event:KeyboardEvent):void{
 if(event.charCode==48){
 theText+="0";
 }else if(event.charCode==49){
 theText+="1";
 }else if(event.charCode==50){
 theText+="2";
 }else if(event.charCode==51){
 theText+="3";
 }else if(event.charCode==52){
 theText+="4";
 }else if(event.charCode==53){
 theText+="5";
 }else if(event.charCode==54){
 theText+="6";
 }else if(event.charCode==55){
 theText+="7";
 }else if(event.charCode==56){
 theText+="8";
 }else if(event.charCode==57){
 theText+="9";
 }else if(event.charCode==8){//backspace
 theText=
 theText.substr(0,theText.length-1);
 }else if(event.charCode==32){//space
 theText+=" ";
 }else if(event.charCode==13){//return key
 theText+="\n";
 }//end else

 this.text=theText;
 }//end processKey method
 }//end class
}//end package

May not be familiar code

There may be quite a lot of code in Listing 4 with which you are not
familiar. However, it is not my purpose in writing this lesson to get into the
details of defining classes in ActionScript, so I won't take the time to explain
this code in this lesson. Suffice it to say that Listing 4
checks the character code associated with each keystroke in the text area and
rejects all but the numeric characters, the backspace character, the space
character, and the return key.

I will explain code like this in detail in future lessons. For now,
simply accept this as an example of why you may need to learn OOP in order to
advance your career as an ActionScript programmer.

Running the
ActionScript program

named NumericTextArea01

If you have the Flash Player plug-in (version 9 or later) installed in your
browser you should be able to run this program by clicking on

NumericTextArea01

.

Enter some alphabetic and numeric text in the white box to see
how the GUI component behaves. Click the "Back" button in your browser to return
to this page when you are finished experimenting with the component.

If you don't have the proper Flash Player installed, you should be notified
of that fact and given an opportunity to download and install the Flash Player
plug-in program.

Resources

I will publish a list containing links to ActionScript resources as a
separate document. Search for ActionScript Resources in the Connexions search
box.

Miscellaneous

Housekeeping material

 	
Module name: What is OOP and Why Should I Care?

	
Files:

 	
ActionScript0104\ActionScript0104.htm

	
ActionScript0104\Connexions\ActionScriptXhtml0104.htm

PDF disclaimer:

-end-

Solutions

Chapter 6. Interface Polymorphism - The Big Picture

 	 Click

Interface01

	 to run this ActionScript program. (Click the "Back" button in your browser
	 to return to this page.)
	

Table of Contents

 	

Preface

	

 	

General

	

Viewing tip

		

 	

Figures

	

Listings

		

	

Supplemental material

	

	

General background
	information

	

Preview

	

Discussion and sample code

	

 	

The file named Interface01.mxml

	

The file named Driver.as

	

The file named IArea.as

	

The file named IVolume.as

	

The file named ICircumference.as

	

The file named MyCircle.as

	

The file named MyRectangle.as

	

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

Preface

General

 	 All references to ActionScript in this lesson are references to
	 version 3 or later.

This tutorial lesson is part of a continuing series of lessons dedicated to
object-oriented programming

(OOP)

 with ActionScript.

The three main characteristics of an object-oriented
program

Object-oriented programs exhibit three main characteristics:

 	
Encapsulation

	
Inheritance

	
Polymorphism

There are two different ways to implement polymorphism:

 	
Polymorphism based on class inheritance

	
Polymorphism based on interface inheritance

I explained encapsulation, inheritance, and polymorphism based on class
inheritance in previous lessons.

(See

Baldwin's ActionScript
programming website

.)

I will explain and illustrate polymorphism based on interface inheritance in
this lesson.

Several ways to create and launch ActionScript
programs

There are several ways to create and launch programs written in the
ActionScript programming language. Many of the lessons in this series will
use Adobe Flex as the launch pad for the sample ActionScript programs.

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3.

(See

Baldwin's Flex programming
website

.)

 You should study that lesson before embarking on the
lessons in this series.

Some understanding of Flex MXML will be required

I also recommend that you study all of the lessons on

Baldwin's Flex programming
website

 in parallel with your study of these ActionScript lessons.
Eventually you will probably need to understand both ActionScript and Flex and
the relationships that exist between them in order to become a successful
ActionScript programmer.

Will emphasize ActionScript code

It is often possible to use either ActionScript code or Flex MXML code to
achieve the same result. Insofar as this series of lessons is concerned,
the emphasis will be on ActionScript code even in those cases where Flex MXML
code may be a suitable alternative.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. Project file structure.
	

	

Figure 2

. Program output at startup.

	

Figure 3

. Output after clicking the Area Button
	for circle.

	

Figure 4

. Output after clicking the Area Button
	for rectangle.

Listings

 	

Listing 1

. Beginning of the class named Driver.

	

Listing 2

. Beginning of the constructor for the
	Driver class.

	

Listing 3

. The remainder of the constructor for
	the Driver class.

	

Listing 4

. The getRandomValues method.

	

Listing 5

. The event handler method named
	areaButtonHandler.

	

Listing 6

. The other two click event handler
	methods.

	

Listing 7

. The interface named IArea.

	

Listing 8

. The interface named IVolume.

	

Listing 9

. The class named MyCircle.

	

Listing 10

. Listing for the file named
	Interface01.mxml.

	

Listing 11

. Listing for the file named
	Driver.as.

	

Listing 12

. Listing for the file named
	IArea.as.

	

Listing 13

. Listing for the file named
	IVolume.as.

	

Listing 14

. Listing for the file named
	ICircumference.as.

	

Listing 15

. Listing for the file named
	MyCircle.as.

	

Listing 16

. Listing for the file named
	MyRectangle.as.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background information

What is an ActionScript interface?

In an earlier lesson titled

"Inheritance - The Big Picture"

, I told
you that unlike C++,

"ActionScript 3 does not support multiple inheritance. Instead
	it supports a different mechanism called an interface that provides most of
	the benefits of multiple inheritance without most of the problems."

I promised to explain the ActionScript interface in a future lesson, and that
time has come.

What does the documentation have to say?

According to

About interfaces

,

"Interfaces are a type of class that you design to act as an outline
	for your components. When you write an interface, you provide only the names
	of public methods rather than any implementation. For example, if you define
	two methods in an interface and then implement that interface, the
	implementing class must provide implementations of those two methods.

Interfaces in ActionScript can declare methods and properties only by
	using setter and getter methods; they cannot specify constants. The benefit
	of interfaces is that you can define a contract that all classes that
	implement that interface must follow. Also, if your class implements an
	interface, instances of that class can also be cast to that interface."

According to

Interfaces

,

"An interface is a collection of method declarations that allows
	unrelated objects to communicate with one another...

Interfaces are based on the distinction between a method's interface
	and its implementation. A method's interface includes all the information
	necessary to invoke that method, including the name of the method, all of
	its parameters, and its return type. A method's implementation includes not
	only the interface information, but also the executable statements that
	carry out the method's behavior. An interface definition contains only
	method interfaces, and any class that implements the interface is
	responsible for defining the method implementations...

Another way to describe an interface is to say that it defines a data
	type just as a class does. Accordingly, an interface can be used as a type
	annotation, just as a class can. As a data type, an interface can also be
	used with operators, such as the is and as operators, that require a data
	type. Unlike a class, however, an interface cannot be instantiated. This
	distinction has led many programmers to think of interfaces as abstract data
	types and classes as concrete data types."

According to this author...

An interface is like a class in which all of the methods are abstract,
meaning that only their user interface is declared. Their behavior or
implementation is not defined.

(Recall from an earlier lesson that it
is not possible to declare an abstract method in an ActionScript class.
All methods must be defined as concrete methods in ActionScript classes.)

A form of multiple inheritance

In ActionScript, a class can inherit from

(extend)

 only one other
class. However, a class can inherit from

(implement)

 any number of
interfaces. Furthermore, each interface can extend any number of other
interfaces.

Therefore, an ActionScript class can inherit any number of

concrete

methods from one superclass and can inherit any number of

abstract

 methods from any number of interfaces.

Concrete methods are required

Any class that inherits an abstract method must provide a concrete definition
for the method or the class cannot be compiled.

ActionScript classes cannot be declared abstract. Therefore, the
abstract method cannot be passed down the class hierarchy for definition by a
subclass as is the case in Java. The concrete version must be defined in
the class in which it is inherited. This means that it must be defined in
the class that implements the interface.

What is a concrete method?

As a minimum, a concrete method is a method signature followed by a pair of
matching curly braces

(possibly containing a return statement)

.
Normally the body of the method is coded between the curly braces defining the
behavior of the method.

If the return type is void, the matching curly braces may be empty. In
that case, the concrete method exhibits no observable behavior. It returns
immediately without doing anything when it is called.

If the return type is not void, there must be a return statement that returns
a value of the correct type.

Do empty methods have any value?

It is not uncommon for a class to implement an interface for which some of
the interface methods are of no interest with regard to an object of the new
class. However, the implementing class must provide concrete definitions
for all of the methods inherited from the interface.

In that case, it is common practice to simply define the uninteresting
methods as empty methods in the new class. If they ever do get called,
they will simply return immediately without doing anything.

Preview

The program named

Interface01

 that I will explain in this lesson is an
update of the program named

Polymorph02

 that I explained in the earlier
lesson titled

"Polymorphism - The Big Picture" (see

Baldwin's ActionScript
programming website

).

The earlier program illustrated runtime polymorphism based on class
inheritance and the overriding of inherited concrete methods.

This program will illustrate runtime polymorphism based on interface
inheritance and the concrete definition of inherited abstract methods.

The project file structure

The project file structure is shown in Figure 1.

 [image: Missing image]

Figure 6.1.

Project file structure.

Project file structure.

Six ActionScript files

This project consists of one MXML file named

Interface01

, three class
files, and three interface files. The class files are named:

 	

MyRectangle.as

	

MyCircle.as

	

Driver.as

The interface files are named:

 	

IVolume.as

	

ICircumference.as

	

IArea.as

Interface can declare any number of methods

An interface can declare any number of methods including setter and getter
methods. As you will see later, the interface named

IArea

 declares
two methods named

area

 and

id

.

The interface named

IVolume

 declares one method named

volume

.
Likewise, the interface named

ICircumference

 declares one method named

circumference

.

The rules of the road

Any number of classes can implement the same interface. This makes it
possible to treat objects instantiated from different classes as the common
interface type.

A class can implement any number of interfaces. In this program,
however, the classes named

MyRectangle

 and

MyCircle

 each implement
only one interface named

IArea

.

Can extend any number of interfaces

An interface can extend any number of other interfaces. In this
program, the

IArea

 interface extends both the

IVolume

 interface
and the

ICircumference

 interface.

The bottom line

Implementing the

IArea

 interface causes both the

MyRectangle

class and the

MyCircle

 class to inherit the following abstract methods:

 	

area

	

id

	

circumference

	

volume

The first two methods are inherited directly from the interface named

IArea

. The last two are inherited from the interfaces named

ICircumference

 and

IVolume

 by way of

IArea

.

Each of the two classes must provide concrete definitions for all four of the
inherited abstract methods.

Program output at startup

Figure 2 shows the program output at startup.

 [image: Missing image]

Figure 6.2.

Program output at startup.

Program output at startup.

The program GUI

The program GUI consists of one

label

, three

buttons

 and a

text area

.
When a button is clicked, a random process is used to instantiate an object of
either the

MyCircle

 class or the

MyRectangle

 class. The new
object's reference is saved in a variable of the interface type

IArea

.
This is possible because both classes implement the common

IArea

interface.

Call methods using the reference of type IArea

Then, as a result of a click on a button, the program calls the

id

 method on the object whose reference is
stored in the variable of type

IArea

. Depending on which button is
clicked, the program then calls either the

area

 method, the

circumference

 method, or the

volume

 method on the object.

Output after clicking the Area Button for circle

Clicking the button labeled Area, for example causes the output to change to
something similar to either Figure 3 or Figure 4. An output similar to
Figure 3 is produced if the random process instantiates an object of the

MyCircle

 class.

 [image: Missing image]

Figure 6.3.

Output after clicking the Area Button for circle.

Output after clicking the Area Button for circle.

Output after clicking the Area Button for rectangle

An output similar to Figure 4 is produced if the random process instantiates
an object of the

MyRectangle

 class.

 [image: Missing image]

Figure 6.4.

Output after clicking the Area Button for rectangle.

Output after clicking the Area Button for rectangle.

Random radius, width, and height

I use the word similar because a random process is also used to establish the
radius for the circle and to establish the width and height for the rectangle.

Both the

MYCircle

 object and the

MyRectangle

 object contain
concrete versions of the four methods listed

above

. However, the behavior of those four
methods in one object is different from the behavior of the four methods having
the same names in the other object.

Polymorphism kicks in

The compiler can't possibly know which type of object will be instantiated as
a result of the random process following each button click when the program is
compiled. Therefore, the decision as to which set of methods to call as a
result of each button click cannot be determined until runtime. This is
the essence of

runtime polymorphism

.

The cardinal rule

The type of the object's reference determines which set of method names can
be called on that reference. In this case, the set consists of the four
methods declared in and inherited into the interface named

IArea

, which
are shown in the above

list

.

The type of the object determines which method from the set of allowable
names is actually executed.

Run the program

You can

run

 the program to
see the outputs produced by repeatedly clicking each of the three buttons in
Figure 2.

Discussion and sample code

Will discuss in fragments

 I will break the longer files in this application down and
discuss them in fragments. Complete listings of all of the files are
provided in Listing 10 through Listing 16 near the end of the lesson.

The file named Interface01.mxml

In keeping with my plan to emphasize ActionScript over Flex in this series of
lessons, the MXML file for this application is very simple, instantiating only a
single object of type

Driver

. A listing of the MXML file is provided in Listing 10 near
the end of the lesson.

The file named Driver.as

The class named

Driver

 begins in Listing 1. A complete listing
of the file is provided in Listing 11 near the end of the lesson.

Example 6.1.
 package CustomClasses{
 import flash.events.*;

 import mx.containers.HBox;
 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.controls.TextArea;

 public class Driver extends VBox{
 private var textArea:TextArea = new TextArea();
 private var myShape:IArea;

 private var randomChoice:Number;
 private var radius:uint;
 private var rectWidth:uint;
 private var rectHeight:uint;

Listing 1 declares several new instance variables. The most interesting
variable is named

myShape

 because it is declared to be of type

IArea

, which is the name of an interface.

References to objects of the classes

MyCircle

 and

MyRectangle

will be stored in this variable.

Beginning of the constructor for the Driver class

The constructor for the

Driver

 class begins in Listing 2.

Example 6.2.
 public function Driver(){//constructor
 var label:Label = new Label();
 label.text = "Interface Polymorphism Demo";
 label.setStyle("fontSize",14);
 label.setStyle("color",0xFFFF00);
 addChild(label);

 //Put three buttons in an HBox
 var hbox:HBox = new HBox();
 addChild(hbox);

 var areaButton:Button = new Button();
 areaButton.label = "Area";
 hbox.addChild(areaButton);

 var circButton:Button = new Button();
 circButton.label = "Circumference";
 hbox.addChild(circButton);

 var volumeButton:Button = new Button();
 volumeButton.label = "Volume";
 hbox.addChild(volumeButton);

 //Put the text area below the HBox.
 textArea.width = 245;
 textArea.height = 80;
 addChild(textArea);

You shouldn't find any surprises in Listing 2. The code in Listing 2
simply constructs the GUI shown in Figure 2, placing the label, the buttons, and
the text area in their respective locations.

The remainder of the constructor for the Driver class

The remainder of the constructor for the

Driver

 class is shown in
Listing 3.

Example 6.3.
 //Register a click event handler on each of the
 // buttons
 areaButton.addEventListener(
 MouseEvent.CLICK,areaButtonHandler);

 circButton.addEventListener(
 MouseEvent.CLICK,circButtonHandler);

 volumeButton.addEventListener(
 MouseEvent.CLICK,volumeButtonHandler);
 }//end constructor

Listing 3 registers a

click

 event handler on each of the buttons shown
in Figure 2.

The getRandomValues method

The method named

getRandomValues

 is shown in Listing 4.

Example 6.4.
 //Local utility method for getting and saving four
 // random values.
 private function getRandomValues():void{
 randomChoice = Math.random();
 radius = uint(10*Math.random() + 1);
 rectWidth = uint(10*Math.random() + 1);
 rectHeight = uint(10*Math.random() + 1);
 }//end getRandomValues

This method is called by each of the event handler methods to get and save
four random values that are subsequently used by the event handler. The
random values are saved in the instance variables that are declared in Listing
1.

The event handler method named areaButtonHandler

The

click

 event handler that is registered on the button labeled

Area

 in Figure 2 is shown in Listing 5.

Example 6.5.
 //Define click event handler methods.
 private function areaButtonHandler(
 event:MouseEvent):void{
 getRandomValues();

 if(randomChoice < 0.5){
 myShape = new MyCircle(radius);
 }else{
 myShape = new MyRectangle(rectWidth,rectHeight);
 }//end else

 textArea.text = myShape.id() + myShape.area();
 }//end areaButtonHandler

Decide between two classes

The code in Listing 5 uses the random value stored in

randomChoice

 to
decide whether to instantiate an object of the class named

MyCircle

 or
the class named

MyRectangle

.

Store object's reference as type IArea

The object's reference is stored in the instance variable named

myShape

,
which is type

IArea

. Storage of the reference in a variable of that
type is possible only because both objects implement the interface named

IArea

.

Call the id method using the reference

Then the code in Listing 5 uses the reference stored in

myShape

 to
call the

id

 method and the

area

 method on the object. The
returned values are used to construct a new text string for the text area shown
in Figure 3.

How is this possible?

Calling these methods using the reference of type

IArea

 is possible
only because abstract versions of both methods are inherited into both classes
from the interface named

IArea

.

The other two click event handler methods

The

click

 event handler methods that are registered on the

Circumference

 button and the

Volume

 button in Figure 2 are shown in
Listing 6.

Example 6.6.
 private function circButtonHandler(
 event:MouseEvent):void{
 getRandomValues();

 if(randomChoice < 0.5){
 myShape = new MyCircle(radius);
 }else{
 myShape = new MyRectangle(rectWidth,rectHeight);
 }//end else
 textArea.text = myShape.id() +
 myShape.circumference();
 }//end circButtonHandler

 private function volumeButtonHandler(
 event:MouseEvent):void{
 getRandomValues();

 if(randomChoice < 0.5){
 myShape = new MyCircle(radius);
 }else{
 myShape = new MyRectangle(rectWidth,rectHeight);
 }//end else
 textArea.text = myShape.id() + myShape.volume();
 }//end circButtonHandler

 }//end class
}//end package

The same methodology

The methodology behind these two event handlers is the same as the
methodology behind the event handler method shown in Listing 5.

The main differences between the event handlers

The main differences appear in the two statements that begin with

"textArea.text = "

. In addition to using
the reference of type

IArea

 to call the

id

 method on the objects,
these two event handler methods call the

circumference

 method or the

volume

 method on the objects. Once again, this is possible only
because the objects inherit those methods from the

IArea

 interface.

The end of the Driver class

Listing 6 also signals the end of the class named

Driver

.

The file named IArea.as

Since I mentioned the interface named

IArea

 several times above, I
will discuss it next.

The interface named

IArea

 is shown in Listing 7.

Example 6.7.
 package CustomClasses{
 public interface IArea extends IVolume,ICircumference{
 function area():String;
 function id():String;
 }//end interface
}//end package

General information about an interface

The syntax for an interface looks a lot like the syntax for a class.
However, the keyword

class

 is replaced by the keyword

interface

.

An interface may contain only method declarations

(with no bodies)

 and
setter and getter method declarations. All method declarations are
implicitly

public

, and the concrete definition of an interface method in
a class must be declared

public

.

You cannot instantiate an object of an interface.

An interface cannot extend a class, but can extend any number of other
interfaces.

IArea declares two methods and extends two
interfaces

The interface shown in Listing 7 declares the abstract methods named

area

and

id

. It also extends the interfaces named

IVolume

 and

ICircumference

.

Concrete method definitions are required

Any class that implements the interface named

IArea

 must provide
concrete definitions for the methods named

id

 and

area

.

The class must also provide concrete definitions for any methods inherited
into

IArea

 from the interfaces that it extends. The class also inherits
those methods by way of

IArea

.

The file named IVolume.as

The interface named

IVolume

 is shown in its entirety in Listing 8.

Example 6.8.
 package CustomClasses{
 public interface IVolume{
 function volume():String;
 }//end interface
}//end package

This interface declares the method named

volume

. Because this
interface is extended by the interface named

IArea

, any class that
implements

IArea

 inherits the abstract method named

volume

 and must
provide a concrete definition for the method.

The file named ICircumference.as

The interface named

ICircumference

 is very similar to the interface
named

IVolume

. The code for this interface is provided in Listing 14 near
the end of the lesson.

This interface declares the method named

circumference

. Once
again, because this interface is extended by the interface named

IArea

,
any class that implements

IArea

 inherits the abstract method named

circumference

and must provide a concrete definition for the method.

The file named MyCircle.as

The class named

MyCircle

 is shown in its entirety in Listing 9

Example 6.9.
 package CustomClasses{
 public class MyCircle implements IArea{
 private var radius:Number;

 public function MyCircle(radius:Number){//constructor
 this.radius = radius;
 }//end constructor

 public function area():String{
 return "Radius = " + radius + "\n" +
 "Area = " + Math.PI * radius * radius;
 }//end area

 public function id():String{
 return "Circle\n";
 }//end id

 public function circumference():String{
 return "Radius = " + radius + "\n" +
 "Circumference = " + 2 * Math.PI * radius;
 }//end function circumference

 public function volume():String{
 //Assumes that the shape is a cylinder with a
 // depth of ten units.
 return "Radius = " + radius + "\n" +
 "Depth = 10\n" +
 "Volume = " + 10 * Math.PI * radius * radius;
 }//end area

 }//end class
}//end package

Inherits four abstract methods

As you can see, this class implements the interface named

IArea

,
causing it to inherit

the following
abstract methods

:

 	

area

	

id

	

circumference

	

volume

The

area

 and

id

 methods are declared in the

IArea

interface and are inherited directly into the

MyCircle

 class.

The

circumference

 and

volume

 methods are declared in the
interfaces named

ICircumference

 and

IVolume

, both of which are
extended by the

IArea

 interface. Therefore, the

MyCircle

class inherits those abstract methods by way the

IArea

 interface.

Concrete definitions for four methods

Listing 9 provides concrete versions of the four inherited abstract methods.
As a practical matter, this amounts to overriding inherited abstract methods.
Note however, that unlike the case of overriding a concrete method inherited
from a class, the keyword

override

 is

not

 required when overriding an
abstract method inherited from an interface.

Other than the fact that this class implements an interface and overrides
inherited abstract methods, there is nothing in Listing 9 that should be new to
you.

The file named MyRectangle.as

The class named

MyRectangle

 is defined in Listing 16 near the end of
the lesson. This class is very similar to the

MyCircle

 class shown
in Listing 9. As with the

MyCircle

 class, it implements the

IArea

 interface. Therefore, it inherits and overrides the same four
abstract methods shown in the above

list

.

Run the program

I encourage you to

run

 this program from the web.
Then copy the code from Listing 10 through Listing 16. Use that
code to create a Flex project. Compile and run the project.
Experiment with the code, making changes, and observing the results of your
changes. Make certain that you can explain why your changes behave as they
do.

Resources

I will publish a list containing links to ActionScript
resources as a separate document. Search for ActionScript Resources in the
Connexions search box.

Complete program listings

Complete listings of the ActionScript and MXML files discussed in this lesson
are provided in Listing 10 through Listing 16 below.

Example 6.10.
 <?xml version="1.0" encoding="utf-8"?>

<!--Illustrates polymorphism using an interface.-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

Example 6.11.
 package CustomClasses{
 import flash.events.*;

 import mx.containers.HBox;
 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.controls.TextArea;

 public class Driver extends VBox{
 private var textArea:TextArea = new TextArea();
 private var myShape:IArea;

 private var randomChoice:Number;
 private var radius:uint;
 private var rectWidth:uint;
 private var rectHeight:uint;

 public function Driver(){//constructor
 var label:Label = new Label();
 label.text = "Interface Polymorphism Demo";
 label.setStyle("fontSize",14);
 label.setStyle("color",0xFFFF00);
 addChild(label);

 //Put three buttons in an HBox
 var hbox:HBox = new HBox();
 addChild(hbox);

 var areaButton:Button = new Button();
 areaButton.label = "Area";
 hbox.addChild(areaButton);

 var circButton:Button = new Button();
 circButton.label = "Circumference";
 hbox.addChild(circButton);

 var volumeButton:Button = new Button();
 volumeButton.label = "Volume";
 hbox.addChild(volumeButton);

 //Put the text area below the HBox.
 textArea.width = 245;
 textArea.height = 80;
 addChild(textArea);

 //Register a click event handler on each of the
 // buttons
 areaButton.addEventListener(
 MouseEvent.CLICK,areaButtonHandler);

 circButton.addEventListener(
 MouseEvent.CLICK,circButtonHandler);

 volumeButton.addEventListener(
 MouseEvent.CLICK,volumeButtonHandler);
 }//end constructor

 //Local utility method for getting and saving four
 // random values.
 private function getRandomValues():void{
 randomChoice = Math.random();
 radius = uint(10*Math.random() + 1);
 rectWidth = uint(10*Math.random() + 1);
 rectHeight = uint(10*Math.random() + 1);
 }//end getRandomValues

 //Define click event handler methods.
 private function areaButtonHandler(
 event:MouseEvent):void{
 getRandomValues();

 if(randomChoice < 0.5){
 myShape = new MyCircle(radius);
 }else{
 myShape = new MyRectangle(rectWidth,rectHeight);
 }//end else
 textArea.text = myShape.id() + myShape.area();
 }//end areaButtonHandler

 private function circButtonHandler(
 event:MouseEvent):void{
 getRandomValues();

 if(randomChoice < 0.5){
 myShape = new MyCircle(radius);
 }else{
 myShape = new MyRectangle(rectWidth,rectHeight);
 }//end else
 textArea.text = myShape.id() +
 myShape.circumference();
 }//end circButtonHandler

 private function volumeButtonHandler(
 event:MouseEvent):void{
 getRandomValues();

 if(randomChoice < 0.5){
 myShape = new MyCircle(radius);
 }else{
 myShape = new MyRectangle(rectWidth,rectHeight);
 }//end else
 textArea.text = myShape.id() + myShape.volume();
 }//end circButtonHandler

 }//end class
}//end package

Example 6.12.
 package CustomClasses{
 public interface IArea extends IVolume,ICircumference{
 function area():String;
 function id():String;
 }//end interface
}//end package

Example 6.13.
 package CustomClasses{
 public interface IVolume{
 function volume():String;
 }//end interface
}//end package

Example 6.14.
 package CustomClasses{
 public interface ICircumference{
 function circumference():String;
 }//end interface
}//end package

Example 6.15.
 package CustomClasses{
 public class MyCircle implements IArea{
 private var radius:Number;

 public function MyCircle(radius:Number){//constructor
 this.radius = radius;
 }//end constructor

 public function area():String{
 return "Radius = " + radius + "\n" +
 "Area = " + Math.PI * radius * radius;
 }//end area

 public function id():String{
 return "Circle\n";
 }//end id

 public function circumference():String{
 return "Radius = " + radius + "\n" +
 "Circumference = " + 2 * Math.PI * radius;
 }//end function circumference

 public function volume():String{
 //Assumes that the shape is a cylinder with a
 // depth of ten units.
 return "Radius = " + radius + "\n" +
 "Depth = 10\n" +
 "Volume = " + 10 * Math.PI * radius * radius;
 }//end area

 }//end class
}//end package

Example 6.16.
 package CustomClasses{
 public class MyRectangle implements IArea{
 private var width:Number;
 private var height:Number;

 public function MyRectangle(
 width:Number,height:Number){//constructor
 this.width = width;
 this.height = height;
 }//end constructor

 public function area():String{
 return "Width = " + width + "\n" +
 "Height = " + height + "\n" +
 "Area = " + width * height;
 }//end area

 public function id():String{
 return "Rectangle\n";
 }//end id

 public function circumference():String{
 return "Width = " + width + "\n" +
 "Height = " + height + "\n" +
 "Circumference = " + 2 * (width + height);
 }//end function circumference

 public function volume():String{
 //Assumes that the shape is a rectangular solid
 // with a depth of ten units.
 return "Width = " + width + "\n" +
 "Height = " + height + "\n" +
 "Depth = 10\n" +
 "Volume = " + 10 * width * height;
 }//end area

 }//end class
}//end package

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Interface Polymorphism - The Big Picture

	
Files:

 	
ActionScript0112\ActionScript0112.htm

	
ActionScript0112\Connexions\ActionScriptXhtml0112.htm

PDF disclaimer:

-end-

Solutions

 [image: Object-Oriented Programming (OOP) with ActionScript]

 Chapter 3. Encapsulation - The Big Picture

Click

Encapsulation01

to run this ActionScript program.

(Click the "Back" button in your browser
to return to this page.)

Table of Contents

 	

Preface

 	

General

	

Viewing tip

 	

Figures

	

Listings

	

Supplemental material

	

General background information

 	

Abstraction

	

Encapsulation

	

Preview

	

Discussion and sample code

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

Preface

General

 Note that all references to ActionScript in this lesson are
			 references to version 3 or later.

This tutorial lesson is part of a series of lessons dedicated to
object-oriented programming

(OOP)

 with ActionScript
.

The three main characteristics of an object-oriented
program

Object-oriented programs exhibit three main characteristics:

 	
Encapsulation

	
Inheritance

	
Polymorphism

In this and the next two lessons, I will explain and illustrate these three
characteristics from a big-picture viewpoint. Following that, I will get
down in the weeds and start explaining in detail how to use ActionScript for
object-oriented programming

(OOP)

.

Several ways to create and launch ActionScript
programs

There are several ways to create and launch programs written in the
ActionScript programming language. Many of the lessons in this series will
use Adobe Flex as the launch pad for the sample ActionScript programs.

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3.

(See

Baldwin's Flex programming website

.)

You should study that lesson before embarking on the lessons in this series.

Some understanding of Flex MXML will be required

I also recommend that you study all of the lessons on

Baldwin's Flex programming website

in parallel with your study of these ActionScript lessons. Eventually you
will need to understand both ActionScript and Flex and the relationships that
exist between them in order to become a successful ActionScript programmer.

Will emphasize ActionScript code

It is often possible to use either ActionScript code or Flex MXML code to
achieve the same result. Insofar as this series of lessons is concerned,
the emphasis will be on ActionScript code even in those cases where Flex MXML
code may be a suitable alternative.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and
listings while you are reading about them.

Figures

 	

Figure 1

. Screen output for Encapsulation01.

	

Figure 2

. File structure for the project named
 Encapsulation01.

Listings

 	

Listing 1

. Mxml code to instantiate two custom
 component objects.

	

Listing 2

. Beginning of the class named QuizA.

	

Listing 3

. Beginning of the class named QuizB.

	

Listing 4

. Implicit setter methods for QuizA.

	

Listing 5

. Implicit setter methods for QuizB.

	

Listing 6

. Constructor for QuizA.

	

Listing 7

. Constructor for QuizB.

	

Listing 8

. The checkButtonHandler for QuizA.

	

Listing 9

. The checkButtonHandler for QuizB.

	

Listing 10

. The vboxCompleteHandler for QuizA.

	

Listing 11

. The vboxCompleteHandler for QuizB.

	

Listing 12

. Source code for
 Encapsulation01.mxml.

	

Listing 13

. Source code for QuizA.as.

	

Listing 14

. Source code for QuizB.as.

Supplemental material

I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background information

In addition to the three explicit characteristics of

encapsulation

,

inheritance

, and

polymorphism

, an object-oriented program also has
an implicit characteristic of

abstraction

.

What is abstraction?

Abstraction is the process by which we specify a new data type, often
referred to an abstract data type or ADT.

How does abstraction relate to encapsulation?

Encapsulation is the process of gathering an ADT's

data representation

and

behavior

 into one encapsulated entity. In other words,
encapsulation converts from the abstract to the concrete.

Some analogies

You might think of this as being similar to converting an idea for an
invention into a set of blueprints from which it can be built, or converting a
set of written specifications for a widget into a set of drawings that can be
used by the machine shop to build the widget.

Automotive engineers encapsulated the specifications for the steering
mechanism of my car into a set of manufacturing drawings. Then
manufacturing personnel used those drawings to produce an object where they
exposed the interface

(steering wheel)

 and hid the implementation

(levers, bolts, etc.)

.

In all likelihood, the steering mechanism object contains a number of other
more-specialized embedded objects, each of which has

state

 and

behavior

 and also has

an interface

 and

an implementation

.

The interfaces for those embedded objects aren't exposed to me, but they are
exposed to the other parts of the steering mechanism that use them.

Abstraction

Abstraction is the specification of an abstract data type, which includes a
specification of the type's

data representation

 and its

behavior

.
In particular,

 	
What kind of data can be stored in an entity of the new type, and

	
What are all the ways that the data can be manipulated?

A new type

For our purposes, an abstract data type is a new type

(not intrinsic to
the ActionScript language)

. It is not one of the primitive data types that
are built into the programming language

(such as Boolean, int, Number,
String, and uint)

.

Already known to the compiler

The distinction in the previous paragraph is very important. The data
representation and behavior of the intrinsic or primitive types is already known
to the compiler and cannot normally be modified by the programmer.

Not known to the compiler

The representation and behavior of an abstract type is not known to the
compiler until it is defined by the programmer and presented to the compiler in
an appropriate manner.

Define data representation and behavior in a class

ActionScript
 programmers define the

data representation

 and
the

behavior

of a new type

(present the specification to the compiler)

using the keyword

class

. In other words, the keyword

class

is used to convert the specification of a new type into something
that the compiler can work with; a

set of plans

 as it were. To
define a class is to go from the abstract to the concrete.

Create instances of the new type

Once the new type

(class)

 is defined, one or more objects of that type
can be brought into being

(instantiated, caused to occupy memory)

.

Objects have state and behavior

Once instantiated, the object is said to have

state

and

behavior

. The

state

of an object is determined by the current
values of the data that it contains and the

behavior

of an object is
determined by its methods.

The state and behavior of a GUI Button object

For example, if we think of a GUI

Button

 as an object, it is fairly
easy to visualize the object's state and behavior.

A GUI Button can usually manifest any of a number of different states: size,
position, depressed image, not depressed image, label, etc. Each of these states
is determined by data stored in the

instance variables

 of the

Button

 object at any given point in time.

(The combination of one or
more instance variables that determine a particular state is often referred to
as a property of the object.)

Similarly, it is not too difficult to visualize the behavior of a GUI

Button

. When you click it with the mouse, some specific action usually
occurs.

An ActionScript class named Button

If you dig deeply enough into the ActionScript
 class library, you
will find that there is a class named

Button

. Each individual

Button

 object in a Flex application is an instance of the ActionScript
class named

Button

.

The state of Button objects

Each

Button

 object has instance variables, which it does not share
with other

Button

 objects. The values of the instance variables
define the

state

of the button at any given time. Other

Button

objects in the same scope can have different values in their instance variables.
Hence they can have a different state.

The behavior of a Button object

Each Button object also has certain fundamental behaviors such as responding
to a mouse

click

 event or responding to a

mouseOver

 event.

The ActionScript programmer has control over the code that is executed in
response to the event. However, the ActionScript programmer has no control
over the fact that a

Button

 object will respond to such an event.
The fact that a

Button

 will respond to certain event types is an inherent
part of the type specification for the

Button

 class and can only be
modified by modifying the source code for the

Button

 class.

Encapsulation

If abstraction is the design or specification of a new type, then
encapsulation is its definition and implementation.

A programmer defines the data representation and the behavior of an abstract
data type into a class, thereby defining its implementation and its interface.
That data representation and behavior is then encapsulated in objects that are
instantiated from the class.

Expose the interface and hide the implementation

According to good object-oriented programming practice, an encapsulated
design usually exposes the interface and hides the implementation. This is
accomplished in different ways with different languages.

Just as most of us don't usually need to care about how the steering
mechanism of a car is implemented, a user of a class should not need to care
about the details of implementation for that class.

The user of the class

(the using programmer)

 should only need to care
that it works as advertised. Of course this assumes that the user of the class
has access to good documentation describing the interface and the behavior of
objects instantiated from the class.

Should be able to change the implementation later

For a properly designed class, the class designer should be able to come back
later and change the implementation, perhaps changing the type of data structure
used to store data in the object, and the using programs should not be affected
by the change.

Class member access control

Object-oriented programming languages usually provide the ability to control
access to the members of a class. For example, ActionScript, C++ and Java all
use the keywords

public

,

private

, and

protected

to control
access to the individual members of a class. In addition, ActionScript and
Java add a fourth level of access control, which is called

internal

 in
ActionScript and is called

package-private

 in Java.

(See Class
property attributes in a companion document on ActionScript Resources.)

Public, private, and protected

To a first approximation, you can probably guess what

public

 and

private

mean. Public members are accessible by all code that has access
to an object of the class. Private members are accessible only by members
belonging to the class.

The

protected

 keyword is used to provide inherited classes with
special access to the members of their base classes.

A public user interface

In general, the user interface for a class consists of the

public

methods.

(The variables in a class can also be declared public but this
is generally considered to be bad programming practice unless they are actually
constants.

)

For a properly designed class, the class user stores, reads, and modifies
values in the object's data by calling the

public

 methods on a specific
instance

(object)

 of the class.

(This is sometimes referred to as
sending a message to the object asking it to change its state)

.

ActionScript has a special form of method, often called an

implicit setter

method or an

implicit getter

 method that is specifically used for this
purpose.

(You will see several implicit setter methods in the program
that I will explain later in this lesson.)

Normally, if the class is properly designed and the implementation is hidden,
the user cannot modify the values contained in the instance variables of the
object without going through the prescribed public methods in the interface.

Not a good design by default

An object-oriented design is not a good design by default. In an attempt to
produce good designs, experienced object-oriented programmers generally agree on
certain design standards for classes. For example, the data members

(instance variables)

 are usually

private

 unless they are
constants. The user interface usually consists only of

public

 methods and
includes few if any data members.

Of course, there are exceptions to every rule. One exception to this
general rule is that data members that are intended to be used as symbolic
constants are made public and defined in such a way that their values cannot be
modified.

The methods in the interface should control access to, or provide a pathway
to the private instance variables.

Not bound to the implementation

The interface should be generic in that it is not bound to any particular
implementation. Hence, the class author should be able to change the
implementation without affecting the using programs so long as the interface
doesn't change.

In practice, this means that the signatures of the interface methods should
not change, and that the interface methods and their arguments should continue
to have the same meaning.

Preview

In this lesson, I will present and briefly explain a program with an output
that consists of a Flex user interface containing two custom component objects
as shown in Figure 1. Each of the objects is intended to represent a
single multiple-choice question in an online test.

(See

Creating Online
Tests using Custom ActionScript Components

here

 for a detailed explanation of the
code.)

 [image: Missing image.]

Figure 3.1.

Screen output for Encapsulation01.

Screen output for Encapsulation01.

The two question objects in Figure 1 have the same behavior. And as you
will see later, the classes from which they were instantiated have the same user
interfaces. However, the classes are implemented in significantly
different ways.

Discussion
and sample code

Will discuss in fragments

I will discuss the code in this lesson in fragments. Listing 1 shows
the mxml code that instantiates the two component objects shown in Figure 1.
A complete listing of the file named

Encapsulation01.mxml

 is provided in
Listing 12 near the end of the lesson.

Example 3.1.
 <!--The following code instantiates an object of the class
named QuizA for a multiple-choice quiz question with three
choices.-->

<cc:QuizA
question=
"Which of the following is not the name of one of the
seven dwarfs?"
choice0="Dopey"
choice1="Sneezy"
choice2="Harold"
answer="2"
/>

<!--The following code instantiates an object of the class
named QuizB for a multiple-choice quiz question with three
choices. Note that the interface is exactly the same as
for the class named QuizA. However, the implementation of
QuizB is radically different from QuizA.-->

<cc:QuizB
question=
"Which of the following is not the name of one of the
seven dwarfs?"
choice0="Dopey"
choice1="Sneezy"
choice2="Harold"
answer="2"
/>

The important thing...

The important thing to note in Listing 1 is that, with the exception of the
name of the class being instantiated in each case

(QuizA and QuizB)

, the
mxml code is identical for the two cases.

The code that begins with

cc:Quiza

 produces the top question object in
Figure 1 and the code that begins with

cc:Quizb

produces the bottom question
object in Figure 1.

Since the mxml code for the two objects is identical, the user interface for
the two classes must also be identical.

The project file structure

The Flex project file structure that I used for this program is fairly
typical. However, before getting into a discussion of the two class files,
I will show you how the files are organized in the Flex project as shown in Figure 2.

 [image: Missing image.]

Figure 3.2.

File structure for the project named Encapsulation01.

File structure for the project named Encapsulation01.

Classes named QuizA and QuizB

As you can see from Listing 1 and Figure 2, two class files named

QuizA.as

 and

QuizB.as

 were used to instantiate the two objects
shown in Figure 1. Complete listings for those two files are provided in
Listing 13 and Listing 14 near the end of the lesson.

Remember, this is a big-picture discussion

Because this is a

"big-picture"

 lesson, I won't explain either of
these classes in detail in this lesson.

(You can find technical details
for a class very similar to

QuizA

 in

 Creating Online
Tests using Custom ActionScript Components

here

 you are interested in
technical details at this point.)

 Instead, I will compare the two
class definitions from a big-picture viewpoint.

For brevity, I will also delete some of the code such as import directives.

Beginning of the class named QuizA

The class named

QuizA

 begins in Listing 2.

Example 3.2.
 package CustomClasses{
 //Import directives deleted for brevity.

 public class QuizA extends VBox{
 private var theQuestion:TextArea;
 private var choice00:RadioButton;
 private var choice01:RadioButton;
 private var choice02:RadioButton;
 private var checkButton:Button;
 private var result:TextArea;

 private var theAnswer:String;//numeric string
 private var correctAnswer:String;//actual string
 private var vboxWidth:int = 375;

Variable declarations

The important thing to note in Listing 2 is the declaration of six instance
variables of three different component types

(beginning with the first line
that reads

private var

)

.
These variables will be used to hold references to the six different components
shown in each question object in Figure 1.

TextArea, RadioButton, and Button objects

The white rectangular areas at the top and the bottom of each question object
in Figure 1 is an object of the class named

TextArea

. You can
probably spot the three

RadioButton

 objects and the

Button

 object
in each question object.

Beginning of the class named QuizB

The class named

QuizB

 begins in Listing 3.

Example 3.3.
 package CustomClasses{
 //Import directives deleted for brevity.

 public class QuizB extends VBox{
 private var components:Array =
 new Array(new TextArea(),//theQuestion
 new RadioButton(),
 new RadioButton(),
 new RadioButton(),
 new Button(),//checkButton
 new TextArea());//result

 private var theAnswer:String;//numeric string
 private var correctAnswer:String;//actual string
 private var vboxWidth:int = 375;

An array with six elements

The six instance variables that I referred to in Listing 2 were replaced
by a single array having six elements in Listing 3. The creation of the array
begins with the first line in Listing 3 that reads

private var

.

This is the major change that was made in the implementation of

QuizB

relative to the implementation of

QuizA

. This change will have
significant ramifications throughout the remainder of the code whenever it is
necessary to access a reference that points to one of the six components.

Populated with six component objects

It is also worth noting that the array elements are populated with references
to component objects for

QuizB

 when the array is created in Listing 3.
The new component objects aren't instantiated until later in

QuizA

.

Implicit setter methods for QuizA

Listing 4 shows five implicit setter methods for the class named

QuizA

.

Example 3.4.
 public function set question(textIn:String):void{
 theQuestion.text = textIn;
 }//end implicit setter

 public function set answer(answerIn:String):void{
 theAnswer = answerIn;
 }//end implicit setter

 public function set choice0(choice:String):void{
 choice00.label=choice;
 }//end implicit setter

 public function set choice1(choice:String):void{
 choice01.label=choice;
 }//end implicit setter

 public function set choice2(choice:String):void{
 choice02.label=choice;
 }//end implicit setter

Setter methods are called by mxml code

Briefly, these methods are called by the code in Listing 1 when values are
assigned to the following five mxml attributes:

 	
question

	
choice0

	
choice1

	
choice2

	
answer

See

Defining
Custom MXML Components

here

 if you are interested in learning more about implicit
setter methods at this point in time.

Implicit setter methods for QuizB

Listing 5 shows five implicit setter methods for

QuizB

 that serve the
same purpose as the five implicit setter methods for

QuizA

. Note the
differences in the code that results from using individual variables to
reference the components in

QuizA

 and using an array to
reference the components in

QuizB

.

Example 3.5.
 public function set question(textIn:String):void{
 components[0].text = textIn;
 }//end implicit setter

 public function set answer(answerIn:String):void{
 theAnswer = answerIn;
 }//end implicit setter

 public function set choice0(choice:String):void{
 components[1].label=choice;
 }//end implicit setter

 public function set choice1(choice:String):void{
 components[2].label=choice;
 }//end implicit setter

 public function set choice2(choice:String):void{
 components[3].label=choice;
 }//end implicit setter

Expose the interface but hide the implementation

These five setter methods, along with the class constructors, constitute the
entire user interface for each class. If you examine Listing 13 and
Listing 14, you will see that these five setter methods and the constructor are
the only

public

 members of either class. All other members of the
classes are declared

private

.

Furthermore:

 	
The names of the five methods are the same in both classes.

	
The names and types of the required parameters for the five methods are
 the same in both classes.

	
The five methods serve the same purpose in both classes.

	
The ultimate behavior of objects instantiated from the two classes is the
 same.

Therefore, the exposed user interface is the same for both classes but the
hidden implementation is significantly different between the two classes.

Purpose of the setter methods

The purpose of the setter methods in both cases is to store mxml attribute
values in the

text

 property of the

TextArea

 at the top of each
question object in Figure 1 and to store mxml attribute values in the

label

 property of each of the

RadioButton

 objects in each question
object in Figure 1. In addition, one of the setter methods stores an
attribute value in the variable named

theAnswer

.

If you compare the code in Figure 4 and Figure 5, you will
see that Figure 4 stores the incoming parameter values by way of the contents of
four instance variables whereas Figure 5 stores the incoming parameter values by
way of the contents of four elements in the array.

Constructor for QuizA

Listing 6 shows the constructor for the class named

QuizA

.

Example 3.6.
 public function QuizA(){//constructor
 width=vboxWidth;
 setStyle("borderStyle","solid");
 setStyle("backgroundColor",0xffff00);

 theQuestion = new TextArea();
 theQuestion.editable = false;
 theQuestion.width=vboxWidth - 2;
 addChild(theQuestion);

 choice00 = new RadioButton();
 choice00.groupName="radioButtonGroup";
 addChild(choice00);

 choice01 = new RadioButton();
 choice01.groupName="radioButtonGroup";
 addChild(choice01);

 choice02 = new RadioButton();
 choice02.groupName="radioButtonGroup";
 addChild(choice02);

 checkButton = new Button();
 checkButton.label = "Click to Check Answer";
 checkButton.addEventListener(MouseEvent.CLICK,
 checkButtonHandler);
 addChild(checkButton);

 result = new TextArea();
 result.editable = false;
 result.width=vboxWidth - 2;
 result.visible=false;
 addChild(result);

 //Register an event listener that will be
 // executed when this object has been fully
 // constructed. It will set the height of
 // the VBox based on the sum of the heights
 // of the components.
 this.addEventListener(
 mx.events.FlexEvent.CREATION_COMPLETE,
 vboxCompleteHandler);
 }//end constructor

There are numerous differences between the code in the constructors for

QuizA

 and

QuizB

. Every statement that needs to access a
reference pointing to one of the six component objects in Figure 1 is different
between the two constructors because of the difference in the way those
references are stored. There are other differences as well, which are shown in Listing 6.

Constructor for QuizB

The constructor for the class named

QuizB

 is shown in Listing 7.

Example 3.7.
 public function QuizB(){//constructor
 width=vboxWidth;
 setStyle("borderStyle","solid");
 setStyle("backgroundColor",0xffff00);

 components[0].editable = false;//theQuestion
 components[0].width=vboxWidth - 2;

 components[1].groupName="radioButtonGroup";
 components[2].groupName="radioButtonGroup";
 components[3].groupName="radioButtonGroup";

 //checkButton
 components[4].label = "Click to Check Answer";
 components[4].addEventListener(MouseEvent.CLICK,
 checkButtonHandler);

 //result
 components[5].editable = false;
 components[5].width=vboxWidth - 2;
 components[5].visible=false;

 //Add GUI components to the VBox.
 for(var cnt:int = 0;cnt < components.length;cnt++){
 addChild(components[cnt]);
 }//end for loop

 //Register an event listener that will be
 // executed when this VBox object has been fully
 // constructed. It will set the height of
 // the VBox based on the sum of the heights
 // of the components.
 this.addEventListener(
 mx.events.FlexEvent.CREATION_COMPLETE,
 vboxCompleteHandler);
 }//end constructor

In addition to the differences in the way that references to the six component
objects are accessed, Listing 7 contains other significant differences as
well.

No code to instantiate the six component objects

First, there is no code in Listing 7 to instantiate the six component
objects. As I mentioned earlier, those objects were
instantiated and used to populate the six-element array referred to by

components

 when the array was created.

Only one statement calling the addChild method in
QuizB

Next, you will notice that there are six statement making calls to the

addChild

 method of the

VBox

 container in Listing 6. Calls to
that method cause the components to be added as children of the container.

Those six calls to the

addChild

 method were consolidated into a single
call inside a

for

 loop in Listing 7.
This is possible because the six references are contained in an array whose
elements can be accessed using a numeric index.

The checkButtonHandler for QuizB

Listing 8 shows the

checkButtonHandler

 method for the class named

QuizA

.

Example 3.8.
 private function checkButtonHandler(
 event:MouseEvent):void{
 result.visible=true;

 if(theAnswer == "0"){
 correctAnswer = choice00.label;
 }else if(theAnswer == "1"){
 correctAnswer = choice01.label;
 }else{
 correctAnswer = choice02.label;
 }//end else

 if((theAnswer=="0" && choice00.selected) ||
 (theAnswer=="1" && choice01.selected) ||
 (theAnswer=="2" && choice02.selected)){

 result.setStyle("color",0x00ff00);
 result.text = "Correct\nCorrect Answer is: "
 + correctAnswer;
 }else{
 result.setStyle("color",0xff0000);
 result.text = "Wrong\nCorrect Answer is: "
 + correctAnswer;
 }//end else
 }//end checkButtonHandler

This is the event handler method that is registered for a

click

 event
on the

Button

 by the code in Listing 6.

The checkButtonHandler for QuizB

Listing 9 shows the corresponding

checkButtonHandler

 method for the
class named

QuizB

.

Example 3.9.
 private function checkButtonHandler(
 event:MouseEvent):void{
 components[5].visible=true;

 if(theAnswer == "0"){
 correctAnswer = components[1].label;
 }else if(theAnswer == "1"){
 correctAnswer = components[2].label;
 }else{
 correctAnswer = components[3].label;
 }//end else

 if((theAnswer=="0" && components[1].selected) ||
 (theAnswer=="1" && components[2].selected) ||
 (theAnswer=="2" && components[3].selected)){

 components[5].setStyle("color",0x00ff00);
 components[5].text =
 "Correct\nCorrect Answer is: "
 + correctAnswer;
 }else{
 components[5].setStyle("color",0xff0000);
 components[5].text = "Wrong\nCorrect Answer is: "
 + correctAnswer;
 }//end else
 }//end checkButtonHandler

This is the event handler method that is registered for a

click

 event
on the

Button

 by the code in Listing 7.

Differences between the code

The differences between the methods named

checkButtonHandler

 in
the two classes result from the different access requirements for the three radio
buttons and the text area at the bottom of the question objects in Figure 1.

In one case

(QuizA)

, access is by way of the named reference variables
that were declared in Listing 2. In the other case

(QuizB)

, access
to each component object's reference is by way of an element of the array that
was created in Listing 3.

The vboxCompleteHandler for QuizA

The

vboxCompleteHandler

 method for the class named

QuizA

 is
shown in Listing 10.

Example 3.10.
 private function vboxCompleteHandler(
 event:mx.events.FlexEvent):void{

 this.height =
 theQuestion.height
 + choice00.height
 + choice01.height
 + choice02.height
 + checkButton.height
 + result.height
 + 36;//six spaces per compnent
 }//end vboxCompleteHandler
 //==//
 }//end class
}//end package

Registered by the code in Listing 6

This is the event handler method that was registered on the

VBox

container by the code near the bottom of Listing 6. The purpose of this event
handler is to execute when the

VBox

 construction is complete and to set
the height of the

VBox

 container to the heights of the six individual
components plus six pixels per component to account for the space between
components.

Listing 10 accesses the individual height values by way of the six reference
variables declared in Listing 2.

The vboxCompleteHandler for QuizB

The

vboxCompleteHandler

 method for

QuizB

 is shown in Listing
11.

Example 3.11.
 private function vboxCompleteHandler(
 event:mx.events.FlexEvent):void{

 this.height = 0;

 for(var cnt:int = 0;cnt < components.length;cnt++){
 this.height += components[cnt].height + 6;
 }//end for loop

 }//end vboxCompleteHandler
 //==//
 }//end class
}//end package

Same purpose as before

This event handler method has the same purpose as the event handler method
with the same name in Listing 10.

Once again, because the references to the components are stored in an array,
a

for

 loop can be used to access and get the height of each of the
components and to compute the overall height as the sum of those heights plus
six pixels for each component.

The end of the program

Listing 10 and Listing 11 each signal the end of the class and the end of the
program.

Run the program

I encourage you to

run

 this
program from the web. Then copy the code from Listing 12, Listing 13, and
Listing 14. Use that code to create a Flex project. Compile and run
the project. Experiment with the code, making changes, and observing the
results of your changes. Make certain that you can explain why your
changes behave as they do.

Resources

I will publish a list containing links to ActionScript resources as a separate document. Search for ActionScript Resources in the Connexions search box.

Complete program listings

Complete listings of the Flex MXML and ActionScript source code discussed in
this lesson are provided in Listing 12 through Listing 14.

Example 3.12.
 <?xml version="1.0" encoding="utf-8"?>

<!--TestGenerator01
 This application illustrates the concept of exposing
 the interface and hiding the implementation. Two
 classes are defined from which custom components are
 instantiated. Components instantiated from both classes
 have the same user interface but they have radically
 different implementations.-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">
 <mx:Label text="ENCAPSULATION DEMO"/>
 <mx:Label text=" Copyright 2009 R.G.Baldwin" />

<!--The following code instantiates an object of the class
named QuizA for a multiple-choice quiz question with three
choices.-->
<cc:QuizA
question=
"Which of the following is not the name of one of the
seven dwarfs?"
choice0="Dopey"
choice1="Sneezy"
choice2="Harold"
answer="2"
/>

<!--The following code instantiates an object of the class
named QuizB for a multiple-choice quiz question with three
choices. Note that the interface is exactly the same as
for the class named QuizA. However, the implementation of
QuizB is radically different from QuizA.-->
<cc:QuizB
question=
"Which of the following is not the name of one of the
seven dwarfs?"
choice0="Dopey"
choice1="Sneezy"
choice2="Harold"
answer="2"
/>

 <!--The purpose of the follow code is to control the
 appearance of the GUI components.-->
 <mx:Style>
 RadioButton {
 fontWeight: bold;
 fontSize: 14;
 }
 Label{
 fontWeight: bold;
 fontSize: 18;
 color: #FFFF00;
 }
 Button{
 fontWeight: bold;
 fontSize: 14;
 }
 TextArea{
 fontWeight: bold;
 fontSize: 14;
 }
 </mx:Style>
</mx:Application>

Example 3.13.
 package CustomClasses{
 import flash.events.*;
 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.RadioButton;
 import mx.controls.TextArea;
 import mx.events.FlexEvent;

 public class QuizA extends VBox{
 private var theQuestion:TextArea;
 private var choice00:RadioButton;
 private var choice01:RadioButton;
 private var choice02:RadioButton;
 private var checkButton:Button;
 private var result:TextArea;

 private var theAnswer:String;//numeric string
 private var correctAnswer:String;//actual string
 private var vboxWidth:int = 375;
 //==//

 public function set question(textIn:String):void{
 theQuestion.text = textIn;
 }//end implicit setter

 public function set answer(answerIn:String):void{
 theAnswer = answerIn;
 }//end implicit setter

 public function set choice0(choice:String):void{
 choice00.label=choice;
 }//end implicit setter

 public function set choice1(choice:String):void{
 choice01.label=choice;
 }//end implicit setter

 public function set choice2(choice:String):void{
 choice02.label=choice;
 }//end implicit setter
 //==//

 public function QuizA(){//constructor
 width=vboxWidth;
 setStyle("borderStyle","solid");
 setStyle("backgroundColor",0xffff00);

 theQuestion = new TextArea();
 theQuestion.editable = false;
 theQuestion.width=vboxWidth - 2;
 addChild(theQuestion);

 choice00 = new RadioButton();
 choice00.groupName="radioButtonGroup";
 addChild(choice00);

 choice01 = new RadioButton();
 choice01.groupName="radioButtonGroup";
 addChild(choice01);

 choice02 = new RadioButton();
 choice02.groupName="radioButtonGroup";
 addChild(choice02);

 checkButton = new Button();
 checkButton.label = "Click to Check Answer";
 checkButton.addEventListener(MouseEvent.CLICK,
 checkButtonHandler);
 addChild(checkButton);

 result = new TextArea();
 result.editable = false;
 result.width=vboxWidth - 2;
 result.visible=false;
 addChild(result);

 //Register an event listener that will be
 // executed when this object has been fully
 // constructed. It will set the height of
 // the VBox based on the sum of the heights
 // of the components.
 this.addEventListener(
 mx.events.FlexEvent.CREATION_COMPLETE,
 vboxCompleteHandler);
 }//end constructor
 //==//

 private function checkButtonHandler(
 event:MouseEvent):void{
 result.visible=true;

 if(theAnswer == "0"){
 correctAnswer = choice00.label;
 }else if(theAnswer == "1"){
 correctAnswer = choice01.label;
 }else{
 correctAnswer = choice02.label;
 }//end else

 if((theAnswer=="0" && choice00.selected) ||
 (theAnswer=="1" && choice01.selected) ||
 (theAnswer=="2" && choice02.selected)){

 result.setStyle("color",0x00ff00);
 result.text = "Correct\nCorrect Answer is: "
 + correctAnswer;
 }else{
 result.setStyle("color",0xff0000);
 result.text = "Wrong\nCorrect Answer is: "
 + correctAnswer;
 }//end else
 }//end checkButtonHandler
 //==//

 private function vboxCompleteHandler(
 event:mx.events.FlexEvent):void{
 //Set the height equal to the sum of the
 // heights of the components plus six
 // pixels per component to account for the
 // space between components.
 this.height =
 theQuestion.height
 + choice00.height
 + choice01.height
 + choice02.height
 + checkButton.height
 + result.height
 + 36;//six spaces per compnent
 }//end vboxCompleteHandler
 //==//
 }//end class
}//end package

Example 3.14.
 //This is an update of the class named QuizA. This version
// stores references to all of the GUI components in a
// six-element array and uses for loops to process them
// where appropriate. Note that the GUI components are
// instantiated and their references are stored in the
// array when the array is created.

package CustomClasses{
 import flash.events.*;
 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.RadioButton;
 import mx.controls.TextArea;
 import mx.events.FlexEvent;

 public class QuizB extends VBox{

 //References to six GUI components are stored in the
 // following array.
 private var components:Array =
 new Array(new TextArea(),//theQuestion
 new RadioButton(),
 new RadioButton(),
 new RadioButton(),
 new Button(),//checkButton
 new TextArea());//result

 private var theAnswer:String;//numeric string
 private var correctAnswer:String;//actual string
 private var vboxWidth:int = 375;
 //==//

 public function set question(textIn:String):void{
 components[0].text = textIn;
 }//end implicit setter

 public function set answer(answerIn:String):void{
 theAnswer = answerIn;
 }//end implicit setter

 public function set choice0(choice:String):void{
 components[1].label=choice;
 }//end implicit setter

 public function set choice1(choice:String):void{
 components[2].label=choice;
 }//end implicit setter

 public function set choice2(choice:String):void{
 components[3].label=choice;
 }//end implicit setter
 //==//

 public function QuizB(){//constructor
 width=vboxWidth;
 setStyle("borderStyle","solid");
 setStyle("backgroundColor",0xffff00);

 components[0].editable = false;//theQuestion
 components[0].width=vboxWidth - 2;

 components[1].groupName="radioButtonGroup";
 components[2].groupName="radioButtonGroup";
 components[3].groupName="radioButtonGroup";

 //checkButton
 components[4].label = "Click to Check Answer";
 components[4].addEventListener(MouseEvent.CLICK,
 checkButtonHandler);

 //result
 components[5].editable = false;
 components[5].width=vboxWidth - 2;
 components[5].visible=false;

 //Add GUI components to the VBox.
 for(var cnt:int = 0;cnt < components.length;cnt++){
 addChild(components[cnt]);
 }//end for loop

 //Register an event listener that will be
 // executed when this VBox object has been fully
 // constructed. It will set the height of
 // the VBox based on the sum of the heights
 // of the components.
 this.addEventListener(
 mx.events.FlexEvent.CREATION_COMPLETE,
 vboxCompleteHandler);
 }//end constructor
 //==//

 private function checkButtonHandler(
 event:MouseEvent):void{
 components[5].visible=true;

 if(theAnswer == "0"){
 correctAnswer = components[1].label;
 }else if(theAnswer == "1"){
 correctAnswer = components[2].label;
 }else{
 correctAnswer = components[3].label;
 }//end else

 if((theAnswer=="0" && components[1].selected) ||
 (theAnswer=="1" && components[2].selected) ||
 (theAnswer=="2" && components[3].selected)){

 components[5].setStyle("color",0x00ff00);
 components[5].text =
 "Correct\nCorrect Answer is: "
 + correctAnswer;
 }else{
 components[5].setStyle("color",0xff0000);
 components[5].text = "Wrong\nCorrect Answer is: "
 + correctAnswer;
 }//end else
 }//end checkButtonHandler
 //==//

 private function vboxCompleteHandler(
 event:mx.events.FlexEvent):void{
 //Set the height equal to the sum of the
 // heights of the components plus six
 // pixels per component to account for the
 // space between components.
 this.height = 0;
 for(var cnt:int = 0;cnt < components.length;cnt++){
 this.height += components[cnt].height + 6;
 }//end for loop

 }//end vboxCompleteHandler
 //==//
 }//end class
}//end package

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Encapsulation - The Big Picture

	
Files:

 	
ActionScript0106\ActionScript0106.htm

	
ActionScript0106\Connexions\ActionScriptXhtml0106.htm

PDF disclaimer:

-end-

Solutions

Chapter 19. Online resources for ActionScript and Flex

Table of Contents

 	

Preface

	

Resources

	

Miscellaneous

Preface

This document is part of a series of lessons dedicated to
object-oriented programming

(OOP)

 with ActionScript.

The purpose of this document is to provide a list of links to online
ActionScript and Flex resources to supplement the other lessons in the series.

Resources

 	

Baldwin's Flex
	programming website

	

Baldwin's
	ActionScript programming website

	

Adobe Flex
	Home

	

	Download free open-source Adobe Flex 3.5 SDK

	

 	

		

		Adobe Flex SDK Installation and Release Notes

	

		

		Application Deployment

	

	

	

	Download free open-source Adobe Flex 4 SDK

	

	

	Download free FlashDevelop IDE

 	

		

		Getting Started with FlashDevelop

	

	

Download Adobe Flash
	Builder 4 Standard for students

	

Download Adobe Flash Player

	

Download Adobe Flash Player Uninstallers

	

Download Adobe Air

	

Download various Adobe
	products

	

Flex Developer Center

	

Flex in a Week
	video training

	

Adobe
	Flex Builder 3 - Getting Started

	

	

Getting Started with Flex 3 - online O'Reilly book by Jack Herrington and
	Emily Kim

	

Adobe Flex 3
	Help

 	

Adobe
		Flex 3.5 Language Reference

	

		

Building and Deploying Flex 3 Applications

	

		

Programming ActionScript 3.0

	

		

ActionScript language and syntax

	

	

Flex.org

	

Wikipedia on MXML

	

ActionScript
	3 guides, tutorials, and samples

	

ActionScript.org

	

ActionScript 3: The Language of Flex

	

	

ActionScript Custom Components

	

	

ActionScript language and syntax

	

	

Comparing, including, and importing ActionScript code

	

	

Programming ActionScript 3.0

	

	

Getting Started with ActionScript 3.0

	

	

Modular applications overview
	

	

	

ActionScript 3 Language Specification

	

Beginners Guide to Getting Started with AS33

	

(Running the compiler
	from the command line.)

	

	

Tips for learning ActionScript 3.0

	

ActionScript
	Technology Center

	

Adobe Flash Platform

	

Adobe
	Flash Player

	

Adobe Air

	

ActionScript language references

	

	

Class property attributes
	

	

Embedding Resources with AS3

	

	

ActionScript 3.0 Bible

 by Braunstein

	

	

Basics of working with sound

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Online resources for ActionScript and Flex

	
Files:

 	
ActionScript0180\ActionScript0180.htm

	
ActionScript0180\Connexions\ActionScriptXhtml0180.htm

PDF disclaimer:

-end-

Solutions

Chapter 16. Animation Fundamentals

Click

Animation01

	Animation07

Animation01A

(Click the "Back" button in your browser
to return to this page.)

Table of Contents

 	

Preface

 	

General

 	

Viewing tip

 	

Figures

	

Listings

			

		

	

Supplemental material

	

	

General background information

 	

A layman's view of the
		Flash Player

	

Startup considerations

	

Time base considerations

 	

Listen for ENTER_FRAME
			events

	

			Listen for TIMER events fired by a Timer object

		

	

	

Preview

	

Discussion and sample code

 	

The project named
		Animation01

	

The project named
		Animation07

	

The project named
		Animation01A

	

	

Run the projects

	

Resources

	

Complete project listings

	

Miscellaneous

Preface

General

 	 All references to ActionScript in this lesson are references to
	 version 3 or later.

This tutorial lesson is part of a series of lessons dedicated to
object-oriented programming

(OOP)

 with ActionScript.

Several ways to create and launch ActionScript projects

There are several ways to create and launch projects written in the
ActionScript programming language. Many, but not all of the lessons in
this series will use Adobe Flex as the launch pad for the sample ActionScript
projects.

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3. The lesson titled

Using Flex 3 in
a Flex 4 World

 was added later to accommodate the release of Flash Builder
4.

(See

Baldwin's Flex programming
website

.)

 You should study those lessons before embarking on the
lessons in this series.

Some understanding of Flex MXML will be required

I also recommend that you study all of the lessons on

Baldwin's Flex programming
website

 in parallel with your study of these ActionScript lessons.
Eventually you will probably need to understand both ActionScript and Flex and
the relationships that exist between them in order to become a successful
ActionScript programmer.

Will emphasize ActionScript code

It is often possible to use either ActionScript code or Flex MXML code to
achieve the same result. Insofar as this series of lessons is concerned,
the emphasis will be on ActionScript code even in those cases where Flex MXML
code may be a suitable alternative.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. Default frame rate for Flash Player
	10.

	

Figure 2

. Measured frame rate of Flash Player 10
	at ten frames per second.

	

Figure 3

. Measured Timer event rate at 30 events
	per second and 30 frames per second.

	

Figure 4

. Measured Timer event rate at 10 events
	per second and 30 frames per second.

	

Figure 5

. Measured Timer event rate at 10 events
	per second and 10 frames per second.

Listings

 	

Listing 1

. Beginning of the class named Main.

	

Listing 2

. Beginning of the constructor.

	

Listing 3

. Register an ENTER_FRAME listener.

	

Listing 4

. The event handler method named
	onEnterFrame.

	

Listing 5

. Beginning of the Main class for the
	project named Animation07.

	

Listing 6

. Completion of the constructor for
	the Main class.

	

Listing 7

. The ENTER_FRAME event handler.

	

Listing 8

. Beginning of the MoveableImage class
	for the project named Animation07.

	

Listing 9

. Embed the image in the swf file.

	

Listing 10

. The constructor for the
	MoveableImage class. z

	

Listing 11

. The moveIt method of the
	MoveableImage class.

	

Listing 12

. New import directives for the
	project named Animation01A.

	

Listing 13

. Instantiation of a new Timer
	object.

	

Listing 14

. Register a TIMER event handler and
	start the timer.

	

Listing 15

. The TIMER event handler.

	

Listing 16

. The Main class for the project
	named TimeBase01.

	

Listing 17

. The Main class for the project
	named TimeBase02.

	

Listing 18

. The Main class for the project
	named Animation01.

	

Listing 19

. The Main class for the project
	named Animation07.

	

Listing 20

. The MoveableImage class for the
	project named Animation07.

	

Listing 21

. The Main class for the project
	named Animation01A.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background
information

I am going to take a very broad view of

computer animation

 in this
and the next few lessons. A program that causes visual images to

change over
time

produces what I am referring to an animation.

Such visual changes can take on many different forms. Perhaps the most
common form of animation is the movement

(change in position)

 of an
object over time. However, animation can involve a change in any visual
attribute of an object over time, such as changes in position, color, size,
opacity, orientation, etc.

A layman's view of the Flash
Player

Major differences

There are some major differences between writing animation code in
ActionScript and writing animation code in Java, C++, and C#.

Those differences generally have to do with the strong tie between the
execution of ActionScript code and the Flash Player.

(In some cases,
references to the Flash Player in this lesson may also apply to Adobe Air.)

To understand how to write animation code in ActionScript, you must first
understand a little about the Flash Player.

Why is it called a

player?

There is a good reason that the Flash Player is referred to as a

player

.
In many ways, it resembles a DVD player or a VCR player. What I mean by that is
that the Flash Player extracts a series of visual images from memory and
displays those images sequentially with a

(hopefully)

 fixed time
interval between the display of one image and the display of the next image in
the sequence.

The scene is displayed once during each frame

We can't know exactly what happens at the lowest levels of the software and the
display hardware. However, from the viewpoint of the ActionScript programmer,
the scene described by the images stored in memory is displayed over and over
even if it isn't changing.

 	 According to the

ActionScript 3.0 Bible, 2nd Edition,

 by
	 Braunstein, ActionScript 3.0 uses a concept known as

"dirty rectangles"
	

to avoid physically rendering rectangular groups of pixels that
	 haven't changed.

Frames

Each new display of the scene is referred to as a

frame

. As you will
see later, it is possible for the ActionScript programmer to simply accept the
default rate at which frames are displayed, or to execute code to set the

frame rate

 to something other than the default rate.

Not the case in Java, C++, and C#

The inherently strong tie between the images stored in memory and the
sequential and repetitive display of those images by the Flash Player does not
exist in Java, C++, or C#

(although it can be

simulated

)

.

There is an open-source
	programming environment named

Processing

	that uses Java to create an architecture very similar to the Flash Player.
	The Microsoft
	

XNA Game Studio

(C#)

 and Game Creators
	

Dark
	GDK

(C++)

 also create a similar architecture. Note, however,
	that these are optional add-ons to the language, which is not the case
	regarding ActionScript and the Flash Player.

The programmer is responsible for the display

Generally speaking, when writing code in those other languages, it is up to
the programmer to write the code that determines how, if, and when the images
are displayed on the
screen.

While it is not unusual for the programmer to write code to cause images to
be displayed in a sequential and repetitive manner in those other languages

(see the above

note

)

, the decision to do that is
strictly up to the programmer.

Good news and bad news

 	 It is possible to

(almost)

 prevent the Flash
	 Player from displaying repetitive frames by writing code to set the frame
	 rate to 0.01 frames per second. This is not without its problems however.

There are pros and cons to both approaches. The good news is that the
behavior of the Flash Player relieves the programmer of the responsibility to
display images on a sequential and repetitive basis.

The bad news is that the Flash Player deprives the programmer of the
opportunity to make decisions in that regard.

Startup considerations

What happens when a swf file is loaded?

It is hard to know exactly what happens when a swf file is loaded into the
Flash player. I have searched the web extensively and have been unable to find
definitive information in that regard.

However, I think I understand what happens, and I will share what I believe to be true
with you.

Different ways to write ActionScript 3 programs

You can write ActionScript 3 programs by creating AS3 or ActionScript
projects using

Adobe's Flex Builder 3

,

Adobe's Flash
Builder 4

, or using the free open source

FlashDevelop

	software.

 	 There are other ways to write ActionScript 3 projects as well.

A
skeleton ActionScript source code file

With all three tools, the creation of an ActionScript project causes a skeleton
ActionScript source code file with an extension of

.as

 to be created.
This file must contain a public class definition with a class name that matches
the name of the file exclusive of the extension.

The name of the ActionScript source code file

The default name of the source code file differs for the three development
tools, but you can rename it if you wish for all three tools. However, you must
also be sure to rename the class definition

(and its constructor)

 so that
the name of the class matches the name of the source code file.

A

release build

In all three cases, when you create a

release build

 for the project,
you end up with a folder containing an swf file, an html file, and some other
folders and files as a minimum.

The name of the swf file

The name of the swf file also varies among the different development tools and it
is best not to change it. It is referenced inside the html file and possibly
inside some of the other files as well, so changing the name of the swf file
would require you to make corresponding changes in one or more other files.

The name of the html file

The name of the html file also varies among the different development tools
but it appears that you can change it with no ill effects.

What happens when the html file is opened in a
browser?

Here is what I believe happens when the html file is opened in a browser that
has the Flash Player plug-in installed.

 	 This may be entirely wrong from a detailed technical viewpoint, but I will present it for your consideration
	 because it seems to describe what actually happens.

The swf file is
opened in the Flash Player

The code inside the html file causes the swf file to be opened in the Flash
Player plug-in that has been installed in that browser.

The swf file contains the compiled class definition for the class defined in
the source code file mentioned

earlier

 plus a number of
other things, including the name of that class.

(You can probably think of a
swf file as being similar to a zip file or a Java JAR file; a file that
encapsulates other files.)

An object of the class is instantiated

The Flash Player plug-in extracts the name of the class and calls the
constructor for that class to instantiate an object of that class.

The constructor is executed

All of the code contained in the constructor plus all of the code called by
code in the constructor, plus all of the code called by that code, etc., is
executed.

Objects of type

DisplayObject

 are displayed

If any of that code instantiates objects that derive from the

DisplayObject

 class and adds those objects to the

display list

,
those objects will be displayed during the next frame.

The current contents of the display list are displayed
during each frame

If all of that code terminates without doing something to cause the contents of
the display list to be modified or to cause the attributes of those display
objects to be modified in the future, they will continue to be displayed once
during each frame. In that case, the display will appear to be static insofar as
the user is concerned.

 	 Note that some objects, such as

Button

 objects, inherently know how to
	 modify their own attributes under certain circumstances, such as being
	 rolled over or clicked by the mouse.

Additional code may be executed
in the future

The code that is executed and caused to be executed by the constructor may do
something to ensure the future execution of additional code,

(such as
registering TIMER or ENTER_FRAME event listeners).

Code that is executed in the future may modify the display list, may modify
the attributes of existing objects on the display list, may instantiate new
display objects and add them to the display list, etc. Such changes will be
reflected in the visual screen display when they occur.

Frame-to-frame changes in the display

As a result of code that is executed in the future, the display list may
change on a frame-to-frame basis causing the physical display to also change on
a frame-to-frame basis. In that case, the display won't appear to be static
insofar as the user is concerned.

That will be the case for the animation projects that I explain in this
lesson.

Time base considerations

In many cases when writing animation code, it is appropriate to use a stable
time base to control progress through the program. There are at least two
different ways to access a time base when writing ActionScript code:

 	
Listen for

ENTER_FRAME

 events

	
Listen for

TIMER

 events fired by an object of the
	

Timer

 class

Not independent approaches

Note, however, that these two approaches are not independent of one another.
It is easy to write code that uses the real-time clock to show that simply
changing the frame rate will cause the

TIMER

 event rate to
error from its specified value.

Also, unless the method named

updateAfterEvent

 is called in
the

TIMER

 event handler, it does very little good to use a

Timer

 object with a fast event rate in an attempt to produce smooth
animations if the frame rate is slower than the

Timer

 event
rate. Without a call to that method in the event handler, changes
made to the visual state of the images in accordance with the

TIMER

event rate will only appear on the screen at the slower frame rate.

Wheels turning backwards

When I was a child, I often went to the movie theatre on Saturday afternoon
to watch grade-B western movies featuring stars like Hopalong Cassidy, Roy
Rogers, Red Ryder, and others.

There was almost always a chase scene in which the bandits were chasing a
stage coach. As a child, I could never figure out why it often looked like the wheels

(with spokes)

 on the stage coach were turning backwards.

An artifact of sampling theory

Now that I understand sampling theory, I also understand what caused the wheels
to turn backwards when the stage coach was moving forward. However, an
explanation of the phenomenon is beyond the scope of this lesson.

(That may
make a good topic for a future lesson.)

 	 It wouldn't be too difficult to write an ActionScript project to
	 demonstrate this phenomenon by varying the event rate of a

Timer

	 object relative to the frame rate of the Flash Player, but I don't have
	 time to do that right now.

An
interaction with the frame rate

Suffice it at this point to say that the phenomenon results from an
interaction between the frame rate of the movie and the speed of motion of the
spokes on the wheel.

(Click

here

for a demonstration of the phenomenon.)

Other dependencies

As you will see later, there are other dependencies between the

Timer

event rate and the frame rate that aren't so easy to explain.

Listen for ENTER_FRAME events

Process an event for each new display frame

According to Braunstein

(see

Resources

), "All
display objects broadcast

Event.ENTER_FRAME

 events before every frame is drawn,
making them ideal timing beacons for animation."

 	 Unfortunately, Braunstein also implies at several locations i
n
	 his excellent book that the accuracy of the repetition rate for

	 ENTER_FRAME

	 events may leave a lot to be desired
.

We can define and register a listener object that will cause code to be
executed each time such an event is fired. Thus, we can use the sequence of

ENTER_FRAME

 events as a time base with which to control the progress of our
ActionScript programs.

A simple AS3 project

Listing 16 provides the source code for the

Main

 class in a very simple AS3
project

(not a Flex project)

named

TimeBase01

that illustrates the processing of

ENTER_FRAME

 events for the purpose of
measuring the average elapsed time between such events.

The average frame rate

This project computes and displays the average frame rate for each of five
consecutive sets of 200 frames.

(The project also shows how to set the frame rate to something other than
the default value.)

Figure 1 shows the text output produced by a single run of this project in

debug

mode on a Windows Vista system.

	

 1271890629505
1271890636155 200 30.075187969924812
1271890642822 400 29.99850007499625
1271890649487 600 30.007501875468865
1271890656153 800 30.003000300030006
1271890662823 1000 29.98500749625187

Figure 16.1.

Default frame rate for Flash Player 	10.

Default frame rate for Flash Player 	10.

The elapsed time

The values in the leftmost column show the elapsed time in milliseconds since
Jan 1, 1970

(known in programming circles as the epoch)

 at the
beginning of the run and at every 200th frame event thereafter.

The frame count and the frame rate

The values in the middle column show the frame count.

The values in the rightmost column show the frame rate computed from the
amount of time required to display each set of 200 frames.

The default frame rate

This run was made without executing code to set the frame rate to a specific
value. The values in the rightmost column in Figure 1 show the default frame
rate for Flash Player 10 running on a Windows Vista machine. As you can see, the
average frame rate is pretty solid at 30 frames per second.

Change the frame rate

Figure 2 shows the project output obtained by removing the comment markers
and enabling the following statement in Listing 16.

stage.frameRate = 10;

The purpose of this statement is to set the frame rate for the Flash Player
to ten frames per second.

	

 1271891012974
1271891033098 200 9.938382031405286
1271891053097 400 10.00050002500125
1271891073097 600 10
1271891093097 800 10
1271891113096 1000 10.00050002500125

Figure 16.2.

Measured frame rate 	 of Flash Player 10 at ten frames per second.

Measured frame rate 	 of Flash Player 10 at ten frames per second.

The average frame rate

As you can see in Figure 2, the average frame rate in this case is solid at ten frames per second.

A best-case scenario

This is probably the optimum case for measuring the frame rate since the
program doesn't do anything else that may have an adverse impact on the ability
of the Flash Player to maintain a constant frame rate.

Won't explain the code at this time

I'm not going to explain the code in Listing 16 at this time. You should have
no difficulty understanding most of the code in Listing 16. Some of the code in
Listing 16 is new to this lesson, but I will explain very similar code later in
the lesson in conjunction with other projects.

Listen for TIMER
events fired by a Timer object

Constructing a Timer object

The

flash.utils

 package contains a class named

Timer

.
An object instantiated from this class will fire a

TIMER

 event
every

(specified value)

 milliseconds.

The constructor for the class requires two parameters:

 	
The delay until the first event and between successive events in
	milliseconds as type

Number

.

	
The repeat count as type

int

, which specifies the
	number of events that will be fired. If this value if 0, the timer will fire
	events indefinitely.

The reciprocal of the rate

Note that whereas the

frequency of frame
events

is specified as

frames per second

, the repetition parameter for timer
events is specified as the time interval between events

(milliseconds per
event)

. One is the reciprocal of the other.

You must start the timer

The timer does not start automatically. You must call the

start()

method to start it.

A project to measure the TIMER event rate

Listing 17 provides a simple AS3 project that illustrates the use of

TIMER

events. As before, this project computes and displays the average frequency of

TIMER

 events for each of five consecutive sets of 200 events.

Two time bases running

In this case, there are two different time bases running: the frame rate and
the timer rate. Unfortunately, it appears that they are not independent of one
another.

A rate of 30 TIMER events per second

Figure 3 shows the output when the timer is set to fire 30 events per second
and the Flash Player is running at its default rate of approximately 30 frames
per second.

	

 1271892152172
1271892159395 200 27.689325764917623
1271892166061 400 30.003000300030006
1271892172727 600 30.003000300030006
1271892179393 800 30.003000300030006
1271892186062 1000 29.9895036737142

Figure 16.3.

Measured Timer event 	 rate at 30 events per second and 30 frames per second.

Measured Timer event 	 rate at 30 events per second and 30 frames per second.

Not too bad after a slow start

As you can see in Figure 3, after a somewhat slow start during the first
	200 events, the timer event rate was reasonably solid at 30 events per second, on the average, for the
	next 800 events.

A rate of 10 TIMER events per second

Figure 4 shows the output when the timer was set to fire 10 events per second
and the Flash Player was running at its default rate of approximately 30 frames
per second.

	

 1271892525653
1271892548767 200 8.65276455827637
1271892571894 400 8.64790072209971
1271892594995 600 8.657633868663694
1271892618445 800 8.528784648187633
1271892641413 1000 8.707767328456983

Figure 16.4.

Measured Timer event 	 rate at 10 events per second and 30 frames per second.

Measured Timer event 	 rate at 10 events per second and 30 frames per second.

Not a very accurate event rate

In this case, the event rate was relatively

precise

 at an average of
about 8.65 events per second but didn't fare well in terms of

accuracy

since the target rate was 10 events per second.

Accuracy versus precision

Accuracy and precision don't mean the same thing. According to

Wikipedia

,

"In the fields of engineering, industry and statistics, the accuracy of a
measurement system is the degree of closeness of measurements of a quantity to
its actual (true) value. The precision of a measurement system, also called
reproducibility or repeatability, is the degree to which repeated measurements
under unchanged conditions show the same results."

Another result at a rate of 10 TIMER events per second

Figure 5 shows the output when the timer was set to produce 10 events per
second and the Flash Player was running at a frame rate of 10 frames per second.

	

 1271893113643
1271893134531 200 9.574875526618154
1271893155027 400 9.758001561280249
1271893175626 600 9.709209184911888
1271893195926 800 9.852216748768473
1271893216226 1000 9.852216748768473

Figure 16.5.

Measured Timer event 	 rate at 10 events per second and 10 frames per second.

Measured Timer event 	 rate at 10 events per second and 10 frames per second.

Close, but no cigar

In this case, the event rate was closer to the target of 10 events per
second, but was still consistently below the mark.

Even more troublesome is the difference between the results in Figure 4 and
the results in Figure 5, which show that the event rate of the timer depends on
the frame rate of the Flash Player.

An empty Flash Player window

The Flash Player was running in all five cases discussed above, but it was
simply displaying an empty white window. No objects were being displayed in the
Flash Player window.

A stand alone Flash Player

It is also worth noting that in all five cases, the standalone Flash
Player was running, as opposed to the Flash Player plug-in for a browser.
Therefore, these results were not influenced by the behavior of any specific
browser.

The two projects discussed above were developed using the FlashDevelop
	 tool. By default, the Test Movie option on the FlashDevelop Project Menu runs
	 the project in a stand alone Flash Player and not in a browser plug in.

Preview

In the remainder of this lesson, I will explain three different animation
projects.

Run the ActionScript projects

If you have the Flash Player plug-in

(version 9 or later)

 installed
in your browser, you can click

here

to run the projects that I will explain in this lesson.

If you don't have the proper Flash Player installed, you should be notified
of that fact and given an opportunity to download and install the Flash Player
plug-in program.

Discussion and sample code

The project named Animation01

I will explain the remaining projects in this lesson in fragments. A complete
listing of the code for the project named

Animation01

 is provided in
Listing 18 near the end of the lesson.

This is a very simple AS3 animation project.

(Note that it is not a Flex
project.)

I recommend that you

run

 the
online version of this project before continuing.

(See

Deployment of FlashDevelop
projects

 for information on how to deploy a release build from a
FlashDevelop project on the Connexions website.)

The ENTER_FRAME event stream

This project uses the

ENTER_FRAME

 event stream as a time
base to cause a filled blue circle drawn on a transparent

Sprite

object to move diagonally from left to right across the Flash window. The sprite
with the circle moves out of the Flash window at the bottom right.

Beginning of the class named Main

This project was developed using the FlashDevelop tool. By default, the FlashDevelop
tool names the required source code file and
class definition

Main

. Listing 1 shows the
beginning of the

Main

 class for the project named

Animation01

.

Example 16.1.
 package {
 import flash.display.Sprite;
 import flash.events.Event;

 public class Main extends Sprite{
 private var sprite:Sprite;
 private var dx:Number = 3;//x-movement distance
 private var dy:Number = 2;//y-movement distance
 private var radius:Number = 24;//radius of circle

Not much that is new here

The class named

Main

 extends the class named

	Sprite

, which is a subclass of the class named

	DisplayObject

 several levels down the inheritance hierarchy.
	Therefore, the Flash Player will instantiate an object of this class and add
	it to the display list.

Otherwise, there is nothing in Listing 1 that should be new to you, so no
further explanation of the code in Listing 1 should be required.

Beginning of the constructor

The beginning of the constructor for the

Main

 class is shown
in Listing 2.

Example 16.2.
 public function Main():void {
 sprite = new Sprite();
 //Enable the following statement to cause the
 // sprite background to be visible.
 //sprite.opaqueBackground = true;

 //Draw a filled circle on the Sprite object;
 sprite.graphics.beginFill(0x0000ff, 1.0);
 sprite.graphics.drawCircle(radius,radius,radius);
 sprite.graphics.endFill();

 addChild(sprite);//default location is 0,0

Another object of type Sprite

Listing 2 instantiates another object of the

Sprite

 class
and draws a blue filled circle on that object.

Then it adds that object to the display list as a child of the object of the
class

Main

.

Draw a filled circle

According to the documentation, the

beginFill

 method that is
called on the

Sprite

 object in Listing 2:

"Specifies a simple one-color fill that subsequent calls to other

Graphics

 methods (such as

lineTo()

 or

drawCircle()

)
use when drawing. The fill remains in effect until you call the

beginFill()

,

beginBitmapFill()

, or

beginGradientFill()

 method. Calling the

clear()

 method
clears the fill.

The fill is not rendered until the

endFill()

 method is called."

That should be a sufficient explanation of how the code in Listing 2 draws a
filled circle on the new

Sprite

 object.

Add the new Sprite object to the display list

As mentioned earlier, the last statement in Listing 2 adds the new

Sprite

 object to the display list as a child of the object of the

Main

 class.

By default

, the new

Sprite

 object is added at coordinates 0,0 which is the upper-left
corner of the

Main

object.

Register an ENTER_FRAME listener

Listing 3 registers an event handler method named

onEnterFrame

that will be executed each time the Flash Player enters a new display frame.

Listing 3 also signals the end of the constructor.

Example 16.3.

 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }//end constructor

The event handler method named onEnterFrame

The event handler method named

onEnterFrame

is shown in its entirety in Listing 4.

Example 16.4.
 public function onEnterFrame(event:Event):void {
 sprite.x += dx;
 sprite.y += dy;
 }//end onEnterFrame

 }//end class

}//end package

Properties named x and y

The

Sprite

 object that was instantiated in Listing 2 has
	properties named

x

 and

y

. The
	documentation has this to say about the property named

x

.

"Indicates the x coordinate of the DisplayObject instance relative to
the local coordinates of the parent DisplayObjectContainer."

The description of the property named

y

 is very similar.

What this means in practice

What this means in practice is that the Flash Player uses the values of

x

 and

y

 properties as coordinates to decide where to
draw the

Sprite

 object relative to the upper-left corner of
its container, which in this case is the object of the

Main

class.

By default, these property values are zero, which explains why the new

Sprite

 object is

initially drawn

 at
the upper-left corner of the

Main

 object.

Modify the x and y property values

Each time the Flash Player fires an

ENTER_FRAME

 event, the code in Listing 4
increases the values of the

x

 and

y

 property
values of the

Sprite

 object by the amounts assigned to

dx

 and

dy

 in Listing 1.

Draw the sprite in a new location

The next time the objects in the display list are rendered on the screen, the

Sprite

 object containing the filled blue circle will be drawn
a little further to the right and a little further down the screen. That is what
causes the blue ball to move diagonally from left to right across the Flash
Player window when you

run

the project.

Nothing to stop it

Since there is nothing in the code to reverse the process of incrementing the

x

 and

y

 property values, the blue ball
continues moving until it disappears off the Flash Player window on the
lower-right side.

I will do something about that in the next project, which causes an image
that is a caricature of me to bounce around inside of a rectangle.

The project named Animation07

A major upgrade

This project is a major upgrade of the project named

Animation01

in several respects. I recommend that you

run

 this project before
continuing.

Draw a rectangle

First, the constructor for the

Main

 class draws a 450 x 500
pixel rectangle with a yellow background and border with a thickness of three
pixels.

(The constructor begins in Listing 5 and continues into Listing 6.)

An object of a new class

Then the constructor instantiates an object of a new

MoveableImage

 class,
passing the dimensions of the rectangle to the constructor for that class and
adds that object to the display list.

An event handler

Finally, the constructor for the

Main

 class registers an

ENTER_FRAME

 event handler, which
asks the

MoveableImage

 object to move each time it is called.

(See Listing 7.)

The MoveableImage class

The

MoveableImage

 class extends the

Sprite

class and embeds an image in the

Sprite

 object when it is
instantiated.

(See Listing 8 and Listing 9.)

The dimensions of a rectangle

The constructor for the

MoveableImage

 class

(see Listing
10)

 receives the
dimensions of a rectangle as incoming parameters and saves those dimensions for
later use.

The moveIt method

The

MoveableImage

 class defines a method named

moveIt

(see Listing 11)

.

Each time the

moveIt

 method is called, the object,

(including the embedded image)

 moves by a prescribed distance in the
horizontal and vertical directions.

Bounce off the edges

Whenever the object collides with an edge of the rectangle, it bounces off
the edge and starts moving in a different direction.

Beginning of the Main class for the project named
Animation07

As before, I will explain this program in fragments. A complete listing of
the

Main

 class for the program is provided in Listing 19.

The

Main

 class begins in the fragment shown in Listing 5.

Example 16.5.
 package {
 import flash.display.Sprite;
 import flash.events.Event;

 public class Main extends Sprite{
 private var moveableImage:MoveableImage
 private var rectWidth:uint = 450;
 private var rectHeight:uint = 500;

 public function Main() {

 //Draw a black rectangle with a yellow background.
 this.graphics.beginFill(0xFFFF00,1.0);

The only things that are new in Listing 5 are the two statements that call the

lineStyle

 and

drawRect

 methods of the

Graphics

class.

The first of the two statements sets the line style for the rectangle to be
three pixels thick and to be black.

The second of the two statements sets the upper left corner of the rectangle
to a coordinate position of 0,0 in the parent container and sets the width and
height to the values established earlier when the width and height variables
were declared and initialized.

Completion of the constructor for the Main class

Listing 6 completes the constructor for the

Main

 class.

Example 16.6.
 moveableImage =
 new MoveableImage(rectWidth,rectHeight);
 addChild(moveableImage);//default location is 0,0

 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }//end constructor

A new object of a custom class

Listing 6 begins by instantiating an object of the new custom class named

MoveableImage

, passing the width and height of the rectangle to
the constructor for that class.

Then Listing 6 adds the new object to the display list. This will cause it to
be rendered in the Flash Player window during the next display frame.

Finally, Listing 6 registers an event handler for

ENTER_FRAME

 events.

The ENTER_FRAME event handler

The event handler is shown in Listing 7. Each time the

onEnterFrame

method is called, a message is sent to the

MoveableImage

 object
asking it to execute its

moveIt

 method.

Example 16.7.

 public function onEnterFrame(event:Event):void {
 //Ask the image to move.
 moveableImage.moveIt();
 }//end onEnterFrame

 }//end class

}}//end package

The end of the Main class

Listing 7 also signals the end of the

Main

 class.

Beginning of the MoveableImage class

A complete listing of the

MoveableImage

 class is provided in
Listing 20. The beginning of the

MoveableImage

 class is shown in
the code fragment in Listing 8.

Example 16.8.
 package {
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.display.Bitmap;

 public class MoveableImage extends Sprite{

 private var dx:Number = 4;//x-movement distance
 private var dy:Number = 2;//y-movement distance
 private var rectWidth:uint;
 private var rectHeight:uint;
 private var imageWidth:uint;
 private var imageHeight:uint;

There is nothing new in Listing 8.

Embed the image in the swf file

The constructor for the

MoveableImage

 class continues in
Listing 9. The code in Listing 9 extracts an image from the specified image file
and embeds it in the swf file with a reference named

headImage

.

Example 16.9.
 [Embed(source='/baldwin.jpg')]
 private var imgClass:Class;
 private var headImage:Bitmap = new imgClass ();

New to this lesson

I'm not going to try to explain how and why
it works. I will simply
suggest that you memorize the syntax for the next time that you need to do the
same thing.

In addition, I will refer you to the following

website

 where
you will find an explanation.

The constructor for the MoveableImage class

The constructor for the class is shown in its entirety in Listing 10.

Example 16.10.

 public function MoveableImage(rectWidth:uint,
 rectHeight:uint) {
 //Save the dimensions of the rectangle.
 this.rectWidth = rectWidth;
 this.rectHeight = rectHeight;

 //Get and save the dimensions of the image.

The first two statements in Listing 10 simply save the width and height of
the rectangle for later use. That shouldn't be new to you.

The next two statements use the reference to
the embedded image

(

headImage

)

 to get and save the
width and height of the image referred to by the instance variable

(see
	Listing 9)

 named

headImage

.

The last statement in Listing 10 adds that image to the
display list as a child of the

Sprite

 object.

The moveIt method of the MoveableImage class

The

moveIt

 method is shown in its entirety in Listing 11.

Example 16.11.

 //Cause the Sprite object to move and bounce off of
 // the edges of the rectangle.
 public function moveIt():void {

 //Test for a collision with the left or right edge
 // of the rectangle.
 if (((this.x + dx) > (rectWidth - imageWidth)
 || (this.x < 0))) {
 dx *= -1;//Reverse horizontal direction
 }//end if

 //Test for a collision with the top or the bottom
 // of the rectangle.
 if (((this.y + dy) > (rectHeight - imageHeight)
 || (this.y < 0))) {
 dy *= -1;//Reverse vertical direction.
 }//end if

 //Make the move.
 this.x += dx;
 this.y += dy;

 }//end onEnterFrame

 }//end class

}}//end package

The

moveIt

 method modifies the

x

 and

y

 property values of the

Sprite

 object so that it will be rendered in a
different location during the next display frame.

The logic that causes the object to bounce off the edges may take a few
minutes for you to unravel. Otherwise, you should have no trouble understanding
the code in Listing 11.

The end of the class

Listing 11 signals the end of the

MoveableImage

 class.

The project named Animation01A

The code for this project is shown in its entirety in Listing 21.

This project is essentially the same as

Animation01

 except
that this project creates a

Timer

 object and uses

TIMER

events in place of

ENTER_FRAME

 events for timing.

If you

run

 this project, you
will see that just like

Animation01

, it causes a filled
blue circle that is drawn on a transparent

Sprite

 object to
move diagonally from left to right across the Flash window.

The sprite with the circle moves out of the Flash window at the bottom right.

Because of the similarity of this project to the

Animation01

project, I am only going to discuss the code that is significantly different
between the two projects.

New import directives for the project named
Animation01A

Listing 12 shows two new import directives that are required to make it
possible to instantiate an object of the

Timer

 class.

Example 16.12.
 import flash.events.TimerEvent;
 import flash.utils.Timer;

Instantiate a new Timer object

Listing 13 shows the code that instantiates a new

Timer

object. This object will fire a

TIMER

 event every 30
milliseconds and will continue to fire

TIMER

events

indefinitely.

Example 16.13.
 private var timer:Timer = new Timer(30);

Register a TIMER event handler and start the timer

The code in Listing 14 registers an event handler on the

Timer

object and then starts the timer running.

Example 16.14.
 timer.addEventListener(TimerEvent.TIMER, onTimer);
 timer.start();

The TIMER event handler

The

TIMER

 event handler is shown in Listing 15. Except for
the method signature, this is essentially the same code that you saw in the

ENTER_FRAME

 event handler in Listing 4.

Example 16.15.
 public function onTimer(event:TimerEvent):void {
 x += dx;
 y += dy;
 }//end onTimer

That's a wrap

I'm going to let that be it for this lesson, which has concentrated on time
bases and animation for ActionScript 3 projects.

Run the projects

I encourage you to

run

 these projects from the web.
Then copy the code from Listing 16 through Listing 21. Use that code to
create your own projects. Compile and run the projects. Experiment with
the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

Resources

I will publish a list containing links to ActionScript
resources as a separate document. Search for ActionScript
Resources in the Connexions search box.

Complete project listings

Complete listings of the projects discussed in this lesson are provided
below.

Example 16.16.
 /*Project TimeBase01

The purpose of this project is to experiment with the use
of Event.ENTER_FRAME as a time base. The project computes
and displays the average frame rate over five consecutive
sets of 200 frames. It also shows how to set the frame
rate to something other than the default value.

Must be run in debug mode to display the text data.
***/
package {
 import flash.display.Sprite;
 import flash.events.Event;

 public class Main extends Sprite{
 private var sprite:Sprite;
 private var date:Date;
 private var countA:uint = 0;
 private var baseTime:Number = 0;
 private var currentTime:Number = 0;

 public function Main():void {
 sprite = new Sprite();
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
// stage.frameRate = 10;
 }//end constructor
 //--//

 //Event handler.
 public function onEnterFrame(event:Event):void {
 currentTime = new Date().time;
 if (countA == 0) {
 baseTime = currentTime;
 trace(baseTime);
 }//end if

 if ((countA > 0) && (countA < 1001)
 && (countA % 200 == 0)){
 trace(currentTime + " " + countA + " "
 + 1000 / ((currentTime - baseTime) / 200));
 baseTime = currentTime;
 }//end if
 countA++;
 }//end onEnterFrame
 }//end class

}//end package

Example 16.17.
 /*Project TimeBase02

The purpose of this program is to experiment with the use
of a Timer object as a time base. The program computes
and displays the average tick rate of the Timer object
over five consecutive sets of 100 frames . It also shows
how to set the tick rate to a specific value and how to
specify the number of ticks.
***/
package {
 import flash.display.Sprite;
 import flash.events.TimerEvent;
 import flash.utils.Timer;

 public class Main extends Sprite{
 private var sprite:Sprite;
 private var timer:Timer = new Timer(1000/10,1001);
 private var date:Date;
 private var countB:uint = 0;
 private var baseTime:Number = 0;
 private var currentTime:Number = 0;

 public function Main():void {
 sprite = new Sprite();
 timer.addEventListener(TimerEvent.TIMER, onTimer);
 timer.start();

// stage.frameRate = 10;
 }//end constructor
 //--//

 //Event handler
 public function onTimer(event:TimerEvent):void {
 currentTime = new Date().time;
 if (countB == 0) {
 baseTime = currentTime;
 trace(baseTime);
 }//end if

 if((countB > 0) && (countB < 1001) &&
 (countB % 200 == 0)){
 trace(currentTime + " " + countB + " "
 + 1000 / ((currentTime - baseTime) / 200));
 baseTime = currentTime;
 }//end if
 countB++;
 }//end onTimer

 //--//

 }//end class

}//end package

Example 16.18.
 /*Project Animation01
Extremely simple animation project.
This is an AS3 project and not a Flex project.

Uses the ENTER_FRAME event for timing.
Causes a filled blue circle that is drawn on a
transparent Sprite object to move diagonally
from left to right across the Flash window.

The sprite with the circle moves out of the
Flash window at the bottom right.
***/
pacpackage {
 import flash.display.Sprite;
 import flash.events.Event;

 public class Main extends Sprite{
 private var sprite:Sprite;
 private var dx:Number = 3;//x-movement distance
 private var dy:Number = 2;//y-movement distance
 private var radius:Number = 24;//radius of circle

 public function Main():void {
 sprite = new Sprite();
 //Enable the following statement to cause the
 // sprite background to be visible.
 //sprite.opaqueBackground = true;

 //Draw a filled circle on the Sprite object;
 sprite.graphics.beginFill(0x0000ff, 1.0);
 sprite.graphics.drawCircle(radius,radius,radius);
 sprite.graphics.endFill();

 addChild(sprite);//default location is 0,0
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }//end constructor
 //--//

 //Event handler.
 public function onEnterFrame(event:Event):void {
 sprite.x += dx;
 sprite.y += dy;
 }//end onEnterFrame

 }//end class

}//end package

Example 16.19.
 /*Project Animation07

Classical bouncing ball project written as an AS3 project.
However, in this case the ball is a Sprite object with
an embedded image of Dick Baldwin's caricature.

Causes the image to bounce around inside of a 450 x 500
rectangle.
***/
package {
 import flash.display.Sprite;
 import flash.events.Event;

 public class Main extends Sprite{
 private var moveableImage:MoveableImage
 private var rectWidth:uint = 450;
 private var rectHeight:uint = 500;

 public function Main() {

 //Draw a black rectangle with a yellow background.
 this.graphics.beginFill(0xFFFF00,1.0);
 this.graphics.lineStyle(3, 0x000000);
 this.graphics.drawRect(0, 0, rectWidth, rectHeight);
 this.graphics.endFill();

 moveableImage =
 new MoveableImage(rectWidth,rectHeight);
 addChild(moveableImage);//default location is 0,0

 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }//end constructor
 //--//

 //Event handler.
 public function onEnterFrame(event:Event):void {
 //Ask the image to move.
 moveableImage.moveIt();
 }//end onEnterFrame

 }//end class

}//end package

Example 16.20.
 /*Class MoveableImage
Constructs a Sprite with an embedded image that can be
moved around inside of a rectangle for which the
dimensions are passed to the constructor.
***/
package {
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.display.Bitmap;

 public class MoveableImage extends Sprite{

 private var dx:Number = 4;//x-movement distance
 private var dy:Number = 2;//y-movement distance
 private var rectWidth:uint;
 private var rectHeight:uint;
 private var imageWidth:uint;
 private var imageHeight:uint;

 [Embed(source='/baldwin.jpg')]
 private var imgClass:Class;
 private var headImage:Bitmap = new imgClass ();

 public function MoveableImage(rectWidth:uint,
 rectHeight:uint) {
 //Save the dimensions of the rectangle.
 this.rectWidth = rectWidth;
 this.rectHeight = rectHeight;

 //Get and save the dimensions of the image.
 imageWidth = headImage.width;
 imageHeight = headImage.height;

 //Add the image to the display list.
 addChild(headImage);

 }//end constructor
 //--//

 //Cause the Sprite object to move and bounce off of
 // the edges of the rectangle.
 public function moveIt():void {

 //Test for a collision with the left or right edge
 // of the rectangle.
 if (((this.x + dx) > (rectWidth - imageWidth)
 || (this.x < 0))) {
 dx *= -1;//Reverse horizontal direction
 }//end if

 //Test for a collision with the top or the bottom
 // of the rectangle.
 if (((this.y + dy) > (rectHeight - imageHeight)
 || (this.y < 0))) {
 dy *= -1;//Reverse vertical direction.
 }//end if

 //Make the move.
 this.x += dx;
 this.y += dy;

 }//end onEnterFrame

 }//end class

}//end package

Example 16.21.
 /*Project Animation01A
Extremely simple animation program.
This is an AS3 project and not a Flex project.

This program is essentially the same as Animation01
except that this program creates a Timer object and
uses TIMER events in place of ENTER_FRAME events for
timing.

Causes a filled blue circle that is drawn on a
transparent Sprite object to move diagonally
from left to right across the Flash window.

The sprite with the circle moves out of the
Flash window at the bottom right.
***/
package {
 import flash.display.Sprite;

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Animation Fundamentals

	
Files:

 	
ActionScript0150\ActionScript0150.htm

	
ActionScript0150\Connexions\ActionScriptXhtml0150.htm

PDF disclaimer:

Deployment of FlashDevelop projects

 on the Connexions website:

index.cnxml

release build

swfobject.js

js

index.html

swfobject.js

index.html

index.html

swfobject.js

-end-

Solutions

Chapter 18. Combining Sound with Motion and Image Animation

Click

LighteningStorm01

(Click the "Back" button in your browser
to return to this page.)

Table of Contents

 	

Preface

 	

General

 	

Viewing tip

 	

Figures

	

Listings

			

		

	

Supplemental material

	

	

General background information

	

Preview

	

Discussion and sample code

 	

The MXML code

	

The ActionScript code

	

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

Preface

General

This tutorial lesson is part of a series of lessons dedicated to
object-oriented programming

(OOP)

 with ActionScript.

The project that I will present and explain in this lesson is the culmination
of several previous lessons dealing with animation, sound, transparency, mouse
events, chroma key, etc.

	All references to ActionScript in this lesson are references to version 3.0 or later.

Several ways to create and launch ActionScript programs

There are several ways to create and launch programs written in the
ActionScript programming language. Many of the lessons in this series will
use Adobe Flex as the launch pad for the sample ActionScript programs.

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3. The lesson titled

Using Flex 3 in
a Flex 4 World

 was added later to accommodate the release of Flash Builder
4.

(See

Baldwin's Flex programming
website

.)

 You should study those lessons before embarking on the
lessons in this series.

Some understanding of Flex MXML will be required

I also recommend that you study all of the lessons on

Baldwin's Flex programming
website

 in parallel with your study of these ActionScript lessons.
Eventually you will probably need to understand both ActionScript and Flex and
the relationships that exist between them in order to become a successful
ActionScript programmer.

Will emphasize ActionScript code

It is often possible to use either ActionScript code or Flex MXML code to
achieve the same result. Insofar as this series of lessons is concerned,
the emphasis will be on ActionScript code even in those cases where Flex MXML
code may be a suitable alternative.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. LighteningStorm01 at startup.

	

Figure 2

. Visual output produced by clicking the
	button.

	

Figure 3

. Project file structure for
	LighteningStorm01.

	

Figure 4

. The image named normalsky.jpg.

	

Figure 5

. The image named flippedsky.jpg.

	

Figure 6

. The tree image.

Listings

 	

Listing 1

. Beginning of the Driver class.

	

Listing 2

. Beginning of the constructor for the
	Driver class.

	

Listing 3

. The remainder of the constructor.

	

Listing 4

. The CREATION_COMPLETE event handler.

	

Listing 5

. Beginning of the TIMER event
	handler.

	

Listing 6

. Controlling the motion of the moon.

	

Listing 7

. The method named
	processBackgroundColor.

	

Listing 8

. Beginning of the method named
	makeTheCloudsMove.

	

Listing 9

. Compute new alpha value for the
	normal sky image.

	

Listing 10

. Compute new alpha value for the
	flipped sky image.

	

Listing 11

. Apply the new alpha values to both
	sky images.

	

Listing 12

. The CLICK event handler for the
	button.

	

Listing 13

. The method named flashLightening.

	

Listing 14

. The method named drawLightening.

	

Listing 15

. The method named
	soundCompleteHandler.

	

Listing 16

. Code for Main.mxml.

	

Listing 17

. Source code for the class named
	Driver.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background
information

Things you have learned

You learned about event handling, bitmap basics, the fundamentals of image
pixel processing, and using chroma key compositing to create transparent
backgrounds in earlier lessons in this series.

You also learned about drawing with the

Graphics

 class, the fundamentals of
animation and using sound in ActionScript in earlier lessons as well.

In the lesson titled

Animation Fundamentals

 I told you that
I refer to any program code that causes visual images to

change over time

 to
be animation.

Other types of animation

Although we commonly think of animation in terms of images that appear to
move over time, there are many other valid forms of
animation as well. For example, if the color of an image changes over time, that
is animation. If the transparency of an image changes over time, that is
animation. If graphic objects appear and then disappear, that is animation.

In this lesson, I will explain a program that is intended to pull together
much of what you have already learned and to introduce you to
this broader view of animation as well.

Preview

Run the ActionScript program named
LighteningStorm01

.

I recommend that you

run

 the online version of this
program before continuing.

		If you don't have the proper Flash Player installed, you should be notified
of that fact and given an opportunity to download and install the Flash Player
plug-in program.

LighteningStorm01 at startup

The program begins by displaying a scene similar to that shown in Figure 1.

 [image: Missing image.]

Figure 18.1.

LighteningStorm01 at startup.

LighteningStorm01 at startup.

What you should see

When the scene in Figure 1 appears, the clouds should seem to be moving
slowly. The overall color of the scene should be changing slowly in the
bluish-green
range. The moon should be moving very slowly from left to right across the screen.
You should be able to barely make out a tree in the fog near the bottom center of the image and
you should be able to hear the wind and the rain. The sound of the rain should
be continuous while the sound of the wind should come and go on a random
basis.

Output produced by clicking the button

When you click the button, the scene should change to one similar to that
shown in Figure 2.

 [image: Missing image.]

Figure 18.2.

Visual output produced by clicking the button.

Visual output produced by clicking the button.

The sights and sounds of a lightening bolt

You should hear a sizzle sound as a lightening bolt comes out of the sky and strikes
the old tree. The shape of the lightening bolt should be random from one
button-click to the next. Except for the motion of the moon and the shape of the
tree, the details of all of the visual elements should change over time on in a
random fashion.

The flash of the lightening

The lightening bolt should light up the scene with an eerie yellowish-green glow.
The overall color of the scene should change slowly and randomly while the sizzle
sound is playing and the lightening bolt is visible.

A loud clap of thunder

There should be a loud clap of thunder immediately following the sizzle sound as the
scene reverts to something similar to that shown in Figure 1.

The moon

Throughout all of this, the moon should continue to move very slowly from left to
right across the scene. When it reaches the right edge of the scene, it should
wrap
around and start over on the left side.

Discussion and sample code

The project file structure

The final project file structure, captured from the FlashDevelop project
window, is shown in Figure 3.

 [image: Missing image.]

Figure 18.3.

Project file structure for LighteningStorm01.

Project file structure for LighteningStorm01.

As you can see in Figure 3, all of the sound and image files are stored in
the folder named

src

. In addition, all of the sound files were
manually copied into the folder named

bin

.

Will explain in fragments

I will explain the code for
this program in fragments. Complete listings of the MXML code and the
ActionScript code are provided in Listing 16 and Listing 17 near the end of the
lesson.

The MXML code

The MXML code is shown in Listing 16. As is often the case in this series of
lessons, the MXML file is very simple because the program was coded
almost entirely in ActionScript. The MXML code simply instantiates an object of
the

Driver

 class. From that point forward, the behavior of the
program is controlled by ActionScript code.

The ActionScript code

Beginning of the Driver class

The

Driver

 class begins in Listing 1.

Example 18.1.
 /*Project LighteningStorm01
This project was developed using FlashDevelop, which
has a couple of requirements that may not exist with
Flex Builder 3 or Flash Builder 4.
1. You must manually copy all mp3 files into the bin
folder.
2. You must insert an extra slash character in the URL
when embedding an image file in the swf file.
***/
package CustomClasses{
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.media.SoundChannel;
 import mx.containers.Canvas;
 import mx.controls.Image;
 import mx.controls.Button;
 import mx.events.FlexEvent;
 import flash.events.TimerEvent;
 import flash.events.MouseEvent;
 import flash.utils.Timer;
 import flash.utils.ByteArray;
 import flash.media.Sound;
 import flash.net.URLRequest;
 import flash.media.SoundChannel;
 import flash.events.Event;
 import flash.geom.Rectangle;

 //==//

 public class Driver extends Canvas {
 //Extending Canvas makes it possible to position
 // images with absolute coordinates. The default
 // location is 0,0;

 private var bkgndColor:uint = 0x005555;
 private var redBkgnd:uint = 0;
 private var greenBkgnd:uint = 128;
 private var blueBkgnd:uint = 128;

 private var normalSky:Image = new Image();
 private var flippedSky:Image = new Image();

 private var tree:Image = new Image();
 private var newTreeImage:Image = new Image();
 private var treeBitMap:Bitmap;

 private var alphaLim:Number = 0.5;
 private var normalAlpha:Number = alphaLim;
 private var flippedAlpha:Number;
 private var normalAlphaDecreasing:Boolean = true;

 private var canvasObj:Canvas;
 private var timer:Timer = new Timer(35);
 private var loopCntr:uint;

 private var lighteningCntr:uint = 0;
 private var lighteningCntrLim:uint = 25;
 private var lighteningStartX:uint;
 private var lighteningStartY:uint;
 private var lighteningEndX:uint;
 private var lighteningEndY:uint;

 private var sizzle:Sound;
 private var thunder:Sound;
 private var wind:Sound;
 private var rain:Sound;

 private var sizzlePlaying:Boolean = false;
 private var channel:SoundChannel;

 private var button:Button;

 private var radius:Number = 24;//radius of circle
 private var circleX:Number = 5 * radius;
 private var circleY:Number = 1.5 * radius;
 private var dx:Number = 0.05;

Nothing new here

There is nothing new in Listing 1, which consists almost entirely of import
directives and instance variable declarations, so no further explanation of
Listing 1 should be required. I will simply call your attention to the comments
regarding the FlashDevelop IDE at the beginning of Listing 1.

Beginning of the constructor for the Driver class

The constructor for the

Driver

 class begins in Listing 2.

Example 18.2.
 public function Driver(){//constructor
 //Make this Canvas visible.
 bkgndColor = (redBkgnd << 16) + (greenBkgnd << 8)
 + blueBkgnd;
 setStyle("backgroundColor", bkgndColor);
 setStyle("backgroundAlpha",0.5);

A 24-bit color value

The first statement in Listing 2 uses the left bitshift operator to
	construct a 24-bit binary value that will be used to establish the red,
	green, and blue values for the initial background color of the

	Canvas

 object. Hopefully you are already familiar with binary bit
	shifting. If not, just Google

bitshift operator

 and you
	will find a lot of information on the topic. Note that the left bitshift
	operator is essentially the same in ActionScript, Java, C++, and other
	programming languages as well.

Set the initial background color and the transparency

Then Listing 2 calls the

 setStyle

 method twice in
	succession to set the background color and the transparency of that color
	for the background of the canvas.

An examination of the initial values for

redBkgnd

,

greenBkgnd

, and

blueBkgnd

 in Listing 1 indicates that
the initial background color is a dark shade of cyan with equal contributions of
green and blue and no red.

The transparency of the background color

The second call to the

setStyle

 method in Listing 2 causes
the background color to exhibit a 50-percent transparency or opacity.

It is important that the background color not be completely opaque. If it
were opaque, it would not be possible to see the yellow moon and the yellow
lightening bolts that are drawn on the canvas behind the background color.

Will change over time

The background color will be changed later in an event handler that is
registered on a

Timer

 object. The color will not only be
subject to small random changes. It will also be subject to major changes
switching between
the periods when a lightening flash is occurring or not occurring.

The remainder of the constructor

The remainder of the constructor is shown in Listing 3. There is nothing new
in Listing 3 so no explanation beyond the embedded comments should be needed.

Example 18.3.
 //Load the two sky images and embed them in the
 // swf file.
 //Note the use of a / to eliminate the "Unable to
 // resolve asset for transcoding" Compiler Error
 [Embed("/normalsky.jpg")]
 var imgNormal:Class;
 normalSky.load(imgNormal);

 [Embed("/flippedsky.jpg")]
 var imgFlipped:Class;
 flippedSky.load(imgFlipped);

 //Load the treeImage and embed it in the swf file.
 [Embed("/tree.png")]
 var imgTree:Class;
 tree.load(imgTree);

 //Load sound files and play two of them.
 sizzle = new Sound();
 sizzle.load(new URLRequest("sizzle.mp3"));

 thunder = new Sound();
 thunder.load(new URLRequest("thunder.mp3"));

 wind = new Sound();
 wind.load(new URLRequest("wind.mp3"));
 wind.play(0,2);//play twice

 rain = new Sound();
 rain.load(new URLRequest("rain.mp3"));
 rain.play(0, int.MAX_VALUE);//play forever

 //Register an event listener on the CREATION_
 // COMPLETE event.
 this.addEventListener(FlexEvent.CREATION_COMPLETE,
 creationCompleteHandler);

 //Save a reference to this Canvas object, which will
 // be used later for a variety of purposes.
 canvasObj = this;

 //Draw a yellow filled circle on this Canvas object.
 graphics.beginFill(0xffff00);
 graphics.drawCircle(circleX,circleY,radius);
 graphics.endFill();

 } //end constructor

The CREATION_COMPLETE event handler

The code in the constructor in Listing 3 registers a

CREATION_COMPLETE

event handler on the

Canvas

 object. You are already familiar
with the use of event handlers of this type.

The

CREATION_COMPLETE

 event handler is shown in its entirety in Listing 4. As
before, there is nothing in Listing 4 that I haven't explained in previous
lessons, so no explanation beyond the embedded comments should be needed.

Example 18.4.
 //This handler method is executed when the Canvas has
 // been fully created.
 private function creationCompleteHandler(
 event:mx.events.FlexEvent):void{

 //Set the width and height of the Canvas object
 // based on the size of the bitmap in the
 // normalSky image.
 this.width = Bitmap(normalSky.content).width;
 this.height = Bitmap(normalSky.content).height;

 //Add the images to the Canvas object. Note that
 // the two images are overlaid at 0,0.
 this.addChild(normalSky);
 this.addChild(flippedSky);

 //Add a button in the upper-left corner in front
 // of the sky images and register a CLICK event
 // handler on the button.
 button = new Button();
 button.x = 10;
 button.y = 10;
 button.addEventListener(MouseEvent.CLICK, onClick);
 button.label = "Click Me";
 button.setStyle("color", 0xFFFF00);
 addChild(button);

 //Get and save a reference to a Bitmap object
 // containing the contents of the tree file.
 treeBitMap = Bitmap(tree.content);

 //Place the treeBitMap in a new Image object and
 // place it on the canvas near the bottom center of
 // the canvas.
 treeBitMap.x =
 canvasObj.width / 2 - treeBitMap.width/2;
 treeBitMap.y = canvasObj.height - treeBitMap.height;

 newTreeImage.addChild(treeBitMap);
 this.addChild(newTreeImage);

 //Make the tree almost invisible. It will be made
 // highly visible in conjunction with a
 // lightening flash.
 newTreeImage.alpha = 0.2;

 //Cause the blue background of the tree to
 // be transparent.
 processChromaKey(treeBitMap);

 //Register a timer listener and start the timer
 // running.
 timer.addEventListener(TimerEvent.TIMER, onTimer);
 timer.start();

 } //end creationCompleteHandler

Beginning of the TIMER event handler

The last two statements in Listing 4 register a

TIMER

 event
listener on the

Timer

 object that was instantiated in Listing 1
and start the timer running.

The

TIMER

 event handler begins in Listing 5. There is some
interesting new code in this method, so I will break it down and explain it in
fragments.

Example 18.5.
 //TimerEvent handler. This method is executed each
 // time the timer object fires an event.
 public function onTimer(event:TimerEvent):void {

 //Update the loop counter. Several things depend on
 // this counter.
 loopCntr++;
 if (loopCntr > int.MAX_VALUE-2) {
 //Guard against numeric overflow.
 loopCntr = 0;
 }//end if

 //Play a wind sound every 100th timer event only
 // if a random value is greater than 0.5. This
 // should happen half the time on the average.
 if ((loopCntr % 100 == 0)&& (Math.random() > 0.5)) {
 wind.play();
 }//end if

 //Make random changes to the background color.
 processBackgroundColor();

 //Make changes to the alpha values of the normal
 // and flipped sky images.
 makeTheCloudsMove();

Approximately three Timer events per second

As you are aware, the event handler that begins in Listing 5 is executed each
time the

Timer

 object fires an event. The

Timer

object was instantiated in Listing 1 and configured to fire an event every 35
milliseconds, or approximately three times per second.

The only thing that is new in the fragment shown in Listing 5 is the pair of
calls to the methods named:

 	
processBackgroundColor, and

	
makeTheCloudsMove

The purpose of each of these methods is described by its name. I will explain
both methods later in this lesson.

Controlling the motion of the moon

The remainder of the

Timer

 event handler, which is shown in
Listing 6, is dedicated to causing the moon to move very slowly from left to
right across the screen as shown in Figure 1 and Figure 2.

Example 18.6.
 //Draw a filled circle on this Canvas object.
 if (!sizzlePlaying) {
 //Erase the circle. Note that this would also
 // erase the lightening bolt if it were done while
 // the sizzle sound is playing.
 graphics.clear();
 }//end if

 //Make the circle move a very small distance to the
 // right. Make it wrap and reappear on the left
 //when it reaches the right side of the window.
 circleX += dx;
 if (circleX > canvasObj.width - radius) {
 circleX = 5 * radius;
 }//end if
 graphics.beginFill(0xffff00);
 graphics.drawCircle(circleX,circleY,radius);
 graphics.endFill();

 }//end onTimer

The code in Listing 6 draws a yellow filled circle a little further to the
right each time the

Timer

 fires an event. When the circle
reaches the right edge of the Flash window, it starts over again on the left.

Erase the old moon before drawing the new moon

It is necessary to erase the old circle before drawing each new filled circle.
	Otherwise, instead of seeing a filled circle moving from left to right, the
	viewer would see a very wide yellow line being slowly drawn across the
	screen.

Houston, we have a problem

The proper way to erase the old filled circle is to call the

	clear

 method of the

Graphics

 class. However, this
	is also the proper way to erase the yellow lightening bolt that I will
	explain later. Therefore, it is critical that the

clear

	method not be called while the lightening bolt is on the screen.

The Boolean variable named sizzlePlaying

The

Boolean

 variable named

sizzlePlaying

	is used to control several aspects of the program relative to the period
	during which the sizzle sound is played, the lightening bolt is drawn, and
	the scene is illuminated by the lightening bolt.

The value of this variable
	is set to false when the variable is declared in Listing 1. It is set to true when the sizzle sound begins playing and is set
	back to false when
	the sizzle sound finishes playing. Thus, it is always true while the sizzle
	sound is playing and is false at all other times.

An egg-shaped moon

The value of

sizzlePlaying

 is used in Listing 6 to
	prevent the

clear

 method from being called while the lightening bolt is
on the screen. This actually causes the moon to take on a slight egg shape
during that period because new versions of the moon are being drawn without
erasing the old versions. However, this isn't visually apparent because the moon
moves such a short distance during that period. Also, the lightening bolt and
not the moon probably commands the attention of the viewer during this period so
the distortion isn't very noticeable.

Beyond that, no explanation of the code in Listing 6 beyond the embedded
comments should be needed.

The method named processBackgroundColor

As you saw in Listing 5, the

Timer

 event handler calls a
method named

processBackgroundColor

each time the

Timer

object fires an event

(about three times per second)

. The purpose of the
method is to cause the overall color of the image to change slowly over time.
The method is shown in its entirety in Listing 7.

Example 18.7.
 //This method processes the background color. The
 // color changes among various shades of cyan when
 // there is no lightening bolt. The color changes
 // among various shades of dark yellow when there is a
 // lightening bolt.
 private function processBackgroundColor():void {
 if (!sizzlePlaying) {
 //Vary background color when there is no
 // lightening flash.
 if (Math.random() > 0.5) {
 if (greenBkgnd < 250){
 greenBkgnd += 5;
 }//end if
 }else {
 if(greenBkgnd > 5){
 greenBkgnd -= 5;
 }//end if
 }//end else

 if (Math.random() > 0.5) {
 if (blueBkgnd < 250){
 blueBkgnd += 5;
 }//end if
 }else {
 if(blueBkgnd > 5){
 blueBkgnd -= 5;
 }//end if
 }//end else

 }else {
 //Vary background color during a lightening flash
 if (Math.random() > 0.5) {
 if (greenBkgnd < 245){
 greenBkgnd += 10;
 }//end if
 }else {
 if(greenBkgnd > 10){
 greenBkgnd -= 10;
 }//end if
 }//end else

 if (Math.random() > 0.5) {
 if (redBkgnd < 245){
 redBkgnd += 10;
 }//end if
 }else {
 if(redBkgnd > 10){
 redBkgnd -= 10;
 }//end if
 }//end else
 }//end else

 bkgndColor = (redBkgnd << 16) + (greenBkgnd << 8)
 + blueBkgnd;
 setStyle("backgroundColor", bkgndColor);
 setStyle("backgroundAlpha",0.5);

 }//end processBackgroundColor

Long and tedious

The code in Listing 7 is long and tedious but not particularly complicated.

Three sections of code

The code can be broken down into three sections for purposes of explanation. The first section
begins at the beginning of the

if

 statement and continues down
to, but not including the

else

 clause. Note that the
conditional clause for the

if

 statement tests to determine if
the value of the variable named

sizzlePlaying

 is false.

For a value of false, the code in the

if

 statement makes
very small random changes to the green and blue components of the background
color during those periods when there is no lightening bolt on the screen. The
value of the red color component is zero during this period.

The second section

The second section begins with the

else

 clause, and the code
in this section is executed when the value of

sizzlePlaying

 is
true.

The code in this section makes very small random changes to the red and green
components of the background color during those periods where there is a
lightening bolt on the screen. The value of the blue color component is zero
during this period.

The third section -- apply the color components

The third section of code, consisting of the last three statements, uses the
red, green, and blue color component values computed earlier to cause
the color of the background to change. Note that this code maintains a
50-percent opacity value for the background color.

The method named makeTheCloudsMove

As you also saw in Listing 5, the

Timer

 event handler also calls
a method named

makeTheCloudsMove

each time the

Timer

object fires an event, or about three times per second. The purpose of this
method is to create the illusion that the clouds shown in Figure 1 and Figure
2 are moving.

The one new thing

The procedure for accomplishing this is probably the only thing in this
lesson that I haven explained in one form or another in an earlier lesson.

The image of the clouds shown in Figure 1 and Figure 2 is actually the
superposition of two images, one
in front of the other. The two images are shown in Figure 4 and Figure 5.

 [image: Missing image]

Figure 18.4.

The image named normalsky.jpg.

The image named normalsky.jpg.

 [image: Missing image]

Figure 18.5.

The image named flippedsky.jpg.

The image named flippedsky.jpg.

The differences between the images

If you examine these two images carefully, you will see that:

 	
One is the mirror image of the other.

	
One has been given a green tint while the other has been given a magenta
	tint.

As mentioned earlier, the program displays both of these images, one on top
of the other.

The illusion of movement...

The illusion of movement is achieved by causing the alpha transparency
value of one image to go down while the alpha transparency value of the other
image goes up and vice versa. In other words, the two images are caused to gradually fade in and out in opposition to one another.

Beginning of the method named makeTheCloudsMove

The code that accomplishes this begins in Listing 8.

Example 18.8.
 //This method processes the alpha values of the
 // normal and flipped sky images.
 // The change in alpha values of the overlapping
 // images makes it appear that the clouds are
 // moving.
 private function makeTheCloudsMove():void {

 //Change the decreasing or increasing direction of
 // the changes in the alpha value for the normal
 // sky image when the alpha value hits the limits.
 if (normalAlphaDecreasing && (normalAlpha <= 0.1)) {
 normalAlphaDecreasing = false;
 }else if (!normalAlphaDecreasing &&
 (normalAlpha >= alphaLim)) {
 normalAlphaDecreasing = true;
 }//end if

A saw tooth change in the alpha values

The alpha value for the normal sky image is caused to range from
0.1 to 0.5 in increments of 0.005 in a saw tooth fashion. At the same time, the
alpha value for the other image is caused to range between the same limits in an
opposing saw tooth fashion.

The code in Listing 8 keeps track whether the alpha values for the normal sky
image are going up or going down, and flips the direction whenever the current
alpha value crosses one of the limits.

Compute new alpha value for the normal sky

Listing 9 uses that information to compute a new alpha value for the normal
sky image.

Example 18.9.
 //Increase or decrease the alpha value for the
 // normal sky image.
 if (normalAlphaDecreasing) {
 normalAlpha -= 0.005;
 }else {
 normalAlpha += 0.005;
 }//end else

Compute new alpha value for the flipped sky image

Listing 10 uses the new alpha value for the normal sky along with the upper
limit of the alpha value to compute a new alpha value for the flipped sky. As the alpha value for
the normal sky goes up, the alpha value for the flipped sky goes down and vice
versa.

Example 18.10.
 //Cause the alpha value for the flipped sky image
 // to go down when the value for the normal sky
 // image goes up, and vice versa.
 flippedAlpha = alphaLim - normalAlpha;

Apply the new alpha values to both sky images

Finally, Listing 10 sets the alpha value for each image to the new value.

Example 18.11.
 //Change the alpha values for both sky images.
 normalSky.alpha = normalAlpha;
 flippedSky.alpha = flippedAlpha;
 }//end makeTheCloudsMove

The next time the images are rendered, the new alpha values will be in
effect.

The CLICK event handler for the button

The button shown in Figure 1 provides the mechanism by which the viewer can
interact with the program.

The code in Listing 4 registers a

CLICK

 event handler on
	the button. Listing 12 shows that

CLICK

 event handler. This method is called each time the user clicks the
button.

Example 18.12.
 //This method is a click handler on the button. It
 // causes the lightening flash to occur and the
 // lightening bolt to be drawn.
 private function onClick(event:MouseEvent):void {
 //Don't create another lightening bolt while the
 // previous one is still in progress.
 if(!sizzlePlaying){
 flashLightening();
 drawLightening();
 }//end if
 }//end onClick

Create the lightening bolt and its flash

The code in Listing 12 first confirms that the sizzle sound is not currently
being played. If not, Listing 12 calls the method named

flashLightening

to illuminate the scene, and calls the method named

drawLightening

to draw the lightening bolt.

The method named flashLightening

The method named

flashLightening

 is shown in its entirety in
Listing 13.

Example 18.13.
 private function flashLightening():void {

 //Make the tree more visible. Apparently
 // setting the alpha property has no effect on the
 // alpha byte values that have been individually
 // set. Otherwise, the blue background would
 // become visible.
 newTreeImage.alpha = 1.0;

 //Play a sizzle sound to accompany the flash of
 // lightening. Set a flag to prevent another sizzle
 // sound from being played before this one finishes.
 sizzlePlaying = true;
 channel = sizzle.play();
 //Register an event listener that will be called
 // when the sizzle sound finishes playing.
 channel.addEventListener(
 Event.SOUND_COMPLETE, soundCompleteHandler);

 //Change the background color to a dark yellow.
 redBkgnd = 128;
 greenBkgnd = 128;
 blueBkgnd = 0;

 }//end flashLightening

Produce the visual and audible effects of the lightening

The purpose of this method is to produce the visible and audible effects
	of the lightening other than the lightening bolt itself.

The method creates the flash from thelightening bolt, makes the tree more visible during the flash as shown in Figure 2, and plays a sizzle sound
	that will be followed by a clap of thunder.

Several steps are involved

The method begins by setting the alpha value on the tree image to 1.0 to cause
	the tree to become totally opaque.

Then it sets the value of the variable named

sizzlePlaying

	to true to notify all other parts of the program that a sizzle sound is
	being played and a lightening bolt is being drawn.

Then it calls the

play

 method on the

sizzle

	

Sound

. The

play

 method starts the sizzle
	sound playing and immediately returns a reference to a

SoundChannel

	object through which the sound will be played.

The reference to the

SoundChannel

 object is saved in the
	instance variable named

channel

.

Listing 13 registers an event listener on the

SoundChannel

	object that will be executed when the sizzle sound finishes playing.

Finally, Listing 13 sets the red, green, and blue background color
	component values to dark yellow. These values along with the true value of
	

sizzlePlaying

 will be used by the code in Listing 7 to set
	the background color of the canvas to dark yellow the next time the

	Timer

 object
fires an event.

The drawLightening method

Listing 14 shows the method named

drawLightening

 that is
called by the

CLICK

 event handler on the button in Listing 12
to draw the actual lightening bolt.

Example 18.14.
 private function drawLightening():void {

 lighteningStartX = Math.floor(Math.random()
 * canvasObj.width / 3)
 + canvasObj.width / 3;
 lighteningStartY =
 Math.random() * canvasObj.height / 10;
 lighteningEndX = canvasObj.width / 2 -6;
 lighteningEndY =
 canvasObj.height - treeBitMap.height + 10;

 //Draw a zero width dark yellow line to the starting
 // point of the lightening bolt.
 canvasObj.graphics.lineStyle(0, 0x999900);
 canvasObj.graphics.lineTo(
 lighteningStartX, lighteningStartY);

 //Set the line style to a bright yellow line that is
 // four pixels thick.
 canvasObj.graphics.lineStyle(4, 0xFFFF00);

 //Declare working variables.
 var tempX:uint;
 var tempY:uint = lighteningStartY;
 var cnt:uint;

 //Use a for loop to draw a lightening bolt with
 // twenty random segments.
 for (cnt = 0; cnt < 20; cnt++) {
 //Compute the coordinates of the end of the next
 // line segment.
 tempX = Math.floor(Math.random()
 * canvasObj.width / 3)
 + canvasObj.width / 3;
 tempY = tempY + Math.floor(Math.random()
 * (lighteningEndY - tempY)/5);
 //Draw the line segment.
 canvasObj.graphics.lineTo(tempX,tempY);
 }//end for loop

 //Draw a line segment to the top of the tree.
 canvasObj.graphics.lineTo(
 lighteningEndX, lighteningEndY);

 //Make the lightening go to ground.
 canvasObj.graphics.lineTo(
 lighteningEndX,
 lighteningEndY + treeBitMap.height - 20);
 }//end drawLightening

This method draws a yellow segmented lightening
 bolt four pixels thick

(as shown in Figure 2)

 that is generally
	random but always ends up striking the top of the tree.

Long and tedious

As was the case earlier, this method is long and tedious but not technically
difficult. Therefore, I will leave it as an exercise for the student to wade
through the details in order to understand how it draws the lightening bolt.

The method named soundCompleteHandler

That brings us to the method shown in Listing 15 that is called each time a sizzle sound finishes
playing.

Example 18.15.
 private function soundCompleteHandler(e:Event):void {

 //Allow another sizzle sound to be played now that
 // this one is finished.
 sizzlePlaying = false;
 //Play the thunder immediately following the end of
 // the sizzle sound.
 thunder.play();

 //Switch the background color from dark yellow
 // to the normal background color.
 redBkgnd = 0;
 greenBkgnd = 128;
 blueBkgnd = 128;

 //Erase the lightening bolt. Note that this will
 // also erase the yellow circle.
 canvasObj.graphics.clear();
 //Make the tree almost invisible.
 newTreeImage.alpha = 0.2;

 }//end soundCompleteHandler

Each time this method is called, it sets the

sizzlePlaying

variable to false to clear the way for the sizzle sound to be played again.

Then it plays the thunder sound and sets the color variables so that the
background color will be restored to a dark cyan color by the code in Listing 7.

Finally it calls the

clear

 method of the

Graphics

class to erase the lightening bolt, which also erases the moon as well.

Then it sets the alpha value on the tree image to a low value to make the
tree appear to be lost in the fog.

The method named processChromaKey

That leaves only the method named

processChromaKey

 that I
haven't explained. The purpose of this method is to cause the blue background
pixels of the tree image shown in Figure 6 to become transparent.

 [image: Missing image]

Figure 18.6.

The tree image.

The tree image.

This method is essentially the same as a method that I explained in an
earlier lesson titled

Using Chroma Key Compositing to Create Transparent
Backgrounds

. Rather than to explain that method again, I will simply
refer you to the earlier lesson for an explanation. You can view the method in
its entirety in Listing 17.

Run the program

I encourage you to

run

 this program from the web.
Then copy the code from Listing 16 and Listing 17. Use that code to
create your own project. Compile and run the project. Experiment with
the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

Resources

I will publish a list containing links to ActionScript resources as a
separate document. Search for ActionScript Resources in the
Connexions search box.

Complete program listings

 Complete listings of the programs discussed in this lesson
are provided below.

Example 18.16.
 <?xml version="1.0" encoding="utf-8"?>
<!--
Project LighteningStorm01
See Driver.as for a description of this project.
-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

Example 18.17.
 /*Project LighteningStorm01
This project is the culmination of several previous
projects dealing with animation, sound, transparency,
mouse events, chromakey, etc.

When the program starts running, the scene is of a very
stormy day. There is a button in the upper-left corner
of the scene. The clouds are moving. There is also a
yellow moon behind the clouds that is moving very
slowly across the screen from left to right.

When the user clicks the button, a bolt of lightening
comes out of the sky and strikes an image of a tree.
Several aspects of the scene change to reflect
the sights and sounds of a lightening strike.

In addition to the clouds moving, the overall color
of the scene slowly changes randomly. The overall
color varies around a dark cyan when there is no
lightening bolt and varies around a dark yellow when
there is a lightening bolt.

This project was developed using FlashDevelop, which
has a couple of requirements that may not exist with
Flex Builder 3 or Flash Builder 4.
1. You must manually copy all mp3 files into the bin
folder.
2. You must insert an extra slash character in the URL
when embedding an image file in the swf file.
***/
package CustomClasses{
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.media.SoundChannel;
 import mx.containers.Canvas;
 import mx.controls.Image;
 import mx.controls.Button;
 import mx.events.FlexEvent;
 import flash.events.TimerEvent;
 import flash.events.MouseEvent;
 import flash.utils.Timer;
 import flash.utils.ByteArray;
 import flash.media.Sound;
 import flash.net.URLRequest;
 import flash.media.SoundChannel;
 import flash.events.Event;
 import flash.geom.Rectangle;

 //==//

 public class Driver extends Canvas {
 //Extending Canvas makes it possible to position
 // images with absolute coordinates. The default
 // location is 0,0;

 private var bkgndColor:uint = 0x005555;
 private var redBkgnd:uint = 0;
 private var greenBkgnd:uint = 128;
 private var blueBkgnd:uint = 128;

 private var normalSky:Image = new Image();
 private var flippedSky:Image = new Image();

 private var tree:Image = new Image();
 private var newTreeImage:Image = new Image();
 private var treeBitMap:Bitmap;

 private var alphaLim:Number = 0.5;
 private var normalAlpha:Number = alphaLim;
 private var flippedAlpha:Number;
 private var normalAlphaDecreasing:Boolean = true;

 private var canvasObj:Canvas;
 private var timer:Timer = new Timer(35);
 private var loopCntr:uint;

 private var lighteningCntr:uint = 0;
 private var lighteningCntrLim:uint = 25;
 private var lighteningStartX:uint;
 private var lighteningStartY:uint;
 private var lighteningEndX:uint;
 private var lighteningEndY:uint;

 private var sizzle:Sound;
 private var thunder:Sound;
 private var wind:Sound;
 private var rain:Sound;

 private var sizzlePlaying:Boolean = false;
 private var channel:SoundChannel;

 private var button:Button;

 private var radius:Number = 24;//radius of circle
 private var circleX:Number = 5 * radius;
 private var circleY:Number = 1.5 * radius;
 private var dx:Number = 0.05;
 //--//

 public function Driver(){//constructor
 //Make this Canvas visible.
 bkgndColor = (redBkgnd << 16) + (greenBkgnd << 8)
 + blueBkgnd;
 setStyle("backgroundColor", bkgndColor);
 setStyle("backgroundAlpha",0.5);

 //Load the two sky images and embed them in the
 // swf file.
 //Note the use of a / to eliminate the "Unable to
 // resolve asset for transcoding" Compiler Error
 [Embed("/normalsky.jpg")]
 var imgNormal:Class;
 normalSky.load(imgNormal);

 [Embed("/flippedsky.jpg")]
 var imgFlipped:Class;
 flippedSky.load(imgFlipped);

 //Load the . treeImage and embed it in the swf file.
 [Embed("/tree.png")]
 var imgTree:Class;
 tree.load(imgTree);

 //Load sound files and play two of them.
 sizzle = new Sound();
 sizzle.load(new URLRequest("sizzle.mp3"));

 thunder = new Sound();
 thunder.load(new URLRequest("thunder.mp3"));

 wind = new Sound();
 wind.load(new URLRequest("wind.mp3"));
 wind.play(0,2);//play twice

 rain = new Sound();
 rain.load(new URLRequest("rain.mp3"));
 rain.play(0, int.MAX_VALUE);//play forever

 //Register an event listener on the CREATION_
 // COMPLETE event.
 this.addEventListener(FlexEvent.CREATION_COMPLETE,
 creationCompleteHandler);

 //Save a reference to this Canvas object, which will
 // be used later for a variety of purposes.
 canvasObj = this;

 //Draw a yellow filled circle on this Canvas object.
 graphics.beginFill(0xffff00);
 graphics.drawCircle(circleX,circleY,radius);
 graphics.endFill();

 } //end constructor
 //--//

 //This handler method is executed when the Canvas has
 // been fully created.
 private function creationCompleteHandler(
 event:mx.events.FlexEvent):void{

 //Set the width and height of the Canvas object
 // based on the size of the bitmap in the
 // normalSky image.
 this.width = Bitmap(normalSky.content).width;
 this.height = Bitmap(normalSky.content).height;

 //Add the images to the Canvas object. Note that
 // the two images are overlaid at 0,0.
 this.addChild(normalSky);
 this.addChild(flippedSky);

 //Add a button at in the upper-left corner in front
 // of the sky images.
 button = new Button();
 button.x = 10;
 button.y = 10;
 button.addEventListener(MouseEvent.CLICK, onClick);
 button.label = "Click Me";
 button.setStyle("color", 0xFFFF00);
 addChild(button);

 //Get and save a reference to a Bitmap object
 // containing the contents of the tree file.
 treeBitMap = Bitmap(tree.content);

 //Place the treeBitMap in a new Image object and
 // place it on the canvas near the bottom center of
 // the canvas.
 treeBitMap.x =
 canvasObj.width / 2 - treeBitMap.width/2;
 treeBitMap.y = canvasObj.height - treeBitMap.height;

 newTreeImage.addChild(treeBitMap);
 this.addChild(newTreeImage);

 //Make the tree almost invisible. It will be made
 // highly visible in conjunction with a
 // lightening flash.
 newTreeImage.alpha = 0.2;

 //Cause the blue background of the tree to
 // be transparent.
 processChromaKey(treeBitMap);

 //Register a timer listener and start the timer
 // running.
 timer.addEventListener(TimerEvent.TIMER, onTimer);
 timer.start();

 } //end creationCompleteHandler
 //--//

 //TimerEvent handler. This method is executed each
 // time the timer object fires an event.
 public function onTimer(event:TimerEvent):void {

 //Update the loop counter. Several things depend on
 // this counter.
 loopCntr++;
 if (loopCntr > int.MAX_VALUE-2) {
 //Guard against numeric overflow.
 loopCntr = 0;
 }//end if

 //Play a wind sound every 100th timer event only
 // if a random value is greater than 0.5. This
 // should happen half the time on the average.
 if ((loopCntr % 100 == 0)&& (Math.random() > 0.5)) {
 wind.play();
 }//end if

 //Make random changes to the background color.
 processBackgroundColor();

 //Make changes to the alpha values of the normal
 // and flipped sky images.
 makeTheCloudsMove();

 //Draw a filled circle on this Canvas object.
 if (!sizzlePlaying) {
 //Erase the circle. Note that this would also
 // erase the lightening bolt if it were done while
 // the sizzle sound is playing.
 graphics.clear();
 }//end if

 //Make the circle move a very small distance to the
 // right. Make it wrap and reappear on the left
 //when it reaches the right side of the window.
 circleX += dx;
 if (circleX > canvasObj.width - radius) {
 circleX = 5 * radius;
 }//end if
 graphics.beginFill(0xffff00);
 graphics.drawCircle(circleX,circleY,radius);
 graphics.endFill();

 }//end onTimer
 //--//

 //This function processes the background color. The
 // color changes among various shades of cyan when
 // there is no lightening bolt. The color changes
 // among various shades of dark yellow when there is a
 // lightening bolt.
 private function processBackgroundColor():void {
 if (!sizzlePlaying) {
 //Vary background color when there is no
 // lightening flash.
 if (Math.random() > 0.5) {
 if (greenBkgnd < 250){
 greenBkgnd += 5;
 }//end if
 }else {
 if(greenBkgnd > 5){
 greenBkgnd -= 5;
 }//end if
 }//end else

 if (Math.random() > 0.5) {
 if (blueBkgnd < 250){
 blueBkgnd += 5;
 }//end if
 }else {
 if(blueBkgnd > 5){
 blueBkgnd -= 5;
 }//end if
 }//end else

 }else {
 //Vary background color during a lightening flash
 if (Math.random() > 0.5) {
 if (greenBkgnd < 245){
 greenBkgnd += 10;
 }//end if
 }else {
 if(greenBkgnd > 10){
 greenBkgnd -= 10;
 }//end if
 }//end else

 if (Math.random() > 0.5) {
 if (redBkgnd < 245){
 redBkgnd += 10;
 }//end if
 }else {
 if(redBkgnd > 10){
 redBkgnd -= 10;
 }//end if
 }//end else
 }//end else

 bkgndColor = (redBkgnd << 16) + (greenBkgnd << 8)
 + blueBkgnd;
 setStyle("backgroundColor", bkgndColor);
 setStyle("backgroundAlpha",0.5);

 }//end processBackgroundColor
 //--//

 //This function processes the alpha values of the
 // normal and flipped sky images.
 // The change in alpha values of the overlapping
 // images makes it appear that the clouds are
 // moving.
 private function makeTheCloudsMove():void {

 //Change the decreasing or increasing direction of
 // the changes in the alpha value for the normal
 // sky image when the alpha value hits the limits.
 if (normalAlphaDecreasing && (normalAlpha <= 0.1)) {
 normalAlphaDecreasing = false;
 }else if (!normalAlphaDecreasing &&
 (normalAlpha >= alphaLim)) {
 normalAlphaDecreasing = true;
 }//end if

 //Increase or decrease the alpha value for the
 // normal sky image.
 if (normalAlphaDecreasing) {
 normalAlpha -= 0.005;
 }else {
 normalAlpha += 0.005;
 }//end else

 //Cause the alpha value for the flipped sky image
 // to go down when the value for the normal sky
 // image goes up, and vice versa.
 flippedAlpha = alphaLim - normalAlpha;

 //Change the alpha values for both sky images.
 normalSky.alpha = normalAlpha;
 flippedSky.alpha = flippedAlpha;
 }//end makeTheCloudsMove
 //--//

 //This function creates a flash of lightening. It
 // also makes the tree more visible during
 // the flash and plays a sizzle sound followed by a
 // clap of thunder. This method simply initiates these
 // actions. They are completed later by an event
 // handler registered on the SoundChannel object.
 private function flashLightening():void {

 //Make the tree more visible. Apparently
 // setting the alpha property has no effect on the
 // alpha byte values that have been individually
 // set. Otherwise, the blue background would
 // become visible.
 newTreeImage.alpha = 1.0;

 //Play a sizzle sound to accompany the flash of
 // lightening. Set a flag to prevent another sizzle
 // sound from being played before this one finishes.
 sizzlePlaying = true;
 channel = sizzle.play();
 //Register an event listener that will be called
 // when the sizzle sound finishes playing.
 channel.addEventListener(
 Event.SOUND_COMPLETE, soundCompleteHandler);

 //Change the background color to a dark yellow.
 redBkgnd = 128;
 greenBkgnd = 128;
 blueBkgnd = 0;

 }//end flashLightening
 //--//

 //This method is called each time the sizzle sound
 // finishes playing. Each time it is called, it plays
 // a thunder sound and clears a flag making it
 // possible for another sizzle sound to be played. It
 // also restores the background color to a dark cyan,
 // erases the lightening bolt, and causes the tree to
 // become almost invisible.
 private function soundCompleteHandler(e:Event):void {

 //Allow another sizzle sound to be played now that
 // this one is finished.
 sizzlePlaying = false;
 //Play the thunder immediately following the end of
 // the sizzle sound.
 thunder.play();

 //Switch the background color from dark yellow
 // to the normal background color.
 redBkgnd = 0;
 greenBkgnd = 128;
 blueBkgnd = 128;

 //Erase the lightening bolt. Note that this will
 // also erase the yellow circle.
 canvasObj.graphics.clear();
 //Make the tree almost invisible.
 newTreeImage.alpha = 0.2;

 }//end soundCompleteHandler
 //--//

 //This method draws a yellow segmented lightening
 // bolt that is generally random but always ends up
 // at the location where the tree is standing.
 private function drawLightening():void {

 lighteningStartX = Math.floor(Math.random()
 * canvasObj.width / 3)
 + canvasObj.width / 3;
 lighteningStartY =
 Math.random() * canvasObj.height / 10;
 lighteningEndX = canvasObj.width / 2 -6;
 lighteningEndY =
 canvasObj.height - treeBitMap.height + 10;

 //Draw a zero width dark yellow line to the starting
 // point of the lightening bolt.
 canvasObj.graphics.lineStyle(0, 0x999900);
 canvasObj.graphics.lineTo(
 lighteningStartX, lighteningStartY);

 //Set the line style to a bright yellow line that is
 // four pixels thick.
 canvasObj.graphics.lineStyle(4, 0xFFFF00);

 //Declare working variables.
 var tempX:uint;
 var tempY:uint = lighteningStartY;
 var cnt:uint;

 //Use a for loop to draw a lightening bolt with
 // twenty random segments.
 for (cnt = 0; cnt < 20; cnt++) {
 //Compute the coordinates of the end of the next
 // line segment.
 tempX = Math.floor(Math.random()
 * canvasObj.width / 3)
 + canvasObj.width / 3;
 tempY = tempY + Math.floor(Math.random()
 * (lighteningEndY - tempY)/5);
 //Draw the line segment.
 canvasObj.graphics.lineTo(tempX,tempY);
 }//end for loop

 //Draw a line segment to the top of the tree.
 canvasObj.graphics.lineTo(
 lighteningEndX, lighteningEndY);

 //Make the lightening go to ground.
 canvasObj.graphics.lineTo(
 lighteningEndX,
 lighteningEndY + treeBitMap.height - 20);
 }//end drawLightening
 //--//

 //This method is a click handler on the button. It
 // causes the lightening flash to occur and the
 // lightening bolt to be drawn.
 private function onClick(event:MouseEvent):void {
 //Don't create another lightening bolt while the
 // previous one is still in progress.
 if(!sizzlePlaying){
 flashLightening();
 drawLightening();
 }//end if
 }//end onClick
 //--//

 //This method identifies all of the pixels in the
 // incoming bitmap with a pure blue color and sets
 // the alpha bytes for those pixels to a value of
 // zero. Apparently those bytes are not affected by
 // later code that sets the alpha property of the
 // Image object to another value.
 private function processChromaKey(bitmap:Bitmap):void{
 //Get the BitmapData object.
 var bitmapData:BitmapData = bitmap.bitmapData;

 //Get a one-dimensional byte array of pixel data
 // from the bitmapData object. Note that the
 // pixel data format is ARGB.
 var rawBytes:ByteArray = new ByteArray();
 rawBytes = bitmapData.getPixels(new Rectangle(
 0,0,bitmapData.width,bitmapData.height));

 var cnt:uint;
 var red:uint;
 var green:uint;
 var blue:uint;

 for (cnt = 0; cnt < rawBytes.length; cnt += 4) {
 //alpha is in rawBytes[cnt]
 red = rawBytes[cnt + 1];
 green = rawBytes[cnt + 2];
 blue = rawBytes[cnt + 3];

 if ((red == 0) && (green == 0) &&
 (blue == 255)) {
 //The color is pure blue. Set the value
 // of the alpha byte to zero.
 rawBytes[cnt] = 0;
 }//end if

 }//end for loop
 //Put the modified pixels back into the bitmapData
 // object.
 rawBytes.position = 0;//this is critical
 bitmapData.setPixels(new Rectangle(
 0,0,bitmapData.width,bitmapData.height),
 rawBytes);

 } //end processChromaKey method
 //--//
 } //end class
} //end package

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Combining Sound with Motion and Image Animation

	
Files:

 	
ActionScript0170\ActionScript0170.htm

	
ActionScript0170\Connexions\ActionScriptXhtml0170.htm

PDF disclaimer:

-end-

Solutions

Object-Oriented Programming (OOP) with ActionScript
Table of Contents
	Chapter 1. What is ActionScript and Why Should I Care?	1.1. 	
Table of Contents

	

Preface

	

What is ActionScript?

	

Why should I care?

	

Prerequisites for study

	

Resources

	

Miscellaneous

	Chapter 2. What is OOP and Why Should I Care?	2.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

What is
object-oriented programming (OOP)?

	

Why should I care?

	

General background information

	

A slightly more
technical description of OOP

	

Encapsulation example

	

Inheritance
example

	

Polymorphism
example

	

Object-oriented programming
vocabulary

	

Sample code

	

A simple class named MyClass

	

Another custom component -
NumericTextAreaA

	

Resources

	

Miscellaneous

	Chapter 3. Encapsulation - The Big Picture	3.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background information

	

Abstraction

	

Encapsulation

	

Preview

	

Discussion
and sample code

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 4. Inheritance - The Big Picture	4.1. 	
Table of contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Single and multiple
inheritance

	

The ISA relationship

	

Preview

	

Discussion and sample code

	

The file named Skins01.mxml

	

The file named Driver.as

	

The file named FancyButton.as

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 5. Polymorphism - The Big Picture	5.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background information

	

Preview

	

Discussion
and sample code

	

The file named Polymorph02.mxml

	

The file named Driver.as

	

The file named MyShape.as

	

The file named MyCircle.as

	

The file named MyRectangle.as

	

Run the program

	

Resources

	

Complete program listing

	

Miscellaneous

	Chapter 6. Interface Polymorphism - The Big Picture	6.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background information

	

Preview

	

Discussion and sample code

	

The file named Interface01.mxml

	

The file named Driver.as

	

The file named IArea.as

	

The file named IVolume.as

	

The file named ICircumference.as

	

The file named MyCircle.as

	

The file named MyRectangle.as

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 7. Digging Deeper into ActionScript Events	7.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background information

	

Preview

	

Discussion and sample code

	

The program named
ActivateEvent01

	

The program named Effects03

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 8. Handling Keyboard Events	8.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Preview

	

Discussion and sample code

	

The MXML code

	

The ActionScript code

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 9. Events, Triggers, and Effects	9.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background information

	

Preview

	

Discussion and sample code

	

The program named Effects04

	

The program named Effects05

	

Run the programs

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 10. Creating Custom Effects	10.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background information

	

Preview

	

Discussion and sample code

	

Creating a custom effect

	

The class named CustomEffect

	

The class named CustomEffectInstance

	

The Driver class for the program named
CustomEffect02

	
The Driver class for the program named CustomEffect03

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 11. Bitmap Basics	11.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background information

	

Preview

	

Discussion and sample code

	

The program named Bitmap03

	

The program named Bitmap04

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 12. Fundamentals of Image Pixel Processing	12.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background information

	

Preview

	

Discussion and sample code

	

The program named Bitmap05

	

MXML code for the program named
Bitmap05

	

ActionScript code for the program named Birtmap05

	

The program named Bitmap06

	

MXML code for the program named Bitmap06

	

ActionScript code for the program
named Bitmap06

	

Run the programs

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 13. Using Chroma Key Compositing to Create Transparent Backgrounds	13.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Preview

	

Discussion and sample code

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 14. Drag and Drop Basics	14.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General Background Information

	

Preview

	

Discussion and sample code

	

The MXML file

	

The ActionScript file

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 15. Dragging Objects between Containers	15.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background information

	

Preview

	

Discussion and sample code

	

The MXML code

	

The
ActionScript code

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 16. Animation Fundamentals	16.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

A layman's view of the Flash
Player

	

Startup considerations

	

Time base considerations

	

Listen for ENTER_FRAME events

	

Listen for TIMER
events fired by a Timer object

	

Preview

	

Discussion and sample code

	

The project named Animation01

	

The project named Animation07

	

The project named Animation01A

	

Run the projects

	

Resources

	

Complete project listings

	

Miscellaneous

	Chapter 17. Sound in ActionScript	17.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Preview

	

Discussion and sample code

	

The
MXML code

	

	

The ActionScript code

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 18. Combining Sound with Motion and Image Animation	18.1. 	
Table of Contents

	

Preface

	

General

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Preview

	

Discussion and sample code

	

The MXML code

	

The ActionScript code

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 19. Online resources for ActionScript and Flex	19.1. 	
Table of Contents

	

Preface

	

Resources

	

Miscellaneous

	Index

Chapter 9. Events, Triggers, and Effects

Click

Effects04

Effects05

(Click the "Back" button in your browser
to return to this page.)

Table of Contents

 	

Preface

	

 	

General

	

Viewing tip

		

 	

Figures

	

Listings

	

Supplemental material

	

General background
	information

	

Preview

	

Discussion and sample
	code

 	

The program named Effects04

	

The program named Effects05

	

	

Run the programs

	

Resources

	

Complete program listings

	

Miscellaneous

Preface

General

 	 All references to ActionScript in this lesson are references to
	 version 3 or later.

This tutorial lesson is part of a series of lessons dedicated to
object-oriented programming

(OOP)

 with ActionScript.

Several ways to create and launch ActionScript
programs

There are several ways to create and launch programs written in the
ActionScript programming language. Most of the lessons in this series will
use Adobe Flex as the launch pad for the sample ActionScript programs.

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3.

(See

Baldwin's Flex programming
website

.)

 You should study that lesson before embarking on the
lessons in this series.

Some understanding of Flex MXML will be required

I also recommend that you study all of the lessons on

Baldwin's Flex programming
website

 in parallel with your study of these ActionScript lessons.
Eventually you will probably need to understand both ActionScript and Flex and
the relationships that exist between them in order to become a successful
ActionScript programmer.

Will emphasize ActionScript code

It is often possible to use either ActionScript code or Flex MXML code to
achieve the same result. Insofar as this series of lessons is concerned,
the emphasis will be on ActionScript code even in those cases where Flex MXML
code may be a suitable alternative.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. Program output at startup for
	Effects04.

	

Figure 2

. Program output after clicking the
	button.

	

Figure 3

. Program output at startup for
	Effects05.

	

Figure 4

.

 	Program output after clicking the bottom button.

	

Figure 5

.

 	The WipeRight effect.

	

Figure 6

.

 	The Rotate effect.

	

Figure 7

.

 	The Glow effect.

	

Figure 8

.

 	Three effects in parallel.

Listings

 	

Listing 1

. The MXML file used for both
	programs.

	

Listing 2

. Beginning of the Driver class for
	Effects04.

	

Listing 3

. Beginning of the constructor for
	Effects04.

	

Listing 4

. Configuring the Glow effect.

	

Listing 5

. Beginning of the Driver class for
	Effects05.

	

Listing 6

.

	Beginning of the constructor for the Effects05.

	

Listing 7

.

	Configure an Iris effect for the bottom button.

	

Listing 8

.

	Configure three different effects targeted to the bottom button.

	

Listing 9

.

	A click event handler on the bottom button.

	

Listing 10

.

	An EFFECT_END handler for the Iris effect.

	

Listing 11

.

	A click event handler for the top button.

	

Listing 12

.

	Beginning of the Show event handler registered on the bottom button.

	

Listing 13

.

	Code to play the Rotate effect.

	

Listing 14

.

	Code to play the Glow effect.

	

Listing 15

.

		Code to play three effects in parallel.

	

Listing 16

.
The
	MXML file used for both programs.

	

Listing 17

.
The
	Driver class for Effects04.

	

Listing 18

.
The
	Driver class for Effects05.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background information

According to

Using Behaviors

,

"Behaviors let you add animation and motion to your application in
	response to user or programmatic action. For example, you can use behaviors
	to cause a dialog box to bounce slightly when it receives focus, or to
	slowly fade in when it becomes visible."

You program behaviors into your applications using MXML, ActionScript,
triggers, and effects.

According to

About
behaviors

,

"A behavior is a combination of a trigger paired with an effect. A
	trigger is an action, such as a mouse click on a component, a component
	getting focus, or a component becoming visible. An effect is a visible or
	audible change to the target component that occurs over a period of time,
	measured in milliseconds. Examples of effects are fading, resizing, or
	moving a component."

Triggers are not events

Triggers are caused by events, but triggers are different from events.
For example, the trigger named

mouseDownEffect

 results from the
occurrence of a

mouseDown

 event.

If an

Effect

 object, such as a

Glow

 effect has been associated with a

mouseDownEffect

 trigger for
a given target component, the

Glow

 effect will be played when the user
presses the mouse button while the mouse pointer is over the target component.
This will be true

regardless

 of whether or not a

mouseDown

 event listener
is registered on the component.

Thirteen standard triggers in Flex Builder 3

The

UIComponent

 class

lists thirteen

triggers

:

 	

addedEffect

 -
Triggering Event:

added.

	Played when the component is added as a child to a Container.

	

creationCompleteEffect

 -
Triggering Event:

creationComplete

Played when the component is created.

	

focusInEffect

 -
Triggering Event:

	focusIn

	Played when the component gains keyboard focus.

	

focusOutEffect

 -
Triggering Event:

focusOut

Played when the component loses keyboard focus.

	

hideEffect

 -
Triggering Event:
hide

	Played when the component becomes invisible.

	

mouseDownEffect

 -
Triggering Event:

mouseDown

Played when the user presses the mouse button while over the component.

	

mouseUpEffect

 -

	Triggering Event:

	mouseUp

	Played when the user releases the mouse button while over the component.

	

moveEffect

 -
Triggering Event:
move

Played when the component is moved.

	

removedEffect

 -
Triggering Event:

	removed

	Played when the component is removed from a Container.

	

resizeEffect

 -
Triggering Event:
resize

Played when the component is resized.

	

rollOutEffect

 -
Triggering Event:

	rollOut

	Played when the user rolls the mouse so it is no longer over the component.

	

rollOverEffect

 -
Triggering Event:

rollOver

Played when the user rolls the mouse over the component.

	

showEffect

 -
Triggering Event:
show

	Played when the component becomes visible.

Effects are subclasses of the Effect class

Effects are subclasses

 of the

Effect

class a couple of levels down the inheritance hierarchy. Flex Builder 3
provides a number of built-in effects including the following:

 	

	

	AnimateProperty

	

	

	Blur

	

	

	Dissolve

	

	

	Fade

	

	

	Glow

	

	

	Iris

	

	

	Move

	

	

	Pause

	

	

	Resize

	

	

	Rotate

	

	

	SoundEffect

	

	

	WipeDown

	

	

	WipeLeft

	

	

	WipeRight

	

	

	WipeUp

	

	

	Zoom

In addition, you can create your own effects.

One trigger, many effects

The same trigger can be used to trigger different types of effects. I
suppose that in theory, you could create a different behavior for all possible
combinations of the thirteen triggers and the sixteen different effects in the
two lists provided above. In addition, you can program for multiple
effects to play in response to a single trigger.

To use an effect...

By default, Flex components do not play an effect when a trigger occurs.
To configure a component to use an effect, you must associate an effect with a
trigger.

Preview

Two ways to play effects

There are at least two different ways to cause an effect to be played on a
component in an ActionScript program. One way is to call the

setStyle

method on the component and associate an effect trigger with an effect.
With that approach, the effect will be played each time the effect trigger
fires.

The second way

The second way is to target an

Effect

 object to the component and then
call the

play

 method on the effect object. This approach doesn't
make explicit use of the effect trigger.

Two different programs

I will present and explain two different programs in this lesson. The
first program will illustrate the first approach described above. The
second program will illustrate and contrast the two approaches.

Discussion and sample code

A simple MXML file

Both programs that I
will explain in this lesson are written almost entirely in ActionScript.
There is just enough MXML code to make it possible to launch the programs from a
browser window.

The MXML file is shown in Listing 1 and also in Listing 16.

Example 9.1.
 <?xml version="1.0" encoding="utf-8"?>

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

As you can see, this MXML file simply instantiates an object of the class
named

Driver

 in the

cc

 namespace. Beyond that, the entire
behavior of the program is controlled by ActionScript code.

The program named Effects04

Will explain in fragments

I will break the code for these two programs down and explain the code in
fragments. Complete listings for the

Driver

 classes for the two
programs are provided in Listing 17 and Listing 18 near the end of the lesson.

Program output at startup

You can

run

 this program online
to get a better feel for its behavior.
Figure 1 shows the program
output at startup.

 [image: Missing image]

Figure 9.1.

Program output at startup for Effects04.

Program output at startup for Effects04.

As you can see, the Flash Player output consists of a label and a button with
the text

"Click me and watch me glow"

.

Associate a trigger with an effect

This program associates a

mouseUpEffect

 trigger
with a
	

	Glow

 effect to cause the button to glow when the user releases the mouse
button while the mouse pointer is over the button.

Program output after clicking the button

Figure 2 shows the program output shortly after clicking the button.

 [image: Missing image]

Figure 9.2.

Program output after clicking the button.

Program output after clicking the button.

As promised, the button begins to glow red when the mouse button is released
while the mouse pointer is over the

Button

 component. The button
continues to glow for several seconds.

Beginning of the Driver class for Effects04

This program shows how to set the style on an object with a

mouseUpEffect

trigger and cause the object to glow. The entire program is written in the
class named

Driver

. Listing 2 shows the beginning of the

Driver

class.

Example 9.2.

package CustomClasses{

 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.effects.Glow;

 public class Driver extends VBox{
 //Instantiate and save references to all of the
 // objects needed by the program.
 private var title:Label = new Label();
 private var button:Button = new Button();
 private var glowEffect:Glow = new Glow();

You shouldn't find any surprises in Listing 2. I will simply highlight
the last statement that instantiates an object of the

Glow

 class.
Note also that the

Driver

 class extends the

VBox

 container.

Beginning of the constructor for Effects04

The constructor begins in Listing 3.

Example 9.3.
 public function Driver(){//constructor

 //Set title properties and add to the VBox.
 title.setStyle("color","0xFFFF00");
 title.setStyle("fontSize",14);
 title.text = "Demo mouseUpEffect trigger";
 addChild(title);

 button.label = "Click me and watch me glow.";
 addChild(button);

Once again, you shouldn't find anything new in Listing 3. This part of
the constructor simply creates the yellow text label and the button shown in
Figure 1 and adds them to the

VBox

.

Configuring the Glow effect

The first three statements in Listing 4 set property values on the

Glow

object that was instantiated in Listing 2.

Example 9.4.

 glowEffect.color = 0xFF0000;
 glowEffect.strength = 255;
 glowEffect.duration = 10000;

 button.setStyle("mouseUpEffect",glowEffect);

 } //end constructor
 //--//

 } //end class
} //end package

The strength property

The purpose of the three properties should be fairly obvious on the basis of
their names. However, here is what the documentation has to say about the

strength

 property:

"The strength of the imprint or spread.
	The higher the value, the more color is imprinted and the stronger the
	contrast between the glow and the background. Valid values are from 0 to
	255."

A maximum red glow for ten seconds

The code in Listing 4 sets the effect to glow red with the maximum allowable
strength and to continue to glow for ten seconds. If you

run

 the program, you will see
that the glow doesn't stay the same for ten seconds and then turn off.
Instead, it decays over time.

Associate the trigger and the effect

The statement that

begins with button.setStyle

 in Listing 4 is the

key statement

 in the
entire program. This statement associates the effect referenced by

glowEffect

 with a

mouseUpEffect

 trigger. Therefore, the effect
will be played each time the mouse button is released while the mouse pointer is
over the

Button

 component. In fact, it doesn't even matter if the
mouse pointer was over the

Button

 component when the mouse button was
pressed as long as it is over the

Button

 component when the mouse button
is released.

The end of the program

Listing 4 also signals the end of the program. Note that even though
the

mouseUpEffect

 trigger resulted from a

mouseUp

 event, an event
listener was not registered to listen for and to service the

mouseUp

event.

Three steps are
required

Generally speaking, three steps are required to implement this approach:

 	
Instantiate an object of the desired effect from the above
	

list

, or from a custom effect if you
	have one.

	
Set property values on the effect object to cause it to have the desired
	behavior as in Listing 4.

	
Call the

setStyle

 method to associate the effect with an effect
	trigger from the above

list

 as in Listing 4.

That is all that is required to play an effect when an effect trigger occurs.

The program named Effects05

Suppose you want to do something a little more creative, such as to cause the
effect that is played for a particular trigger to differ from one time to the
next depending on some condition in the program.

Or, perhaps you want to play an effect on a component completely independent
of triggers, such as when a player's score in a game reaches 10,000. I
will show you how to do those kinds of things in this program.

Program output at startup

The best thing that you could do at this point would be to

run

 the program online.
That way, you can interact with the program as you read the following.

Figure 3 shows the program output at startup.

 [image: Missing image]

Figure 9.3.

Program output at startup for Effects05.

Program output at startup for Effects05.

At this point, the output consists of one label and two buttons. The
top button is disabled and the bottom button is asking to be clicked in order to
be hidden.

Program output after clicking the bottom button

Figure 4 shows the program output after the bottom button from Figure 3 has
been clicked.

 [image: Missing image]

Figure 9.4.

Program output after clicking the bottom button.

Program output after clicking the bottom button.

Only the top button is showing

At this point, the bottom button in Figure 3 has been hidden and the top
button in Figure 3 has been enabled. From this point forward, the user
will alternate between clicking the top and bottom buttons.

Do it several times

You need to go through the sequence several times to experience the full
effect. Each time the
user clicks the top button, it becomes disabled and the bottom button becomes
visible. Each time the bottom button becomes visible, an effect is played.
Effects are played in the following sequence:

 	
A WipeRight effect.

	
A Rotate effect.

	
A Glow effect.

	
All three of the above in parallel.

The sequence repeats after the three effects are played in parallel.

The next four figures show screen shots of the effects listed above caught in
midstream.

The WipeRight effect

Figure 5 shows the restoration of the bottom button with a

WipeRight

effect. As you can see, only part of the button was visible when the
screen show was taken.

 [image: Missing image]

Figure 9.5.

The WipeRight effect.

The WipeRight effect.

The Rotate effect

Figure 6 shows the

Rotate

 effect caught in midstream.

 [image: Missing image]

Figure 9.6.

The Rotate effect.

The Rotate effect.

The bottom button rotates a full 360 degrees around its center point before
coming to rest in the position shown in Figure 3 with its label restored.

The Glow effect

Figure 7 shows the bottom button in the middle of a yellow glow effect.

 [image: Missing image]

Figure 9.7.

The Glow effect.

The Glow effect.

You are already familiar with this effect from the program named Effects04
that I explained earlier in this lesson.

Three effects in parallel

Figure 8 shows the three effects being played in parallel.

 [image: Missing image]

Figure 9.8.

Three effects in parallel.

Three effects in parallel.

In this case, the bottom button goes through an interesting gyration before
coming to rest in the position shown in Figure 3. Someone once said that a
picture is worth a thousand words. In this case, actually

running

 the program is worth a
thousand pictures.

Will explain in fragments

As before, I will explain this program in fragments. Aside from the
simple MXML file shown in Listing 16, this entire program is written in a class
named

Driver

. A complete listing of the

Driver

 class is
provided in Listing 18.

Two ways to play effects

As I explained

earlier

, there are at least two different ways to write ActionScript code to play
effects:

 	
Call the

setStyle

 method on the target component passing an
	effect trigger and an effect as parameters to the method as described
	

above

. You saw an example of this
	in the program named Effects04.

	
Create an

Effect

 object targeted to the component and call the

	play

 method on the object. This approach doesn't require an effect
	trigger.

I will illustrate both approaches in this program.

Beginning of the Driver class for Effects05

The driver class for the program named Effects05 begins in Listing 5.

Example 9.5.

package CustomClasses{
 import flash.events.MouseEvent;

 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.effects.Glow;
 import mx.effects.Iris;
 import mx.effects.Parallel;
 import mx.effects.Rotate;
 import mx.effects.WipeRight;
 import mx.events.EffectEvent;
 import mx.events.FlexEvent;

 public class Driver extends VBox{
 //Instantiate and save references to most of the
 // objects needed by the program.
 private var title:Label = new Label();
 private var btnA:Button = new Button();
 private var btnB:Button = new Button();

 private var irisEffect:Iris = new Iris();
 private var wipeEffect:WipeRight = new WipeRight();
 private var rotateEffect:Rotate = new Rotate();
 private var glowEffect:Glow = new Glow();

 private var effectCounter:uint = 0;

Instantiate four different Effect objects

The most interesting part of Listing 5 is the instantiation of four

different effect objects

:

 	

Iris

	

WipeRight

	

Rotate

	

Glow

The

Iris

 effect will be used along with the

setStyle

 method to
cause the bottom button in Figure 3 to play an

Iris

 effect each time it
is hidden.

The other three effects in the above list plus an object of the

Parallel

class will be used to apply one of four different effects to the bottom button
each time it is shown.

Beginning of the constructor for Effects05

The constructor for the

Driver

 class begins in Listing 6.

Example 9.6.
 public function Driver(){//constructor

 //Set title properties and add to the VBox.
 title.setStyle("color","0xFFFF00");
 title.setStyle("fontSize",14);
 title.text = "Demo two ways to play effects";
 addChild(title);

 //Put labels on the two buttons and disable one
 // of them.
 btnA.label = "Click me to show the other button.";
 btnB.label = "Click me to hide me.";
 btnA.enabled = false;//disable btnA at startup

 //Register click listeners on both buttons,
 // register a show listener on btnB, and add
 // them to the VBox.
 btnA.addEventListener(MouseEvent.CLICK,btnAhandler);
 btnB.addEventListener(MouseEvent.CLICK,btnBhandler);
 btnB.addEventListener(FlexEvent.SHOW,showHandler);
 addChild(btnA);
 addChild(btnB);

If you have been studying this series of lessons from the beginning, you
shouldn't find anything in Listing 6 that you don't understand.

Configure an Iris effect for the bottom button

Listing 7 configures an

Iris

 effect that will be played each time the
bottom button in Figure 3 is hidden.

Example 9.7.

 irisEffect.duration = 2000;
 irisEffect.addEventListener(
 EffectEvent.EFFECT_END,endEffectHandler);

 btnB.setStyle("hideEffect",irisEffect);

Note that the bottom button in Figure 3 is referred to by the variable named

btnB

 and the top button in Figure 3 is referred to by the variable named

btnA

.

The code in Listing 7 is essentially the same as the code that I explained in
the earlier program named Effects04.

Configure three different effects targeted to the bottom button

Listing 8 configures three different

Effect

 objects that will be
played individually and in combination when the bottom button in Figure 3 is
shown.

Example 9.8.
 //Configure a wipe effect that may be played
 // when btnB is shown.
 wipeEffect.target = btnB;
 wipeEffect.showTarget = true;
 wipeEffect.duration = 2000;

 //Configure a rotate effect that may be played
 // when btnB is shown.
 rotateEffect.target = btnB;
 rotateEffect.angleFrom = 0;
 rotateEffect.angleTo = 360;
 rotateEffect.duration = 2000;

 //Configure a glow effect that may be played
 // when btnB is shown.
 glowEffect.target = btnB;
 glowEffect.color = 0xFFFF00;
 glowEffect.duration = 4000;
 glowEffect.inner = true;
 glowEffect.strength = 255;

 } //end constructor

Different effects require different properties

The three

Effect

 objects were instantiated in Listing 5.
Different types of effects require that different types of properties be set.
However, one property that is common for all types of effects when using this
approach is to specify the target component on which the effect is to be played.

(Note that it isn't necessary to explicitly specify the target for the
	earlier approach shown in Listing 7. In that case, the target is the
	object on which the

setStyle

 method is called.)

I will leave it as an exercise for the student to go into the documentation
and gain an understanding of the behaviors imparted by the different property
values in Listing 8.

Listing 8 also signals the end of the constructor.

A click event handler on the bottom button

Let's begin by disposing of the code that is executed when the
bottom button is clicked. A click event handler was registered on the
bottom button

(

btnB

)

 in Listing 6. That event handler is
shown in Listing 9.

Example 9.9.

 private function btnBhandler(event:MouseEvent):void{
 btnB.visible = false;
 } //end btnBhandler

A hideEffect trigger

The method shown in Listing 9 is executed each time the user clicks the
bottom button. The method sets the

visible

 property of the bottom
button to false. This causes the bottom button to dispatch a

hide

event, which in turn results in a

hideEffect

 trigger. As you saw in
Listing 7, this causes the program to play an

Iris

 effect to hide the
button.

An EFFECT_END handler for the Iris effect

When the bottom button is showing, the top button is disabled.
Therefore, when the bottom button becomes hidden, the top button must be enabled
or there will be no way to show the bottom button again.

Listing 7 registers an event handler on the

Iris

 effect that is called
each time the effect finishes playing. That event handler is shown in
Listing 10.

Example 9.10.

 private function endEffectHandler(
 event:EffectEvent):void{
 btnA.enabled = true;
 } //end event handler

The code in this method sets the

enabled

 property of the top button to
true making it possible to click that button to show the bottom button again.

That takes care of the code associated with clicking the bottom button.

A click event handler for the top button

Listing 6 registered a

click

 event handler on the top button

(

btnA

)

.
That event handler is shown in Listing 11. This method is called each time
the top button is clicked while it is enabled.

Example 9.11.

 private function btnAhandler(event:MouseEvent):void{
 btnA.enabled = false;
 btnB.visible = true;
 } //end btnAhandler

The code in this method disables the top button and sets the

visible

property of the bottom button to true. This causes the bottom button to
dispatch a

show

 event.

A

show

 event handler was registered on the bottom button in Listing 6.

Beginning of the show event handler registered on the bottom button

That

show

 event handler begins in Listing 12.

Example 9.12.

 private function showHandler(event:FlexEvent):void{
 //Make certain that none of the effects are playing.
 wipeEffect.end();
 rotateEffect.end();
 glowEffect.end();

 //Select the effect or effects that will be
 // played.
 if(effectCounter == 0){
 wipeEffect.play();
 effectCounter++;//increment the effect counter.

This method is executed each time the

visible

 property of the bottom
button is changed from false to true. The transition of that property
value from false to true causes the bottom button to dispatch a

show

event.

Stop all effects that may be playing

Listing 12 begins by calling the

end

 method on three of the four

Effect

 objects that were instantiated in Listing 5. If one of those
effects is playing, calling the

 end

 method on the effect object causes
the Flash Player to jump immediately to the end.

Determine which effect to play

Then Listing 12 begins executing a long

if-else-if

 statement that
determines which effect to play based on the current value of the variable named

effectCounter

 that was declared and initialized to a value of zero in
Listing 5.

Four possibilities

Depending on the current value of that counter, the program will play one of
the following three effects or all three in parallel:

 	

WipeRight

	

Rotate

	

Glow

If the current value of the effect counter variable is 0, the last two
statements in Listing 12 are executed. Otherwise, control passes to the
test at the top of Listing 13.

Play the wipe effect and increment the counter

One of the statements in Listing 12 calls the

play

 method on the
effect object referred to by

wipeEffect

causing that effect to play. The last statement in Listing 12 increments
the effect counter by a value of one. Then control passes to the end of
the

showHandler

 method near the bottom of Listing 15.

Code to play the Rotate effect

If the value of the effect counter was 1 when control entered the

if-else-if

 statement in Listing 12, the last four statements in Listing 13
are executed. Otherwise, control passes to the top of Listing 14.

Example 9.13.
 }else if(effectCounter == 1){
 rotateEffect.originX = btnB.width/2;
 rotateEffect.originY = btnB.height/2;
 rotateEffect.play();
 effectCounter++;

If the value of the effect counter was 1 when the

if-else-if

 statement
began execution, the

play

 method is called on the

rotateEffect

object by the code in Listing 13.

Establish the center of rotation

Before calling the

play

 method, however, the code in Listing 13
establishes the center of the button as the point around which the button will
be rotated. It was not possible to establish this point when the

Rotate

effect was configured in Listing 8 because reliable information about the width
and height of the button was not yet available.

Could have used creationComplete

Perhaps a more elegant approach to establishing the center of rotation would
have been to register a

creationComplete

 listener on the

VBox

 and
to set the values for

originX

 in

originY

 in that handler.
However, that seemed like overkill and I decided to do it in Listing 13.

Increment the counter and go to the end of the
method

If the last four statements in Listing 13 are executed, the effect counter is
incremented by one. Then control passes to the bottom of the method in
Listing 15.

Code to play the Glow effect

If the value of the effect counter was 2 when control entered the

if-else-if

statement in Listing 12, the last two statements in Listing 14 are executed.
Otherwise, control passes to the top of Listing 15.

Example 9.14.
 }else if(effectCounter == 2){
 glowEffect.play();
 effectCounter++;

The last two statements in Listing 14 play the glow effect and increment the
effect counter. Then control passes to the bottom of the method in Listing
15.

Code to play three effects in parallel

If the value of the effect counter was something other than 0, 1, or 2 when
control entered the

if-else-if

 statement in Listing 12, the code in the

else

clause in Listing 15 is executed.

Example 9.15.
 }else{
 //Play all three effects in parallel.
 var parallel:Parallel = new Parallel();
 parallel.addChild(rotateEffect);
 parallel.addChild(glowEffect);
 parallel.addChild(wipeEffect);
 parallel.play();
 //reset the effect counter
 effectCounter = 0;
 } //end else

 } //end showHandler
 //--//

 } //end class
} //end package

An object of the Parallel class

This code instantiates an object of the

Parallel

 class and adds the
three effects as children of that object. Then the code calls the

play

method on the

Parallel

 object. This causes all three effects to
play simultaneously.

Reset the counter

Finally, Listing 15 resets the value of the effect counter back to 0 so that
the sequence will begin anew the next time the event handler for the

show

event is executed.

Play the same effect on multiple targets
simultaneously

You can play the same effect on multiple targets simultaneously by setting
the

targets

 property on the effect object instead of the

target

object. The

targets

 property requires an array containing
references to the target objects.

Three steps are required

The following steps are required to play an effect in the Flash Player using
this approach.

 	
Instantiate and save a reference to an

Effect

 object.

	
Set properties on the effect object. Be sure to set the

target

	property for a single target or the

targets

 property for multiple
	targets.

	
Call the

play

 method on the effect object.

To play multiple effects in parallel or in sequence

 	
Instantiate and save references to two or more

Effect

 objects.

	
Set properties on the effect objects, being careful to set either the

	target

 property or the

targets

 property.

	
Instantiate a

Parallel

 object or a

Sequence

 object.

	
Add the effect objects as children of the

Parallel

 object or the
	

Sequence

 object.

	
Call the play method on the

Parallel

 object or the

Sequence

	object.

Note that you can also add

Sequence

 objects to

Parallel

 objects
and vice versa. Just make certain that you don't try to play two instances
of the same effect on the same object at the same time.

The end of the program

Listing 15 also signals the end of the

Driver

 class and the end of the
program.

Run the programs

I encourage you to

run

 these two programs from the
web. Then copy
 the code from Listing 16 through Listing 18.
Use that code to create Flex projects. Compile and run the projects.
Experiment with the code, making changes, and observing the results of your
changes. Make certain that you can explain why your changes behave as they
do.

Resources

I will publish a list containing links to ActionScript resources as a separate document. Search for ActionScript Resources in the Connexions search box.

Complete program listings

Complete listings of the MXML and ActionScript files are provided in Listing 16
through Listing 18 below.

Example 9.16.
 <?xml version="1.0" encoding="utf-8"?>

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

Example 9.17.
 /*Effects04 11/22/09
This program shows how to set the style on an object with
 a mouseUpEffect trigger and cause the object to glow.
*/

package CustomClasses{

 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.effects.Glow;

 public class Driver extends VBox{
 //Instantiate and save references to all of the
 // objects needed by the program.
 private var title:Label = new Label();
 private var button:Button = new Button();
 private var glowEffect:Glow = new Glow();
 //--//

 public function Driver(){//constructor

 //Set title properties and add to the VBox.
 title.setStyle("color","0xFFFF00");
 title.setStyle("fontSize",14);
 title.text = "Demo mouseUpEffect trigger";
 addChild(title);

 button.label = "Click me and watch me glow.";
 addChild(button);

 glowEffect.color = 0xFF0000;
 glowEffect.strength = 255;
 glowEffect.duration = 10000;
 button.setStyle("mouseUpEffect",glowEffect);

 } //end constructor
 //--//

 } //end class
} //end package

Example 9.18.
 /*Effects05 11/22/09
This program demonstrates two ways to play effects:
1. Call the play method on the effect.
2. Set the style on an object with a hideEffect trigger.
***/
package CustomClasses{
 import flash.events.MouseEvent;

 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.effects.Glow;
 import mx.effects.Iris;
 import mx.effects.Parallel;
 import mx.effects.Rotate;
 import mx.effects.WipeRight;
 import mx.events.EffectEvent;
 import mx.events.FlexEvent;

 public class Driver extends VBox{
 //Instantiate and save references to most of the
 // objects needed by the program.
 private var title:Label = new Label();
 private var btnA:Button = new Button();
 private var btnB:Button = new Button();
 private var irisEffect:Iris = new Iris();
 private var wipeEffect:WipeRight = new WipeRight();
 private var rotateEffect:Rotate = new Rotate();
 private var glowEffect:Glow = new Glow();
 private var effectCounter:uint = 0;
 //--//

 public function Driver(){//constructor

 //Set title properties and add to the VBox.
 title.setStyle("color","0xFFFF00");
 title.setStyle("fontSize",14);
 title.text = "Demo two ways to play effects";
 addChild(title);

 //Put labels on the two buttons and disable one
 // of them.
 btnA.label = "Click me to show the other button.";
 btnB.label = "Click me to hide me.";
 btnA.enabled = false;//disable btnA at startup

 //Register click listeners on both buttons,
 // register a show listener on btnB, and add
 // them to the VBox.
 btnA.addEventListener(MouseEvent.CLICK,btnAhandler);
 btnB.addEventListener(MouseEvent.CLICK,btnBhandler);
 btnB.addEventListener(FlexEvent.SHOW,showHandler);
 addChild(btnA);
 addChild(btnB);

 //Configure an iris effect that will be played when
 // btnB is hidden.
 irisEffect.duration = 2000;
 irisEffect.addEventListener(
 EffectEvent.EFFECT_END,endEffectHandler);
 btnB.setStyle("hideEffect",irisEffect);

 //Configure a wipe effect that may be played
 // when btnB is shown.
 wipeEffect.target = btnB;
 wipeEffect.showTarget = true;
 wipeEffect.duration = 2000;

 //Configure a rotate effect that may be played
 // when btnB is shown.
 rotateEffect.target = btnB;
 rotateEffect.angleFrom = 0;
 rotateEffect.angleTo = 360;
 rotateEffect.duration = 2000;

 //Configure a glow effect that may be played
 // when btnB is shown.
 glowEffect.target = btnB;
 glowEffect.color = 0xFFFF00;
 glowEffect.duration = 4000;
 glowEffect.inner = true;
 glowEffect.strength = 255;

 } //end constructor
 //--//

 //This method is executed when btnB is clicked. It
 // hides itself, which in turn causes the Iris
 // hideEffect to be played on itself.
 private function btnBhandler(event:MouseEvent):void{
 btnB.visible = false;
 } //end btnBhandler
 //--//

 //This method is executed when btnA is clicked. It
 // disables itself and causes btnB to become visible.
 // This in turn causes btnB to dispatch a show event
 // which is handled by a different event handler.
 private function btnAhandler(event:MouseEvent):void{
 btnA.enabled = false;
 btnB.visible = true;
 } //end btnAhandler
 //--//

 //This method is executed when btnB is hidden and the
 // iris effect ends. It enables btnA so that the user
 // can click btnA to show btnB again.
 private function endEffectHandler(
 event:EffectEvent):void{
 btnA.enabled = true;
 } //end event handler
 //--//

 //This method is executed when btnB becomes visible
 // and dispatches a show event. It causes any effects
 // that may be playing to end. Then it one of three
 // effects or all three in parallel depending on the
 // value of an effect counter.
 private function showHandler(event:FlexEvent):void{
 //Make certain that none of the effects are playing.
 wipeEffect.end();
 rotateEffect.end();
 glowEffect.end();

 //Select the effect or effects that will be
 // played.
 if(effectCounter == 0){
 wipeEffect.play();
 effectCounter++;//increment the effect counter.
 }else if(effectCounter == 1){
 //Set the rotate origin to the center of the
 // button. This couldn't be done when the rotate
 // effect was configured because the true width
 // and height of the button weren't available at
 // that time. Another approach would be to use
 // a creationComplete event handler to set these
 // values.
 rotateEffect.originX = btnB.width/2;
 rotateEffect.originY = btnB.height/2;
 rotateEffect.play();
 effectCounter++;
 }else if(effectCounter == 2){
 glowEffect.play();
 effectCounter++;
 }else{
 //Play all three effects in parallel.
 var parallel:Parallel = new Parallel();
 parallel.addChild(rotateEffect);
 parallel.addChild(glowEffect);
 parallel.addChild(wipeEffect);
 parallel.play();
 effectCounter = 0;//reset the effect counter
 } //end else

 } //end showHandler
 //--//

 } //end class
} //end package

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Events, Triggers, and Effects

	
Files:

 	
ActionScript0116\ActionScript0116.htm

	
ActionScript0116\Connexions\ActionScriptXhtml0116.htm

PDF disclaimer:

-end-

Solutions

Chapter 12. Fundamentals of Image Pixel Processing

Click

Bitmap05

	Bitmap06

(Click the "Back" button in your browser
to return to this page.)

Table of Contents

 	

Preface

 	

General

	

Viewing tip

 	

Figures

	

Listings

	

Supplemental material

	

General background information

	

Preview

	

Discussion and sample code

 	

The program named Bitmap05

 	

MXML code for the program named Bitmap05

	

ActionScript code for the program named
		 Bitmap05

	

The program named Bitmap06

 	

MXML code for the program named Bitmap06

	

ActionScript code for the program named
		 Bitmap06

	

Run the programs

	

Resources

	

Complete program listings

	

Miscellaneous

Preface

General

All references to ActionScript in this lesson are
			 references to version 3 or later.

This tutorial lesson is
part of a series of lessons dedicated to object-oriented programming
(OOP) with ActionScript.

Several ways to create and launch ActionScript
programs

There are several ways to
create and launch programs written in the ActionScript programming language.
Many of the lessons in this series will use Adobe Flex as the launch pad for the
sample ActionScript programs.

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3.

(See

Baldwin's Flex programming website

.)

You should study that lesson before embarking on the lessons in this series.

Some understanding of Flex MXML will be required

I also recommend that you
study all of the lessons on Baldwin's Flex programming website in parallel with
your study of these ActionScript lessons. Eventually you will probably need to
understand both ActionScript and Flex and the relationships that exist between
them in order to become a successful ActionScript programmer.

Will emphasize ActionScript code

It is often possible to use
either ActionScript code or Flex MXML code to achieve the same result. Insofar
as this series of lessons is concerned, the emphasis will be on ActionScript
code even in those cases where Flex MXML code may be a suitable alternative.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and
listings while you are reading about them.

Figures

 	

Figure 1

. Screen output for both programs.

	

Figure 2

. Program file structure for the program
 named Bitmap05.

Listings

 	

Listing 1

. MXML code for the program named
 Bitmap05.

	

Listing 2

. Beginning of the ActionScript Driver
 class.

	

Listing 3

. Start the process of loading the image
 file.

	

Listing 4

. Beginning of the complete event
 handler.

	

Listing 5

. Encapsulate the Bitmap in an Image
 object.

	

Listing 6

. Clone the original Bitmap to create a
 duplicate Bitmap.

	

Listing 7

. Modify the duplicate Bitmap.

	

Listing 8

. Beginning of the modify method.

	

Listing 9

. Process pixels using the getPixels and
 setPixels methods.

	

Listing 10

. Modify the pixels in the rectangular
 region.

	

Listing 11

. Put the modified pixel data back
 into the same rectangular region.

	

Listing 12

. Process pixels using the setPixel32
 method.

	

Listing 13

. Put borders on the top and bottom
 edges.

	

Listing 14

. Return to the complete event
 handler.

	

Listing 15

. Beginning of the invert method.

	

Listing 16

. Apply the inversion algorithm.

	

Listing 17

. Put the modified pixel data back
 into the BitmapData object.

	

Listing 18

. Code that is different in the
 program named Bitmap06.

	

Listing 19

. MXML code for the program named
 Bitmap05.

	

Listing 20

. ActionScript code for the program
 named Bitmap05.

	

Listing 21

. ActionScript code for the program
 named Bitmap06.

Supplemental material

I recommend that you also
study the other lessons in my extensive collection of online programming
tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background information

In an earlier lesson titled

Bitmap Basics

, I explained the differences between Flex projects and
ActionScript projects. I also introduced you to the classes named

Bitmap

and

BitmapData

. Now it's time to put that knowledge to work. In
this lesson, I will show you how to:

 	
Load the contents of an image file into a

BitmapData

 object encapsulated in a

Bitmap

 object.

	
Use the

setPixel32

,

getPixels

, and

setPixels

 methods to access and modify the color content of
 the individual pixels that make up an image.

Before getting into that, however, it will be useful to explain how image
information is stored in files and in the computer's memory.

Vector graphics versus bitmap graphics

Graphics programming typically involves two main types of data: bitmaps and
vector graphics. This lesson deals with bitmap data only. I will deal with
vector graphics in a future lesson.

A rectangular array of pixels

When you take a picture with your digital camera, the scene is converted into
a rectangular array containing millions of uniformly spaced colored dots. Those
dots or picture elements

(pixels)

 are stored on the memory card in your camera
until you download them into your computer.

Width, height, and color depth

An image that is stored in this way is defined by the width and height of the
array of pixels along with the number of bits that are used to define the color.

Up to a point, the more pixels that the camera produces to represent a given
field of view, the better will be the image. Similarly, the more bits that are
used to store the color, the better will be the overall quality of the image,
particularly in terms of subtle shades of color.

The resolution

The number of pixels per unit area is commonly referred to as resolution. For
example, the display monitor that I am currently using displays an array of 1280
x1024 pixels in a rectangular area with a diagonal measurement of 19 inches.
(This is not a particularly high resolution monitor.)

The color depth

The number of bits used to represent the color of a pixel is commonly
referred to as the color depth. Most modern computers routinely use a color
depth of 32 bits. Note, however, that some file formats used for the storage and
transmission of bitmap graphics data use fewer than 32 bits for the
representation of each pixel in an image.

The RGB or ARGB color model

ActionScript supports a computer color model commonly known as the RGB model
or the ARGB model. With this model, the color of each pixel is represented by
three numeric color values and an optional transparency value

(alpha)

.

Each of the three color values represents the contribution or strength of a
primary color:

red, green, and blue.

 The final color of the pixel is a mixture
of the primary colors. This is similar to a kindergarten student mixing red,
green, and blue clay to produce a color that is different from red, green or
blue.

(I don't have a clay analogy for transparency, however.)

The effect of the transparency value

In some cases, the pixel also contains another value referred to as the

alpha

value

(ARGB)

 that represents the transparency of the pixel.

Transparency comes into play when you draw a new image over an existing
image. If the alpha value for a pixel is zero, there is no change in the color
of the existing pixel because the new pixel is totally transparent.

(Although
the effect is commonly referred to as transparency, the numeric value is
actually proportional to opacity, which is the inverse of transparency.)

Total opacity

If the alpha value indicates total opacity

(often
represented as either 1.0 or 255)

, the color of the existing pixel is
completely replaced by the color of the new pixel.

(I will explain the
difference between 1.0 and 255 later.)

Partial opacity

If the alpha value falls between 0 and 1.0

(0 and 255)

, the colors
of the existing pixel and the new pixel are combined to produce a new blended
color. The result is as if you are viewing the original scene through colored
glass.

An unsigned 32-bit chunk of memory

Typically, a pixel is represented in the computer by an unsigned 32-bit chunk
of memory. Each of the three primary colors and the alpha value are represented
by an eight-bit unsigned byte. The bytes are concatenated to form the 32-bit
chunk of memory.

256 levels

This results in 256 levels of intensity for each of the primary colors along
with 256 levels of transparency for the alpha byte. For example, if the red,
green, and alpha bytes are equal to 255 and the blue byte is zero, the pixel
will be displayed as bright yellow on a typical computer screen.

Bitmap image file formats

Different file formats are commonly used to store and transmit image data. It
is usually desirable to reduce the size of the file required to store a given
image while maintaining the quality of the image. This often results in a
tradeoff between file size and image quality.

Different formats use different compression algorithms to reduce the size of
the file. The bitmap image formats supported by Adobe Flash Player and Adobe Air
are GIF, JPG, and PNG.

The GIF format

The Graphics Interchange Format

(GIF)

 is a format that is often used to store
low quality images in very small files. The format can store a maximum of 256
different colors and can designate one of those colors to represent a fully
transparent pixel. By comparison, the typical ARGB format can represent more
than sixteen million colors with 256 levels of transparency for each pixel.

The GIF format would not be very satisfactory for images produced by your
digital camera, but it is fine for many purposes such as screen icons where high
color quality is not an important consideration.

The JPEG format

This format, which is often written as JPG, was developed by the Joint
Photographic Experts Group

(JPEG)

. This image format uses a lossy compression
algorithm to allow 24-bit color depth with a small file size.

Lossy compression means that what comes out of the compressed file is not
identical to what went in. The loss in picture quality is often acceptable,
however, given that the format allows for different degrees of lossiness which
is inversely related to the size of the compressed file. All of the digital
cameras that I have owned produce JPEG files as the standard output and some of
them allow the user to select the degree of compression and hence the degree of
lossiness.

The JPEG format does not support alpha transparency. Therefore, it is not
suitable as a file format for transmitting images with alpha data between
computers.

The PNG format

Apparently there are some patent issues with the GIF format. The Portable
Network Graphics

(PNG)

 format was produced as an open-source alternative to the
GIF file format.

The PNG format supports at least sixteen million colors and uses lossless
compression. The PNG format also supports alpha transparency allowing for up to
256 levels of transparency in a compressed format.

The BitmapData class

The

BitmapData

 class in ActionScript 3 supports a 32-bit
ARGB color model with more than sixteen million colors and 256 levels of alpha
transparency per pixel.

Preview

I will explain two different
programs in this lesson. One is named

Bitmap05

 and the other is named

Bitmap06

.
Both programs produce the same output, which is shown in Figure 1.

 [image: Missing image]

Figure 12.1.

Screen output for both programs.

Screen output for both programs.

Program file structure

Figure 2 shows the program file structure taken from the Flex Builder 3
Navigator panel for the program named

Bitmap05

.

 [image: Missing image]

Figure 12.2.

Program file structure for the program named Bitmap05.

Program file structure for the program named Bitmap05.

The program file structure for

Bitmap06

 is the same except for the name of
MXML file.

I will use the programs named

Bitmap05

 and

Bitmap06

 to explain a variety of
topics.

Skeleton code

First, I will provide skeleton code for creating a

Bitmap

object from an image file. You will learn how to use the skeleton code to create
and display a bitmap from an image file as shown by the top image in Figure 1.

Extract the BitmapData object

I will show you how to extract the

BitmapData

 object from
the

Bitmap

 object so that you can modify the pixels in the
image. Once you are able to extract the

BitmapData

 object, you
will have the bitmap data exposed to the point that you can implement a variety
of image processing algorithms such as the following:

 	
Smoothing

	
Sharpening

	
Edge detection

	
Color filtering

	
Color inversion

	
Redeye correction

(For more information on how to implement image processing algorithms in
general, see the tutorial lessons beginning with Lesson 340 in the section
titled

Multimedia Programming with Java

on my

web site

.)

Using the getPixels, setPixels, and setPixel32
methods

I will explain how to use the

getPixels

,

setPixels

, and

setPixel32

 methods for
modifying the pixels in a bitmap as shown by the middle image in Figure 1. If
you compare the middle image with the top image, you will see that two colored
bars were added near the upper-left corner. In addition, colored borders were
added to the middle image.

Color inversion

Finally, I will explain how to implement a color inversion algorithm as shown
by the bottom image in Figure 1. If you compare the bottom image with the middle
image, you will see that the colors of all of the pixels in the top half of the
bottom image have been changed. The colors of the pixels were changed using a
particular algorithm known widely as a color inversion algorithm.

The color inversion algorithm produces an output that is very similar to an
old fashioned color film negative. The algorithm is economical to implement and
totally reversible. Therefore, it is used by several major software products to
highlight an image and show that the image has been selected for processing.

Discussion and sample code

As mentioned earlier, I will explain two different programs in this lesson.
One is named

Bitmap05

 and the other is named

Bitmap06

.

The program named Bitmap05

Will explain in fragments

I will explain the code for both programs in fragments. Both programs use the
same MXML code but use different ActionScript code. Complete listings of the
MXML file and the ActionScript files are provided in Listing 19 through Listing
21 near the end of the lesson.

MXML code for the program named
Bitmap05

The MXML code for this program

(and the program named

Bitmap06

 as well)

 is
shown in Listing 1 and also in Listing 19 for your convenience.

Example 12.1.
 <?xml version="1.0" encoding="utf-8"?>
<!--
This program illustrates loading an image and
modifying the pixels in the image.
-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

Both programs are written almost entirely in ActionScript. As you can see,
the MXML code instantiates a single object of the

Driver

class. Beyond that point, the behavior of both programs is controlled
entirely by ActionScript code in the

Driver

 class.

ActionScript code for the program named Birtmap05

A security
issue

Let me begin by saying that I make no claims of expertise regarding security
issues and the Flash Player.

No embedded image

I did not embed the image file shown in Figure 1 in the SWF file for the
program named

Bitmap05

. Instead, I included it as a separate file in the

Release Build

 of the program. As a result, it was necessary for
me to change one of the XML elements in the following configuration file to make
it possible for you to download and

run

 the online
version of the program.

C:\Program Files\Adobe\Flex Builder
3\sdks\3.2.0\frameworks\flex-config.xml

(Note that the configuration file may be in a different location on your
computer.)

The required change

The required change was to set the value in the following element to false
instead of true:

Table 12.1. 	

 <use-network>false</use-network>

Why am I telling you this?

The ActionScript documentation seems to take for granted that you must modify
the configuration file to handle the security issue. However, it took a very
long time and a lot of searching for me to discover that in order to select
certain compiler options, it is necessary to physically modify the configuration
file shown above.

I knew generally the kind of change that was required, but I was expecting to
find an option in the Flex Builder 3 IDE to allow me to change the compiler
options on a project by project basis. If that capability exists in the IDE, I
was unable to find it.

(Of course, once you know about the requirement, you can
Google "flex-config.xml" and find hundreds of references to the topic.)

I am telling you this in the hope that this information will save you
countless hours of searching through the documentation to discover why you get a
runtime error when you replicate this project and then try to download and run
it in the Flash Player plugin.

Beginning of the ActionScript Driver class

The MXML code shown in Listing 1 instantiates an object of the

Driver

 class. The ActionScript

Driver

 class
begins in Listing 2.

Example 12.2.
 package CustomClasses{
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.display.Loader;
 import flash.events.*;
 import flash.geom.Rectangle;
 import flash.net.URLRequest;
 import flash.utils.ByteArray;

 import mx.containers.VBox;
 import mx.controls.Image;
 import flash.system.Security;
 //==//

 public class Driver extends VBox {
 private var url:String = "snowscene.jpg";//image file

 public function Driver(){//constructor
 //Make the VBox visible.
 setStyle("backgroundColor",0xFFFF00);
 setStyle("backgroundAlpha",1.0);

Establish the name and path of the image file

The class definition in Listing 2 begins by declaring and populating an
instance variable named

url

 with the name of the image file
shown in Figure 2. As you can see in Figure 2, this file was located in the same
folder as the MXML file. Therefore, no path information was required to specify
the location of the image file.

The constructor

The constructor for the class also begins in Listing 2. This class extends
the

VBox

 class. The code in Listing 2 causes the background
color of the

VBox

 object to be yellow and also causes the
yellow background to be completely opaque. You can see the opaque yellow
background of the

VBox

 object in Figure 1.

Opacity is often represented as either
1.0 or 255

Remember that I told you

earlier

 that the opacity value
is

"often represented as either 1.0 or 255."

 Usually when you set the alpha
value as a property of a Flex component, you must specify a value ranging from
0.0 to 1.0 with a value of 1.0 being completely opaque. On the other hand, when
you are dealing with the actual alpha value in bitmap data, you must specify a
value ranging from 0 to 255 with a value of 255 being completely opaque.

Start the process of loading the image file

Listing 3 starts the process of loading the image file. As I mentioned
earlier, this program does not embed the image file in the SWF file.

(The
program named

Bitmap06

, which I will explain later, does embed the image file in
the SWF file.)

 Instead, the image file for this program ends up as a separate file on the server
that must be downloaded in addition to the SWF file.

(The ActionScript
literature contains numerous discussions regarding the pros and cons of
embedding versus not embedding resource files.)

Example 12.3.
 var loader:Loader = new Loader();

 //Register event listeners on the load process
 loader.contentLoaderInfo.addEventListener(
 Event.COMPLETE,completeHandler);
 loader.contentLoaderInfo.addEventListener(
 IOErrorEvent.IO_ERROR,ioErrorHandler);

 var request:URLRequest = new URLRequest(url);
 loader.load(request);

Straightforward code

The code in Listing 3 is fairly straightforward. You should be able to
understand it if you analyze it using the ActionScript documentation.

The Event.COMPLETE event handler

The main thing that I want to emphasize from Listing 3 is the registration of
the

Event.COMPLETE

 event handler. Note that this event handler is
registered on the

contentLoaderInfo

 property of the

Loader

 object and not on the

Loader

 object
itself. The documentation has this to say about this property:

"Returns a LoaderInfo object corresponding to
the object being loaded. LoaderInfo objects are shared between the Loader object
and the loaded content object. The LoaderInfo object supplies loading progress
information and statistics about the loaded file.

Events related to the load are dispatched by the
LoaderInfo object referenced by the contentLoaderInfo property of the Loader
object. The contentLoaderInfo property is set to a valid LoaderInfo object, even
before the content is loaded, so that you can add event listeners to the object
prior to the load."

The Event.COMPLETE event

The documentation has this to say about the

Event.COMPLETE

event:

"Dispatched when data has loaded successfully.
In other words, it is dispatched when all the content has been downloaded and
the loading has finished. The complete event is always dispatched after the init
event. The init event is dispatched when the object is ready to access, though
the content may still be downloading."

Beginning of the complete event handler

The

complete

 event handler that is registered in Listing 3
begins in Listing 4. This handler is executed when the load process is complete
and the image data is available.

Example 12.4.
 private function completeHandler(event:Event):void{

 //Get, cast, and save a reference to a Bitmap object
 // containing the content of the image file.
 var original:Bitmap = Bitmap(
 event.target.loader.content);

 //Set the width and height of the VBox object based
 // on the size of the original bitmap.
 this.width = original.width + 10;
 this.height = 3*original.height + 12;

Get a reference to the Bitmap object

The handler begins by using the incoming reference to the

Event

 object to execute a complex statement that ends up with a
reference to the

Bitmap

 object. However, that reference is
received as type

DisplayObject

 and must be cast to type

Bitmap

 to be used for its intended purpose in this program. The
reference is cast to type

Bitmap

 and saved in the variable
named

original

.

When the first statement in Listing 4 finishes executing, the variable named

original

 refers to a

Bitmap

 object containing
the image from the image file specified in Listing 2.

Set the dimensions of the VBox object

After creating the new

Bitmap

 object, Listing 4 uses the
dimensions of the

Bitmap

 object to set the dimensions of the

VBox

 object, which is shown by the yellow background in Figure
1.

Can use almost any image

All of the placement information for the images shown in Figure 1 is based on
the dimensions of the

Bitmap

 object. Therefore, you should be
able to substitute any JPEG, PNG, or GIF image file in place of my file so long
as the name of the file matches the name and location of the file specified in
Listing 2. Note however that your image file will need to be wide enough and
tall enough to prevent the magenta and green color bars added to the center
image in Figure 1 from extending outside the image.

Dealing with a type compatibility issue

In the earlier lesson titled

Bitmap Basics

, I explained that in order to add a child to a

VBox

object, that child:

 	
Must be a subclass of the

DisplayObject

 class and

	
Must implement the

IUIComponent

 interface.

While a

Bitmap

 object is a subclass of

DisplayObject

, it does not implement the

IUIComponent

 interface. Therefore, it is not compatible with
being added directly to the

VBox

 object. I resolved the issue
in that lesson by encapsulating the

Bitmap

 object in an object
of the

UIComponent

 class, which implements the

IUIComponent

 interface.

Encapsulate the Bitmap in an Image object

In this lesson, I decided to be more specific and encapsulate the

Bitmap

 object in an object of the

Image

class. This is allowable because the

Image

 class is a subclass
of the

UIComponent

 class.

Listing 5 encapsulates the

Bitmap

 in an

Image

 object and adds it to the

VBox

 object to
be displayed at the top of and five pixels to the right of the left edge of the

VBox

 as shown by the top image in Figure 1.

Example 12.5.
 //Encapsulate the bitmap in an Image object and add
 // the Image object to the VBox. Display it at
 // x=5 and y=0
 original.x = 5;
 original.y = 0;
 var imageA:Image = new Image();
 imageA.addChild(original);
 this.addChild(imageA);

A curious situation

This brings up a curious situation regarding the placement of the

Image

 objects in the

VBox

 object. Normally, if
you instantiate

Image

 objects and populate them directly from
the contents of image files

(

by calling the load
method on the

Image

 object)

, you can add them to a

VBox

 object without the requirement to specify the locations at
which the images will be displayed. The layout management rules of the

VBox

 object determine how they are displayed.

This case is different

In this case, however, if you instantiate

Image

 objects and
populate them with

Bitmap

 objects by calling the

addChild

 method as shown in Listing 5, you must specify the
display locations of the

Bitmap

 objects within the

VBox

 object. If you don't, they all end up in the upper-left
corner of the

VBox

.

Honoring the boundaries of the VBox
object

Also, if you specify the dimensions of the

VBox

 object and
add more images of the

first type

 than the size of the

VBox

 object can accommodate, scroll bars automatically appear
on the

VBox

 object.

In this case, however, if you specify the locations such that the

Image

 objects won't all fit within the boundaries of the

VBox

 object, the images extend outside the bounds of the

VBox

 object.

I will leave it as an exercise for the student to sort through all of that.

Clone the original

Bitmap

 to create a duplicate Bitmap

We have now reached the point
where we could access the

BitmapData

 object encapsulated in the

Bitmap

 object and modify the pixel data that comprises the image.
However, instead of modifying the pixels in the original

Bitmap

, I elected to create a duplicate bitmap and modify the
pixels in the duplicate. That makes it possible to compare the unmodified image

(top image in Figure 1)

 with the modified image

(middle image in Figure 1).

Listing 6 calls the

clone

 method on the original

Bitmap

 object to create a duplicate

Bitmap

object, and saves the duplicate

Bitmap

 object's reference in
the variable named

duplicateB

.

Example 12.6.
 var duplicateB:Bitmap = new Bitmap(
 original.bitmapData.clone());

 duplicateB.x = 5;
 duplicateB.y = original.height;

 var imageB:Image = new Image();
 imageB.addChild(duplicateB);
 this.addChild(imageB);

Display the duplicate bitmap

Then Listing 6 adds the duplicate bitmap to a new

Image

object, positions the duplicate bitmap immediately below the top image in Figure
1 and adds the new image to the

VBox

. This is the middle image
in Figure 1.

Another curious circumstance

Curiously, the middle image in Figure 1 is five or six pixels further down
than I expected it to be. This produces a gap of five or six pixels between the
top two images in Figure 1. I am unable to explain the reason for the gap at
this time, but I suspect that it may have something to do with the layout rules
of the

VBox

 container object. When I place two or more ordinary

Image

 objects in a

VBox

 container, they appear in a
vertical stack separated by about five or six pixels. However, that is total
speculation on my part.

Modify the duplicate Bitmap

Listing 7 calls the

modify

 method passing a reference to

duplicateB

 as a parameter. This causes the middle image in
Figure 1 to be modified in two different ways.

 	
First, the magenta and
 green rows of pixels are inserted near the upper left corner.

	
Then a colored border two
 pixels thick is inserted around the four edges of the bitmap.

Example 12.7.
 modify(duplicateB);

Explain the modify method

At this point, I will put the explanation of the

complete

event handler on hold and explain the method named

modify

.

Beginning of the modify method

The

modify

method begins in Listing 8.

Example 12.8.
 private function modify(bitmap:Bitmap):void{

 var bitmapData:BitmapData = bitmap.bitmapData;

The incoming

Bitmap

 object encapsulates a

BitmapData

 object, which is referenced by a property of the

Bitmap

 object named

bitmapData

. Listing 8 gets
a copy of that reference and saves it in a local variable named

bitmapData

.

Process pixels using the getPixels and
setPixels methods

Listing 9 begins by
instantiating a new empty object of type

ByteArray

.

Example 12.9.
 var rawBytes:ByteArray = new ByteArray();
 rawBytes = bitmapData.getPixels(
 new Rectangle(10,10,50,8));

The ByteArray class

According to the

documentation

,

"The ByteArray class provides methods and
properties to optimize reading, writing, and working with binary data."

A

ByteArray

 object is an object that can be used to store
and access data using either square bracket notation [] or method calls. The
main benefit of using this data structure from our viewpoint is that it
will decompose the 32-bit integers into 8-bit bytes and allow us access the
pixel data one byte at a time. Otherwise it would be necessary for us to perform
the decomposition ourselves using bit shift operations.

The getPixels method

Listing 9 populates the

ByteArray

 object by calling the

getPixels

 method on the

BitmapData

 object.
According to the

documentation

, this method

"Generates a byte array from a

rectangular region

 of pixel data. Writes an unsigned integer (a
32-bit unmultiplied pixel value) for each pixel into the byte array."

A Rectangle object

A new

Rectangle

 object is instantiated to define the

rectangular region

 from which the pixels are extracted. According to
the documentation, the constructor for this class

"Creates a new

Rectangle

object with the top-left corner specified by the x and y parameters and with the
specified width and height parameters."

The rectangular region specified by the parameters in Listing 9 has its
upper-left corner at (10,10)

,

 is 50 pixels wide, and 8 pixels high. This is the
rectangular occupied by the magenta and green horizontal bars near the
upper-left corner of the middle image in Figure 1.

The ByteArray object is populated with pixel
data

When the

getPixels

 method returns in Listing 9, the pixels
from that rectangular region are stored in the

ByteArray

object referred to by

rawBytes

.

The organization of the pixel data

The first four bytes in the array belong to the pixel in the upper-left
corner of the rectangular region. The next four bytes belong to the pixel
immediately to the right of that one. The array is populated by the data from
the rectangular region on a row by row basis.

Each set of four bytes represent one pixel in ARGB format. In other words,
the first byte in the four-byte group is the alpha byte. That byte is followed
by the red byte, the green byte, and the blue byte in that order. This
information is critical when time comes to use the data in the array to modify
the pixel data.

The general procedure

The general procedure when using this approach is to extract a rectangular
region of pixels into the array, modify the array data, and then call the

setPixels

 method to write the modified color data back into the
area of memory that represents the rectangular region from the bitmap data.

A very useful format

The format of the data in the

ByteArray

 object is very useful when you
need to modify consecutive pixels on a row by row basis. It is less useful, but
can be used when you need to modify pixels whose locations are more random in
nature.

In our case, we want to set the color of all the pixels in the top four rows
of the rectangular region to magenta and we want to set the color of all the
pixels in the bottom four rows of the rectangular region to green as shown by
the middle image in Figure 1. This data format is ideal for that kind of
operation.

Modify the pixels in the rectangular
region

Listing 10 sets the colors of
the pixels in the top four rows to magenta and sets the colors of the pixels in
the bottom four rows to green without modifying the value of the alpha byte.

Example 12.10.
 var cnt:uint = 1;
 while(cnt < rawBytes.length){
 if(cnt < rawBytes.length/2){
 rawBytes[cnt] = 255;
 rawBytes[cnt + 1] = 0;
 rawBytes[cnt + 2] = 255;
 }else{
 rawBytes[cnt] = 0;
 rawBytes[cnt + 1] = 255;
 rawBytes[cnt + 2] = 0;
 } //end if-else

 cnt += 4;//Increment the counter by 4.
 }//end while loop

The magenta and green color values

A magenta pixel is produced by setting the red and blue color bytes to full
strength

(255)

 and setting the green color byte to 0. A green pixel is produced
by setting the red and blue color bytes to 0 and setting the green color byte to
255.

You should be OK by now

Knowing what you now know, you should have no difficulty understanding how
the data in the

ByteArray

 object is modified to produce the
magenta and green colored areas near the upper-left corner of the middle image
of Figure 1.

Not quite finished yet

Note, however that we haven't modified the actual pixel data in the bitmap
yet. So far we have made a copy of all the pixel data in the rectangular region and
have modified the color values in the copy of the pixel data. We still need to write
the modified pixel data back into the

BitmapData

 object to
actually modify the image.

Put the modified pixel data back into the same
rectangular region

Listing 11 calls the

setPixels

 method to store the pixel data that is contained in
the

rawBytes

 array back into the same rectangular region of the
bitmap image.

Example 12.11.
 rawBytes.position = 0;//this is critical
 bitmapData.setPixels(
 new Rectangle(10,10,50,8),rawBytes);

The position property of the ByteArray object

With one exception, you should have no difficulty understanding the code in
Listing 11. That exception has to do with the

ByteArray

property named

position

. Here is what the documentation has to
say about the position property:

"Moves, or returns the current position, in
bytes, of the file pointer into the ByteArray object. This is the point at which
the next call to a read method starts reading or a write method starts writing."

Whether or not you understand what that means, it is critical that you set
the value of the

position

 property to zero before calling the

setPixels

 method to cause all of the data in the array to be
written into the

BitmapData

 object. Otherwise, you will get a
runtime error.

Some things worth noting

A couple of things are worth noting. First, there was no technical
requirement to write the data from the array back into the same rectangular
region from which it was read. It could have been written into a different
rectangular region in the same bitmap, it could have been written into several
different rectangular regions, or it could even have been written into a
completely different

BitmapData

 object.

No requirement to read the bitmap data

Second, since the code in Listing 10 stored color data into the array that
was totally independent of the color values in the

BitmapData

object, there was no requirement to read the color data from the

BitmapData

 object in the first place. We could simply have
instantiated a new

ByteArray

 object and set its length to the
product of the width and the height of the rectangular region. Then we could
have executed the code in Listing 10 to populate the bytes in the array with
magenta and green color values. Then we could have executed the code in Listing
11 to write the pixel data into an appropriate rectangular region in the

BitmapData

 object.

On the other hand...

On the other hand, had we wanted to do something like emphasize the green
color and deemphasize the blue color in the rectangular region, we would have
needed to call the

getPixels

 method to get the actual pixel
data from the

BitmapData

 object into the array. Having that
pixel data available, we could have:

 	
Multiplied the green color value in each pixel by 1.2,

	
Multiplied the blue color values in each pixel by 0.8,

	
Called the

setPixels

 method as in Listing 11 to store the
 modified pixel data back into the same rectangular region of the

BitmapData

 object.

Process pixels using the setPixel32 method

The code in Listing 12 uses
the

setPixel32

 method to put a magenta border on the left edge
of the bitmap and a cyan border on the right edge of the

BitmapData

 object as shown in the middle image in Figure 1.

(The border is two pixels thick.)

Example 12.12.
 for(var row:uint = 0;row < bitmapData.height;
 row++){
 bitmapData.setPixel32(0,row,0xFFFF00FF);
 bitmapData.setPixel32(1,row,0xFFFF00FF);
 bitmapData.setPixel32(bitmapData.width - 1,
 row,0xFF00FFFF);
 bitmapData.setPixel32(bitmapData.width - 2,
 row,0xFF00FFFF);
 }//end for loop

The setPixel32 method and its cousins

The

setPixel32

 method and its cousin the

setPixel

 method, along with the

getPixel32

method and the

getPixel

 method, are completely different from
the

getPixels

 method and the

setPixels

 method
used earlier.

And the differences are...

Each call to the

getPixels

 method or the

setPixels

 method deals with all of the pixels in a specified
rectangular region.

Each call to the

getPixel

 method, the

getPixel32

 method, the

setPixel

 method, or the

setPixel32

 method deals with only one pixel. That pixel is identified
by the horizontal and vertical coordinates of a single pixel in the

BitmapData

 object.

Getting and/or setting a pixel value

As you have probably guessed by now, the

getPixel

 and

getPixel32

 methods are used to return the value of a single
pixel from the specified location. Both of these methods return a 32-bit data
value of type

uint

.

Similarly, the

setPixel

 and

setPixel32

methods are used to write a 32-bit unsigned integer value into a specified
location in the

BitmapData

 object.

Not decomposed into separate bytes

Unlike with the

getPixels

 method used with the

ByteArray

 object, the

getPixel

 and

getPixel32

 methods don't decompose the 32-bit integer value
into separate bytes for alpha, red, green, and blue. If you need to separate the
returned value into individual bytes, you must accomplish that yourself.

The order of the bytes in the returned value is ARGB. In other words, the
leftmost eight bits contain the alpha value, the rightmost eight bits contain
the blue value, and the red and green bytes are in the middle.

The difference between the methods

The difference between the methods with 32 in the name the methods without 32
in the name has to do with the alpha byte. The two methods without 32 in the
name return a 32-bit unsigned integer but only the 24 RGB bits are meaningful.
The eight alpha bits are not meaningful. On the other hand, for the methods with
32 in the name, all four bytes including the alpha byte are meaningful.

Set the pixels to create a border

The code in Listing 12 uses a

for

 loop and the

setPixel32

 method to set the pixel color to fully opaque
magenta

(red plus blue)

 for the first two pixels in each row of pixels and to
set the pixel color to fully opaque cyan

(green plus blue)

 for the last two
pixels in each row. This produces a magenta border with a thickness of two
pixels on the left edge of the middle image in Figure 1 and produces a cyan
border with a thickness of two pixels on the right edge of the middle image in
Figure 1.

Put borders on the top and bottom edges

Listing 13 uses similar code to put a cyan border along the top edge and a
magenta border along the bottom edge of the middle image in Figure 1.

Example 12.13.
 for(var col:uint = 0;col < bitmapData.width;
 col++){
 bitmapData.setPixel32(col,0,0xFF00FFFF);
 bitmapData.setPixel32(col,1,0xFF00FFFF);
 bitmapData.setPixel32(col,bitmapData.height - 1,
 0xFFFF00FF);
 bitmapData.setPixel32(col,bitmapData.height - 2,
 0xFFFF00FF);

 } //End for loop

 } //end modify method

The end of the modify method

Listing 13 also signals the end of the

modify

 method. When
the method returns from the call that was made in Listing 7, the pixels in the
red and green rectangular region near the upper-left corner of the middle image
of Figure 1 have been modified relative to the original image shown in the top
image in Figure 1. In addition, the pixels along all four edges of the middle
image have been replaced by magenta and cyan pixels to produce a border with a
thickness of two pixels.

Return to the complete event handler

Returning now to where we left off in the

complete

 event
handler in Listing 7, the code in Listing 14:

 	
Creates another duplicate

BitmapData

 object.

	
Encapsulates it in an

Image

 object.

	
Places it at the bottom of Figure 1.

	
Calls the

modify

 method to modify the pixels just like
 the middle image in Figure 1.

	
Calls the

invert

 method to invert the colors of all the
 pixels in the top half of the

BitmapData

 object to produce
 the final image shown at the bottom of Figure 1.

Example 12.14.
 //Clone the original bitmap to create another
 // duplicate.
 var duplicateC:Bitmap = new Bitmap(
 original.bitmapData.clone());
 //Place the duplicateC below the other two in the
 // VBox.
 duplicateC.x = 5;
 duplicateC.y = 2*original.height;

 var imageC:Image = new Image();
 imageC.addChild(duplicateC);
 this.addChild(imageC);

 //Modify the pixels as above to add some color to
 // the image.
 modify(duplicateC);
 //Now invert the colors in the top half of this
 // bitmap. Note that the magenta and green colors
 // swap positions.
 invert(duplicateC);

 } //end completeHandler

Color inversion

The color inversion algorithm is

 	
Very fast to execute.

	
Totally reversible.

	
Guaranteed to convert every pixel to a different color.

Usually the new color is readily distinguishable from the old color.

A comparison

If you compare the top half of the bottom image in Figure 1 with the top half
of the other two images, you can see the dramatic effect of color inversion.
However, all that is required to exactly restore the original colors is to run
the inverted color pixels through the inversion process again.

Because of these characteristics, some major software products use color
inversion to change the colors in an image that has been selected for
processing to provide a visual indication that it has been selected.

The color inversion algorithm

To invert the color of a pixel, you simply subtract the red, green, and blue
color values from 255 without modifying the alpha value. To reverse the process,
you simply subtract the inverted color values from 255 again, which produces the
original color values.

Beginning of the

invert

method

The

invert

method begins in Listing 15.

Example 12.15.
 private function invert(bitmap:Bitmap):void{
 //Get the BitmapData object.
 var bitmapData:BitmapData = bitmap.bitmapData;

 //Get a one-dimensional byte array of pixel data
 // from the top half of the bitmapData object
 var rawBytes:ByteArray = new ByteArray();
 rawBytes = bitmapData.getPixels(new Rectangle(
 0,0,bitmapData.width,bitmapData.height/2));

The code in Listing 15 gets the

BitmapData

 object
encapsulated in the incoming

Bitmap

 object and extracts the
pixel data from a rectangle that comprises the entire top half of the bitmap
data into a

ByteArray

 object.

Apply the inversion algorithm

Listing 16 applies the color
inversion algorithm to all of the pixel data in the

ByteArray

object by subtracting each color value from 255 and storing the result back into
the same element of the

ByteArray

 object.

Example 12.16.
 var cnt:uint = 1;
 while(cnt < rawBytes.length){
 rawBytes[cnt] = 255 - rawBytes[cnt];
 rawBytes[cnt + 1] = 255 - rawBytes[cnt + 1];
 rawBytes[cnt + 2] = 255 - rawBytes[cnt + 2];

 cnt += 4;//increment the counter
 }//end while loop

Put the modified pixel data back into the

BitmapData

 object

Listing 17 calls the

setPixels

 method to put the modified
pixel data back into the

BitmapData

 object producing the final
output shown in the bottom image of Figure 1.

Example 12.17.
 rawBytes.position = 0;//this is critical
 bitmapData.setPixels(new Rectangle(
 0,0,bitmapData.width,bitmapData.height/2),
 rawBytes);

 } //end invert method
 //--//

 } //end class
} //end package

This is a case where the new pixel color values depend on the original color
values. Therefore, it was necessary to get and use the old color values to
compute the new color values.

An interesting side note

If you compare the two color bars in the upper-left corner of the middle and
bottom images in Figure 1, you will see that they appear to have swapped
positions. This is because the numeric value of magenta is the inverse of the
numeric value of cyan and vice versa. The same is true of the cyan and magenta
borders.

The end of the program

Listing 17 also signals the
end of the program named

Bitmap05

.

The program named Bitmap06

Behaves just like Bitmap05

This program behaves just like the program named Bitmap05. Therefore, the
screen output shown in Figure 1 applies to this program as well as to the
program named

Bitmap05

.

The difference between the two programs

This program differs from the program named

Bitmap05

 in terms of how and when
the image file is loaded. With the program named

Bitmap05

, the image file was
maintained as a separate file and downloaded with the SWF file. Then it was
loaded at runtime. This resulted in the

security issue

discussed earlier.

This program embeds the image file into the SWF file at compile time. Since
there is no image file to be loaded from the local file system at runtime, the
security issue does not apply to this program.

Code modifications

As you might imagine, it was necessary to make some modifications to the
program code to accomplish this difference. I will explain those modifications
in the following paragraphs.

MXML code for the program named Bitmap06

The MXML code for this program is the same as shown in Listing 19 for the
program named

Bitmap05

.

ActionScript code for the program
named Bitmap06

I will present and explain only the code that is different from the program
named

Bitmap05

. However, a complete listing of the code for this program is
provided in Listing 21 near the end of the lesson.

Code that is different in the program named
Bitmap06

Listing 18 shows the code that is different in the program named

Bitmap06

.
Since some of the code is the same, I have highlighted the code that is
different with comments.

Example 12.18.
 package CustomClasses{
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.geom.Rectangle;
 import flash.utils.ByteArray;
 import mx.containers.VBox;
 import mx.controls.Image;
 import mx.events.FlexEvent//different
 //==//

 public class Driver extends VBox {
 private var image:Image = new Image();//different

 public function Driver(){//constructor
 //Make the VBox visible.
 setStyle("backgroundColor",0xFFFF00);
 setStyle("backgroundAlpha",1.0);

 [Embed("snowscene.jpg")]//different
 var img:Class;//different

 image.load(img);//different

 //Note that the type of completion event specified
 // here is different from the type of completion
 // event used in Bitmap05.
 //Different
 this.addEventListener(FlexEvent.CREATION_COMPLETE,
 completeHandler);
 } //end constructor
 //--//

 //This handler method is executed when the VBox has
 // been fully created. Note that the type of the
 // incoming parameter is more specific than was the
 // case in Bitmap05. However, it isn't used in this
 // program.
 //Different
 private function completeHandler(
 event:mx.events.FlexEvent):void{
 //Get and save a reference to a Bitmap object
 // containing the content of the image file. This
 // statement is different from Bitmap05.
 //Different
 var original:Bitmap = Bitmap(image.content);

 //Everything beyond this point is identical to
 // Bitmap05 except that the IO error handler was
 // removed. It isn't needed for an embedded image
 // file.

A new import directive

The differences begin in Listing 18 with an import directive for the class
named

FlexEvent

. This class was not needed in the program named
Bitmap05.

Instantiation of an Image object

The differences continue in Listing 18 with the declaration and instantiation
of an object of the class

Image

. The embedded image file will
be loaded into this object at runtime. Then the

Bitmap

 object encapsulated in the

Image

object will be extracted and passed to the

modify

 method and
the

invert

 method the same as before.

Embedding the image file

The two lines of code beginning with the word

[Embed

provide the mechanism by which the image file is embedded into the SWF file. The
first line specifies the name and path to the image file. In this case, it was
in the same folder as the MXML file so no path was required.

The strange syntax of the

Embed

 code means that it really isn't an executable
programming statement. Instead, it is an instruction to the compiler telling the
compiler to embed the file in the SWF file.

Declare a variable to refer to the embedded
file

The line immediately following the

Embed

 directive declares a variable of
type

Class

 named

img

 that can later be used to
refer to the embedded file.

Load the file contents into the Image object

The second line of code following the

Embed

 directive causes the contents of
the embedded image file to be loaded into the

Image

 object at
runtime. Note that the embedded image file is referenced by the variable named

img

 that was declared along with the

Embed

 directive and passed
as a parameter to the load method.

No need to worry about IO errors at runtime

Because the image file is read at compile time and embedded into the SWF
file, there is no need to provide an IO error handler that will be executed as a
result of a runtime IO error involving the image file. If there is a problem
reading the file, that problem will occur when the program is compiled and the
SWF file is written.

Register a creationComplete event listener on
the VBox

The last statement in the constructor registers a

creationComplete

 event handler on the

VBox

.
This is considerably different from the program named

Bitmap05

. First, the
event handler is registered on the

VBox

 instead of being
registered on

loader.contentLoaderInfo

. Second, the type of the
completion event is different between the two programs.

The

creationComplete

 event will be

"Dispatched when the component (

VBox

)
has finished its construction, property processing, measuring, layout, and
drawing."

The assumption is that by the time the event is dispatched, the bitmap data
will have been successfully loaded into the

Image

 object.

Differences in the creationComplete event
handler

The first difference in the complete event handler is the type of event
passed to the handler. The type

FlexEvent

 shown in Listing 18
is more specialized than the type

Event

 shown in Listing 4.
However it doesn't matter in this case because the incoming reference to the
event object isn't used.

Getting the Bitmap object

The

Bitmap

 object in an

Image

 object is
referred to by the property named

content

.

The last statement that is marked as being different gets a reference to the

Bitmap

 object and stores it in the variable named

original

 just like was done in Listing 4.

As before, referencing the

content

 property returns the

Bitmap

 object as type

DisplayObject

.
Therefore, it must be cast to type

Bitmap

 before it can be used
for the intended purpose of this program.

Beyond this point - no changes

Beyond this point, the two programs are identical except that the IO error
handler was omitted from this program. As I explained earlier, because the image
file is embedded in the SWF file at compile time, there is no need to worry
about IO errors involving the image file at runtime.

Run the programs

I encourage you to

run

 the online versions of the two programs from the web.
Then copy the code from Listing 19 through Listing 21. Use that code to
create Flex projects. Compile and run the projects. Experiment with
the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

Resources

I will publish a list containing links to ActionScript resources as
a separate document.
Search for ActionScript Resources in the Connexions search box.

Complete program listings

Complete listings of the MXML code and the ActionScript code for the programs
discussed in this lesson are provided below.

Example 12.19.
 <?xml version="1.0" encoding="utf-8"?>
<!--
This program illustrates loading an image and
modifying the pixels in the image.
-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

Example 12.20.
 /*Bitmap05
Provides skeleton code for creating a Bitmap object from
an image file.
Explains the use of the getPixels, setPixels, and

Example 12.21.
 /*Bitmap06
This is an update to Bitmap05 that uses an image that is
embedded in the SWF file rather than a separate
downloaded image file. This eliminates the requirement
to make the following change to the configuration file
at:

C:\Program Files\Adobe\Flex Builder 3\sdks\3.2.0\
frameworks\flex-config.xml

 <!-- Prevents SWFs from accessing the network. -->
 <use-network>false</use-network>

The behavior of this program is identical to the
behavior of Bitmap05.
***/
package CustomClasses{
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.geom.Rectangle;
 import flash.utils.ByteArray;
 import mx.containers.VBox;
 import mx.controls.Image;
 import mx.events.FlexEvent;
 //==//

 public class Driver extends VBox {
 private var image:Image = new Image();

 public function Driver(){//constructor
 //Make the VBox visible.
 setStyle("backgroundColor",0xFFFF00);
 setStyle("backgroundAlpha",1.0);

 [Embed("snowscene.jpg")]
 var img:Class;
 image.load(img);

 //Note that the type of completion event specified
 // here is different from the type of completion
 // event used in Bitmap05.
 this.addEventListener(FlexEvent.CREATION_COMPLETE,
 completeHandler);
 } //end constructor
 //--//

 //This handler method is executed when the VBox has
 // been fully created. Note that the type of the
 // incoming parameter is more specific than was the
 // case in Bitmap05. However, it isn't used in this
 // program.
 private function completeHandler(
 event:mx.events.FlexEvent):void{
 //Get and save a reference to a Bitmap object
 // containing the content of the image file. This
 // statement is different from Bitmap05.
 var original:Bitmap = Bitmap(image.content);

 //Everything beyond this point is identical to
 // Bitmap05 except that the IO error handler was
 // removed. It isn't needed for an embedded image
 // file.

 //Set the width and height of the VBox object based
 // on the size of the original bitmap.
 this.width = original.width + 10;
 this.height = 3*original.height + 12;

 //Encapsulate the bitmap in an Image object and add
 // the Image object to the VBox. Display it at
 // x=5 and y=0
 original.x = 5;
 original.y = 0;
 var imageA:Image = new Image();
 imageA.addChild(original);
 this.addChild(imageA);

 //Clone the original bitmap to create a duplicate.
 var duplicateB:Bitmap = new Bitmap(
 original.bitmapData.clone());
 //Place the duplicate bitmap below the original in
 // the VBox. There is a six-pixel downward shift
 // that I am unable to explain at this time. The
 // shift produces a gap of about six pixels between
 // the two images.
 duplicateB.x = 5;
 duplicateB.y = original.height;

 var imageB:Image = new Image();
 imageB.addChild(duplicateB);
 this.addChild(imageB);

 //Modify this duplicate.
 modify(duplicateB);

 //Clone the original bitmap to create another
 // duplicate.
 var duplicateC:Bitmap = new Bitmap(
 original.bitmapData.clone());
 //Place the duplicateC below the other two in the
 // VBox.
 duplicateC.x = 5;
 duplicateC.y = 2*original.height;

 var imageC:Image = new Image();
 imageC.addChild(duplicateC);
 this.addChild(imageC);

 //Modify the pixels as above to add some color to
 // the image.
 modify(duplicateC);
 //Now invert the colors in the top half of this
 // bitmap. Note that the magenta and green colors
 // swap positions.
 invert(duplicateC);

 } //end completeHandler
 //--//

 //This method modifies the pixels in the incoming
 // bitmap in a variety of ways.
 private function modify(bitmap:Bitmap):void{
 //Get the BitmapData object from the incoming
 // Bitmap object.
 var bitmapData:BitmapData = bitmap.bitmapData;

 //Process pixels using the getPixels and
 // setPixels methods.

 //Get a rectangular array of pixels comprising
 // 50 columns by 8 rows in a one-dimensional
 // array of bytes. The bytes are ordered in the
 // array as row 0, row 1, etc. Each pixel is
 // represented by four consecutive bytes in ARGB
 // order.
 var rawBytes:ByteArray = new ByteArray();
 rawBytes = bitmapData.getPixels(
 new Rectangle(10,10,50,8));

 //Set the colors of the top four rows to magenta
 // and the color of the bottom four rows to
 // green. Don't modify alpha.
 var cnt:uint = 1;
 while(cnt < rawBytes.length){
 if(cnt < rawBytes.length/2){
 rawBytes[cnt] = 255;
 rawBytes[cnt + 1] = 0;
 rawBytes[cnt + 2] = 255;
 }else{
 rawBytes[cnt] = 0;
 rawBytes[cnt + 1] = 255;
 rawBytes[cnt + 2] = 0;
 } //end if-else

 cnt += 4;//Increment the counter by 4.
 }//end while loop

 //Put the modified pixels back in the bitmapData
 // object.
 rawBytes.position = 0;//this is critical
 bitmapData.setPixels(
 new Rectangle(10,10,50,8),rawBytes);

 //Process pixels using the setPixel32 method.

 //Put a magenta border on the left edge and a
 // cyan border on the right edge. Note that the
 // byte values in the 32-bit pixel are in ARGB order
 // and the border thickness is two pixels.
 for(var row:uint = 0;row < bitmapData.height;
 row++){
 bitmapData.setPixel32(0,row,0xFFFF00FF);
 bitmapData.setPixel32(1,row,0xFFFF00FF);
 bitmapData.setPixel32(bitmapData.width - 1,
 row,0xFF00FFFF);
 bitmapData.setPixel32(bitmapData.width - 2,
 row,0xFF00FFFF);
 }//end for loop

 //Put a cyan border along the top edge and a
 // magenta border along the bottom edge.
 for(var col:uint = 0;col < bitmapData.width;
 col++){
 bitmapData.setPixel32(col,0,0xFF00FFFF);
 bitmapData.setPixel32(col,1,0xFF00FFFF);
 bitmapData.setPixel32(col,bitmapData.height - 1,
 0xFFFF00FF);
 bitmapData.setPixel32(col,bitmapData.height - 2,
 0xFFFF00FF);

 } //End for loop

 } //end modify method
 //--//

 //This method inverts all of the pixels in the top
 // half of the incoming bitmap.
 private function invert(bitmap:Bitmap):void{
 //Get the BitmapData object.
 var bitmapData:BitmapData = bitmap.bitmapData;

 //Get a one-dimensional byte array of pixel data
 // from the top half of the bitmapData object
 var rawBytes:ByteArray = new ByteArray();
 rawBytes = bitmapData.getPixels(new Rectangle(
 0,0,bitmapData.width,bitmapData.height/2));

 //Invert the colors by subtracting each color
 // component value from 255.
 var cnt:uint = 1;
 while(cnt < rawBytes.length){
 rawBytes[cnt] = 255 - rawBytes[cnt];
 rawBytes[cnt + 1] = 255 - rawBytes[cnt + 1];
 rawBytes[cnt + 2] = 255 - rawBytes[cnt + 2];

 cnt += 4;//increment the counter
 }//end while loop

 //Put the modified pixels back in the bitmapData
 // object.
 rawBytes.position = 0;//this is critical
 bitmapData.setPixels(new Rectangle(
 0,0,bitmapData.width,bitmapData.height/2),
 rawBytes);

 } //end invert method
 //--//

 } //end class
} //end package

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Fundamentals of Image Pixel Processing

	
Files:

 	
ActionScript0132\ActionScript0132.htm

	
ActionScript0132\Connexions\ActionScriptXhtml0132.htm

PDF disclaimer:

-end-

Solutions

About Connexions

 Since 1999, Connexions has been pioneering a global system where anyone can create course materials and make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and learning environment open to anyone interested in education, including students, teachers, professors and lifelong learners. We connect ideas and facilitate educational communities. Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12 schools, distance learners, and lifelong learners. Connexions materials are in many languages, including English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai.

Chapter 1. What is ActionScript and Why Should I Care?

Table of Contents

 	

Preface

	

What is ActionScript?

	

Why should I care?

	

Prerequisites for study

	

Resources

	

Miscellaneous

Preface

This tutorial lesson is the first in a continuing
series of lessons dedicated to teaching object-oriented programming

(OOP)

 with
ActionScript.

Note that all references to ActionScript in this lesson are
 references to version 3 or later.

Developing ActionScript
programs

There are several ways to develop programs using
the ActionScript programming language. For most of the lessons in this
series, I will use Adobe's

Flash Builder 4

or the free

FlashDevelop

 as an integrated development environment

(IDE)

.

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3, which was the predecessor to Flash Builder 4.

(See

Baldwin's Flex programming website.

)

You should read that lesson before embarking on the lessons in this series.

What is ActionScript?

According to the

ActionScript Technology Center,

"Adobe ActionScript is the programming language
of the Adobe Flash Platform. Originally developed as a way for developers to
program interactivity, ActionScript enables efficient programming of Adobe Flash
Platform applications for everything from simple animations to complex,
data-rich, interactive application interfaces.

First introduced in Flash Player 9, ActionScript
3.0 is an object-oriented programming (OOP) language based on ECMAScript -- the
same standard that is the basis for JavaScript -- and provides incredible gains
in runtime performance and developer productivity."

What is the Adobe Flash
Platform?

According to

Adobe Flash Platform

,

"The Adobe Flash Platform is an integrated
 set of technologies surrounded by an established ecosystem of support
 programs, business partners, and enthusiastic user communities. Together, they
 provide everything you need to create and deliver the most compelling
 applications, content, and video to the widest possible audience."

The primary delivery mechanisms for applications
built with the Adobe Flash Platform are the

Adobe Flash
Player

 and

Adobe
Air

.

What is the Adobe Flash
Player?

According to

Adobe Flash
Player

,

"Flash Player is a cross-platform browser
 plug-in that delivers breakthrough Web experiences to over 99% of Internet
 users."

What is Adobe Air?

According to

Adobe Air

,

"The Adobe AIR runtime lets developers use
 proven web technologies to build rich Internet applications that run outside
 the browser on multiple operating systems."

What about game
programming?

As of November 2009, a significant portion of the
game programming marketplace involved Flash games that are launched from
Facebook and similar social networking sites. According to the

Adobe Facebook page

,

"The Adobe Flash Platform and Facebook
 Platform provide the ideal solution for building rich, social experiences on
 the web. Flash is available on more than 98% of Internet-connected PCs, so
 people can immediately access the applications, content, and video that enable
 social interactions. The Facebook Platform is used by millions of people every
 day to connect and share with the people in their lives. Together, both
 platforms allow you to:

	

Share:

Create rich
 interactions for users to share with friends.

	

Have fun:

Make games
 social; let users compete against their friends.

	

Connect:

 Let users
 connect to your RIAs with Facebook Connect.

	

Solve problems:

 Build
 RIAs that harness the power of community.

	

Reach people:

Reach
 millions of Facebook users through social distribution.

The new ActionScript 3.0 Client Library for
 Facebook Platform API, fully supported by Facebook and Adobe, makes it easy to
 build applications that combine the strengths of the Flash Platform and
 Facebook Platform."

What about
iPhone programming

According to Adobe Labs

Applications
for iPhone

,

"Flash Professional CS5 will
 enable you to build applications for iPhone and iPod touch using

ActionScript 3

. These applications can be delivered to iPhone and iPod
 touch users through the Apple App Store.*

A public beta of Flash Professional CS5 with
 prerelease support for building applications for iPhone is planned for later
 this year."

Why should I care?

Adobe ActionScript is the programming language of
the Adobe Flash Platform.

Applications developed with the Adobe Flash
Platform are primarily delivered to the client via the Adobe Flash Player.

The Adobe Flash Player is a cross-platform
browser plug-in that delivers Web experiences to over 98% of Internet users.

Flash Professional CS5 will enable you to build
applications for iPhone and iPod touch using ActionScript 3.

Therefore, if you want to learn a programming
language that allows you to tap into a market consisting of more than 98% of
Internet users or if you want to learn a programming language that will enable
you to build applications for iPhone and iPod touch, ActionScript may be the
programming language for you.

Examples of Rich
Internet Applications

(RIAs)

Here are some websites that use Rich Internet
Applications built with the Adobe Flash Platform

(November 2009)

:

 	

Adobe Flash Platform

	

Adobe Flash
 Player

	

Flash Platform and
 DIRECTV

	

Flash Platform
 and Demandbase

	

Flash Platform and
 Finetune

	

Flash Platform and
 NASDAQ

	

Flash Platform and
 Playfish

	

Flash Platform and SAP
 BusinessObjects Xcelsius

	

Flash Platform and
 Sharp Electronics

	

CNN.com
 Live

	

Fox News Live
 Stream

	

NBC -
 WWW.CHANNELSURFING.NET

Live streaming TV feeds

There are many other live streaming TV feeds that
were built with the Adobe Flash Platform. You can find them with a Google
search.

Prerequisites for study

In the event that you will be studying this
material for the purpose of learning about OOP with ActionScript, there are a
few thing that you need to know.

Not for beginners

First, this is not a beginners programming
course. In developing this material, I will assume that you already know
how to program in some procedural programming language and that you already
understand such fundamental concepts as programming logic, functions, parameter
passing, etc.

Instead, this series of lessons will be designed
to teach more advanced concepts involving object-oriented programming

(OOP)

using ActionScript.

ActionScript 3 or later
will be required

The lessons in this series will emphasize OOP and
will be based on ActionScript 3 or a later version. No attempt will be
made to achieve backward compatibility with ActionScript 1 or ActionScript 2.

Resources

I will publish a list containing links to ActionScript
resources as a separate document. Search for ActionScript Resources in the
Connexions search box.

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: What is ActionScript and Why Should I care?

	
Files:

 	
ActionScript0102\ActionScript0102.htm

	
ActionScript0102\Connexions\ActionScriptXhtml0102.htm

PDF disclaimer:

-end-

Solutions

Chapter 13. Using Chroma Key Compositing to Create Transparent Backgrounds

Click

ChromaKey01

(Click the "Back" button in your browser
to return to this page.)

Table of Contents

 	

Preface

 	

General

 	

Viewing tip

 	

Figures

	

Listings

			

		

	

Supplemental material

	

	

General background information

	

Preview

	

Discussion and sample code

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

Preface

General

All references to ActionScript in this lesson are references to
	 version 3 or later.

This tutorial lesson is part of a series of lessons dedicated to
object-oriented programming

(OOP)

 with ActionScript.

Several ways to create and launch ActionScript programs

There are several ways to create and launch programs written in the
ActionScript programming language. Many of the lessons in this series will use
Adobe Flex as the launch pad for the sample ActionScript programs.

Getting started

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3.

The lesson titled

Using Flex 3 in
a Flex 4 World

 was added later to accommodate the release of Flash Builder
4.

(See

Baldwin's Flex programming
website

.)

You should study those lessons before embarking on the lessons in this
series.

Some understanding of Flex MXML will be required

I also recommend that you study all of the lessons on

Baldwin's Flex programming
website

 in parallel with your study of these ActionScript lessons.
Eventually you will probably need to understand both ActionScript and Flex and
the relationships that exist between them in order to become a successful
ActionScript programmer.

Will emphasize ActionScript code

It is often possible to use either ActionScript code or Flex MXML code to
achieve the same result. Insofar as this series of lessons is concerned, the
emphasis will be on ActionScript code even in those cases where Flex MXML code
may be a suitable alternative.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. Screen output for the program named
	ChromaKey01.

Listings

 	

Listing 1

. Beginning of the class named Driver.

	

Listing 2

. The constructor for the class named
	Driver.

	

Listing 3

. The CREATION_COMPLETE event handler.

	

Listing 4

. Beginning of the

	processChromaKey

 method.

	

Listing 5

. Set selected alpha values to zero.

	

Listing 6

. Store the modified pixel data in the
	bitmap.

	

Listing 7

. Listing of the class named Driver.

	

Listing 8

. Listing of the MXML file.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background
information

In an earlier lesson titled

Bitmap Basics

, I explained the differences between Flex projects and
ActionScript projects. I also introduced you to the classes named

Bitmap

and

BitmapData

.

The fundamentals of pixel processing

In the lesson titled

Fundamentals of Image Pixel Processing

, I showed you how to:

 	
Load the contents of an image file into a

BitmapData

	object encapsulated in a

Bitmap

 object.

	
Use the

setPixel32

,

getPixels

, and
	

setPixels

 methods to access and modify the color content
	of the individual pixels that make up an image.

The organization of image information

In that lesson, I also explained how the color and transparency information
for an image is stored in files and in the computer's memory. That included
topics such as:

 	
Vector graphics versus bitmap graphics

	
Width, height, and color depth

	
The RGB and ARGB color models

	
The effect of the transparency or alpha value

(total and partial
	opacity or transparency)

	
Bitmap image file formats

(GIF, JPEG, PNG)

Creating a transparent background

In this lesson, I will show you how to convert an image with a constant color
background

(such as the top image in Figure 1)

 into an image with a
transparent background

(such as the bottom image in Figure 1)

.

Chroma key compositing

This involves the use of a technique commonly known as

chroma key
compositing

.

Here is a little of what

Wikipedia

 has to say on the subject:

"Chroma key compositing (or chroma keying) is a technique
for compositing two images or frames together in which a color (or a small color
range) from one image is removed (or made transparent), revealing another image
behind it.

This technique is also referred to as color keying,
colour-separation overlay (CSO; primarily by the BBC[1]), greenscreen, and
bluescreen.

It is commonly used for weather forecast broadcasts,
wherein the presenter appears to be standing in front of a large map, but in the
studio it is actually a large blue or green background. The meteorologist stands
in front of a

bluescreen, and then different weather maps are added on
those parts in the image where the color is blue."

Commonly used in computer graphics

The process is also commonly used in computer graphics where it is desired to
overlay one image onto another without letting the background color of the front
image show.

That is the intent of this lesson, and the process developed here will be
used in a future lesson on animation.

Preview

In this lesson, I will show you to start with an image having a solid
background color, such as the top image in Figure 1 and how to convert that
image into one with a transparent background, such as the bottom image in Figure
1.

 [image: Missing Image]

Figure 13.1.

Screen output for the program named ChromaKey01.

Screen output for the program named ChromaKey01.

A yellow Canvas object

Both images in Figure 1 are displayed on the same yellow

Canvas

object.

The color of the canvas is hidden by the magenta background color of the top
image. However, that magenta background is totally transparent in the bottom
image, allowing the yellow color of the canvas to show through.

Discussion and sample code

The MXML file

The MXML file, shown in Listing 8, is no different from MXML files used to
launch ActionScript programs in earlier lessons. Therefore, no explanation of
the MXML code is warranted.

Will explain in fragments

I will explain the ActionScript code for the program named

ChromaKey01

 in fragments. A complete listing of the code for the
ActionScript class named

Driver

 is provided in Listing 7.

The processChromaKey method

This program illustrates the use of a custom method named

processChromaKey

. This method scans all of the pixels in an incoming
bitmap and identifies those pixels with a color of pure magenta. The alpha
values for the magenta pixels are set to zero to make them transparent. Then the
bitmap is modified accordingly.

The method can easily be modified to accommodate an image background of any
solid color such as green or blue. Note however, that magenta is commonly used
in computer graphics, and is often referred to as

"magic pink."

Beginning of the ActionScript class named Driver

The Flex code in Listing 8 instantiates a new object of the class named

Driver

 and adds that object to the display list as a child of
the

Application

 container.

The ActionScript code for the class named

Driver

 begins in Listing 1.

Example 13.1.

package CustomClasses{
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.geom.Rectangle;
 import flash.utils.ByteArray;
 import mx.containers.Canvas;
 import mx.controls.Image;
 import mx.events.FlexEvent;
 //==//

 public class Driver extends Canvas {
 private var origImage:Image = new Image();

Extend the Flex Canvas class

Note that the

Driver

 class extends the Flex

Canvas

class, thus making it possible to add other objects as children of an object of
the

Driver

 class.

Another reason for extending the Canvas class

I could have accomplished that purpose by extending any number of Flex
container classes. However, an important characteristic of the

Canvas

 class for this application is the ability to specify the
physical locations of the child objects in absolute coordinates. Few if any
other Flex containers allow you to do that,

The constructor

The constructor for the

Driver

 class is shown in its
entirety in Listing 2.

Example 13.2.
 public function Driver(){//constructor
 //Make this Canvas visible with a yellow background.
 setStyle("backgroundColor",0xFFFF00);
 setStyle("backgroundAlpha",1.0);

 //Load the file mage and embed it in the swf file.
 //Note the slash that is required by FlashDevelop.
 [Embed("/dancer.png")]
 var img:Class;
 origImage.load(img);

 //Register a CREATION_COMPLETE listener
 this.addEventListener(FlexEvent.CREATION_COMPLETE,
 completeHandler);
 } //end constructor

Make the canvas visible

The constructor begins by setting two style properties on the

Canvas

object to make it yellow and opaque.

You learned how to set styles on objects in ActionScript code as early as the
lesson titled

What is OOP and Why Should I Care?

Load the image from the file

Then the constructor loads the image from the image file named

dancer.png

 and embeds it in the swf file. You learned how to do this as
early as the lesson titled

Inheritance - The Big Picture.

No lossy compression allowed

Note that this program uses an image from a

png

file for demonstration purposes.

Unlike a

jpg

 file,

(which uses lossy compression)

 the colors that
you extract from a png file are exactly the colors that were stored in the png
file. That is a requirement for a chroma key process that is based on an exact
color match.

An unusual requirement

There is an unusual requirement shown in Listing 2 that you haven't seen in
the earlier lessons in this series.

This is the first lesson that I have written explaining a program that loaded
and embedded an image file where the program was developed using

FlashDevelop

(see

Publication Issues

below).

File organization

In this case, the image file was placed in the same folder as the MXML
file. Note that it was necessary for me to precede the name of the image file in
Listing 2 with a slash character. I have not previously encountered that
requirement when using Flex Builder 3.

(Note however that inclusion of the
slash character in a Flex Builder 3 project doesn't seem to cause a problem.)

Register a CREATION_COMPLETE listener

Finally, Listing 2 registers an event handler to handle CREATION_COMPLETE
events fired by the

Canvas

 object.

You learned how and why to use a CREATION_COMPLETE listener in the earlier
lesson titled

Encapsulation - The Big Picture.

The CREATION_COMPLETE event handler

The CREATION_COMPLETE event handler is shown in its entirety in Listing 3.
This method is executed when the

Canvas

 object has been fully
created.

Example 13.3.
 private function completeHandler(
 event:mx.events.FlexEvent):void{
 //Get and save a reference to a Bitmap object
 // containing the contents of the origImage file.
 var origBitMap:Bitmap = Bitmap(origImage.content);

 //Set the width and height of the Canvas object
 // based on the size of the origBitMap bitmap. Make
 // ten pixels wider and twice as high as the
 // bitmap.
 this.width = origBitMap.width + 10;
 this.height = 2*origBitMap.height;

 //Add the original image to the Canvas object at
 // the default location of 0,0.
 this.addChild(origImage);

 //Clone the origBitMap to create a
 // duplicate.
 var dupBitMap:Bitmap = new Bitmap(
 origBitMap.bitmapData.clone());

 //Put the dupBitMap in a new Image object and
 // place it on the canvas below the original image.
 dupBitMap.x = 0;
 dupBitMap.y = origBitMap.height;

 var newImage:Image = new Image();
 newImage.addChild(dupBitMap);
 this.addChild(newImage);

 //Set the alpha value for all pixels in the new
 // image with a color of pure magenta to zero.
 processChromaKey(dupBitMap);

 } //end completeHandler

The call to the method named processChromaKey

With the exception of the call to the method named

	processChromaKey

 at the end of Listing 3, I explained everything in
	Listing 3 in the earlier lesson titled

Fundamentals of Image Pixel
	Processing.

 I won't waste your time by repeating that explanation here.

Beginning of the

processChromaKey

 method

The

processChromaKey

 method begins in Listing 4.

Example 13.4.
 private function processChromaKey(bitmap:Bitmap):void{
 //Get the BitmapData object.
 var bitmapData:BitmapData = bitmap.bitmapData;

 //Populate a one-dimensional byte array of pixel
 // data from the bitmapData object. Note that the
 // pixel data format is ARGB.
 var rawBytes:ByteArray = new ByteArray();
 rawBytes = bitmapData.getPixels(new Rectangle(
 0,0,bitmapData.width,bitmapData.height));

A reference to a Bitmap object

This method receives a reference to a

Bitmap

 object as an
incoming parameter.

It identifies all of the pixels in the incoming bitmap with a pure magenta
color and sets the alpha bytes for those pixels to a value of zero.

This causes those pixels to become transparent as shown by the bottom image
in Figure 1.

Nothing new in Listing 4

I explained all of the code in Listing 4 in the earlier lesson titled

Fundamentals of Image Pixel Processing.

The ByteArray object is populated with
pixel data

When the

getPixels

 method returns in Listing 4, the pixels
from a rectangular region that encompasses the entire bitmap are stored in the

ByteArray

 object referred to by

rawBytes

.

The organization of the pixel
data

The array is populated with the bitmap pixel data from the rectangular region
on a row by row basis.

The first four bytes in the array belong to the pixel in the upper-left
corner of the rectangular region. The next four bytes belong to the pixel
immediately to the right of that one, and so on.

Four bytes per pixel

Each set of four bytes represents one pixel in ARGB format. In other words,
the first byte in the four-byte group is the alpha byte. That byte is followed
by the red byte, the green byte, and the blue byte in that order.

This information is critical when time comes to use the data in the array to
modify the bitmap data.

Set selected alpha values to zero

The code in Listing 5 iterates through the entire set of image pixels and
sets selected alpha values to zero.

Example 13.5.
 //Declare working variables. Note that there is
 // no requirement to deal with the green color
 // value in this case of testing for magenta.
 var cnt:uint;
 var red:uint;
 var green:uint;
 var blue:uint;

 for (cnt = 0; cnt < rawBytes.length; cnt += 4) {
 //alpha is in rawBytes[cnt]
 red = rawBytes[cnt + 1];
 green = rawBytes[cnt + 2];
 blue = rawBytes[cnt + 3];

 if ((red == 255) && (green == 0) &&
 (blue == 255)) {
 //The color is pure magenta. Set the value
 // of the alpha byte to zero.
 rawBytes[cnt] = 0;
 }//end if
 }//end for loop

A for loop

After declaring some working variables, Listing 5 iterates through all of the
data in the

ByteArray

 object. It extracts the red, green, and blue
color bytes from each four-byte group and tests to see if red and blue are both
set to full intensity with a value of 255 and green is set to zero.

If true, this is interpreted to match the magenta background color, and the
value of the alpha byte in that four-bit group is set to zero.

Store the modified pixel data in the bitmap

Listing 6 copies the modified pixel data from the

ByteArray

 object back into
the bitmap, overwriting the pixel data previously stored in the bitmap.

Example 13.6.
 //Put the modified pixels back into the bitmapData
 // object.
 rawBytes.position = 0;//this is critical
 bitmapData.setPixels(new Rectangle(
 0,0,bitmapData.width,bitmapData.height),
 rawBytes);

 } //end processChromaKey method
 //--//

 } //end class
} //end package

I explained all of the code in Listing 6 in the earlier lesson titled

Fundamentals of Image Pixel Processing.

The end of the class

Listing 6 also signals the end of the method, the end of the class, the end
of the package, and the end of the program.

Run the program

I encourage you to

run

 this program from the web.
Then copy the code from Listing 7 and Listing 8. Use that code to create a new
project. Compile and run the project. Experiment with the code, making changes,
and observing the results of your changes. Make certain that you can explain why
your changes behave as they do.

Resources

I will publish a list containing links to ActionScript resources
as a separate document. Search for ActionScript Resources in the
Connexions search box.

Complete program listings

Complete listings for the program discussed in this lesson are provided in
Listing 7 and Listing 8 below.

Example 13.7.
 /*Project ChromaKey01
This project scans all of the pixels in an image to
identify those pixels with a color of pure magenta. The
alpha value for those pixels is set to zero to make them
transparent.
***/
package CustomClasses{
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.geom.Rectangle;
 import flash.utils.ByteArray;
 import mx.containers.Canvas;
 import mx.controls.Image;
 import mx.events.FlexEvent;
 //==//

 public class Driver extends Canvas {
 private var origImage:Image = new Image();

 public function Driver(){//constructor
 //Make this Canvas visible with a yellow background.
 setStyle("backgroundColor",0xFFFF00);
 setStyle("backgroundAlpha",1.0);

 //Load the origImage and embed it in the swf file.
 //Note the slash that is required by FlashDevelop.
 [Embed("/dancer.png")]
 var img:Class;
 origImage.load(img);

 //Register a CREATION_COMPLETE listener
 this.addEventListener(FlexEvent.CREATION_COMPLETE,
 completeHandler);
 } //end constructor
 //--//

 //This handler method is executed when the Canvas has
 // been fully created.
 private function completeHandler(
 event:mx.events.FlexEvent):void{
 //Get and save a reference to a Bitmap object
 // containing the contents of the origImage file.
 var origBitMap:Bitmap = Bitmap(origImage.content);

 //Set the width and height of the Canvas object
 // based on the size of the origBitMap bitmap. Make
 // ten pixels wider and twice as high as the
 // bitmap.
 this.width = origBitMap.width + 10;
 this.height = 2*origBitMap.height;

 //Add the original image to the Canvas object at
 // the default location of 0,0.
 this.addChild(origImage);

 //Clone the origBitMap to create a
 // duplicate.
 var dupBitMap:Bitmap = new Bitmap(
 origBitMap.bitmapData.clone());

 //Put the dupBitMap in a new Image object and
 // place it on the canvas below the original image.
 dupBitMap.x = 0;
 dupBitMap.y = origBitMap.height;

 var newImage:Image = new Image();
 newImage.addChild(dupBitMap);
 this.addChild(newImage);

 //Set the alpha value for all pixels in the new
 // image with a color of pure magenta to zero.
 processChromaKey(dupBitMap);

 } //end completeHandler
 //--//

 //This method identifies all of the pixels in the
 // incoming bitmap with a pure magenta color and sets
 // the alpha bytes for those pixels to a value of
 // zero.
 private function processChromaKey(bitmap:Bitmap):void{
 //Get the BitmapData object.
 var bitmapData:BitmapData = bitmap.bitmapData;

 //Populate a one-dimensional byte array of pixel
 // data from the bitmapData object. Note that the
 // pixel data format is ARGB.
 var rawBytes:ByteArray = new ByteArray();
 rawBytes = bitmapData.getPixels(new Rectangle(
 0,0,bitmapData.width,bitmapData.height));

 //Declare working variables. Note that there is
 // no requirement to deal with the green color
 // value in this case of testing for magenta.
 var cnt:uint;
 var red:uint;
 var green:uint;
 var blue:uint;

 for (cnt = 0; cnt < rawBytes.length; cnt += 4) {
 //alpha is in rawBytes[cnt]
 red = rawBytes[cnt + 1];
 green = rawBytes[cnt + 2];
 blue = rawBytes[cnt + 3];

 if ((red == 255) && (green == 0) &&
 (blue == 255)) {
 //The color is pure magenta. Set the value
 // of the alpha byte to zero.
 rawBytes[cnt] = 0;
 }//end if

 }//end for loop

 //Put the modified pixels back into the bitmapData
 // object.
 rawBytes.position = 0;//this is critical
 bitmapData.setPixels(new Rectangle(
 0,0,bitmapData.width,bitmapData.height),
 rawBytes);

 } //end processChromaKey method
 //--//

 } //end class
} //end package

Example 13.8.
 <?xml version="1.0" encoding="utf-8"?>
<!--
Project ChromaKey01
This project scans all of the pixels in an image to
identify those pixels with a color of pure magenta. The
alpha value for those pixels is set to zero to make them
transparent.
-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Using Chroma Key Compositing to Create Transparent Backgrounds

	
Files:

 	
ActionScript0134\ActionScript0134.htm

	
ActionScript0134\Connexions\ActionScriptXhtml0134.htm

PDF disclaimer:

Publication issues

:

	FlashDevelop

run

-end-

Solutions

Chapter 15. Dragging Objects between Containers

Click

DragAndDrop04

(Click the "Back" button in your browser
to return to this page.)

Table of Contents

 	

Preface

 	

General

	

Viewing tip

 	

Figures

	

Listings

	

Supplemental material

	

General background information

	

Preview

	

Discussion and sample code

 	

The MXML code

	

The ActionScript code

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

Preface

General

All references to ActionScript in this lesson are
			 references to version 3 or later.

This tutorial lesson is
part of a series of lessons dedicated to object-oriented programming
(OOP) with ActionScript.

Several ways to create and launch ActionScript
programs

There are several ways to
create and launch programs written in the ActionScript programming language.
Most of the lessons in this series will use Adobe Flex as the launch pad for the
sample ActionScript programs.

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3.

(See

Baldwin's Flex programming website

.)

You should study that lesson before embarking on the lessons in this series.

Some understanding of Flex MXML will be required

I also recommend that you
study all of the lessons on Baldwin's Flex programming website in parallel with
your study of these ActionScript lessons. Eventually you will probably need to
understand both ActionScript and Flex and the relationships that exist between
them in order to become a successful ActionScript programmer.

Will emphasize ActionScript code

It is often possible to use
either ActionScript code or Flex MXML code to achieve the same result. Insofar
as this series of lessons is concerned, the emphasis will be on ActionScript
code even in those cases where Flex MXML code may be a suitable alternative.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and
listings while you are reading about them.

Figures

 	

Figure 1

. Program output at startup.

	

Figure 2

. Project file structure.

	

Figure 3

. Results of dragging objects.

	

Figure 4

. Result of droping the TextArea into the
 middle Canvas.

Listings

 	

Listing 1

. The MXML code.

	

Listing 2

. Beginning of the Driver class.

	

Listing 3

. Beginning of the creationComplete
 event handler.

	

Listing 4

. Register a mouseDown event listener on
 each draggable object.

	

Listing 5

. The beginning of the mouseDown event
 handler.

	

Listing 6

. Get the name of the class from which
 the drag initiator was instantiated.

	

Listing 7

. Populate a new DragSource object with
 the drag initiator and a format string.

	

Listing 8

. Initiate the drag and drop operation.

	

Listing 9

. Register a different dragEnter event
 handler on each Canvas object.

	

Listing 10

. Register the same dragDrop event
 handler on all three Canvas objects.

	

Listing 11

. A dragEnter event handler for the
 top Canvas object.

	

Listing 12

. The dragDrop event handler.

	

Listing 13

. The MXML code for the program named
 DragAndDrop04.

	

Listing 14

. The ActionScript code for the
 program named DragAndDrop04.

Supplemental material

I recommend that you also
study the other lessons in my extensive collection of online programming
tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background information

In the earlier lesson titled

Drag and Drop Basics

, you learned the basics of writing ActionScript 3 code
to provide a drag and drop capability. In this lesson, you will expand on that
knowledge by learning how to drag objects from one container to another
container while
giving each container the ability to either accept or reject the drop based on
the type of object being dropped.

Functions, classes, methods, and events

The sample program that I will explain in this lesson will use the following
functions, classes, methods, and events plus others as well:

 	
flash.utils.getQualifiedClassName top level function

	
MouseEvent class

 	
MouseDown event

	
DragEvent class

 	
dragDrop event

	
dragEnter event

	
DragManager class

 	
acceptDragDrop method

	
doDrag method

	
DragSource class

 	
addData method

	
hasFormat method

Preview

In this lesson, I will explain how to drag and drop components from one
container into another container while giving the receiving container the ability to accept
or reject the drop on the basis of the type of object being dragged.

Program output at startup

Figure 1 shows the program output at startup.

 [image: Missing Image]

Figure 15.1.

Program output at startup.

Program output at startup.

Three Canvas objects in a VBox object

The program places three

Canvas

 objects in a

VBox

 object as shown in Figure
1. It places two Image objects in one of the

Canvas

 objects. The Image objects
are populated with the contents of the following two image files, which are
shown in the project file structure in Figure 2.

 	
butterfly.jpg

	
frog.jpg

 [image: Missing Image]

Figure 15.2.

Project file structure.

Project file structure.

The image of the project file structure shown in Figure 2 was taken from the
Flex Builder 3 Navigator pane.

The program also places a

Button

 object in the middle

Canvas

 object shown in
Figure 1, and places a

TextArea

 object in the bottom

Canvas

 object.

Draggable objects

The two Image objects as well as the

Button

 object and the

TextArea

 object
are all draggable.

The Canvas objects are labeled

The program places a

Label

 object at the top of each

Canvas

 object. The
labels are for information purposes and are not draggable.

Allowable drop zones

Each of the four draggable objects can be dragged and dropped within
two of the three

Canvas

 objects so long as the mouse pointer is inside the

Canvas

 object when the drop occurs.

None of the draggable objects can be dropped in all three of the

Canvas

objects. The label at the top of each

Canvas

 object tells which types of objects
can be dropped into that particular

Canvas

 object.

Protection on the left and top

An object may not be dropped in such a way that it protrudes outside the left
edge or the top of a

Canvas

 object. If an attempt is made to do so when an
object is being dragged to a new location within the same

Canvas

 object, it
simply returns to its original position.

If this happens when the object is being dragged into a different

Canvas

object, it assumes the same relative position in the new Canvas object that it
previously occupied in the

Canvas

 object from which it was dragged.

Scrollbars magically appear

If the object is dropped such that it protrudes outside the right side or the
bottom of the

Canvas

 object, scroll bars automatically appear on the

Canvas

object.

Allowable object types in the different Canvas objects

The following list shows the
types of draggable objects that can be dropped into each of the Canvas objects:

 	

	Top canvas: images and
	buttons only.
	

	

	Middle canvas: buttons
	and text areas only.
	

	

	Bottom canvas: text areas
	and images only.
	

Results of dragging objects

Figure 3 shows the results of
dragging the button into the top

Canvas

 object and dragging an image into the
bottom

Canvas

 object. You cannot drop the

TextArea

 object into the top canvas,
an image into the middle canvas, or the button into the bottom canvas.

 [image: Missing Image]

Figure 15.3.

Results of dragging objects.

Results of dragging objects.

Figure 4 shows the result of
dropping the

TextArea

 object into the middle

Canvas

 object.

 [image: Missing image]

Figure 15.4.

Result of droping the TextArea into the middle 	Canvas.

Result of droping the TextArea into the middle 	Canvas.

Discussion and sample code

Will explain in fragments

I will explain the code for
this program in fragments. Complete listings of the MXML code and the
ActionScript code are provided in Listing 13 and Listing 14 near the end of the
lesson.

The MXML code

The MXML code is shown in
Listing 1 and also in Listing 13 for your convenience.

Example 15.1.
 <?xml version="1.0" encoding="utf-8"?>
<!--DragAndDrop04
-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">
 <cc:Driver/>

</mx:Application>

As is often the case in this
series of tutorial lessons, the MXML file is very simple because the program was
coded almost entirely in ActionScript. The MXML code simply instantiates an
object of the

Driver

 class. From that point forward, the behavior of the program
is controlled by ActionScript code.

The
ActionScript code

The beginning of the Driver class

The

Driver

 class begins in
Listing 2.

Example 15.2.
 package CustomClasses{
 import flash.events.MouseEvent;
 import flash.utils.getQualifiedClassName;

 import mx.containers.Canvas;
 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Image;
 import mx.controls.Label;
 import mx.controls.TextArea;
 import mx.core.DragSource;
 import mx.core.UIComponent;
 import mx.events.DragEvent;
 import mx.events.FlexEvent;
 import mx.managers.DragManager;

 //==//

 public class Driver extends VBox {
 private var button:Button = new Button();
 private var butterfly:Image = new Image();
 private var frog:Image = new Image();
 private var textArea:TextArea = new TextArea();
 private var canvasA:Canvas = new Canvas();
 private var canvasB:Canvas = new Canvas();
 private var canvasC:Canvas = new Canvas();
 private var labelA:Label = new Label();
 private var labelB:Label = new Label();
 private var labelC:Label = new Label();
 private var localX:Number;
 private var localY:Number;

 public function Driver(){//constructor

 //Put a label at the top of each Canvas object.
 labelA.text = "Images and buttons only";
 labelB.text = "Buttons and text areas only.";
 labelC.text = "Text areas and imges only";
 canvasA.addChild(labelA);
 canvasB.addChild(labelB);
 canvasC.addChild(labelC);

 //Add the Canvas objects to the VBox object
 addChild(canvasA);
 addChild(canvasB);
 addChild(canvasC);

 //Embed the image files in the SWF file.
 [Embed("butterfly.jpg")]
 var butterflyA:Class;

 [Embed("frog.jpg")]
 var frogA:Class;

 //Load the images from the embedded image files
 // into the Image objects.
 butterfly.load(butterflyA);
 frog.load(frogA);

 //Put some text on the button and in the TextArea.
 button.label = "button";
 textArea.text = "textArea";

 //Add the components to the Canvas objects.
 canvasA.addChild(butterfly);
 canvasA.addChild(frog);
 canvasB.addChild(button);
 canvasC.addChild(textArea);

 //Register an event handler that will be executed
 // whcn the canvas and its children are fully
 // constructed.
 this.addEventListener(FlexEvent.CREATION_COMPLETE,
 completeHandler);
 } //end constructor

Nothing new here

There is nothing new in
Listing 2 that you haven't learned about in previous lessons.

A creationComplete event handler

The last statement in Listing 2 registers a

CREATION_COMPLETE

 event handler on
the

VBox

 object. The code in the handler is executed when the

VBox

 object and
all of its children have been fully created. The event handler
begins in Listing 3.

Example 15.3.

 private function completeHandler(
 event:mx.events.FlexEvent):void{
 //Make the Canvas objects visible.
 canvasA.setStyle("backgroundColor",0x00FFFF);
 canvasB.setStyle("backgroundColor",0x00FFFF);
 canvasC.setStyle("backgroundColor",0x00FFFF);

 //Set the width and height of the canvas objects
 // based on the dimensions of butterfly.
 canvasA.width = 1.6*butterfly.width;
 canvasA.height = 1.6*butterfly.height;
 canvasB.width = 1.6*butterfly.width;
 canvasB.height = 1.6*butterfly.height;
 canvasC.width = 1.6*butterfly.width;
 canvasC.height = 1.6*butterfly.height;

 //Reduce the width of the textArea to less than
 // its default width.
 textArea.width = butterfly.width;

 //Move the images, the button, and the text area
 // below the label
 butterfly.y = labelA.height;
 frog.y = labelA.height + butterfly.height;
 button.y = labelB.height;
 textArea.y = labelC.height;

Straightforward code

The code in Listing 3 is straightforward and you shouldn't have any
difficulty understanding it based on what you have learned in previous lessons.

Register a mouseDown event listener on each
draggable object

Listing 4 registers the same

MOUSE_DOWN

 event listener on each draggable object. This is the
beginning of the process that causes the two

Image

 objects, the

Button

 object,
and the

TextArea

 object to be draggable.

Example 15.4.
 butterfly.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);
 frog.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);
 button.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);
 textArea.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);

There is nothing new or unique about the registration code in Listing 4. You
have seen code like that in almost every lesson. The material that is unique to
the drag and drop process is the code in the

mouseDown

 event handler method that
I will discuss next.

The beginning of the mouseDown event
handler

I will put the explanation of
the

creationComplete

 event handler on hold while I explain the

mouseDown

 event
handler. I will return to the

creationComplete

 event handler later.

The

mouseDown

 event handler that is registered on the four draggable objects
begins in Listing 5. This method is executed whenever any one of those objects
dispatches a

mouseDown

 event, and that is the beginning of the drag and drop
process.

Example 15.5.

 private function mouseDownHandler(
 event:MouseEvent):void{
 this.localX = event.localX;
 this.localY = event.localY;

Listing 5 begins by getting
and saving the coordinates of the mouse pointer, relative to the upper-left
corner of the object that dispatches the

mouseDown

 event. As
you saw in the earlier lesson titled

Drag and Drop Basics

, this information will
be used later to properly position the dropped image in the

Canvas

 object.

Get the name of the class from which the
drag initiator was instantiated

The code in Listing 6 is completely new to this lesson.

Example 15.6.
 var className:String = getQualifiedClassName(
 event.target);

The Adobe documentation refers to the object that dispatches the

mouseDown

 event to start the drag and
drop process as the

drag initiator

.

Call the standalone getQualifiedClassName function

Listing 6 calls the function named

getQualifiedClassName

 to
get a string containing the name of the class from which the drag initiator
object was instantiated. Note that this is a stand-alone function in the

flash.utils

 package.

Non-unique strings

Different classes return different strings but the strings are not unique. In
other words, two or more classes may return the same string. For example,
several different Flex components return the same string as the string returned
by the

Button

 component.

The three draggable component types used in this program return the following

strings

:

 	

Image

 returns "mx.controls::Image"

	

Button

 returns "mx.controls::Button"

	

TextArea

 returns "mx.core::UITextField"

Save the string

The string returned by the object that dispatched the

mouseDown

 event is
saved in the variable named

className

 in Listing 6. This string
value will be used later to identify the type of component that dispatched the

mouseDown

 event.

Some of the steps in the process...

When the object being dragged enters one of the

Canvas

 objects, the

Canvas

object dispatches a

dragEnter

 event, which is a subtype of the class

DragEvent

.
The

dragEnter

 event handler receives an object of type

DragEvent

, which
encapsulates an object of the class

DragSource

.

The DragSource object

The

DragSource

 object encapsulates a reference to the drag initiator object

(the object that dispatched the

mouseDown

 event)

.
It also encapsulates a format string that can be used to identify the drag
initiator object. In this program, that string is used by a particular

Canvas

object to determine if it will accept a drop by the drag initiator object.

Populate a new DragSource object with the drag
initiator and a format string

Listing 7 instantiates a new

DragSource

 object and populates it with the drag
initiator and a format string that identifies the type of the drag initiator.
The format string is based on the class from which the drag initiator was
instantiated using the information in the

className

 variable from Listing 6
in the conditional clause.

Example 15.7.
 var dragSource:DragSource = new DragSource();

 if(className == "mx.controls::Image"){
 dragSource.addData(UIComponent(
 event.currentTarget),"imageObj");
 }else if(className == "mx.controls::Button"){
 dragSource.addData(UIComponent(
 event.currentTarget),"buttonObj");
 }else if(className == "mx.core::UITextField"){
 dragSource.addData(UIComponent(
 event.currentTarget),"textAreaObj");
 } //end else if

Can the drag initiator object be dropped?

A

Canvas

 object that examines the format string from the

DragSource

 object
later in the program will use the format string to determine if it is willing to allow the drag
initiator object to be dropped on it.

Cast the current target to type UIComponent

The term

event.currentTarget

 is a reference to the object that dispatched the

mouseDown

 event, which is the drag initiator. However, when the

currentTarget

 is
extracted from the

MouseEvent

 object, it is returned as type

Object

. In order
for it to be suitable for use as the drag initiator, it must be cast to type

UIComponent

.

Relationships among the strings

I could have simply used the strings from the above

list

 as the format strings, but I decided to create new
strings to show that they are really independent of one another.

The relationships that I created between the strings in the above

list

 and
the format strings is shown below:

 	

Image

 returns "mx.controls::Image" -- "imageObj"

	

Button

 returns "mx.controls::Button" -- "buttonObj"

	

TextArea

 returns "mx.core::UITextField" -- "textAreaObj"

Initiate the drag and drop operation

Listing 8 calls the static
method named

doDrag

 of the

DragManager

 class to initiate the drag and drop
operation.

Example 15.8.
 DragManager.doDrag(UIComponent(event.currentTarget),
 dragSource,event);
 }//end mouseDownHandler

I explained the use of this method in the previous lesson titled

Drag and Drop Basics

so I will refer you back to that lesson for a detailed explanation.

Register a different dragEnter event handler on each
Canvas object

Returning to the discussion of the

creationComplete

 event
handler, Listing 9 registers a different

dragEnter

 event
handler on each

Canvas

 object.

Example 15.9.
 //Register a different dragEnter event handler on
 // each Canvas object to make it possible for each
 // Canvas object to accept only two of the three
 // types of components for dropping.
 canvasA.addEventListener(DragEvent.DRAG_ENTER,
 enterHandlerA);
 canvasB.addEventListener(DragEvent.DRAG_ENTER,
 enterHandlerB);
 canvasC.addEventListener(DragEvent.DRAG_ENTER,
 enterHandlerC);

Dispatching dragEnter events

As you learned in the earlier lesson titled

 Drag and Drop Basics

,
	when

the user moves the drag proxy over another component,
	that component dispatches a

dragEnter

event.

If a

dragEnter

event handler has been registered on that
	component, the handler method is executed. If the code in the event handler
	

accepts

 the drag, it becomes the drop target and receives

dragOver

,
	

dragExit

, and

dragDrop

events.

I will explain the code in the

dragEnter

 event handlers
later. Right now, let's look at the remainder of the

creationComplete

event handler.

Register the same dragDrop event handler on all three
Canvas objects

Listing 10 registers the same

dragDrop

 event handler on each of the three

Canvas

objects

Example 15.10.
 //Register the same dragDrop event handler on all
 // three Canvas objects.
 canvasA.addEventListener(DragEvent.DRAG_DROP,
 dropHandler);
 canvasB.addEventListener(DragEvent.DRAG_DROP,
 dropHandler);
 canvasC.addEventListener(DragEvent.DRAG_DROP,
 dropHandler);

 } //end completeHandler

The code in Listing 10 will
cause another event handler to be called on a

Canvas

 object
after it dispatches a

dragEnter

 event and

accepts

 the drag.

Listing 10 also signals the
end of the

creationComplete

 event handler.

The
dragEnter event handlers

A different

dragEnter

 event handler was registered on each

Canvas

 object in Listing 9.

 Each of the

dragEnter

 event handlers is
 executed when the dragged component enters the

Canvas

 object on which the handler is registered.
 The event handlers decide whether or not to accept
 a drop on the basis of the format string associated
 with the type of object being dragged. Note that
 each

Canvas

 object will accept two of the three
 types of objects.

Will only explain one of the dragEnter event handlers

Because of the similarity of the three event handlers, I will explain
only one of them. You can view the code for all three in Listing 14 near the end
of the lesson. Listing 11 shows a

dragEnter

 event handler for
the top

Canvas

 object shown in Figure 1.

Example 15.11.
 //This dragEnter event handler causes the canvas to
 // accept images and buttons.
 private function enterHandlerA(event:DragEvent):void{
 if ((event.dragSource.hasFormat("imageObj")) ||
 (event.dragSource.hasFormat("buttonObj"))){

 DragManager.acceptDragDrop(
 Canvas(event.currentTarget));
 } //end if
 } //end enterHandler

	Confirm the correct format string

The event handler shown
	in Listing 11 causes the

Canvas

 object to accept only
	images and buttons. The only difference between the code in Listing 11 and
	similar code in the earlier lesson titled

Drag and Drop Basics

	is the use of the logical-or (||) operator in Listing 11 to accept either of
	the two string instead of just one.

The code in Listing 11 checks to confirm that the format string in the
	

DragSource

 object matches either "imageObj" or "buttonObj"
	

(see Listing 7)

. If so, it calls the static

acceptDragDrop

method on the

DragManager

class, passing a reference to itself as a parameter in the
method call.

Accept the dragged object

The call to the

acceptDragDrop

 method notifies the

DragManager

that the

Canvas

 object is willing to
accept the contents of the

DragSource

 object being dropped onto
itself.

The dragDrop event
handler

The

dragDrop

event handler was registered on all three

Canvas

objects in Listing 10. This method is executed after a

Canvas

 object
accepts the drag and the user releases the mouse button while the drag proxy is
over the

Canvas

.

The

dragDrop

event handler method is shown in its entirety in Listing 12.

Example 15.12.
 //Execute the dragDrop event handler to drop the
 // object in its new location. Compensate for the
 // fact that the mouse pointer is not at the
 // upper-left corner of the object when the drag is
 // initiated. Don't allow the image to be dragged off
 // the left side of the canvas or off the top of the
 // canvas. See more information about this in the
 // comments at the top.
 private function dropHandler(event:DragEvent):void{

 //Add the drag initiator to the new container.
 // Note that it is not necessary to first remove it
 // from its old container.
 //Also note that the z-axis index is lost in this
 // operation. When an object is dropped on top of
 // another object in the new container, it stays on
 // top regardless of the original z-order of the
 // two objects.
 //The original z-order has no meaning when you drag
 // objects into a canvas from several othr Canvas
 //
 event.currentTarget.addChild(event.dragInitiator);

 //Position the dragInitiator in the Canvas object
 // based on the mouse coordinates at the drop and
 // the mouse coordinates relative to the upper-
 // left corner of the drag initiator at the
 // start of the drag.
 //Compute the correct position for the upper-left
 // corner of the dropped object.
 //If you attempt to drop an object so that it
 // protrudes out of the left side or the top of
 // the canvas, the drag and drop operation is
 // simply aborted.
 var cornerX:Number = (Canvas(event.currentTarget).
 mouseX) - localX;
 var cornerY:Number = (Canvas(event.currentTarget).
 mouseY) - localY;
 if((cornerX > 0.0) && (cornerY > 0.0)){
 event.dragInitiator.x = cornerX;
 event.dragInitiator.y = cornerY
 } //end if
 } //end dropHandler
 //--//

 } //end class
} //end package

The new code

The only real difference between the code in Listing 12 and the similar event
handler in the earlier lesson titled

Drag and Drop Basics

 is
the first statement in Listing 12 that adds the dragged object as a child of the

Canvas

 object.

What you learned in the earlier lesson in conjunction with the comments in
Listing 12 should suffice and no further explanation of this method should be
necessary.

The end of the program

Listing 12 also signals the end of the

Driver

 class, the end
of the package, and the end of the program.

Run the program

I encourage you to

run

 this program from the web. Then copy the code from
Listing 13 and Listing 14. Use that code to create a Flex project.
Compile and run the project. Experiment with the code, making changes, and
observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

Resources

I will publish a list containing links to ActionScript
resources as a separate document. Search for ActionScript
Resources in the Connexions search box.

Complete program listings

Complete listings of the MXML code and the ActionScript code are provided below.

Example 15.13.
 <?xml version="1.0" encoding="utf-8"?>
<!--DragAndDrop04
-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">
 <cc:Driver/>

</mx:Application>

Example 15.14.
 /*DragAndDrop04

Illustrates how to drag components from one container
to another while giving the receiving container the
ability to accept or reject the drop on the basis of the
type of object being dragged.

Places three Canvas objects in a VBox object.

Places two images in one of the Canvas objects:
butterfly.jpg
frog.jpg

Places a Button object in a second Canvas object.

Places a TextArea object in the third Canvas object.

All four of above objects are draggable.

Places a label at the top of each Canvas object, but the
labels are not draggable.

Any of the four draggable objects can be dragged and
dropped anywhere within two of the three Canvas objects
so long as the mouse pointer is inside the Canvas object.

None of the objects can be dropped in all three of the
Canvas objects.

If an object is dropped so that it protrudes outside the
left edge or the top of the Canvas object when being
dragged to a new location within the same Canvas object,
it simply returns to its original position. If this
happens when the object is being dragged into a different
Canvas object, it assumes the same relative position in
the new Canvas object that it previously occupied in the
Canvas object from which it was dragged.

If the dragged object is dropped such that it protrudes
outside the right side or the bottom of the Canvas
object, scroll bars automatically appear on the Canvas
object.

The size of the canvas is based on the size of the
butterfly image so that other images can be substituted
for my images when the program is recompiled so long as
the file names and paths are correct.
***/
package CustomClasses{
 import flash.events.MouseEvent;
 import flash.utils.getQualifiedClassName;

 import mx.containers.Canvas;
 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Image;
 import mx.controls.Label;
 import mx.controls.TextArea;
 import mx.core.DragSource;
 import mx.core.UIComponent;
 import mx.events.DragEvent;
 import mx.events.FlexEvent;
 import mx.managers.DragManager;

 //==//

 public class Driver extends VBox {
 private var button:Button = new Button();
 private var butterfly:Image = new Image();
 private var frog:Image = new Image();
 private var textArea:TextArea = new TextArea();
 private var canvasA:Canvas = new Canvas();
 private var canvasB:Canvas = new Canvas();
 private var canvasC:Canvas = new Canvas();
 private var labelA:Label = new Label();
 private var labelB:Label = new Label();
 private var labelC:Label = new Label();
 private var localX:Number;
 private var localY:Number;

 public function Driver(){//constructor

 //Put a label at the top of each Canvas object.
 labelA.text = "Images and buttons only";
 labelB.text = "Buttons and text areas only.";
 labelC.text = "Text areas and imges only";
 canvasA.addChild(labelA);
 canvasB.addChild(labelB);
 canvasC.addChild(labelC);

 //Add the Canvas objects to the VBox object
 addChild(canvasA);
 addChild(canvasB);
 addChild(canvasC);

 //Embed the image files in the SWF file.
 [Embed("butterfly.jpg")]
 var butterflyA:Class;

 [Embed("frog.jpg")]
 var frogA:Class;

 //Load the images from the embedded image files
 // into the Image objects.
 butterfly.load(butterflyA);
 frog.load(frogA);

 //Put some text on the button and in the text area.
 button.label = "button";
 textArea.text = "textArea";

 //Add the components to the Canvas objects.
 canvasA.addChild(butterfly);
 canvasA.addChild(frog);
 canvasB.addChild(button);
 canvasC.addChild(textArea);

 //Register an event handler that will be executed
 // whcn the canvas and its children are fully
 // constructed.
 this.addEventListener(FlexEvent.CREATION_COMPLETE,
 completeHandler);
 } //end constructor
 //--//

 //This handler method is executed when the Canvas and
 // its children have been fully created.
 private function completeHandler(
 event:mx.events.FlexEvent):void{
 //Make the Canvas objects visible.
 canvasA.setStyle("backgroundColor",0x00FFFF);
 canvasB.setStyle("backgroundColor",0x00FFFF);
 canvasC.setStyle("backgroundColor",0x00FFFF);

 //Set the width and height of the canvas objects
 // based on the dimensions of butterfly.
 canvasA.width = 1.6*butterfly.width;
 canvasA.height = 1.6*butterfly.height;
 canvasB.width = 1.6*butterfly.width;
 canvasB.height = 1.6*butterfly.height;
 canvasC.width = 1.6*butterfly.width;
 canvasC.height = 1.6*butterfly.height;

 //Reduce the width of the textArea to less than
 // its default width.
 textArea.width = butterfly.width;

 //Move the images, the button, and the text area
 // below the label
 butterfly.y = labelA.height;
 frog.y = labelA.height + butterfly.height;
 button.y = labelB.height;
 textArea.y = labelC.height;

 //Register event listeners to support drag and drop
 // operations on both images, the button, and the
 // text area with the canvas as the drag target.
 butterfly.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);
 frog.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);
 button.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);
 textArea.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);

 //Register a different dragEnter event handler on
 // each Canvas object to make it possible for each
 // Canvas object to accept only two of the three
 // types of components for dropping.
 canvasA.addEventListener(DragEvent.DRAG_ENTER,
 enterHandlerA);
 canvasB.addEventListener(DragEvent.DRAG_ENTER,
 enterHandlerB);
 canvasC.addEventListener(DragEvent.DRAG_ENTER,
 enterHandlerC);

 //Register the same dragDrop event handler on all
 // three Canvas objects.
 canvasA.addEventListener(DragEvent.DRAG_DROP,
 dropHandler);
 canvasB.addEventListener(DragEvent.DRAG_DROP,
 dropHandler);
 canvasC.addEventListener(DragEvent.DRAG_DROP,
 dropHandler);

 } //end completeHandler
 //--//

 // This event handler initiates the drag-and-drop \
 // operation for the image that dispatches the
 // mouseDown event.
 private function mouseDownHandler(
 event:MouseEvent):void{

 //Save the location of the mouse within the object
 // being dragged. This information will be used
 // later to properly position the dropped image in
 // the drop target.
 this.localX = event.localX;
 this.localY = event.localY;

 //The drag initiator is the object that dispatched
 // this mouseDown event. Get a string containing
 // the name of the class from which that object was
 // instantiated. For the components used in this
 // program, the possible strings are:
 // Image - "mx.controls::Image"
 // Button - "mx.controls::Button"
 // TextAra - "mx.core::UITextField"
 //Note, the following function is in the
 // flash.utils package.
 var className:String = getQualifiedClassName(
 event.target);

 //Populate a new DragSource object with the drag
 // initiator and a format string based on the class
 // from which the drag initiator was instantiated.
 //The format string will be used later to decide
 // if a particular Canvas object is willing to
 // allow a particular type of object to be dropped
 // on it.
 //Note that when the target of the mouseDown event
 // is used as the drag initiator, it must be cast
 // to type UIComponent.
 var dragSource:DragSource = new DragSource();
 if(className == "mx.controls::Image"){
 dragSource.addData(UIComponent(
 event.currentTarget),"imageObj");
 }else if(className == "mx.controls::Button"){
 dragSource.addData(UIComponent(
 event.currentTarget),"buttonObj");
 }else if(className == "mx.core::UITextField"){
 dragSource.addData(UIComponent(
 event.currentTarget),"textAreaObj");
 } //end else if

 //Initiate the drag and drop operation.
 DragManager.doDrag(UIComponent(event.currentTarget),
 dragSource,event);
 }//end mouseDownHandler
 //--//

 //Each of the following dragEnter event handlers is
 // executed when the dragged omponent enters the
 // Canvas object on which the handlr is registered.
 // The event handlers decide whether or not to accept
 // a drop on the basis ofthe format string associated
 // with the type of object being dragged. Note that
 // each Canvas ovject will accept two of the three
 // types of objects.

 //This dragEnter event handler causes the canvas to
 // accept images and buttons.
 private function enterHandlerA(event:DragEvent):void{
 if ((event.dragSource.hasFormat("imageObj")) ||
 (event.dragSource.hasFormat("buttonObj"))){

 DragManager.acceptDragDrop(
 Canvas(event.currentTarget));
 } //end if
 } //end enterHandler
 //--//

 //This dragEnter event handler causes the canvas to
 // accept textAreas and buttons.
 private function enterHandlerB(event:DragEvent):void{
 if ((event.dragSource.hasFormat("textAreaObj")) ||
 (event.dragSource.hasFormat("buttonObj"))){

 DragManager.acceptDragDrop(
 Canvas(event.currentTarget));
 } //end if
 } //end enterHandler
 //--//

 //This dragEnter event handler causes the canvas to
 // textAreas and images.
 private function enterHandlerC(event:DragEvent):void{
 if ((event.dragSource.hasFormat("textAreaObj")) ||
 (event.dragSource.hasFormat("imageObj"))){

 DragManager.acceptDragDrop(
 Canvas(event.currentTarget));
 } //end if
 } //end enterHandler
 //--//

 //Execute the dragDrop event handler to drop the
 // object in its new location. Compensate for the
 // fact that the mouse pointer is not at the
 // upper-left corner of the object when the drag is
 // initiated. Don't allow the image to be dragged off
 // the left side of the canvas or off the top of the
 // canvas. See more information about this in the
 // comments at the top.
 private function dropHandler(event:DragEvent):void{

 //Add the drag initiator to the new container.
 // Note that it is not necessary to first remove it
 // from its old container.
 //Also note that the z-axis index is lost in this
 // operation. When an object is dropped on top of
 // another object in the new container, it stays on
 // top regardless of the original z-order of the
 // two objects.
 //The original z-order has no meaning when you drag
 // objects into a canvas from several othr Canvas
 //
 event.currentTarget.addChild(event.dragInitiator);

 //Position the dragInitiator in the Canvas object
 // based on the mouse coordinates at the drop and
 // the mouse coordinates relative to the upper-
 // left corner of the drag initiator at the
 // start of the drag.
 //Compute the correct position for the upper-left
 // corner of the dropped object.
 //If you attempt to drop an object so that it
 // protrudes out of the left side or the top of
 // the canvas, the drag and drop operation is
 // simply aborted.
 var cornerX:Number = (Canvas(event.currentTarget).
 mouseX) - localX;
 var cornerY:Number = (Canvas(event.currentTarget).
 mouseY) - localY;
 if((cornerX > 0.0) && (cornerY > 0.0)){
 event.dragInitiator.x = cornerX;
 event.dragInitiator.y = cornerY
 } //end if
 } //end dropHandler
 //--//

 } //end class
} //end package

Miscellaneous

Housekeeping material

 	
Module name: Dragging Objects between Containers

	
Files:

 	
ActionScript0142\ActionScript0142.htm

	
ActionScript0142\Connexions\ActionScriptXhtml0142.htm

PDF disclaimer:

-end-

Solutions

Chapter 14. Drag and Drop Basics

Click

DragAndDrop01

(Click the "Back" button in your browser
to return to this page.)

Table of Contents

 	

Preface

 	

General

	

Viewing tip

 	

Figures

	

Listings

	

Supplemental material

	

General Background Information

	

Preview

	

Discussion and sample code

 	

The MXML file

	

The ActionScript file

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

Preface

General

All references to ActionScript in this lesson are
			 references to version 3 or later.

This tutorial lesson is
part of a series of lessons dedicated to object-oriented programming
(OOP) with ActionScript.

Several ways to create and launch ActionScript
programs

There are several ways to
create and launch programs written in the ActionScript programming language.
Many of the lessons in this series will use Adobe Flex as the launch pad for the
sample ActionScript programs.

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3.

(See

Baldwin's Flex programming website

.)

You should study that lesson before embarking on the lessons in this series.

Some understanding of Flex MXML will be required

I also recommend that you
study all of the lessons on Baldwin's Flex programming website in parallel with
your study of these ActionScript lessons. Eventually you will probably need to
understand both ActionScript and Flex and the relationships that exist between
them in order to become a successful ActionScript programmer.

Will emphasize ActionScript code

It is often possible to use
either ActionScript code or Flex MXML code to achieve the same result. Insofar
as this series of lessons is concerned, the emphasis will be on ActionScript
code even in those cases where Flex MXML code may be a suitable alternative.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and
listings while you are reading about them.

Figures

 	

Figure 1

. Program output at startup.

	

Figure 2

. Program file structure.

	

Figure 3

. Program output after dragging the
 images.

Listings

 	

Listing 1

. The MXML file for DragAndDrop01.

	

Listing 2

. Beginning of the Driver class for
 DragAndDrop01.

	

Listing 3

. Beginning of the constructor for the
 Driver class.

	

Listing 4

. Prepare the three images.

	

Listing 5

. Register a creationComplete event
 handler.

	

Listing 6

. Beginning of the creationComplete
 event handler.

	

Listing 7

. Register a mouseDown event handler on
 each Image object.

	

Listing 8

. Register dragDrop and dragEnter event
 handlers on the Canvas object.

	

Listing 9

. Beginning of the mouseDown event
 handler.

	

Listing 10

. Get and save the drag initiator.

	

Listing 11

. Populate a DragSource object with a
 copy of the image being dragged.

	

Listing 12

. Initiate the drag and drop operation
 by calling the doDrag method.

	

Listing 13

. The dragEnter event handler.

	

Listing 14

. Beginning of the dragDrop event
 handler.

	

Listing 15

. Do the drop.

	

Listing 16

. The MXML file for DragAndDrop01.

	

Listing 17

. The ActionScript file for
 DragAndDrop01.

Supplemental material

I recommend that you also
study the other lessons in my extensive collection of online programming
tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General Background Information

For Adobe online
documentation on this topic, see

Using Drag and Drop

.

A drag and drop operation is carried out in three
stages:

 	
Initiation

	
Dragging

	
Dropping

Initiation

As you are probably already aware, initiation consists of the user pointing
to an item with the mouse and pressing the mouse button.

Dragging

During the drag operation, the user drags the item to another location on the
screen without releasing the mouse button.

Dropping

When the item has been dragged to the new location, the user releases the
mouse button causing the item to remain in the new location.

Copying

It is also possible to copy an item using the drag and drop gestures, but
that capability won't be illustrated in this lesson. Instead, this lesson will
concentrate on moving a Flex component from one location in its container to a
different location in its container.

Classes and events

The sample program that I will explain in this lesson will use the following
classes, methods, and events:

 	
MouseEvent class

 	
mouseDown event

	
DragEvent class

 	
dragDrop event

	
dragEnter event

	
DragManager class

 	
acceptDragDrop method

	
doDrag method

	
DragSource class

 	
addData method

	
hasFormat method

Preview

I will explain a program named

DragAndDrop01

. This program illustrates the
fundamentals of drag and drop in ActionScript 3. The program places three images
in the upper-left corner of a

Canvas

 object as shown in Figure
1.

 [image: Program output at startup image.]

Figure 14.1.

Program output at startup.

Program output at startup.

The program file structure

The program file structure, taken from the Flex Builder 3 Navigator panel is
as shown in Figure 2.

 [image: Program file structure.]

Figure 14.2.

Program file structure.

Program file structure.

Three image files

As you can see in Figure 2,
the program uses

the following image files

:

 	
0 - space.jpg

	
1 - snowscene.jpg

	
2 - frog.jpg

The z-axes indices

The program sets the z-axis indices in the order shown in the above

list

 on the

Image

 objects produced using the image files. This causes the

space

 image to be in the back (0), the

frog

 image to be in the front
(2), and the

snowscene

 image to be in the middle (1).

The three images are initially placed in the upper-left corner of the canvas,
which is shown as a cyan rectangle in Figure 1.

Any image can be dragged

If you

run

 this program, you will see that any any of the images can be dragged and dropped anywhere within the canvas as
long as the mouse pointer doesn't leave the canvas. However, if the edge of the
dragged image goes outside the left edge or the top of the canvas, the drag and
drop operation is aborted.

If the dragged image goes outside the right side or the bottom of the canvas,
scroll bars automatically appear on the canvas as shown in Figure 3.

Program output after dragging the images

Figure 3 shows the program output after dragging the three images to
different locations.

 [image: Program output after dragging the images.]

Figure 14.3.

Program output after dragging the images.

Program output after dragging the images.

Discussion and sample code

Will explain in fragments

I will explain the code for this program in fragments. Complete listings of
the MXML code and the ActionScript code are provided in Listing 16 and Listing
17 near the end of the lesson.

The MXML file

The MXML file is shown in
Listing 1 and also in Listing 16 for your convenience.

Example 14.1.
 <?xml version="1.0" encoding="utf-8"?>
<!--DragAndDrop01-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

As you can see, the MXML file
is very simple because the program was coded almost entirely in ActionScript.
The MXML code simply instantiates an object of the

Driver

 class. From that point
forward, the behavior of the program is controlled by ActionScript code.

The ActionScript file

Beginning of the Driver class

The Driver class begins in
Listing 2.

Example 14.2.
 package CustomClasses{
 import flash.events.MouseEvent;

 import mx.containers.Canvas;
 import mx.controls.Image;
 import mx.core.DragSource;
 import mx.events.DragEvent;
 import mx.events.FlexEvent;
 import mx.managers.DragManager;

 //==//

 public class Driver extends Canvas {
 private var imageA:Image = new Image();
 private var imageB:Image = new Image();
 private var imageC:Image = new Image();
 private var localX:Number;
 private var localY:Number;

Extends the Canvas class

As you can see in Listing 2, the

Driver

 class extends the

Canvas

 class. Therefore, an object of the

Driver

 class is a

Canvas

 object and has all of
the attributes associated with a

Canvas

 object. Among those
attributes is the following, which was taken from the

documentation

:

"A Canvas layout container defines a rectangular
region in which you place child containers and controls. It is the only
container that lets you explicitly specify the location of its children within
the container by using the x and y properties of each child."

As you will see, the new location of each image is explicitly specified each
time it is dragged to a new location.

Instantiate three new Image objects

The code in Listing 2 instantiates three new

Image

 objects,
which will be loaded with the contents of the three image files listed

earlier

. The code in Listing 2 also declares two instance
variables that will be used to store the position of the mouse pointer within an
image when the drag operation is initiated.

Beginning of the constructor for the Driver
class

The constructor for the

Driver

 class begins in Listing 3.

Example 14.3.
 public function Driver(){//constructor
 setStyle("backgroundColor",0x00FFFF);
 setStyle("backgroundAlpha",1.0);

Make the canvas visible

Normally a

Canvas

 object is not visible. The code in Listing 3 sets the
alpha value for the

Canvas

 object to 1.0 making it opaque and
visible. Listing 3 also sets the background color of the

Canvas

 object to cyan as shown in Figure 1.

The size of the

Canvas

 object will be set later when the

Canvas

 object and all of its children have been constructed.

Prepare the three images

Listing 4 prepares the three images for use by the program.

Example 14.4.
 //Embed the image files in the SWF file.
 [Embed("snowscene.jpg")]
 var imgA:Class;

 [Embed("space.jpg")]
 var imgB:Class;

 [Embed("frog.jpg")]
 var imgC:Class;

 //Load the images from the embedded image files
 // into the Image objects.
 imageA.load(imgA);
 imageB.load(imgB);
 imageC.load(imgC);

 // Set the z-axes indices such that the frog is
 // in front, the snowscene is in the middle and the
 // space image is at the back.
 addChildAt(imageB,0);//set index to 0
 addChildAt(imageA,1);//set index to 1
 addChildAt(imageC,2);//set index to 2

Listing 4 begins by embedding the three image files in the SWF file. Then it
loads the contents of the image files into the

Image

 objects
instantiated in Listing 2. Finally Listing 3 adds the

Image

objects as children of the

Canvas

 object.

Set the z-axis indices

The z-axis index of
each

Image

 object is set in Figure 4 so as to place the space image at the
back, the frog image at the front, and the snowscene image between the other
two.

Register a creationComplete event handler

Listing 5 registers a

creationComplete

 event handler on the

Canvas

object. This event handler will be executed after the

Canvas

object and all of its children are fully constructed.

Example 14.5.
 this.addEventListener(FlexEvent.CREATION_COMPLETE,
 completeHandler);
 } //end constructor

Beginning of the creationComplete event handler

The

creationComplete

 event handler begins in Listing 6. This
handler is executed once when the

Canvas

 object and all of its
children have been constructed.

Example 14.6.
 private function completeHandler(
 event:mx.events.FlexEvent):void{
 //Set the width and height of the canvas based on
 // the dimensions of imageB.
 this.width = 1.3*imageB.width;
 this.height = 1.3*imageB.height;

Set the size of the Canvas object

Listing 6 sets the width and
height of the

Canvas

 object based on the dimensions of the

Image

 object referred to by

imageB

. It was not
possible to reliably execute this code in the constructor because the code might
be executed before the contents of the image file were fully loaded into the

Image

 object.

Register a mouseDown event handler on each

Image

 object

A drag and drop operation is heavily dependent on the handling of different
types of events. The remaining code in the

creationComplete

event handler registers appropriate event handlers on the images and on the

Canvas

 object to support the drag and drop operation with the

Canvas

 object as the drag target.

As you will see later, a drag operation is initialized when an image
dispatches a

mouseDown

 event. Listing 7 registers the same

mouseDown

 event handler on all three

Image

objects.

Example 14.7.
 imageA.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);
 imageB.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);
 imageC.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);

Register dragDrop and dragEnter event handlers on the

Canvas

 object

Two different event handlers must be registered on the drag target, which is
the

Canvas

 object in this case. The registration of those event
handlers on the

Canvas

 object is accomplished in Listing 8.

Example 14.8.
 this.addEventListener(DragEvent.DRAG_DROP,
 dropHandler);
 this.addEventListener(DragEvent.DRAG_ENTER,
 enterHandler);
 } //end completeHandler

Beginning of the mouseDown event handler

The

mouseDown

 event handler that was registered on the

Image

 objects in Listing 7 begins in Listing 9. This event
handler initiates the drag and drop operation on the

Image

object that dispatches the event.

Example 14.9.
 private function mouseDownHandler(
 event:MouseEvent):void{

 //Save the location of the mouse within the image
 // being dragged. This information will be used
 // later to properly position the dropped image in
 // the drop target.
 this.localX = event.localX;
 this.localY = event.localY;

Positioning the dropped object

The easiest approach simply drops the image with its upper-left corner at the
position of the mouse pointer when the mouse button is released. However, in my
opinion, that is somewhat less than satisfactory from a visual viewpoint.

The drag proxy

When you drag an image, there is a default drag proxy that moves along with
the mouse.

(It is possible to replace the default drag proxy with a drag proxy
of your choice.)

 The default drag proxy is a partially transparent rectangle
that is the same size as the image.

Adjust the position of the upper-left
corner

My preference is to manually adjust

 the
drop location of the image based on the upper-left corner of the drag proxy and
not based on the location of the mouse pointer. The code in Listing 9 gets and
saves the coordinates of the mouse pointer within the image when the event is
dispatched. As you will see later, I use these coordinates later to set the drop
location on the basis of the upper-left corner of the proxy.

Get and save the drag initiator

The documentation refers to the object being dragged as the

drag
initiator

.

Example 14.10.
 //Get the drag initiator component from the event
 // object and cast it to the correct type.
 var dragInitiator:Image = Image(
 event.currentTarget);

In this program, the drag
initiator could be any of the three images shown in Figure 1 and Figure 3.

The code in Listing 10

 	
Gets a reference to the

Image

 object that dispatched the

mouseDown

 event from the incoming method parameter

	
Casts it to type

Image

, and

	
Saves it in the variable
 named

dragInitiator

.

Populate a DragSource object with a copy of the image
being dragged

Here is part of what the

documentation

has to say about the

DragSource

 class.

"The DragSource class contains the data being
dragged. The data can be in multiple formats, depending on the type of control
that initiated the drag.

Each format of data is identified with a string. ...
Data can be added directly using the addData() method, or indirectly using the
addHandler() method."

Listing 11 adds the image being dragged to a new

DragSource

object and provides an identifier for the format as a string. You will see later
how this string is used to establish the drop target.

Example 14.11.
 var dragSource:DragSource = new DragSource();

 dragSource.addData(dragInitiator,"imageObject");

Initiate the drag and drop operation by calling the doDrag
method

Listing 12 initiates the drag and drop operation by calling the static

doDrag

 method of the

DragManager

class.

Example 14.12.
 DragManager.doDrag(dragInitiator,dragSource,event);

 }//end mouseDownHandler

What does the documentation have to say
about the DragManager class?

Here is part of what the

documentation

has to say about the

DragManager

class.

"The

DragManager

class manages drag and drop operations, which let you move data from
one place to another in a Flex application. For example, you can select an
object, such as an item in a List control or a Flex control, such as an Image
control, and then drag it over another component to add it to that component.

All methods and properties of the

DragManager

are static, so you do not need to
create an instance of it. ...

When the user selects an item with the mouse, the
selected component is called the drag initiator. The image displayed during the
drag operation is called the drag proxy.

When the user moves the drag proxy over another
component, the

dragEnter

 event is sent to
that component. If the component accepts the drag, it becomes the drop target
and receives dragOver, dragExit, and

dragDrop

events.

When the drag is complete, a dragComplete event is
sent to the drag initiator."

What about the doDrag method?

The documentation states
simply that the

doDrag

 method

"Initiates a
drag and drop operation."

The doDrag method parameters

The

doDrag

 method has several parameters with default
values in addition to the three shown in Listing 12. Here is part of what the
documentation has to say about the three parameters passed to the

doDrag

 method in Listing 12.

 	

dragInitiator

:IUIComponent

- IUIComponent that specifies the component initiating the drag.

	

dragSource

:DragSource

- DragSource object that contains the data being dragged.

	

event:MouseEvent

 - The MouseEvent
that contains the mouse information from the start of the drag.

The end of the mouseDown event handler

Listing 12 signals the end of the

mouseDown

 event handler.
This leaves two more event handlers to be discussed. The remaining two event
handlers were registered on the drop target

(

Canvas

 object)

 by
the code in Listing 8.

The dragEnter event handler

As you learned

earlier

, when the user moves the drag
proxy over another component, that component dispatches a

dragEnter

event.

If a

dragEnter

event handler has been registered on that
component, the handler method is executed. If the code in the event handler
accepts the drag, it becomes the drop target and receives

dragOver

,

dragExit

, and

dragDrop

events.

In this case the intended drop target is the

Canvas

 object
and the event handler shown in Listing 13 is registered on that object.

Example 14.13.
 private function enterHandler(event:DragEvent):void{
 if (event.dragSource.hasFormat("imageObject")){
 DragManager.acceptDragDrop(
 Canvas(event.currentTarget));
 } //end if
 } //end enterHandler

Confirm the correct format string

The code in Listing 13 checks to confirm that the format string in the

DragSource

 object matches "imageObject" (see Listing 11). If
so, it calls the static

acceptDragDrop

method on the

DragManager

class, passing a reference to itself as a parameter
in the method call.

Accept the dragged object

The call to the

acceptDragDrop

 method notifies the

DragManager

that the

Canvas

 object is willing
to accept the contents of the

DragSource

 object being dropped
onto itself.

Beginning of the dragDrop event handler

The

dragDrop

event handler was registered on the

Canvas

 object in
Listing 8. This method is executed after the

Canvas

 object
accepts the drag and the user releases the mouse button while the drag proxy is
over the

Canvas

.

Correct the drop position for the image

The code in Listing 14 uses the current location of the mouse pointer along
with the values stored in

localX

 and

localY

to compute the new location for the upper-left corner of the image when it is
dropped on the canvas.

(Recall that

localX

 and

localY

 contain the coordinates of the mouse pointer relative to
the upper-left corner of the image when the

mouseDown

 event was
dispatched by the image and the drag and drop operation began.)

I explained the
need for this position adjustment

earlier

.

Example 14.14.
 private function dropHandler(event:DragEvent):void{

 var cornerX:Number = (Canvas(event.currentTarget).
 mouseX) - localX;
 var cornerY:Number = (Canvas(event.currentTarget).
 mouseY) - localY;

Do the drop

Listing 15 checks to confirm that the location at which the upper-left corner
of the image will be placed is within the bounds of the canvas on the left side
and the top. If so, it sets the coordinates of the

Image

 object that dispatched the original

mouseDown

 event to the coordinates that were computed in
Listing 14. This causes that

Image

 object to move to the new
position on the

Canvas

 object.

Example 14.15.
 if((cornerX > 0.0) && (cornerY > 0.0)){
 Image(event.dragInitiator).x = cornerX;
 Image(event.dragInitiator).y = cornerY
 } //end if
 } //end dropHandler
 //--//

 } //end class
} //end package

The end of the program

Listing 15 also signals the
end of the

dragDrop

event handler, the end of the

Driver

 class, and the end of the program.

Run the program

I encourage you to

run

 this program from the web. Then copy the code from
Listing 16 and Listing 17. Use that code to create a Flex project.
Compile and run the project. Experiment with the code, making changes, and
observing the results of your changes. Make certain that you can explain
why your changes behave as they do.

Resources

I will publish a list containing links to ActionScript
resources as a separate document. Search for ActionScript
Resources in the Connexions search box.

Complete program listings

Complete listings for the MXML and ActionScript code discussed in this lesson
are provided in Listing 16 and Listing 17 below.

Example 14.16.
 <?xml version="1.0" encoding="utf-8"?>
<!--DragAndDrop01
-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

Example 14.17.
 /*DragAndDrop01
Illustrates the fundamentals of drag and drop in
ActionScript 3.

Places three images in a Canvas object:

0 - space.jpg - largest
1 - snowscene.jpg - midsize
2 - frog.jpg - smallest

Sets the z-axis indices as shown above. This causes the
space image to be in the back, the frog image to be in the
front, and the snowscene image to be in the middle.

Any of the images can be dragged and dropped anywhere
within the canvas so long as the mouse pointer doesn't
leave the canvas. However, If the edge of the dragged
image goes outside the left edge or the top of the canvas,
the drag and drop operation is aborted. If the dragged
image goes outside the right side or the bottom of the
canvas, scroll bars automatically appear on the canvas.

The size of the canvas is based on the size of the space
image so that other images can be substituted for mine
when the program is recompiled so long as the file names
and paths are the same.
***/
package CustomClasses{
 import flash.events.MouseEvent;

 import mx.containers.Canvas;
 import mx.controls.Image;
 import mx.core.DragSource;
 import mx.events.DragEvent;
 import mx.events.FlexEvent;
 import mx.managers.DragManager;

 //==//

 public class Driver extends Canvas {
 private var imageA:Image = new Image();
 private var imageB:Image = new Image();
 private var imageC:Image = new Image();
 private var localX:Number;
 private var localY:Number;

 public function Driver(){//constructor
 //Make the Canvas visible.
 setStyle("backgroundColor",0x00FFFF);
 setStyle("backgroundAlpha",1.0);

 //Embed the image files in the SWF file.
 [Embed("snowscene.jpg")]
 var imgA:Class;

 [Embed("space.jpg")]
 var imgB:Class;

 [Embed("frog.jpg")]
 var imgC:Class;

 //Load the images from the embedded image files
 // into the Image objects.
 imageA.load(imgA);
 imageB.load(imgB);
 imageC.load(imgC);

 // Set the z-axes indices such that the frog is
 // in front, the snowscene is in the middle and the
 // space image is at the back.
 addChildAt(imageB,0);//set index to 0
 addChildAt(imageA,1);//set index to 1
 addChildAt(imageC,2);//set index to 2

 //Register an event handler that will be executed
 // whcn the canvas and its children are fully
 // constructed.
 this.addEventListener(FlexEvent.CREATION_COMPLETE,
 completeHandler);
 } //end constructor
 //--//

 //This handler method is executed when the Canvas and
 // its children have been fully created.
 private function completeHandler(
 event:mx.events.FlexEvent):void{
 //Set the width and height of the canvas based on
 // the dimensions of imageB.
 this.width = 1.3*imageB.width;
 this.height = 1.3*imageB.height;

 //Register event listeners to support drag and drop
 // operations on all three images with the canvas
 // as the drag target.
 imageA.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);
 imageB.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);
 imageC.addEventListener(MouseEvent.MOUSE_DOWN,
 mouseDownHandler);

 this.addEventListener(DragEvent.DRAG_DROP,
 dropHandler);
 this.addEventListener(DragEvent.DRAG_ENTER,
 enterHandler);
 } //end completeHandler
 //--//

 // This event handler initiates the drag-and-drop \
 // operation for the image that dispatches the
 // mouseDown event.
 private function mouseDownHandler(
 event:MouseEvent):void{

 //Save the location of the mouse within the image
 // being dragged. This information will be used
 // later to properly position the dropped image in
 // the drop target.
 this.localX = event.localX;
 this.localY = event.localY;

 //Get the drag initiator component from the event
 // object and cast it to the correct type.
 var dragInitiator:Image = Image(
 event.currentTarget);

 //Add the image being dragged to a DragSource
 // object and define an identifier as a string.
 var dragSource:DragSource = new DragSource();
 dragSource.addData(dragInitiator,"imageObject");

 //Call the static doDrag method on the DragManager
 // class to manage the overall drag and drop
 // operation.
 DragManager.doDrag(dragInitiator,dragSource,event);
 }//end mouseDownHandler
 //--//

 //This dragEnter event handler causes the canvas to
 // be a suitable drop target.
 private function enterHandler(event:DragEvent):void{
 if (event.dragSource.hasFormat("imageObject")){
 DragManager.acceptDragDrop(
 Canvas(event.currentTarget));
 } //end if
 } //end enterHandler
 //--//

 //Execute the dragDrop event handler to drop the image
 // in its new location. Compensate for the fact that
 // the mouse pointer is not at the upper-left corner
 // of the image. Also don't allow the image to be
 // dragged off the left side of the canvas or off the
 // top of the canvas.
 private function dropHandler(event:DragEvent):void{

 //Compute the position of the upper-left corner of
 // the dropped image.
 var cornerX:Number = (Canvas(event.currentTarget).
 mouseX) - localX;
 var cornerY:Number = (Canvas(event.currentTarget).
 mouseY) - localY;
 if((cornerX > 0.0) && (cornerY > 0.0)){
 Image(event.dragInitiator).x = cornerX;
 Image(event.dragInitiator).y = cornerY
 } //end if
 } //end dropHandler
 //--//

 } //end class
} //end package

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Drag and Drop Basics

	
Files:

 	
ActionScript0140\ActionScript0140.htm

	
ActionScript0140\Connexions\ActionScriptXhtml0140.htm

PDF disclaimer:

-end-

Solutions

Chapter 10. Creating Custom Effects

Click

CustomEffect02

CustomEffect03

(Click the "Back" button in your browser
to return to this page.)

Table of Contents

 	

Preface

 	

General

	

Viewing tip

 	

Figures

	

Listings

	

Supplemental material

	

General background information

	

Preview

	

Discussion and sample code

 	

Creating a custom effect

	

The class named CustomEffect

	

The class named CustomEffectInstance

	

The Driver class for the program named
	 CustomEffect02

	

The Driver class for the program named
	 CustomEffect03

	

Run the program

	

Resources

	

Complete Program Listings

	

Miscellaneous

Preface

General

All references to ActionScript in this lesson are
			 references to version 3 or later.

This tutorial lesson is
part of a series of lessons dedicated to object-oriented programming
(OOP) with ActionScript.

Several ways to create and launch ActionScript
programs

There are several ways to
create and launch programs written in the ActionScript programming language.
Many of the lessons in this series will use Adobe Flex as the launch pad for the
sample ActionScript programs.

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3.

(See

Baldwin's Flex programming website

.)

You should study that lesson before embarking on the lessons in this series.

Some understanding of Flex MXML will be required

I also recommend that you
study all of the lessons on Baldwin's Flex programming website in parallel with
your study of these ActionScript lessons. Eventually you will probably need to
understand both ActionScript and Flex and the relationships that exist between
them in order to become a successful ActionScript programmer.

Will emphasize ActionScript code

It is often possible to use
either ActionScript code or Flex MXML code to achieve the same result. Insofar
as this series of lessons is concerned, the emphasis will be on ActionScript
code even in those cases where Flex MXML code may be a suitable alternative.

Viewing tip

I recommend that you open
another copy of this document in a separate browser window and use the following
links to easily find and view the figures and listings while you are reading
about them.

Figures

 	

Figure 1

. Program output at startup.

	

Figure 2

. CustomEffect02 output after clicking a
 button.

Listings

 	

Listing 1

. Common MXML Code.

	

Listing 2

. Beginning of the class named
 CustomEffect.

	

Listing 3

. The constructor for the class named
 CustomEffect.

	

Listing 4

. Override the initInstance method.

	

Listing 5

. Override the getAffectedProperties
 method.

	

Listing 6

. Beginning of the CustomEffectInstance
 class.

	

Listing 7

. Declare variables for storage of
 effect properties.

	

Listing 8

. The constructor for the
 CustomEffectInstance class.

	

Listing 9

. Override the inherited play method.

	

Listing 10

. Play the three effects in parallel.

	

Listing 11

. Beginning of the Driver class for
 CustomEffect02.

	

Listing 12

. Beginning of the constructor for the
 Driver class.

	

Listing 13

. Set properties on the custom effect.

	

Listing 14

. The common click event handler.

	

Listing 15

. Beginning of the Driver class for
 CustomEffect03.

	

Listing 16

. Set properties on the custom effect.

	

Listing 17

. Apply the effect to the two buttons
 individually.

	

Listing 18

. Common MXML code used for both
 programs.

	

Listing 19

. Source code for the class named
 CustomEffect.

	

Listing 20

. Source code for the class named
 CustomEffectInstance.

	

Listing 21

. Driver class for the program named
 CustomEffect02.

	

Listing 22

. Driver class for the program named
 CustomEffect03.

Supplemental material

I recommend that you also
study the other lessons in my extensive collection of online programming
tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background information

In an
earlier lesson titled

Events, Triggers, and Effects

, I taught you how to use the triggers and effects that are
built into the ActionScript language.

In this lesson, I will teach you how to
create your own custom effects. I will also explain two different programs that
use a custom effect of my own design. I recommend that you

run

 the online version of each of the two programs before
continuing with the lesson.

Preview

Program output at startup

Figure 1 shows the screen
output of both programs at startup.

 [image: Program output at startup.]

Figure 10.1.

Program output at startup.

Program output at startup.

A common custom effect

Both programs apply the same custom effect to both buttons. However, the
program named

CustomEffect02

 applies the effect in such a way
that it is played on both buttons simultaneously if either button is clicked.
The program named

CustomEffect03

 applies the custom effect in
such a way that it plays individually on each button when the button is clicked.
I will explain the reason for this difference later.

One run is worth a thousand pictures

Hopefully by now you have been able to

run

 the
online version of both programs because the effect is difficult to explain.
Basically, the custom effect consists of the parallel execution of three types
of standard ActionScript effects:

 	
WipeRight

	
Glow

	
Rotate

The effect appears to cause the buttons to leave their positions, change
color, and fly around for a short while before settling back into their normal
positions.

CustomEffect02 output after clicking a button

Figure 2 shows the output
from the program named CustomEffect02 shortly after clicking one of the buttons.

 [image: CustomEffect02 output after clicking a button.]

Figure 10.2.

CustomEffect02 output after clicking a button.

CustomEffect02 output after clicking a button.

Discussion and sample code

Will discuss in fragments

I will discuss and explain
these two programs in fragments. Complete listings of the MXML code and the
ActionScript code are provided near the end of the lesson beginning with Listing
18.

The MXML files

Both programs use the same simple MXML code shown in Listing 1.

Example 10.1.
 <?xml version="1.0" encoding="utf-8"?>

<!--CustomEffect02 11/26/09
Illustrates a custom effect, which is the parallel
playing of three standard effects:

WipeRight
Rotate
Glow

The effect is applied to two buttons each time either
button is clicked.

This version sets the targets on the effect and calls the
play method on the effect.

See the Flex 3 Cookbook, page 363
Also see http://livedocs.adobe.com/flex/3/html/help.html?
content=createeffects_2.html#178126
Also see http://livedocs.adobe.com/flex/3/html/help.html?
content=behaviors_04.html#275399
-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

An object of the class named Driver

As you can see, this MXML file simply instantiates an object of the class
named

Driver

. That's because almost all of the code in these
two programs is written in ActionScript instead of MXML.

Creating a custom effect

You must define two classes to create a custom effect. One class is a

factory

 class that extends the class named

Effect

. The
other class is an

instance

 class that extends the class named

EffectInstance

.

The instance class plays the effect

When the time comes to play the effect on a component, the factory class
instantiates an object of the instance class to actually play the effect. If the
same effect is played on two or more components at the same time, a different
object of the instance class is instantiated to play the effect on
each component.

Play three effects in parallel

As explained in Listing 1, the custom class that I designed for use in this
lesson plays the following three effects in parallel:

 	
WipeRight

	
Rotate

	
Glow

You learned about something similar to this in my earlier lesson titled

Events, Triggers, and Effects

. However, in that lesson I didn't combine the
three effects into a single custom effect the way that I will in this lesson.

Knowledge of OOP is required

I will do the best that I can to explain this code. Even at that, you are
likely to need a pretty good understanding of object-oriented programming to
understand the code required to create a custom effect. As you will see later,
the required code is steeped in overridden methods, interfaces, and other
object-oriented concepts.

The class named CustomEffect

The class named

CustomEffect

 begins in Listing 2. A complete
listing of the class is provided in Listing 19 near the end of the lesson.

Example 10.2.
 package CustomClasses{
 import mx.effects.Effect;
 import mx.effects.IEffectInstance;
 import mx.events.EffectEvent;

 public class CustomEffect extends Effect{

 //Would prefer to make these private and use implicit
 // setter methods, but I decided to leave them public
 // to simplify the code.
 public var theDuration:Number = 2000;//default value
 public var rotateAngleFrom:Number = 0;//default value
 public var rotateAngleTo:Number = 360;//default value
 public var wipeShowTarget:Boolean = true;//default
 public var glowColor:uint = 0xFF0000;//default value
 public var glowInner:Boolean = true;//default value
 public var glowStrength:Number = 255;//default value

The factory class

Of the two required classes, this is the factory class that I mentioned
earlier. This class must extend the class named

Effect

, and
will override methods inherited from that class.

Public instance variables

Listing 2 declares and initializes seven public instance variables that will
be used to set properties on the

WipeRight

 object, the

Rotate

 object, and the

Glow

 object. I provided
default values for these variables so that the program will work even if the
driver program fails to provide the required values.

Could use implicit setter methods

As I mentioned in the comments, I would prefer to make these variables
private and provide an implicit setter method for each variable. However, I
decided to make them public to simplify the code and make it easier to explain.

The constructor for the class named
CustomEffect

The constructor is shown in its entirety in Listing 3.

Example 10.3.
 public function CustomEffect(target:Object=null){
 super(target);
 instanceClass = CustomEffectInstance;
 } //end constructor

The incoming parameter

The incoming parameter for the constructor is the generic type

Object

. This parameter must specify the component on which the
effect is to be played.

If no target is passed as a parameter to the constructor, the default null
value prevails and the

target

 property of the object must be
set. As you will see later, an alternative property named

targets

 can be set to cause the effect to be played on multiple
targets at the same time.

Call the superclass constructor

Without attempting to explain why, I am going to tell you that it is
frequently necessary in OOP to cause the constructor for a class to make a call
to the constructor of its superclass as the first statement in the constructor.
This constructor is no exception to that rule.

The first statement in Listing 3 is a call to the constructor for the

Effect

 class passing a reference to the target component(s) as
a parameter. When that constructor returns control, the second statement in
Listing 3 is executed.

The instanceClass property

This class inherits a property named

instanceClass

 from the
class named

Effect

. According to

About creating a custom effect

, the factory class that you define must set
the value of this property to the name of the instance class that will be used
to play the effect.

In this program, the name of the instance class is

CustomEffectInstance

, as shown in Listing 3. I will explain the
code in that class after I finish explaining the code in this class.

This inherited property provides the mechanism that ties the instance class
to the factory class.

Override the initInstance method

Listing 4 overrides an inherited method named

initInstance

.

Example 10.4.
 override protected function initInstance(
 instance:IEffectInstance):void{
 super.initInstance(instance);

 CustomEffectInstance(instance).theDuration =
 this.theDuration;
 CustomEffectInstance(instance).rotateAngleFrom =
 this.rotateAngleFrom;
 CustomEffectInstance(instance).rotateAngleTo =
 this.rotateAngleTo;
 CustomEffectInstance(instance).wipeShowTarget =
 this.wipeShowTarget;
 CustomEffectInstance(instance).glowColor =
 this.glowColor;
 CustomEffectInstance(instance).glowInner =
 this.glowInner;
 CustomEffectInstance(instance).glowStrength =
 this.glowStrength;

 } //end initInstance

Set the property values in the instance object

According to

About creating a custom effect

, the purpose of this method is to copy
property values from the factory class to the instance class. Flex calls this
method from the

Effect.createInstance()

 method. You don't have
to call it yourself, but you must prepare it to be called.

A reference to the instance object as type
iEffectInstance

The

initInstance

 method receives a reference to the instance
object as the interface type

IEffectInstance

. The objective is
to write values into the properties belonging to the instance object. However,
the

IEffectInstance

 interface doesn't know anything about
properties having those names. Therefore, it is necessary to cast the instance
object's reference to the type of the instance object before making each
assignment. One such cast operation is shown by the statement that begins with

CustomEffectInstance(instance)

 in Listing 4.

Call the initInstance method of the superclass

Also note that you must
call the

initInstance

 method of the superclass in your
overridden method as shown in Listing 4.

This method provides the mechanism by which required property values make it
all the way from the driver class to the instance class.

Override the getAffectedProperties method

According to

About creating a custom effect

, you must override the inherited method named

getAffectedProperties

 in such a way as to return an array of
strings. Each string is the name of a property of the target object that is
changed by the effect. If no properties are changed, you must return an empty
array.

Listing 5 shows my overridden version of the

getAffectedProperties

 method.

Example 10.5.
 override public function
 getAffectedProperties():Array{
 return ["rotation","rotationX","rotationY","x","y"];
 } //end getAffectedProperties
 //--//
 } //end class
} //end package

This is a little difficult

It is a little difficult to know exactly which properties belonging to the
target component will be modified by the effect, particularly when the custom
effect is a composite of existing effects. Also, I don't know whether a change
must be permanent or whether a temporary change in the value of a property
requires that it be returned by the

getAffectedProperties

method. There are several target property values that are temporarily changed by
this custom effect.

In this program, the target component is a

Button

 object but
it could be any component. I went through the list of properties belonging to a
button and came up with the five shown in Listing 5 as those most likely to be
modified.

The end of the CustomEffect class

Listing 5 also signals the end of the class named

CustomEffect

. In addition to the methods that were overridden
above, the following two inherited methods may optionally be overridden as well:

 	

effectStartHandler

 - called when the effect instance
 starts playing.

	

effectEndHandler

 - called when the effect instance
 finishes playing.

As the names and descriptions of these two methods suggest, they can be
overridden to provide any special behavior that you need when the effect starts
and finishes playing.

The class named CustomEffectInstance

The class named

CustomEffectInstance

 begins in Listing 6. A
complete listing of the class is provided in Listing 20 near the end of the
lesson.

Example 10.6.
 package CustomClasses{
 import mx.effects.EffectInstance;
 import mx.effects.Glow;
 import mx.effects.Parallel;
 import mx.effects.Rotate;
 import mx.effects.WipeRight;
 import mx.events.FlexEvent;

 public class CustomEffectInstance
 extends EffectInstance{
 //Instantiate the individual effects that will be
 // combined in parallel to produce the custom effect.
 private var wipeEffect:WipeRight = new WipeRight();
 private var rotateEffect:Rotate = new Rotate();
 private var glowEffect:Glow = new Glow();

Extends the class named EffectInstance

This class extends the class named

EffectInstance

. As
before, the code in this class will override methods inherited from the

EffectInstance

 class.

Instantiate and save references to standard
effects

Listing 6 instantiates and saves references to the

WipeRight

,

Rotate

, and

Glow

effect classes. They will be combined to run concurrently later in the program.

Declare variables for storage of effect
properties

Listing 7 declares a set of variables that will be used to store the
properties for the three different effects that are combined to create a
composite effect.

Example 10.7.
 //Variables for the storage of effect properties.
 public var theDuration:Number;
 public var rotateAngleFrom:Number;
 public var rotateAngleTo:Number;
 public var wipeShowTarget:Boolean;
 public var glowColor:uint;
 public var glowInner:Boolean;
 public var glowStrength:Number;

Property values are stored in these variables by the code in the

initInstance

 method shown in Listing 4.

The constructor for the CustomEffectInstance
class

The constructor for the class
is shown in its entirety in Listing 8.

Example 10.8.
 public function CustomEffectInstance(
 theTarget:Object){
 super(theTarget);

 //Set the target for all three individual effects.
 rotateEffect.target = theTarget;
 wipeEffect.target = theTarget;
 glowEffect.target = theTarget;
 } //end constructor

The target component

As was the case in Listing 3, this constructor receives a parameter of the
generic type

Object

, which specifies the component on which the
effect will be played.

A different EffectInstance object for each
target component

If multiple target components are specified by setting the

targets

 property of the

CustomEffect

 class,
different objects of the

CustomEffectInstance

 class are
instantiated and targeted to the different components in the list of target
components.

Target the WipeRight, Rotate, and Glow effects
to the target component

The code in the constructor sets the specified target to be the target for
the three types of standard effects that will be played concurrently.

Override the inherited play method

You may have noticed that the code in the

CustomEffect

class didn't include any of the operational details regarding the nature of the
custom effect. Those details are programmed into an overridden

play

 method that begins in Listing 9.

Example 10.9.
 override public function play():void{
 super.play();

 //Note: The following values cannot be set in the
 // constructor because the variables aren't stable
 // at that point in time.

 //Configure the rotate effect
 rotateEffect.angleFrom = rotateAngleFrom;
 rotateEffect.angleTo = rotateAngleTo;
 rotateEffect.duration = theDuration;

 //Configure the wipe effect.
 wipeEffect.showTarget = wipeShowTarget;
 wipeEffect.duration = theDuration;

 //Configure the glow effect.
 glowEffect.color = glowColor;
 glowEffect.duration = theDuration;
 glowEffect.inner = glowInner;
 glowEffect.strength = glowStrength;

The overridden play method produces the desired
effect

Later on you will see that the driver class for this program instantiates an
object of the custom effect class and calls the

play

 method on
that object. At that point, the driver class will be calling the method that
begins in Listing 9.

Set the required properties on the three
standard effects

Listing 9 uses the values that were stored in the variables in Listing 7 by
the initInstance method in Listing 4 to set the required properties for each of
the three individual effects that will be combined to produce this custom
effect.

Ordinarily, you might think that this could have been accomplished in the
constructor for the class. However, the values in the variables in Listing 7
aren't stable until the constructor has finished constructing the object.
Therefore, it is necessary to defer the assignments in Listing 9 until after the
construction of the object is complete.

Play the three effects in parallel

You learned how to use an
object of the

Parallel

 class to play two or more effects in parallel in the
earlier lesson titled

Events, Triggers, and Effects

.

Example 10.10.
 //Play all three effects in parallel.
 var parallel:Parallel = new Parallel();
 parallel.addChild(rotateEffect);
 parallel.addChild(glowEffect);
 parallel.addChild(wipeEffect);
 parallel.play();
 } //end play
 //--//
 } //end class
} //end package

Therefore, you shouldn't have any difficulty understanding the code in
Listing 10.

Steps required to create a custom effect

You must define a factory class and an instance class. The following steps
are required to create and prepare the factory class:

 	
Define a factory class that extends the

Effect

 class.

	
Declare variables in the factory class, if any are required, to store the
 property values for the custom effect.

	
Define a constructor for the factory class that calls the constructor for
 the superclass and also sets the name of the instance class into the inherited
 variable named

instanceClass

.

	
Override the

initInstance

 method in the factory class to
 store the property values into variables in the instance class. Also call the

 initInstance

 method of the superclass in that overridden method.

	
Override the

getAffectedProperties

 method in the factory
 class to return a list of target component properties that will be modified by
 the effect. Return an empty array if none will be modified.

Define and prepare the instance class

Having defined the factory class using the steps listed above, define the
instance class by performing the following steps:

 	
Define an instance class that extends the

EffectInstance

 class.

	
Declare public instance variables for the storage of effect property
 values if any are required.

	
Define a constructor for the instance class that deals appropriately with
 the target component.

	
Override the inherited

play

 method to implement the
 actual behavior of the custom effect.

The end of the CustomEffectInstance class

Listing 10 signals the end of the class named

CustomEffectInstance

.

The Driver class for the program named
CustomEffect02

The two classes discussed above constitute the whole of the custom effect. I
will provide and explain two different driver classes that use the same custom
effect but use it in different ways. The driver class for the program named

CustomEffect02

 begins in Listing 11. A complete listing of this
class is provided in Listing 21 near the end of the lesson.

Two ways to play
effects

You learned in the earlier lesson titled

Events, Triggers, and Effects

 that there are at least two different ways to
cause an effect to be played on a component in an ActionScript program. One way
is to call the

setStyle

 method on the component and associate
an effect trigger with an effect. With that approach, the effect will be played
each time the effect trigger fires.

The second way

The second way to play an effect on a component is to target an

Effect

 object to the component and then call the

play

 method on the effect object. This approach doesn't make
explicit use of the effect trigger.

I will illustrate the second approach in the program named

CustomEffect02

, and will illustrate the first approach later in
the program named

CustomEffect03

.

Beginning of the Driver class for
CustomEffect02

The Driver class begins in Listing 11.

Example 10.11.
 package CustomClasses{

 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.controls.Spacer;
 import flash.events.MouseEvent;

 public class Driver extends VBox{
 //Instantiate and save references to all of the
 // objects needed by the program.
 private var title:Label = new Label();
 private var btnA:Button = new Button();
 private var btnB:Button = new Button();
 private var spacer:Spacer = new Spacer();
 private var theEffect:CustomEffect =
 new CustomEffect();

The code in Listing 11 extends the

VBox

 class and
instantiates objects for all of the components that will be required to produce
the GUI shown in Figure 1. In addition, Listing 11 instantiates an object of the
new

CustomEffect

 class.

No target is passed to the constructor

As you can see from Listing 11, a target component was not passed to the
constructor for the

CustomEffect

 class. Instead, an alternative
approach that sets the

targets

 property will be used.

Beginning of the constructor for the Driver
class

The constructor for the
Driver class begins in Listing 12.

Example 10.12.
 public function Driver(){//constructor
 //Make some space at the top of the display.
 spacer.height = 40;
 addChild(spacer);

 //Set title properties and add to the VBox.
 title.setStyle("color","0xFFFF00");
 title.setStyle("fontSize",14);
 title.text = "Demo custom effect";
 addChild(title);

 //Instantiate two buttons and add them to the VBox.
 // Register the same event listener on both of
 // them.
 btnA.label = "Click me and watch the effect.";
 btnA.addEventListener(MouseEvent.CLICK,handler);
 addChild(btnA);

 btnB.label = "Or click me instead.";
 btnB.addEventListener(MouseEvent.CLICK,handler);
 addChild(btnB);

There is nothing new in Listing 12 so further explanation shouldn't be
required. It is worth noting, however, that the same

click

event listener is registered on both buttons.

Set properties on the custom effect

Listing 13 shows the code
that sets properties on the custom effect.

Example 10.13.
 //Specify both buttons to be the target for the
 // same effect.
 theEffect.targets = [btnA,btnB];

 //Set various properties needed by the effect.
 theEffect.theDuration = 4000;
 theEffect.rotateAngleFrom = 0;
 theEffect.rotateAngleTo = 720;
 theEffect.wipeShowTarget = true;
 theEffect.glowColor = 0xFF0000;
 theEffect.glowInner = true;
 theEffect.glowStrength = 255;

 } //end constructor

With the exception of the property named

targets

, the values
that are assigned in Listing 13 are stored in the variables that are declared in
Listing 2.

The targets property

The

targets

 property is inherited into the

CustomEffect

 class from the

Effect

 class. Note
that both buttons are passed to the

targets

 property in the
form of an array containing references to the two buttons. This causes the
custom effect to be played on both buttons at the same time.

Listing 13 also signals the end of the constructor for the

Driver

 class.

The common click event handler

The click event handler that
is registered on both buttons is shown in Listing 14.

Example 10.14.
 public function handler(event:MouseEvent):void{
 theEffect.play();
 }//end handler

 } //end class
} //end package

The event handler calls the

play

 method on the custom effect
object whenever either of the buttons shown in Figure 1 is clicked. This causes
the

play

 method defined in Listing 9 to be executed.

The end of the program

Listing 14 also signals the end of the program named

CustomEffect02

.

The Driver class for the program named CustomEffect03

The

Driver

 class for the
program named

CustomEffect03

 begins in Listing 15. A complete listing of the
class is provided in Listing 22 near the end of the lesson. This program uses
the

first approach

 for playing an effect.

Example 10.15.
 package CustomClasses{

 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.controls.Spacer;

 public class Driver extends VBox{
 //Instantiate and save references to all of the
 // objects needed by the program.
 private var title:Label = new Label();
 private var btnA:Button = new Button();
 private var btnB:Button = new Button();
 private var spacer:Spacer = new Spacer();
 private var theEffect:CustomEffect =
 new CustomEffect();
 //--//

 public function Driver(){//constructor
 //Make some space at the top of the display.
 spacer.height = 40;
 addChild(spacer);

 //Set title properties and add to the VBox.
 title.setStyle("color","0xFFFF00");
 title.setStyle("fontSize",14);
 title.text = "Demo custom effect";
 addChild(title);

 //Instantiate two buttons and add them to the VBox.
 // Register the same event listener on both of
 // them.
 btnA.label = "Click me and watch the effect.";
 addChild(btnA);

 btnB.label = "Or click me instead.";
 addChild(btnB);

Very similar to the previous code

The code in Listing 15 matches the code in Listing 11 and Listing 12 with a
few exceptions:

 	
There is no import directive for the

MouseEvent

 class.

	
There are no

click

 event handlers registered on the
 buttons.

Set properties on the custom effect

Listing 16 sets the
properties on the custom effect.

Example 10.16.
 //Set various properties needed by the effect.
 theEffect.theDuration = 4000;
 theEffect.rotateAngleFrom = 0;
 theEffect.rotateAngleTo = 720;
 theEffect.wipeShowTarget = true;
 theEffect.glowColor = 0xFF0000;
 theEffect.glowInner = true;
 theEffect.glowStrength = 255;

Once again, this code is very similar to the code in Listing 13. There is one
major difference, however. The

targets

 property for the effect
is not explicitly set to the buttons as is the case in Listing 13.

Apply the effect to the two buttons
individually

Listing 17 shows the major
difference between the two programs.

Example 10.17.
 btnA.setStyle("mouseUpEffect",theEffect);
 btnB.setStyle("mouseUpEffect",theEffect);

 } //end constructor
 //--//
 } //end class
} //end package

Use the setStyle method and the effect trigger

Whereas the previous program explicitly sets the buttons as targets of the
effect and calls the

play

 method on the effect, this program
uses the

setStyle

 approach and associates the custom effect
with a

mouseUpEffect

 trigger on each button individually. As a
result, when the mouse button is released while the mouse pointer is over one of
the buttons, the effect is played on that button alone.

May not be possible to specify multiple targets

I don't know of any easy way to use this approach to cause the effect to be
played on two or more components at the same time. The documentation hints that
this may not be possible.

The end of the program

Listing 17 also signals the end of the

Driver

 class and the
end of the program.

Run the program

I encourage you to

run

 this program from the web. Then copy the code from
Listing 18 through Listing 22. Use that code to create Flex projects.
Compile and run the projects. Experiment with the code, making changes,
and observing the results of your changes. Make certain that you can
explain why your changes behave as they do.

Resources

I will publish a list containing links to ActionScript resources as a separate document. Search for ActionScript Resources in the Connexions search box.

Complete program listings

Complete listings of the Flex applications discussed in this lesson are provided
below.

Example 10.18.
 <?xml version="1.0" encoding="utf-8"?>

<!--CustomEffect02 11/26/09
Illustrates a custom effect, which is the parallel
playing of three standard effects:

WipeRight
Rotate
Glow

The effect is applied to two buttons each time either
button is clicked.

This version sets the targets on the effect and calls the
play method on the effect.

See the Flex 3 Cookbook, page 363
Also see http://livedocs.adobe.com/flex/3/html/help.html?
content=createeffects_2.html#178126
Also see http://livedocs.adobe.com/flex/3/html/help.html?
content=behaviors_04.html#275399
-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

Example 10.19.
 package CustomClasses{
 import mx.effects.Effect;
 import mx.effects.IEffectInstance;
 import mx.events.EffectEvent;

 public class CustomEffect extends Effect{

 //Would prefer to make these private and use implicit
 // setter methods, but I decided to leave them public
 // to simplify the code.
 public var theDuration:Number = 2000;//default value
 public var rotateAngleFrom:Number = 0;//default value
 public var rotateAngleTo:Number = 360;//default value
 public var wipeShowTarget:Boolean = true;//default
 public var glowColor:uint = 0xFF0000;//default value
 public var glowInner:Boolean = true;//default value
 public var glowStrength:Number = 255;//default value

 public function CustomEffect(target:Object=null){
 super(target);
 instanceClass = CustomEffectInstance;
 } //end constructor

 override protected function initInstance(
 instance:IEffectInstance):void{
 super.initInstance(instance);

 CustomEffectInstance(instance).theDuration =
 this.theDuration;
 CustomEffectInstance(instance).rotateAngleFrom =
 this.rotateAngleFrom;
 CustomEffectInstance(instance).rotateAngleTo =
 this.rotateAngleTo;
 CustomEffectInstance(instance).wipeShowTarget =
 this.wipeShowTarget;
 CustomEffectInstance(instance).glowColor =
 this.glowColor;
 CustomEffectInstance(instance).glowInner =
 this.glowInner;
 CustomEffectInstance(instance).glowStrength =
 this.glowStrength;

 } //end initInstance
 //--//

 override public function
 getAffectedProperties():Array{
 return ["rotation","rotationX","rotationY","x","y"];
 } //end getAffectedProperties
 //--//
 } //end class
} //end package

Example 10.20.
 package CustomClasses{
 import mx.effects.EffectInstance;
 import mx.effects.Glow;
 import mx.effects.Parallel;
 import mx.effects.Rotate;
 import mx.effects.WipeRight;
 import mx.events.FlexEvent;

 public class CustomEffectInstance
 extends EffectInstance{
 //Instantiate the individual effects that will be
 // combined in parallel to produce the custom effect.
 private var wipeEffect:WipeRight = new WipeRight();
 private var rotateEffect:Rotate = new Rotate();
 private var glowEffect:Glow = new Glow();

 //Variables for the storage of effect properties.
 public var theDuration:Number;
 public var rotateAngleFrom:Number;
 public var rotateAngleTo:Number;
 public var wipeShowTarget:Boolean;
 public var glowColor:uint;
 public var glowInner:Boolean;
 public var glowStrength:Number;

 public function CustomEffectInstance(
 theTarget:Object){
 super(theTarget);

 //Set the target for all three individual effects.
 rotateEffect.target = theTarget;
 wipeEffect.target = theTarget;
 glowEffect.target = theTarget;
 } //end constructor

 override public function play():void{
 super.play();

 //Note: The following values cannot be set in the
 // constructor because the variables aren't stable
 // at that point in time.

 //Configure the rotate effect
 rotateEffect.angleFrom = rotateAngleFrom;
 rotateEffect.angleTo = rotateAngleTo;
 rotateEffect.duration = theDuration;

 //Configure the wipe effect.
 wipeEffect.showTarget = wipeShowTarget;
 wipeEffect.duration = theDuration;

 //Configure the glow effect.
 glowEffect.color = glowColor;
 glowEffect.duration = theDuration;
 glowEffect.inner = glowInner;
 glowEffect.strength = glowStrength;

 //Play all three effects in parallel.
 var parallel:Parallel = new Parallel();
 parallel.addChild(rotateEffect);
 parallel.addChild(glowEffect);
 parallel.addChild(wipeEffect);
 parallel.play();
 } //end play
 //--//
 } //end class
} //end package

Example 10.21.
 /*CustomEffect02 11/26/09
***/

package CustomClasses{

 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.controls.Spacer;
 import flash.events.MouseEvent;

 public class Driver extends VBox{
 //Instantiate and save references to all of the
 // objects needed by the program.
 private var title:Label = new Label();
 private var btnA:Button = new Button();
 private var btnB:Button = new Button();
 private var spacer:Spacer = new Spacer();
 private var theEffect:CustomEffect =
 new CustomEffect();
 //--//

 public function Driver(){//constructor
 //Make some space at the top of the display.
 spacer.height = 40;
 addChild(spacer);

 //Set title properties and add to the VBox.
 title.setStyle("color","0xFFFF00");
 title.setStyle("fontSize",14);
 title.text = "Demo custom effect";
 addChild(title);

 //Instantiate two buttons and add them to the VBox.
 // Register the same event listener on both of
 // them.
 btnA.label = "Click me and watch the effect.";
 btnA.addEventListener(MouseEvent.CLICK,handler);
 addChild(btnA);

 btnB.label = "Or click me instead.";
 btnB.addEventListener(MouseEvent.CLICK,handler);
 addChild(btnB);

 //Specify both buttons to be the target for the
 // same effect.
 theEffect.targets = [btnA,btnB];

 //Set various properties needed by the effect.
 theEffect.theDuration = 4000;
 theEffect.rotateAngleFrom = 0;
 theEffect.rotateAngleTo = 720;
 theEffect.wipeShowTarget = true;
 theEffect.glowColor = 0xFF0000;
 theEffect.glowInner = true;
 theEffect.glowStrength = 255;

 } //end constructor
 //--//

 public function handler(event:MouseEvent):void{
 theEffect.play();
 }//end handler

 } //end class
} //end package

Example 10.22.
 /*CustomEffect03 11/27/09
***/

package CustomClasses{

 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.controls.Spacer;

 public class Driver extends VBox{
 //Instantiate and save references to all of the
 // objects needed by the program.
 private var title:Label = new Label();
 private var btnA:Button = new Button();
 private var btnB:Button = new Button();
 private var spacer:Spacer = new Spacer();
 private var theEffect:CustomEffect =
 new CustomEffect();
 //--//

 public function Driver(){//constructor
 //Make some space at the top of the display.
 spacer.height = 40;
 addChild(spacer);

 //Set title properties and add to the VBox.
 title.setStyle("color","0xFFFF00");
 title.setStyle("fontSize",14);
 title.text = "Demo custom effect";
 addChild(title);

 //Instantiate two buttons and add them to the VBox.
 // Register the same event listener on both of
 // them.
 btnA.label = "Click me and watch the effect.";
 addChild(btnA);

 btnB.label = "Or click me instead.";
 addChild(btnB);

 //Set various properties needed by the effect.
 theEffect.theDuration = 4000;
 theEffect.rotateAngleFrom = 0;
 theEffect.rotateAngleTo = 720;
 theEffect.wipeShowTarget = true;
 theEffect.glowColor = 0xFF0000;
 theEffect.glowInner = true;
 theEffect.glowStrength = 255;

 //Apply the effect to the two buttons individually.
 btnA.setStyle("mouseUpEffect",theEffect);
 btnB.setStyle("mouseUpEffect",theEffect);

 } //end constructor
 //--//
 } //end class
} //end package

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Creating Custom Effects

	
Files:

 	
ActionScript0118\ActionScript0118.htm

	
ActionScript0118\Connexions\ActionScriptXhtml0118.htm

PDF disclaimer:

-end-

Solutions

