
  
    
  
Chapter 2. The Limit of a Sequence of Numbers



2.1. Definition of the Number e*



 This chapter contains the beginnings of the most important, and probably the most subtle, notion
in mathematical analysis,
i.e., the concept of a limit.
Though Newton and Leibniz discovered the calculus with its
tangent lines described as limits of secant lines, and though the
Greeks were already estimating areas of regions by a kind of limiting process,
the precise notion of limit that we use today was not formulated
until the 19th century by Cauchy and Weierstrass.
 The main results of this chapter are the following:
 	 The definition of the limit of a sequence,


	 The definition of the real number e (Theorem 2.3.),


	 The Squeeze Theorem (Theorem 2.5.),


	 the Bolzano Weierstrass Theorem (Theorem 2.8. and Theorem 2.10.),


	 The Cauchy Criterion (Theorem 2.9.),


	 the definition of an infinite series,


	 the Comparison Test (Theorem 2.17.), and


	 the Alternating Series Test (Theorem 2.18.).




 These are powerful basic results about limits that will serve us well in later chapters.

2.2. Sequences and Limits*



	 Definition: 
	 
    
 
A sequence of real or complex numbers is defined to be a function from the set N of natural numbers into the setR
or C.
Instead of referring to such a function as an assignment n→f(n), we ordinarily use the notation  or 
Here, of course, an denotes the number f(n).






 REMARK We expand this definition slightly on occasion
to make some of our notation more indicative.
That is, we sometimes index the terms of a sequence
beginning with an integer other than 1. For example, we write
 or even 



 We give next what is the most significant definition in the whole of mathematical analysis,
i.e., what it means for a sequence to converge or to have a limit.
	 Definition: 
	 
 
Let  be a sequence of real numbers and let L be a real number.
The sequence  is said to converge to L, or that L is the limit of , if the following condition
is satisfied.
For every positive number ϵ, there exists a natural number N such that
if n≥N,
then |an–L|<ϵ.

    
 In symbols, we say L=liman or

    
(2.1)


    
 We also may write an↦L.

    
 If a sequence  of real or complex numbers
converges to a number L,
we say that the sequence  is convergent.

    
 We say that a sequence  of real numbers diverges to +∞ if for every
positive number M, there exists a natural number N such that
if n≥N,
then an≥M.
Note that we do not say that such a sequence
is convergent.

    
 Similarly, we say that a sequence  of real numbers diverges to –∞
if for every real number M, there
exists
a natural number N such that if
n≥N, then an≤M.

    
 The definition of convergence for a sequence  of complex numbers is
exactly the same as for a sequence of real numbers.
Thus, let  be a sequence of complex numbers and let L be a complex number.
The sequence  is said to converge to L, or that L is the limit of  if the following condition
is satisfied.
For every positive number ϵ, there exists a natural number N such that
if n≥N,
then |zn–L|<ϵ.




 REMARKS  The natural number N of the preceding definition
surely depends on the positive number ϵ.
If ϵ' is a smaller positive number than ϵ, then the
corresponding N' very likely will need to be larger than N.
Sometimes we will indicate this dependence by writing N(ϵ)
instead of simply N.
It is always wise to remember that N depends on ϵ.
On the other hand, the N or N(ϵ) in this definition is not unique.
It should be clear that if a natural number N satisfies this definition, then any larger natural number
M will also satisfy the definition.
So, in fact, if there exists one natural number that works, then there exist infinitely many such natural numbers.
 It is clear, too, from the definition that whether or not a sequence
is convergent only depends on the “tail” of the sequence.
Specifically, for any positive integer K, the numbers
a1,a2,...,aK can take on any value whatsoever without
affecting the convergence of the entire sequence.
We are only concerned with an's for n≥N, and as soon
as N is chosen to be greater than K, the first part of the sequence is irrelevant.
 The definition of convergence is given as a fairly complicated sentence, and there are several other
ways of saying the same thing. Here are two:
For every ϵ>0, there exists a N such that, whenever n≥N,|an–L|<ϵ.
And, given an ϵ>0, there exists a N such that |an–L|<ϵ for all n for which n≥N.
It's a good idea to think about these two sentences and convince yourself that
they really do “mean” the same thing as the one defining convergence.
 It is clear from this definition that we can't
check whether a sequence converges or not unless we know the
limit value L.
The whole thrust of this definition has to do with estimating the quantity |an–L|.
We will see later that there
are ways to tell in advance that a sequence converges without knowing the value of the limit.



Example 2.1. 
 
Let an=1/n, and let us show that liman=0.
Given an ϵ>0, let us choose a N such that 1/N<ϵ.
(How do we know we can find such a N?)
Now, if n≥N, then we have
(2.2)

 which is exactly what we needed to show to conclude that 0=liman.


Example 2.2. 
  Let an=(2n+1)/(1–3n),
and let L=–2/3. Let us show that L=liman.
Indeed, if ϵ>0 is given, we must find a N,
such that if n≥N then |an+(2/3)|<ϵ.
Let us examine the quantity |an+2/3|.
Maybe we can make some estimates on it, in such a way that it becomes clear how to find the natural number N.
(2.3)

 for all n≥1.
Therefore,
if N is an integer for which
N>1/ϵ, then
(2.4)
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          an
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            n
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            /
            N
            <
            ϵ
            ,
          
        
      
 whenever n≥N, as desired.
(How do we know that there exists a N which is larger than the number 1/ϵ?)


Example 2.3. 
 
Let  and let us show that
liman=0.
Given an ϵ>0, we must find an integer N
that satisfies the requirements of the definition.
It's a little trickier this time to choose this N.
Consider the positive number ϵ2.
We know, from Exercise 1.16, that there exists a
natural number N such that 1/N<ϵ2.
Now, if n≥N, then
(2.5)

 which shows that 



 REMARK
A good way to attack a limit problem is to immediately examine the
quantity |an–L|,
which is what we did in Example 2.2 above.
This is the quantity we eventually wish to show is less than ϵ when n≥N,
and determining which N to use is always the hard part.
Ordinarily, some algebraic manipulations can be performed on the expression
|an–L| that can help us figure out exactly how to choose N.
Just know that this process takes some getting used to,
so practice!



Exercise 1.
 
     	  Using the basic definition, prove that
lim3/(2n+7)=0.

	  Using the basic definition, prove that
lim1/n2=0.

	  Using the basic definition, prove that 
HINT: Use the idea from the remark above; i.e.,
examine the quantity |an–L|.

	  Again, using the basic definition, prove that

(2.6)


Remember the definition of the absolute value of a complex number.


	  Using the basic definition, prove that

(2.7)


	  Let an=(–1)n.
Prove that 1 is not the limit of the sequence 
HINT: Suppose the sequence  does converge to 1.
Use ϵ=1, let N be the corresponding integer that exists in the definition,
satisfying |an–1|<1 for all n≥N,
and then examine the quantity |an–1| for various n's to get a contradiction.








Exercise 2.
 
     	  Let  be a sequence of (real or complex) numbers, and let L be a number.
Prove that L=liman if and only if
for every positive integer k there exists an integer N, such that if n≥N then
|an–L|<1/k.

	  Let  be a sequence of complex numbers, and
suppose that cn↦L. If cn=an+bni
and L=a+bi, show that
a=liman and b=limbn.
Conversely, if a=liman and b=limbn, show that

That is, a sequence  of complex numbers converges if and only if
the sequence  of the real parts converges and the sequence  of the
imaginary parts converges.
HINT: You need to show that, given some hypotheses, certain quantities are less than ϵ.
Part (c) of Exercise 25. should be of help.








Exercise 3.
 
     	  Prove that a constant sequence (an≡c) converges to c.

	  Prove that the sequence  diverges to –∞.

	  Prove that the sequence  does not converge to any number L.
HINT: Argue by contradiction. Suppose it does converge to a number L.
Use ϵ=1/2, let N be the corresponding integer that exists in the definition,
and then examine |an–an+1| for n≥N.
Use the following useful add and subtract trick:

(2.8)|an–an+1|=|an–L+L–an+1|≤|an–L|+|L–an+1|.








2.3. Existence of Certain Fundamental Limits*



 We have, in the preceding exercises, seen that certain specific sequences converge.
It's time to develop some general theory, something that will apply to lots of sequences,
and something that will help us actually evaluate limits of certain sequences.
	 Definition: 
	 
    
 A sequence  of real numbers is called nondecreasing if
an≤an+1 for all n, and it is called
nonincreasing if an≥an+1
for all n.
It is called strictly increasing if an<an+1 for all n, and
strictly decreasing if an>an+1 for all n.

    
 A sequence  of real numbers is called
eventually nondecreasing if there exists a
natural number N such that an≤an+1
for all n≥N,
and it is called eventually nonincreasing if there
exists a natural number N such that an≥an+1
for all n≥N.
We make analogous definitions of “eventually strictly increasing” and
“eventually strictly decreasing.”





 It is ordinarily very difficult to tell whether a given sequence converges or not;
and even if we know in theory that a sequence converges, it is
still frequently difficult to tell what the limit is.
The next theorem is therefore very useful.
It is also very fundamental, for it makes explicit use of the existence of a least upper bound.
Theorem 2.1.
 Let  be a nondecreasing sequence of real numbers.
Suppose that the set S of elements of the sequence  is bounded above.
Then the sequence  is convergent,
and the limit L is given byL=supS=supan.
 Analogously, if  is a nonincreasing sequence
that is bounded below, then  converges to infan.

Proof



 
We prove the first statement.
The second is done analogously, and we leave it to an exercise.
Write L for the supremum supan.
Let ϵ be a positive number.
By Theorem 1.5, there exists an integer N such that aN>L–ϵ,
which implies that L–aN<ϵ.
Since  is nondecreasing, we then have that an≥aN>L–ϵ for all n≥N.
Since L is an upper bound for the entire sequence, we know that L≥an for every n, and so we have that
(2.9)
        
          
            |
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            –
          
          an
          
            |
            =
            L
            –
          
          an
          ≤
          L
          –
          aN
          <
          ϵ
        
      
 for all n≥N.
This completes the proof of the first assertion.



Exercise 4.
 
    
     	  Prove the second assertion of
the preceding theorem.


	  Show that Theorem 2.1. holds for sequences
that are eventually nondecreasing or eventually nonincreasing.
(Re-read the remark following the definition of the limit of a sequence.)








 The next exercise again demonstrates the “denseness” of the
rational and irrational numbers in the set R of
all real numbers.
Exercise 5.
 
   
     	  Let x be a real number. Prove that there exists
a sequence  of rational numbers such that x=limrn.
In fact, show that the sequence  can be chosen to be nondecreasing.
HINT: For example, for each n, use Theorem 1.8. to choose a rational number rn between x–1/n and x.

	  Let x be a real number. Prove that there exists a
sequence  of irrational numbers such that x=limrn'.

	  Let z=x+iy be a complex number.
Prove that there exists a sequence
 of complex numbers
that converges to z,
such that each βn and each γn is a rational number.








Exercise 6.
 
     Suppose  and  are two convergent sequences,
and suppose that liman=a and limbn=b.
Prove that the sequence
 is convergent and that

    (2.10)


     HINT: Use an ϵ/2 argument.
That is, choose a natural number N1 so that |an–a|<ϵ/2 for all n≥N1,
and choose a natural number N2 so that |bn–b|<ϵ/2 for all n≥N2.
Then let N be the larger of the two numbers N1 and N2.




 The next theorem establishes the existence of four
nontrivial and important limits.
This time, the proofs are more tricky.
Some clever idea will have to be used before we can tell how to choose the N.
Theorem 2.2.
 	 Let z∈C satisfy |z|<1,
and define an=zn.
then the sequence  converges to 0.
We write limzn=0.

	 Let b be a fixed positive number greater than 1, and define
an=b1/n. See Theorem 1.11..
Then liman=1.
Again, we write limb1/n=1.

	 Let b be a positive number less than 1. Then
limb1/n=1.

	 If an=n1/n, then
liman=limn1/n=1.




Proof



 We prove parts (1) and (2) and leave the rest of the proof to the exercise that follows.
If z=0, claim (1) is obvious.
Assume then that z≠0, and let ϵ>0 be given.
Let w=1/|z|, and observe that w>1.
So, we may write w=1+h for some positive h.
(That step is the clever idea for this argument.)
Then, using the Binomial Theorem, wn>nh,
and so 1/wn<1/(nh).
See part (a) of Exercise 20..
But then
(2.11)
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 So, if N is any natural number
larger than 1/(ϵh), then
(2.12)

 for all n≥N.
This completes the proof of the first assertion of the theorem.
 To see part (2), write an=b1/n=1+xn, i.e., xn=b1/n–1, and
observe first that xn>0.
Indeed, since b>1, it must be that the nth root b1/n is also >1. (Why?)
Therefore, xn=b1/n–1>0.
(Again, writing b1/n as 1+xn is the clever idea.)
Now,  which, again by the Binomial Theorem,
implies that b>1+nxn.
So, xn<(b–1)/n, and therefore
(2.13)

 whenever n>ϵ/(b–1),
and this proves part (2).



Exercise 7.
 
     	  Prove part (3) of the preceding theorem.
HINT: For b≤1, use the following algebraic calculation:

(2.14)|b1/n–1|=b1/n|1–(1/b)1/n|≤|1–(1/b)1/n|,

and then use part (2) as applied to the positive number 1/b.

	  Prove part (4) of the preceding theorem.
Explain why it does not follow directly from part (2).
HINT: Write n1/n=1+hn.
Observe that hn>0.
Then use the third term of the binomial theorem in the expansion 

	  Construct an alternate proof to part (2) of the preceding theorem
as follows: Show that the sequence  is nonincreasing and bounded
below by 1. Deduce, from Theorem 2.1., that the
sequence converges to a number L. Now prove that
L must be 1.








2.4. Definition of e*



 Part (4) of Theorem 2.2. raises an interesting point.
Suppose we have a sequence  like {n}, that is diverging to infinity,
and suppose we have another sequence  like {1/n}, that is converging to 0.
What can be said about the sequence 
The base an is blowing up, while the exponent bn is going to 0.
In other words, there are two competing processes going on.
If an is blowing up, then its powers ought to be blowing up as well.
On the other hand, anything to the 0 power should be 1, so that,
as the exponents of the elements of a sequence converge to 0,
the sequence ought to converge to 1.
This competition between the convergence of the base to infinity and the convergence of the exponent to 0 makes it
subtle, if not impossibly difficult, to tell what the combination does.
For the special case of part (4) of Theorem 2.2., the answer was 1, indicating that,
in that case at least, the exponents going to 0 seem to be more important than
the base going to infinity.
One can think up all kinds of such examples:
 and so on.
We will see later that all sorts of things can happen.
 Of course there is the reverse situation. Suppose  is a sequence of numbers
that decreases to 1, and suppose 
is a sequence of numbers that diverges to infinity.
What can we say about the sequence 
The base is tending to 1, so that one might
expect that the whole sequence also would be converging to 1.
On the other hand the exponents are blowing up, so that
one might think that the whole sequence should blow up as well.
Again, there are lots of examples, and they don't all work the same way.
Here is perhaps the most famous such example.
Theorem 2.3.
 
For n≥1, define an=(1+1/n)n.
Then the sequence  is nondecreasing and bounded
above, whence it is convergent.
(We will denote the limit of this special sequence by the letter e.)

Proof



 To see that  is nondecreasing,
it will suffice to prove that an+1/an≥1 for all n.
In the computation below, we will use the fact (part (c)of Exercise 20.) that if x>–1 then
(1+x)n≥1+nx. So,
(2.15)

 as desired.
 We show next that  is bounded above.
This time, we use the binomial theorem, the geometric progression, and Exercise 19..
(2.16)

 as desired.
 That the sequence  converges is now a consequence of
Theorem 2.1..




 REMARK We have now defined the real number e.
Its central role in mathematics is not at all evident yet;
at this point we have no definition of exponential function, logarithm,
or trigonometric functions.
It does follow from the proof above that e is between 2 and 4, and with a little
more careful estimates we can show that actually e≤3.
For the moment, we will omit any further discussion of its precise value. Later,
in Exercise 19., we will show that it is an irrational number.




2.5. Properties of Convergent Sequences*



 Often, our goal is to show that a given sequence is convergent.
However, as we study convergent sequences, we would like
to establish various properties that they have in common.
The first theorem of this section is just such a result.
Theorem 2.4.
 Suppose  is a convergent sequence of real or complex numbers.
Then the sequence  forms a bounded set.

Proof



  Write L=liman.
Let ϵ be the positive number 1.
Then, there exists a natural number N such that
|an–L|<1
for all n≥N.
By the backward triangle inequality,
this implies that ||an|–|L||<1 for all n≥N, which implies that
|an|≤|L|+1 for all n≥N.
This shows that at least the tail of the sequence is bounded by the constant |L|+1.
 Next, let K be a number larger than the finitely many numbers |a1|,...,|aN–1|.
Then, for any n,|an| is either less than K or |L|+1.
Let M be the larger of the two numbers K and |L|+1.
Then |an|<M for all n.
Hence, the sequence  is bounded.



 Note that the preceding theorem is a partial converse
to Theorem 2.1.; i.e., a convergent sequence is necessarily bounded.
Of course, not every convergent sequence must be
either nondecreasing or nonincreasing, so that a full converse to
Theorem 2.1. is not true.
For instance, take z=–1/2 in part (1) of Theorem 2.2..
It converges to 0 all right, but it is neither nondecreasing nor nonincreasing.
Exercise 8.
 
     	  Suppose  is a sequence of real numbers that converges to a number a,
and assume that an≥c for all n.
Prove that a≥c.
HINT: Suppose not, and let ϵ be the positive number c–a.
Let N be a natural number corresponding to this choice of ϵ,
and derive a contradiction.


	  If  is a sequence of real numbers for which liman=a, and if a≠0, then prove that an≠0 for all large enough
n.
Show in fact that there exists an N such that
|an|>|a|/2 for all n≥N.
HINT:
Make use of the positive number ϵ=|a|/2.







Exercise 9.
 
     	  If  is a sequence of positive real numbers for which liman=a>0,
prove that 
HINT: Multiply the expression  above and below by


	  If  is a sequence of complex numbers, and
liman=a, prove that
lim|an|=|a|.
HINT: Use the backward triangle inequality.








Exercise 10.
 
     Suppose  is a sequence of real numbers and that L=liman.
Let M1 and M2 be real numbers such that
M1≤an≤M2 for all n.
Prove that M1≤L≤M2.

     HINT: Suppose, for instance, that L>M2.
Make use of the positive number L–M2 to derive a contradiction.




 We are often able to show that a sequence converges by comparing it
to another sequence that we already know converges.
The following exercise demonstrates some of these techniques.
Exercise 11.
 
     
Let  be a sequence of complex numbers.

     	  Suppose that, for each n,|an|<1/n.
Prove that 0=liman.

	  Suppose  is a sequence that converges to 0, and suppose that, for each n,|an|<|bn|.
Prove that
0=liman.







 The next result is perhaps the most powerful technique
we have for showing that a given sequence converges to a given number.
Theorem 2.5.
 
 Suppose that  is a sequence of real numbers and that  and  are two sequences
of
real numbers for which
bn≤an≤cn for all n.
Suppose further that limbn=limcn=L.
Then the sequence  also converges to L.

Proof



 
We examine the quantity |an–L,| employ some add and subtract tricks, and make the following computations:
(2.17)

 So, we can make |an–L|<ϵ by making |cn–L|<ϵ/3 and
|bn–L|<ϵ/3.
So, let N1 be a positive integer such that |cn–L|<ϵ/3 if n≥N1,
and let N2 be a positive integer so that |bn–L|<ϵ/3 if n≥N2.
Then set 
Clearly, if n≥N, then both inequalities |cn–L|<ϵ/3 and |bn–L|<ϵ/3, and hence
|an–L|<ϵ.
This finishes the proof.



 The next result establishes what are frequently called the “limit theorems.”
Basically, these results show how convergence
interacts with algebraic operations.
Theorem 2.6.
 
Let  and  be two sequences of complex numbers with a=liman and b=limbn.
Then
 	 The sequence  converges, and

(2.18)


	 The sequence  is convergent, and

(2.19)


	 If all the bn's as well as b are nonzero, then the sequence
 is convergent, and

(2.20)





Proof



 Part (1) is exactly the same as Exercise 6..
Let us prove part (2).
 By Theorem 2.4., both sequences  and  are bounded.
Therefore, let M be a number such that |an|≤M
and |bn|≤M for all n.
Now, let ϵ>0 be given. There exists an N1 such that
|an–a|<ϵ/(2M) whenever n≥N1,
and there exists an N2 such that |bn–b|<ϵ/(2M)
whenever n≥N2.
Let N be the maximum of N1 and N2.
Here comes the add and subtract trick again.
(2.21)

 if n≥N,
which shows that 
 To prove part (3), let M be as in the previous paragraph, and let
ϵ>0 be given. There exists an N1
such that |an–a|<(ϵ|b|2)/(4M) whenever n≥N1;
there also exists an N2 such that |bn–b|<(ϵ|b|2)/(4M) whenever
n≥N2; and there exists an
N3 such that |bn|>|b|/2 whenever n≥N3.
(See Exercise 8..)
Let N be the maximum of the three numbers N1,N2 and N3. Then:
(2.22)

 if n≥N.
This completes the proof.




 REMARK
The proof of part (3) of the preceding theorem may look mysterious.
Where, for instance, does this number ϵ|b|2/4M come from?
The answer is that one begins such a proof by examining the quantity
|an/bn–a/b| to see if by some algebraic manipulation one can discover
how to control its size by using the quantities |an–a| and |bn–b|.
The assumption that a=liman and b=limbn
mean exactly that the quantities |an–a| and |bn–b| can be controlled by requiring
n to be large enough.
The algebraic computation in the proof above shows that
(2.23)

 and one can then see exactly how small to make |an–a| and |bn–b| so that |an/bn–a/b|<ϵ.
Indeed, this is the way most limit proofs work.



Exercise 12.
 
     If possible, determine the limits of the following sequences
by using Theorem 2.2., Theorem 2.3., Theorem 2.6., and the squeeze theorem Theorem 2.5..

     	  

	  

	  

	  

	  

	  

	  

	  
HINT: Note that

(2.24)


	  

	  








2.6. Subsequences and Cluster Points*



	 Definition: 
	 
    
 Let  be a sequence of real or complex numbers.
A subsequence of  is
a sequence  that is
determined by the sequence 
together with a strictly increasing sequence  of natural numbers.
The sequence  is defined by
bk=ank.
That is, the kth term of the sequence  is the nkth term of the original sequence 





Exercise 13.
 
     
Prove that a subsequence of a subsequence of  is itself
a subsequence of  Thus,
let  be a sequence of numbers, and let
 be a subsequence of  Suppose  is a
subsequence of the sequence  Prove that 
is a subsequence of  What is the strictly
increasing sequence  of natural numbers for which cj=amj?



 Here is an interesting generalization of the notion of the limit of a sequence.
	 Definition: 
	 
    
 Let  be a sequence of real or complex numbers.
A number x is called a cluster point of the sequence  if there exists a subsequence  of  such that x=limbk.
The
set of all cluster points of a sequence  is called the cluster set of the sequence.





Exercise 14.
 
     	  Give an example of a sequence whose cluster set contains two points.
Give an example of a sequence whose cluster set contains exactly n points.
Can you think of a sequence whose cluster set is infinite?


	  Let  be a sequence with cluster set S.
What is the cluster set for the sequence 
What is the cluster set for the sequence 

	  If  is a sequence for which b=limbn,
and  is another sequence,
what is the cluster set of the sequence 

	  Give an example of a sequence whose cluster set is empty.


	  Show that if the sequence  is bounded above, then
the cluster set S is bounded above.
Show also that if  is bounded below, then S is bounded below.


	  Give an example of a sequence whose cluster set S is
bounded above but not bounded below.


	  Give an example of a sequence that is not bounded, and which has
exactly one cluster point.








Theorem 2.7.
 Suppose  is a sequence of real or complex numbers.
 	 (Uniqueness of limits) Suppose liman=L, and liman=M.
Then L=M.
That is, if the limit of a sequence exists, it is unique.


	 If L=liman, and if  is a subsequence
of 
then the sequence  is convergent, and
limbk=L.
That is, if a sequence has a limit, then every subsequence
is convergent and converges to that same limit.





Proof



 Suppose liman=Landliman=M.
Let ϵ be a positive number, and choose N1 so that
|an–L|<ϵ/2 if n≥N1, and choose
N2 so that |an–M|<ϵ/2 if n≥N2.
Choose an n larger than both N1andN2.
Then
(2.25)
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 Therefore, since |L–M|<ϵ for every positive ϵ, it follows that
L–M=0 or L=M. This proves part (1).
 Next, suppose liman=L and let  be a subsequence of 
We wish to show that limbk=L.
Let ϵ>0 be given, and choose an N such that
|an–L|<ϵ if n≥N.
Choose a K so that nK≥N.
(How?) Then, if k≥K, we have nk≥nK≥N, whence |bk–L|=|ank–L|<ϵ,
which shows that limbk=L.
This proves part (2).




 REMARK
The preceding theorem has the following interpretation.
It says that if a sequence converges to a number L, then the cluster set of the sequence
contains only one number, and that number is L.
Indeed, if x is a cluster point of the sequence, then there must
be some subsequence that converges to x. But, by part (2), every subsequence converges to L.
Then, by part (1), x=L.
Part (g) of Exercise 14. shows that the converse of this theorem
is not valid. that is, the cluster set may contain only one point, and yet the sequence is not convergent.



 We give next what is probably the most useful fundamental result about sequences,
the Bolzano-Weierstrass Theorem. It is this theorem that will
enable us to derive many of the important properties of continuity, differentiability, and integrability.
Theorem 2.8.
  Every bounded sequence  of real or complex numbers has a cluster point.
In other words, every bounded sequence has a convergent subsequence.
 The Bolzano-Weierstrass Theorem is, perhaps not surprisingly, a very difficult theorem to prove.
We begin with a technical, but very helpful, lemma.
Lemma 2.1.
 Let  be a bounded sequence of real numbers;
i.e., assume that there exists an M such that |an|≤M for all n.
For each n≥1, let Sn be the set whose elements are 
That is, Sn is just the elements of the tail of the sequence from n on.
Define xn=supSn=supk≥nak.
Then
 	 The sequence  is bounded (above and below).


	 The sequence  is non-increasing.


	 The sequence  converges to a number x.

	 The limit x of the sequence 
is a cluster point of the sequence 
That is, there exists a subsequence  of the sequence  that converges to x.

	 If y is any cluster point of the sequence  then y≤x,
where x is the cluster point of part (4).
That is, x is the maximum of all cluster points of the sequence 




Proof



 Since xn is the supremum of the set Sn, and since each element of that set is bounded between –M and M, part (1) is immediate.
 Since Sn+1⊆Sn, it is clear that
(2.26)
        
          x
              n
              +
              1
            
          =
          sup
          S
              n
              +
              1
            
          ≤
          sup
          Sn
          =
          xn
          ,
        
      
 showing part (2).
 The fact that the sequence  converges to a number x is then a consequence of Theorem 2.1..
 We have to show that the limit x of the sequence  is a cluster point of 
Notice that  may not itself be a subsequence of 
each xn may or may not be one of the numbers ak,
so that there really is something to prove.
In fact, this is the hard part of this lemma.
To finish the proof of part (4), we must define an increasing sequence  of
natural numbers for which the corresponding subsequence 
of  converges to x.
We will choose these natural numbers  so that
|x–ank|<1/k.
Once we have accomplished this, the fact that
the corresponding subsequence  converges to x will be clear.
We choose the nk's inductively.
First, using the fact that x=limxn, choose an n so that |xn–x|=xn–x<1/1.
Then, because xn=supSn,
we may choose by Theorem 1.5. some m≥n such that xn≥am>xn–1/1.
But then
|am–x|<1/1.
(Why?) This m we call n1.
We have that |an1–x|<1/1.
 Next, again using the fact that x=limxn, choose another n so that n>n1 and so that |xn–x|=xn–x<1/2.
Then, since this xn=supSn,
we may choose another m≥n such that xn≥am>xn–1/2.
This m we call n2.
Note that we have |an2–x|<1/2.
 Arguing by induction, if we have found an increasing set n1<n2<...<nj, for which
|ani–x|<1/i for 1≤i≤j,
choose an n larger than nj such that |xn–x|<1/(j+1).
Then, since xn=supSn,
choose an m≥n so that xn≥am>xn–1/(j+1).
Then |am–x|<1/(j+1), and we let nj+1 be this m.
It follows that |anj+1–x|<1/(j+1).
 So, by recursive definition, we have constructed a subsequence of  that converges to x, and this completes the proof of part (4) of the lemma.
 Finally, if y is any cluster point of  and if y=limank, then
nk≥k, and so ank≤xk,
implying that xk–ank≥0.
Hence, taking limits on k,
we see that x–y≥0, and this proves part (5).
 Now, using the lemma, we can give the proof of the Bolzano-Weierstrass Theorem.




Proof



  If  is a sequence of real numbers, this theorem is an immediate consequence of part (4) of the preceding lemma.
 If an=bn+cni is a sequence of complex numbers,
and if  is bounded,
then  and  are both
bounded sequences of real numbers.
See Exercise 27..
So, by the preceding paragraph, there exists a subsequence  of  that converges to a real number b.
Now, the subsequence  is itself a bounded sequence of real numbers, so there is a subsequence  that converges
to
a real number c.
By part (2) of Theorem 2.7., we also have that the subsequence  converges to b.
So the subsequence  of  converges to the complex number b+ci; i.e.,  has a cluster point.
This completes the proof.



 There is an important result that is
analogous to the Lemma above, and its proof is easily adapted from the proof of that lemma.
Exercise 15.
 
     
Let  be a bounded sequence of real numbers.
Define a sequence  by yn=infk≥nak.
Prove that:

     	   is nondecreasing and bounded above.


	  y=limyn is a cluster point of 

	  If z is any cluster point of 
then y≤z.
That is, y is the minimum of all the cluster points of the sequence 
HINT: Let  and apply the preceding
lemma to  This exercise will then follow from that.








 The Bolzano-Wierstrass Theorem shows that
the cluster set of a bounded sequence  is nonempty.
It is also a bounded set itself.
 The following definition is only for sequences of real numbers.
However, like the Bolzano-Weierstrass Theorem, it is of very basic
importance and will be used several times in the sequel.
	 Definition: 
	 
    
  Let  be a sequence of real numbers and let S denote its cluster set.

    
 If S is nonempty and bounded above,
we define lim supan to be the supremum supS of S.

    
 If S is nonempty and bounded below, we define
lim infan to be the infimum infS of S.

    
 If the sequence  of real numbers is not bounded above, we define lim supan to be ∞, and if  is not bounded below, we
define
lim infan to be –∞.

    
 If  diverges to ∞, then we define lim supan and lim infan both to be ∞.
And, if  diverges to –∞, we define lim supan and lim infan both to be –∞.

    
 We call lim supan the limit superior
of the sequence , and lim infan the limit inferior
of 





Exercise 16.
 
     	  Suppose  is a bounded sequence of real numbers.
Prove that the sequence  of the lemma following Theorem 2.8. converges to lim supan.
Show also that the sequence  of Exercise 15. converges to lim infan.

	  Let  be a not necessarily bounded sequence of real numbers.
Prove that

(2.27)


and

(2.28)


HINT: Check all cases, and use Lemma 2.1.
and Exercise 15..


	  Let  be a sequence of real numbers. Prove that

(2.29)


	  Give examples to show that all four of the following
possibilities can happen.

 	  lim supan is finite, and lim infan=–∞.

	  lim supan=∞ and lim infan is finite.


	  lim supan=∞ and lim infan=–∞.

	 both lim supan and lim infan are finite.











 The notions of limsup and liminf are perhaps mysterious, and they
are in fact difficult to grasp.
The previous exercise describes them as the resultof a kind of two-level process, and there are occasions when
this description is a great help. However, the
limsup and liminf can also be characterized in other ways that are more reminiscent of the definition of a limit.
These other ways are indicated in the next exercise.
Exercise 17.
 
     
Let  be a bounded sequence of real numbers with

     lim supan=L and lim infan=l.
Prove that L and l satisfy the following properties.

     	  For each ϵ>0, there exists an N such that an<L+ϵ for all n≥N.
HINT: Use the fact that lim supan=L is the number x of the lemma following Theorem 2.8,
and that x is the limit of a specific sequence 

	  For each ϵ>0, and any natural number k, there
exists a natural number j≥k such that aj>L–ϵ.
Same hint as for part (a).


	  For each ϵ>0, there exists an N such that an>l–ϵ for all n≥N.

	  For each ϵ>0, and any natural number k, there exists a natural number j>k such that aj<l+ϵ.

	  Suppose L' is a number that satisfies parts (a) and (b).
Prove that L' is the limsup of 
HINT: Use part (a) to show that L' is greater than or equal to
every cluster point of  Then use part (b) to show that L' is less than or equal to some cluster point.


	  If l' is any number that satisfies parts (c) and (d),
show that l' is the liminf of the sequence 







Exercise 18.
 
     	  Let  and  be two bounded sequences of real numbers,
and write L=lim supan and M=lim supbn.
Prove that 
HINT: Using part (a) of the preceding exercise, show that
for every ϵ>0 there exists a N such that
an+bn<L+M+ϵ for all n≥N, and conclude from this
that every cluster point y of the sequence  is less than or equal to L+M.
This will finish the proof, since  is a cluster point of that sequence.


	  Again, let  and  be two bounded sequences of real numbers,
and write l=lim infan and m=lim infbn.
Prove that 
HINT: Use part (c) of the previous exercise.


	  Find examples of sequences  and  for which
lim supan=lim supbn=1, but 







 We introduce next another property that a sequence can possess.
It looks very like the definition of a convergent sequence, but it differs in a crucial way, and that
is that this definition only concerns the elements of the
sequence  and not the limit L.
	 Definition: 
	 
    
 A sequence  of real or complex numbers is a Cauchy sequence if for every ϵ>0, there
exists
a natural number N such that if n≥N and m≥N then
|an–am|<ϵ.






 REMARK
No doubt, this definition has something to do with limits.
Any time there is a positive ϵ and an N, we must be near some
kind of limit notion.
The point of the definition of a Cauchy sequence is that there is no
explicit mention of what the limit is. It isn't that the
terms of the sequence are getting closer and closer to some number L,
it's that the terms of the sequence are getting closer and closer to each other.
This subtle difference is worth some thought.



Exercise 19.
 
     Prove that a Cauchy sequence is bounded.
(Try to adjust the proof of Theorem 2.4. to work for this situation.)



 The next theorem, like the Bolzano-Weierstrass Theorem, seems to be quite
abstract, but it also turns out to be a very useful tool for proving theorems about continity, differentiability, etc.
In the proof, the completeness of the set of real numbers will be crucial.
This theorem is not true in ordered fields that are not complete.
Theorem 2.9.
  A sequence  of real or complex numbers is convergent if and only if it is a Cauchy sequence.

Proof



  If liman=a then given ϵ>0, choose N so that
|ak–a|<ϵ/2
if k≥N.
From the triangle inequality, and by adding and subtracting a, we obtain that
|an–am|<ϵ
if n≥N and m≥N.
Hence, if  is convergent, then  is a Cauchy sequence.
 Conversely, if  is a cauchy sequence, then  is bounded by the previous exercise.
Now we use the fact that  is a sequence
of real or complex numbers.
Let x be a cluster point of 
We know that one exists by the Bolzano-Weierstrass Theorem.
Let us show that in fact this number x not only is a cluster point
but that it is in fact the limit of the sequence 
Given ϵ>0, choose Nso that |an–am|<ϵ/2 whenever both n and m≥N.
Let  be a subsequence of  that converges to x.
Because  is strictly increasing, we may choose a k so that nk>N and also so that |ank–x|<ϵ/2.
Then, if n≥N, then both n and this particular nk are larger than or equal to N.
Therefore, |an–x|≤|an–ank|+|ank–x|<ϵ.
this completes the proof that x=liman.




2.7. A Little Topology*



 We now investigate some properties that subsets of R and C
may possess. We will define “closed sets,” “open sets,” and “limit points” of sets.
These notions are the rudimentary notions of what is called topology.
As in earlier definitions, these topological ones will be enlightening when we come to continuity.
	 Definition: 
	 
    
 Let S be a subset of C.
A complex number x
is called a limit point of S if there exists a sequence  of elements of S
such
that x=limxn.

    
 A set S⊆C is called closed
if every limit point of S belongs to S.



 Every limit point of a set of real numbers is a real number.
Closed intervals [a,b] are examples of closed sets in R, while open intervals and half-open intervals may not be closed sets.
Similarly, closed disks  of radius r around a point c in C,
and closed neighborhoods  of radius r around a set S⊆C,
are closed sets, while the open disks or open neighborhoods are not closed sets.
As a first example of a limit point of a set, we give
the following exercise.
Exercise 20.
 
     
Let S be a nonempty bounded set of real numbers, and let M=supS.
Prove that there exists a sequence  of elements of S such that M=liman.
That is, prove that the supremum of a bounded set of real numbers is a limit point of that set.
State and prove an analogous result for infs.

     HINT: Use Theorem 1.5., and let ϵ run through the numbers 1/n.



Exercise 21.
 
     	  Suppose S is a set of real numbers, and that z=a+bi∈C
with b≠0. Show that z is not a limit point of S.
That is, every limit point of a set of real numbers is a real number.
HINT: Suppose false; write a+bi=limxn, and make
use of the positive number |b|.

	  Let c be a complex number, and let
 be the set of all z∈C for which |z–c|≤r.
Show that S is a closed subset of C.
HINT: Use part (b) of Exercise 9..


	  Show that the open disk Br(0) is not a closed set in C by finding
a limit point of Br(0) that is not in Br(0).

	  State and prove results analogous to parts b and c for
intervals in R.

	  Show that every element x of a set S is a limit point of S.

	  Let S be a subset of C, and let x be a complex number.
Show that x is not a limit point of S if and only if
there exists a positive number ϵ such that if |y–x|<ϵ, then y is not in S.
That is, S∩Bϵ(x)=∅.
HINT:
To prove the “ only if” part, argue by contradiction,
and use the sequence {1/n} as ϵ's.


	  Let  be a sequence of complex numbers, and let S
be the set of all the an's.
What is the difference between a cluster point of the sequence  and a limit point of the set S?

	 (h) Prove that the cluster set of a sequence is a closed set.
HINT: Use parts (e) and (f).









Exercise 22.
 
     	  Show that the set Q of all rational numbers is not a closed set.
Show also that the set of all irrational numbers is not a closed set.


	  Show that if S is a closed subset of R that contains Q, then S must equal all of R.







 Here is another version of the Bolzano-Weierstrass Theorem, this time
stated in terms of closed sets rather than bounded sequences.
Theorem 2.10.
 
Let S be a bounded and closed subset of C.
Then every sequence  of elements of S has a subsequence that converges to an element of S.

Proof



 Let  be a sequence in S.
Since S is bounded, we know by Theorem 2.8. that there exists a subsequence  of  that converges to
some
number x.
Since each xnk belongs to S, it follows that x is a limit point of S.
Finally, because S is a closed subset of C, it then follows that x∈S.



 We have defined the concept of a closed set.
Now let's give the definition of an open set.
	 Definition: 
	 
    
 
Let S be a subset of C. A point x∈S is
called an interior point of S if there exists an ϵ>0
such that the open disk Bϵ(x) of radius ϵ around x is entirely contained in S.
The set of all interior points of S is denoted by S0
and we call S0 the interior of S.

    
 A subset S of C
is called an open subset of C
if every point of S is an interior point of S;
i.e., if S=S0.

    
 Analogously, let S be a subset of R. A point x∈S is
called an interior point of S if there exists an ϵ>0
such that the open interval (x–ϵ,x+ϵ)
is entirely contained in S.
Again, we denote the set of all interior points of S by S0
and call S0 the interior of S.

    
 A subset S of R
is called an open subset of R
if every point of S is an interior point of S;
i.e., if S=S0.





Exercise 23.
 
     	  Prove that an open interval (a,b) in R is an
open subset of R; i.e., show that every point of (a,b) is an interior point of (a,b).

	  Prove that any disk Br(c) is an open subset of C.
Show also that the punctured diskBr'(c) is an open set,
where Br'(c)={z:0<|z–c|<r}, i.e., evrything in the disk Br(c) except the central point c.

	  Prove that the neighborhood Nr(S) of radius r around a set S
is an open subset of C.

	  Prove that no nonempty subset of R is an open subset of C.

	 (e) Prove that the set Q of all rational numbers is not an open subset of R.
We have seen in part (a) of Exercise 22. that Q is
not a closed set. Consequently it is an example of a set that is neither open nor closed.
Show that the set of all irrational numbers is neither open nor closed.








 We give next a useful application of the Bolzano-Weierstrass Theorem, or more precisely an
application of Theorem 2.10..
This also provides some insight into the structure of open sets.
Theorem 2.11.
 
Let S be a closed and bounded subset of C, and suppose
S is a subset of an open set U.
Then there exists an r>0 such that the neighborhood Nr(S) is contained in U.
That is, every open set containing a closed and bounded set S actually contains a neighborhood of S.

Proof



 If S is just a singleton {x}, then this theorem is asserting nothing more than
the fact that x is in the interior of U,
which it is if U is an open set.
However, when S is an infinite set, then the result is more subtle.
We argue by contradiction. Thus, suppose there is no such r>0
for which Nr(S)⊆U.
then for each positive integer n there must be a point xn that is not in U, and a corresponding point yn∈S,
such that |xn–yn|<1/n. Otherwise, the number r=1/n would satisfy the claim of the theorem.
Now, because the yn's all belong to S, we know from Theorem 2.10. that a subsequence  of the sequence 
must converge to a number y∈S. Next, we see that
(2.30)

 and this quantity tends to 0. Hence, the subsequence  of the sequence  also converges to y.
 Finally, because y belongs to S and hence to the open set U, we know that there must exist an ϵ>0 such that the entire
disk Bϵ(y)⊆U.
Then, since the subsequence  converges
to y, there must exist ank such that |xnk–y|<ϵ, implying that
xnk∈Bϵ(y), and hence belongs to
U. But this is our contradiction, because all of the xn's were not in U.
So, the theorem is proved.



 We give next a result that clarifies to some extent the connection between open sets and closed sets.
Always remember that there are sets that are neither open nor closed, and just because a set is not open
does not mean that it is closed.
Theorem 2.12.
 
 A subset S of C (R) is open
if and only if its complement 
(R∖S) is closed.

Proof



 
First, assume that S is open, and let us show that  is closed.
Suppose not. We will derive a contradiction.
Suppose then that there is a sequence  of elements of  that converges to a number
x that is not in  i.e., x is an element of S.
Since every element of S is an interior point of S, there
must exist an ϵ>0 such that the entire disk Bϵ(x) (or interval (x–ϵ,x+ϵ)) is a subset of S.
Now, since x=limxn, there must exist anN such that |xn–x|<ϵ
for every n≥N. In
particular, |xN–x|<ϵ; i.e., xN belongs to Bϵ(x) (or (x–ϵ,x+ϵ)).
This implies that xN∈S. But  and this is a contradiction.
Hence, if S is open, then  is closed.
 Conversely, assume that  is closed, and let us show that S must be open.
Again we argue by contradiction.
Thus, assuming that S is not open, there must exist a point x∈S
that is not an interior point of S. Hence, for every ϵ>0
the disk Bϵ(x) (or interval (x–ϵ,x+ϵ)) is not entirely contained in S.
So, for each positive integer n, there must exist a point
xn such that |xn–x|<1/n and xn∉S.
It follows then that x=limxn, and that each 
Since  is a closed set, we must have that 
But x∈S, and we have arrived at the desired contradiction.
Hence, if  is closed, then S is open,
and the theorem is proved.



 The theorem below, the famous Heine-Borel Theorem,
gives an equivalent and different description of closed and bounded sets.
This description is in terms of open sets, whereas the original definitions
were interms of limit points.
Any time we can find two very different descriptions of the same phenomenon, we have
found something useful.
	 Definition: 
	 
    
 
Let S be a subset of C (respectively R). By an open cover
of S we mean a sequence  of open subsets of C (respectively R)
such that S⊆∪Un;
i.e., for every x∈Sthere exists an n such that x∈Un.

    
 A subset S of C (respectively R)
is called compact,
or is said to satisfy the
Heine-Borel property, if every open cover of S
has a finite subcover. That is, if 
is an open cover of S, then there exists an integer N such that
S⊆∪Nn=1Un.
In other words, only a finite number of the open sets are necessary to cover S.






 REMARK
The definition we have given here for a set being compact is
a little less general from the one found in books on topology.
We have restricted the notion of an open cover to be a sequence of
open sets, while in the general setting an open
cover is just a collection of open sets.
The distinction between a sequence of open sets and a collection of open sets
is genuine in general topology, but it can be
disregarded in the case of the topological spaces R and C.



Theorem 2.13.
 
A subset S of C (respectively R) is compact
if and only if it is a closed and bounded set.

Proof



 We prove this theorem for subsets S of C,
and leave the proof for subsets of R to the exercises.
 Suppose first that S⊆C is compact, i.e., satisfies the Heine-Borel property.
For each positive integer n, define Un to be the
open set Bn(0). Then S⊆∪Un, because C=∪Un.
Hence, by the Heine-Borel property, there must exist an N such
that S⊆∪Nn=1Un. But then S⊆BN(0),
implying that S is bounded.
Indeed, |x|≤N for all x∈S.
 Next, still assuming that S is compact, we will show that S is closed by showing that  is open.
Thus, let x be an element of  For each positive integer n, define
Un to be the complement of the closed set 
Then each Un is an open set by Theorem 2.12, and we claim that 
is an open cover of S. Indeed, if y∈S, then y≠x, and
|y–x|>0. Choose an n so that 1/n<|y–x|.
Then  implying that y∈Un.
This proves our claim that  is an open cover of S.
Now, by the Heine-Borel property,
there exists an N such that S⊆∪Nn=1Un.
But this implies that for every z∈S we must have
|z–x|≥1/N, and this implies that the disk
B1/N(x) is entirely contained in  Therefore, every element x of 
is an interior point of 
So,  is open, whence S is closed.
This finishes the proof that compact sets are necessarily closed and bounded.
 Conversely, assume that S is both closed and bounded.
We must show that S satisfies the Heine-Borel property.
Suppose not. Then, there exists an open cover
 that has no finite subcover. So, for each positive integer n there must exist an element xn∈S
for which xn∉∪nk=1Uk. Otherwise, there would be a finite subcover.
By Theorem 2.10., there exists a subsequence  of  that converges
to an element x of S. Now, because  is an open cover of S,
there must exist an N such that x∈UN.
Because UN is open, there exists an ϵ>0 so that the
entire disk Bϵ(x) is contained in UN.
Since x=limxnj, there exists a J so that |xnj–x|<ϵ
if j≥J. Therefore, if j≥J, then xnj∈UN.
But the sequence  is strictly increasing, so that there exists a j'≥J such that nj'>N, and by the choice of the
point xnj', we know that xnj'∉∪Nk=1Uk.
We have arrived at a contradiction, and so the second half of the theorem is proved.



Exercise 24.
 
     	  Prove that the union A∪B of two open sets is open and the intersection A∩B is also open.


	  Prove that the union A∪B of two closed sets is closed and the intersection A∩B is also closed.
HINT: Use Theorem 2.12. and the set equations
 and

These set equations are known as Demorgan's Laws.


	  Prove that the union A∪B of two bounded sets is bounded and the intersection A∩B is also bounded.


	  Prove that the union A∪B of two compact sets is compact and the intersection A∩B is also compact.


	  Prove that the intersection of a compact set and a closed set is compact.


	  Suppose S is a compact set in C and r is a positive real number.
Prove that the closed neighborhood  of radius r around S is compact.
HINT: To see that this set is closed, show that its coplement is open.









2.8. Infinite Series*



 Probably the most interesting and important examples of sequences are
those that arise as the partial sums of an infinite series.
In fact, it will be infinite series that allow us to explain such things as
trigonometric and exponential functions.
	 Definition: 
	 
    
 Let  be a sequence of real or complex numbers.
By the infinite series∑an we mean the sequence  defined by

    
(2.31)


    
 The sequence  is called the sequence of partial sums of the infinite series ∑an, and the infinite series is
said
to be summable to a number S, or to be convergent,
if the sequence  of partial sums converges to S.The sum of an infinite series is the limit of its partial sums.

    
 An infinite series ∑an is called absolutely summable or absolutely convergent if the
infinite series ∑|an| is convergent.

    
 If
∑an is not convergent, it is called divergent.
If it is convergent but not absolutely convergent, it is
called conditionally convergent.

    
 A few simple formulas relating the an's and the SN's are useful:

    
(2.32)
        
          SN
          =
          a0
          +
          a1
          +
          a2
          +
          ...
          +
          aN
          ,
        
      

    
(2.33)
        
          S
              N
              +
              1
            
          =
          SN
          +
          a
              N
              +
              1
            
          ,
        
      

    
 and

    
(2.34)


    
 for M>K.






 REMARK
Determining whether or not a given infinite series converges
is one of the most important and subtle parts of analysis.
Even the first few elementary theorems depend in
deep ways on our previous development, particularly the Cauchy criterion.



Theorem 2.14.
  Let  be a sequence of nonnegative real numbers.
Then the infinite series ∑an is summable if and only if the sequence  of partial sums is bounded.

Proof



 If ∑an is summable, then  is convergent, whence bounded according to Theorem 2.4..
Conversely, we see from the hypothesis that each an≥0 that  is nondecreasing (SN+1=SN+aN+1≥SN).
So, if  is bounded, then it automatically converges by Theorem 2.1., and hence the infinite series ∑an is summable.



 The next theorem is the first one most calculus students learn about infinite series.
Unfortunately, it is often misinterpreted, so be careful!
Both of the proofs to the next two theorems use Theorem 2.9.,
which again is a serious and fundamental result about the real numbers.
Therefore, these two theorems must be deep results themselves.
Theorem 2.15.
 
Let ∑an be a convergent infinite series.
Then the sequence  is convergent,
and liman=0.

Proof



  Because ∑an is summable, the sequence  is convergent and so is a Cauchy sequence.
Therefore, given an ϵ>0, there exists an N0 so that |Sn–Sm|<ϵ whenever both n and m≥N0.
If n>N0, let m=n–1.
We have then that |an|=|Sn–Sm|<ϵ, which completes the proof.




 REMARK Note that this theorem is not an “if and only if” theorem.
The harmonic series (part (b) of Exercise 26. below)
is the standard counterexample.
The theorem above is mainly used to show that
an infinite series is not summable.
If we can prove that the sequence  does not converge
to 0, then the infinite series ∑an does not converge.
The misinterpretation of this result referred to above is exactly in
trying to apply the (false) converse of this theorem.



Theorem 2.16.
  If ∑an is an absolutely convergent infinite series of complex numbers,
then it is a convergent infinite series.
(Absolute convergence implies convergence.)

Proof



  If  denotes the sequence of partial sums for ∑an, and if  denotes the sequence of partial sums
for
∑|an|, then
(2.35)

 for all N and M.
We are given that  is convergent and hence it is a Cauchy sequence.
So, by the inequality above,  must also be a Cauchy sequence.
(If |TN–TM|<ϵ, then |SN–SM|<ϵ as well.)
This implies that ∑an is convergent.



Exercise 25.: The Infinite Geometric Series
 
     
Let z be a complex number, and define a sequence  by an=zn. Consider the infinite series ∑an.
Show that ∑∞n=0an converges to a number S if and only if |z|<1.
Show in fact that S=1/(1–z),
when |z|<1.

     HINT: Evaluate explicitly the partial sums SN, and then take their limit.
Show that





Exercise 26.
 
     	  Show that  converges to 1, by computing explicit formulas for the partial sums.
HINT: Use a partial fraction decomposition for the an's.


	  (The Harmonic Series.) Show that ∑∞n=11/n diverges by verifying that
S2k>k/2.
HINT: Group the terms in the sum as follows,

(2.36)


and then estimate the sum of each group.
Remember this example as an infinite series that diverges, despite the
fact that is terms tend to 0.








 The next theorem is the most important one we have concerning infinite series of numbers.
Theorem 2.17.
 Suppose  and  are two sequences
of nonnegative real numbers for which there exists a positive integer M
and a constant C such that
bn≤Can for all n≥M.
If the infinite series ∑an converges,
so must the infinite series ∑bn.

Proof



 We will show that the sequence  of partial sums
of the infinite series ∑bn is a bounded sequence.
Then, by Theorem 2.14., the infinite series ∑bn must be summable.
 Write SN for the Nth partial sum of the
convergent infinite series ∑an.
Because this series is summable, its sequence of partial sums is a bounded sequence.
Let B be a number such that SN≤B for all N.
We have for all N>M that
(2.37)

 which completes the proof, since this final quantity is a fixed constant.



Exercise 27.
 
     	  Let  and  be as in the preceding theorem.
Show that if ∑bn diverges, then
∑an also must diverge.


	  Show by example that the hypothesis that the an's and bn's of the Comparison Test are nonnegative
can not be dropped.









Exercise 28.: The Ratio Test
 
     

Let  be a sequence of positive numbers.

     	  If lim supan+1/an<1,
show that ∑an converges.
HINT: If lim supan+1/an=α<1,
let β be a number for which α<β<1.
Using part (a) of Exercise 17., show that there exists an N such that for all n>N we must have
an+1/an<β, or equivalently an+1<βan, and therefore aN+k<βkaN.
Now use the comparison test with the geometric series ∑βk.

	  If lim infan+1/an>1, show that ∑an diverges.


	  As special cases of parts (a) and (b), show that
 converges if
limnan+1/an<1, and diverges if limnan+1/an>1.

	  Find two examples of infinite series' ∑an of positive numbers, such that
liman+1/an=1 for both examples, and such that
one infinite series converges and the other diverges.









Exercise 29.
 
     	  Derive the Root Test:
If  is a sequence of positive numbers for which lim supan1/n<1,
then ∑an converges.
And, if lim infan1/n>1, then ∑an diverges.


	  Let r be a positive integer.
Show that ∑1/nr converges if and only if r≥2.
HINT: Use Exercise 26. and the Comparison Test for r=2.

	  Show that the following infinite series are summable.

(2.38)


for a any complex number.









Exercise 30.
 
     
Let  and  be sequences of complex numbers, and let 
denote the sequence of partial sums of the infinite series ∑an.
Derive the Abel Summation Formula:

    (2.39)





 The Comparison Test is the most powerful theorem we have about infinite series of positive terms.
Of course, most series do not consist entirely of positive terms, so that the Comparison Test is not enough.
The next theorem is therefore of much importance.
Theorem 2.18.
  
Suppose  is an alternating sequence of real numbers;
i.e., their signs alternate.
Assume further that the sequence  is nonincreasing with
0=lim|an|.
Then the infinite series ∑an converges.

Proof



 
Assume, without loss of generality, that the odd terms a2n+1 of the sequence
 are positive and the even terms a2n are negative.
We collect some facts about the partial sums SN=a1+a2+...+aN of the infinite series ∑an.
 	 Every even partial sum S2N is less than the following odd partial sum S2N+1=S2N+a2N+1,
And every odd partial sum S2N+1 is greater than the following even partial sum S2N+2=S2N+1+a2N+2.

	 Every even partial sum S2N is less than or equal to the next even partial sum S2N+2=S2N+a2N+1+a2N+2,
implying that the sequence of even partial sums  is nondecreasing.


	 Every odd partial sum S2N+1 is greater than or equal to the next odd partial sum
S2N+3=S2N+1+a2N+2+a2N+3,
implying that the sequence of odd partial sums  is nonincreasing.


	 Every odd partial sum S2N+1 is bounded below by S2.
For, S2N+1>S2N≥S2.
And, every even partial sum S2N is bounded above by S1.
For, S2N<S2N+1≤S1.

	 Therefore, the sequence  of even partial sums is nondecreasing
and bounded above.
That sequence must then have a limit, which we denote by Se.
Similarly, the sequence  of odd partial sums is
nonincreasing
and bounded below.
This sequence of partial sums also must have a limit, which we denote by So.



 Now
(2.40)

 showing that Se=So,
and we denote this common limit by S.
Finally, given an ϵ>0, there exists an N1 so that
|S2N–S|<ϵ if 2N≥N1,
and there exists an N2 so that |S2N+1–S|<ϵ if 2N+1≥N2.
Therefore, if 
then |SN–S|<ϵ, and this proves that the infinite series converges.



Exercise 31.: The Alternating Harmonic Series
 
    
     	 
Show that ∑∞n=1(–1)n/n converges,
but that it is not absolutely convergent.


	  Let  be an alternating series, as in the preceding theorem.
Show that the sum S=∑an is trapped between SN and SN+1, and that
|S–SN|≤|aN|.

	  State and prove a theorem about “eventually alternating infinite series.”


	  Show that ∑zn/n converges if and only if
|z|≤1, and z≠1.
HINT: Use the Abel Summation Formula to evaluate the partial sums.









Exercise 32.
 
     
Let s=p/q be a positive rational number.

     	  For each x>0, show that there exists
a unique y>0 such that ys=x;
i.e., yp=xq.

	  Prove that ∑1/ns converges if s>1
and diverges if s≤1.
HINT: Group the terms as in part (b) of Exercise 26..









Theorem 2.19.
 
 
Let x be a real number, and suppose that  is a sequence of
rational numbers for which x=limpN/qN and x≠pN/qN for any N.
If limqN|x–pN/qN|=0, then x is irrational.

Proof



 We prove the contrapositive statement; i.e.,
if x=p/q is a rational number, then limqN|x–pN/qN|≠0.
We have
(2.41)

 Now the numerator pqN–qpN is not 0 for any N. For, if it were,
then x=p/q=pN/qN, which we have assumed not to be the case.
Therefore, since pqN–qpN is an integer, we have that
(2.42)

 So,
(2.43)

 and this clearly does not converge to 0.



Exercise 33.
 

     	  Let x=∑∞n=0(–1)n/2n.
Prove that x is a rational number.


	  Let y=∑∞n=0(–1)n/2n2.
Prove that y is an irrational number.
HINT: The partial sums of this series are rational numbers.
Now use the preceding theorem and part (b) of Exercise 31.: The Alternating Harmonic Series.









Glossary



	Definition: 
	
    

A italicssequence of real or complex numbers is defined to be a function from the set simplemathmathml-miitalicsNscrollN of natural numbers into the setsimplemathmathml-miitalicsRscrollR
or simplemathmathml-miitalicsC.scrollC.
Instead of referring to such a function as an assignment simplemathmathml-miitalicsn→mathml-miitalicsf(mathml-miitalicsn),scrolln→f(n), we ordinarily use the notation scroll{an},scroll{an}1∞, or scroll{a1,a2,a3,...}.
Here, of course, simplemathmathml-miitalicsamathml-miitalicsnscrollan denotes the number simplemathmathml-miitalicsf(mathml-miitalicsn).scrollf(n).



	Definition: 
	
Let scroll{an} be a sequence of real numbers and let simplemathmathml-miitalicsLscrollL be a real number.
The sequence scroll{an} is said to italicsconverge to simplemathmathml-miitalicsL,scrollL, or that simplemathmathml-miitalicsLscrollL is the italicslimit of scroll{an}, if the following condition
is satisfied.
For every positive number simplemathmathml-miitalicsϵ,scrollϵ, there exists a natural number simplemathmathml-miitalicsNscrollN such that
if simplemathmathml-miitalicsn≥mathml-miitalicsN,scrolln≥N,
then simplemath|mathml-miitalicsamathml-miitalicsn–mathml-miitalicsL|<mathml-miitalicsϵ.scroll|an-L|<ϵ.

    
In symbols, we say simplemathmathml-miitalicsL=limmathml-miitalicsamathml-miitalicsnscrollL=trueprefixliman or

    
(2.44)scrolldisplay
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We also may write simplemathmathml-miitalicsamathml-miitalicsn↦mathml-miitalicsL.scrollan↦L.

    
If a sequence scroll{an} of real or complex numbers
converges to a number simplemathmathml-miitalicsL,scrollL,
we say that the sequence scroll{an} is italicsconvergent.

    
We say that a sequence scroll{an} of real numbers italicsdiverges to simplemath+∞scroll+∞ if for every
positive number simplemathmathml-miitalicsM,scrollM, there exists a natural number simplemathmathml-miitalicsNscrollN such that
if simplemathmathml-miitalicsn≥mathml-miitalicsN,scrolln≥N,
then simplemathmathml-miitalicsamathml-miitalicsn≥mathml-miitalicsM.scrollan≥M.
Note that we do boldboldnot say that such a sequence
is convergent.

    
Similarly, we say that a sequence scroll{an} of real numbers italicsdiverges to simplemath–∞scroll-∞
if for every real number simplemathmathml-miitalicsM,scrollM, there
exists
a natural number simplemathmathml-miitalicsNscrollN such that if
simplemathmathml-miitalicsn≥mathml-miitalicsN,scrolln≥N, then simplemathmathml-miitalicsamathml-miitalicsn≤mathml-miitalicsM.scrollan≤M.

    
The definition of convergence for a sequence scroll{zn} of complex numbers is
exactly the same as for a sequence of real numbers.
Thus, let scroll{zn} be a sequence of complex numbers and let simplemathmathml-miitalicsLscrollL be a complex number.
The sequence scroll{zn} is said to italicsconverge to simplemathmathml-miitalicsL,scrollL, or that simplemathmathml-miitalicsLscrollL is the italicslimit of scroll{zn}, if the following condition
is satisfied.
For every positive number simplemathmathml-miitalicsϵ,scrollϵ, there exists a natural number simplemathmathml-miitalicsNscrollN such that
if simplemathmathml-miitalicsn≥mathml-miitalicsN,scrolln≥N,
then simplemath|mathml-miitalicszmathml-miitalicsn–mathml-miitalicsL|<mathml-miitalicsϵ.scroll|zn-L|<ϵ.

	Definition: 
	
    
A sequence scroll{an} of real numbers is called italicsnondecreasing if
simplemathmathml-miitalicsamathml-miitalicsn≤mathml-miitalicsamathml-miitalicsn+1scrollan≤an+1 for all simplemathmathml-miitalicsn,scrolln, and it is called
italicsnonincreasing if simplemathmathml-miitalicsamathml-miitalicsn≥mathml-miitalicsamathml-miitalicsn+1scrollan≥an+1
for all simplemathmathml-miitalicsn.scrolln.
It is called italicsstrictly increasing if simplemathmathml-miitalicsamathml-miitalicsn<mathml-miitalicsamathml-miitalicsn+1scrollan<an+1 for all simplemathmathml-miitalicsn,scrolln, and
italicsstrictly decreasing if simplemathmathml-miitalicsamathml-miitalicsn>mathml-miitalicsamathml-miitalicsn+1scrollan>an+1 for all simplemathmathml-miitalicsn.scrolln.

    
A sequence scroll{an} of real numbers is called
italicseventually nondecreasing if there exists a
natural number simplemathmathml-miitalicsNscrollN such that simplemathmathml-miitalicsamathml-miitalicsn≤mathml-miitalicsamathml-miitalicsn+1scrollan≤an+1
for all simplemathmathml-miitalicsn≥mathml-miitalicsN,scrolln≥N,
and it is called italicseventually nonincreasing if there
exists a natural number simplemathmathml-miitalicsNscrollN such that simplemathmathml-miitalicsamathml-miitalicsn≥mathml-miitalicsamathml-miitalicsn+1scrollan≥an+1
for all simplemathmathml-miitalicsn≥mathml-miitalicsN.scrolln≥N.
We make analogous definitions of “eventually strictly increasing” and
“eventually strictly decreasing.”



	Definition: 
	
    
Let scroll{an} be a sequence of real or complex numbers.
A italicssubsequence of scroll{an} is
a sequence scroll{bk} that is
determined by the sequence scroll{an}
together with a strictly increasing sequence scroll{nk} of natural numbers.
The sequence scroll{bk} is defined by
simplemathmathml-miitalicsbmathml-miitalicsk=mathml-miitalicsamathml-miitalicsnmathml-miitalicsk.scrollbk=ank.
That is, the simplemathmathml-miitalicskscrollkth term of the sequence scroll{bk} is the simplemathmathml-miitalicsnmathml-miitalicskscrollnkth term of the original sequence scroll{an}.



	Definition: 
	
    
Let scroll{an} be a sequence of real or complex numbers.
A number simplemathmathml-miitalicsxscrollx is called a italicscluster point of the sequence scroll{an} if there exists a subsequence scroll{bk} of scroll{an} such that simplemathmathml-miitalicsx=limmathml-miitalicsbmathml-miitalicsk.scrollx=trueprefixlimbk.
The
set of all cluster points of a sequence scroll{an} is called the italicscluster set of the sequence.



	Definition: 
	
    
 Let scroll{an} be a sequence of real numbers and let simplemathmathml-miitalicsSscrollS denote its cluster set.

    
If simplemathmathml-miitalicsSscrollS is nonempty and bounded above,
we define simplemathlim supmathml-miitalicsamathml-miitalicsnscrolltrueprefixlim supan to be the supremum simplemathsupmathml-miitalicsSscrolltrueprefixsupS of simplemathmathml-miitalicsS.scrollS.

    
If simplemathmathml-miitalicsSscrollS is nonempty and bounded below, we define
simplemathlim infmathml-miitalicsamathml-miitalicsnscrolltrueprefixlim infan to be the infimum simplemathboldmathml-miinfSscrollinfS of simplemathmathml-miitalicsS.scrollS.

    
If the sequence scroll{an} of real numbers is not bounded above, we define simplemathlim supmathml-miitalicsamathml-miitalicsnscrolltrueprefixlim supan to be simplemath∞,scroll∞, and if scroll{an} is not bounded below, we
define
simplemathlim infmathml-miitalicsamathml-miitalicsnscrolltrueprefixlim infan to be simplemath–∞.scroll-∞.

    
If scroll{an} diverges to simplemath∞,scroll∞, then we define simplemathlim supmathml-miitalicsamathml-miitalicsnscrolltrueprefixlim supan and simplemathlim infmathml-miitalicsamathml-miitalicsnscrolltrueprefixlim infan both to be simplemath∞.scroll∞.
And, if scroll{an} diverges to simplemath–∞,scroll-∞, we define simplemathlim supmathml-miitalicsamathml-miitalicsnscrolltrueprefixlim supan and simplemathlim infmathml-miitalicsamathml-miitalicsnscrolltrueprefixlim infan both to be simplemath–∞.scroll-∞.

    
We call simplemathlim supmathml-miitalicsamathml-miitalicsnscrolltrueprefixlim supan the italicslimit superior
of the sequence scroll{an}, and simplemathlim infmathml-miitalicsamathml-miitalicsnscrolltrueprefixlim infan the italicslimit inferior
of scroll{an}.



	Definition: 
	
    
A sequence scroll{an} of real or complex numbers is a italicsCauchy sequence if for every simplemathmathml-miitalicsϵ>0,scrollϵ>0, there
exists
a natural number simplemathmathml-miitalicsNscrollN such that if simplemathmathml-miitalicsn≥mathml-miitalicsNscrolln≥N and simplemathmathml-miitalicsm≥mathml-miitalicsNscrollm≥N then
simplemath|mathml-miitalicsamathml-miitalicsn–mathml-miitalicsamathml-miitalicsm|<mathml-miitalicsϵ.scroll|an-am|<ϵ.



	Definition: 
	
    
Let simplemathmathml-miitalicsSscrollS be a subset of simplemathmathml-miitalicsC.scrollC.
A complex number simplemathmathml-miitalicsxscrollx
is called a italicslimit point of simplemathmathml-miitalicsSscrollS if there exists a sequence scroll{xn} of elements of simplemathmathml-miitalicsSscrollS
such
that simplemathmathml-miitalicsx=limmathml-miitalicsxmathml-miitalicsn.scrollx=trueprefixlimxn.

    
A set simplemathmathml-miitalicsS⊆mathml-miitalicsCscrollS⊆C is called italicsclosed
if every limit point of simplemathmathml-miitalicsSscrollS belongs to simplemathmathml-miitalicsS.scrollS.

	Definition: 
	
    

Let simplemathmathml-miitalicsSscrollS be a subset of simplemathmathml-miitalicsC.scrollC. A point simplemathmathml-miitalicsx∈mathml-miitalicsSscrollx∈S is
called an italicsinterior point of simplemathmathml-miitalicsSscrollS if there exists an simplemathmathml-miitalicsϵ>0scrollϵ>0
such that the open disk simplemathmathml-miitalicsBmathml-miitalicsϵ(mathml-miitalicsx)scrollBϵ(x) of radius simplemathmathml-miitalicsϵscrollϵ around simplemathmathml-miitalicsxscrollx is entirely contained in simplemathmathml-miitalicsS.scrollS.
The set of all interior points of simplemathmathml-miitalicsSscrollS is denoted by simplemathmathml-miitalicsS0scrollS0
and we call simplemathmathml-miitalicsS0scrollS0 the italicsinterior of simplemathmathml-miitalicsS.scrollS.

    
A subset simplemathmathml-miitalicsSscrollS of simplemathmathml-miitalicsCscrollC
is called an italicsopen subset of simplemathmathml-miitalicsCscrollC
if every point of simplemathmathml-miitalicsSscrollS is an interior point of simplemathmathml-miitalicsS;scrollS;
i.e., if simplemathmathml-miitalicsS=mathml-miitalicsS0.scrollS=S0.

    
Analogously, let simplemathmathml-miitalicsSscrollS be a subset of simplemathmathml-miitalicsR.scrollR. A point simplemathmathml-miitalicsx∈mathml-miitalicsSscrollx∈S is
called an italicsinterior point of simplemathmathml-miitalicsSscrollS if there exists an simplemathmathml-miitalicsϵ>0scrollϵ>0
such that the open interval simplemath(mathml-miitalicsx–mathml-miitalicsϵ,mathml-miitalicsx+mathml-miitalicsϵ)scroll(x-ϵ,x+ϵ)
is entirely contained in simplemathmathml-miitalicsS.scrollS.
Again, we denote the set of all interior points of simplemathmathml-miitalicsSscrollS by simplemathmathml-miitalicsS0scrollS0
and call simplemathmathml-miitalicsS0scrollS0 the italicsinterior of simplemathmathml-miitalicsS.scrollS.

    
A subset simplemathmathml-miitalicsSscrollS of simplemathmathml-miitalicsRscrollR
is called an italicsopen subset of simplemathmathml-miitalicsRscrollR
if every point of simplemathmathml-miitalicsSscrollS is an interior point of simplemathmathml-miitalicsS;scrollS;
i.e., if simplemathmathml-miitalicsS=mathml-miitalicsS0.scrollS=S0.



	Definition: 
	
    

Let simplemathmathml-miitalicsSscrollS be a subset of simplemathmathml-miitalicsCscrollC (respectively simplemathmathml-miitalicsR).scrollR). By an italicsopen cover
of simplemathmathml-miitalicsSscrollS we mean a sequence scroll{Un} of open subsets of simplemathmathml-miitalicsCscrollC (respectively simplemathmathml-miitalicsRscrollR)
such that simplemathmathml-miitalicsS⊆∪mathml-miitalicsUmathml-miitalicsn;scrollS⊆∪Un;
i.e., for every simplemathmathml-miitalicsx∈mathml-miitalicsSscrollx∈Sthere exists an simplemathmathml-miitalicsnscrolln such that simplemathmathml-miitalicsx∈mathml-miitalicsUmathml-miitalicsn.scrollx∈Un.

    
A subset simplemathmathml-miitalicsSscrollS of simplemathmathml-miitalicsCscrollC (respectively simplemathmathml-miitalicsRscrollR)
is called italicscompact,
or is said to satisfy the
italicsHeine-Borel property, if every open cover of simplemathmathml-miitalicsSscrollS
has a finite subcover. That is, if scroll{Un}
is an open cover of simplemathmathml-miitalicsS,scrollS, then there exists an integer simplemathmathml-miitalicsNscrollN such that
simplemathmathml-miitalicsS⊆∪mathml-miitalicsNmathml-miitalicsn=1mathml-miitalicsUmathml-miitalicsn.scrollS⊆∪n=1NUn.
In other words, only a finite number of the open sets are necessary to cover simplemathmathml-miitalicsS.scrollS.



	Definition: 
	
    
Let scroll{an}0∞ be a sequence of real or complex numbers.
By the italicsinfinite seriessimplemath∑mathml-miitalicsamathml-miitalicsnscroll∑an we mean the sequence scroll{SN} defined by

    
(2.45)scrolldisplay
        
          
            S
            N
          
          =
          
            ∑
            
              n
              =
              0
            
            N
          
          
            a
            n
          
          .
        
      


    
The sequence scroll{SN} is called the italicssequence of partial sums of the infinite series simplemath∑mathml-miitalicsamathml-miitalicsn,scroll∑an, and the infinite series is
said
to be italicssummable to a number simplemathmathml-miitalicsS,scrollS, or to be italicsconvergent,
if the sequence scroll{SN} of partial sums converges to simplemathmathml-miitalicsS.scrollS.boldboldThe sum of an infinite series is the limit of its partial sums.

    
An infinite series simplemath∑mathml-miitalicsamathml-miitalicsnscroll∑an is called italicsabsolutely summable or italicsabsolutely convergent if the
infinite series simplemath∑|mathml-miitalicsamathml-miitalicsn|scroll∑|an| is convergent.

    
If
simplemath∑mathml-miitalicsamathml-miitalicsnscroll∑an is not convergent, it is called italicsdivergent.
If it is convergent but not absolutely convergent, it is
called italicsconditionally convergent.

    
A few simple formulas relating the simplemathmathml-miitalicsamathml-miitalicsnscrollan's and the simplemathmathml-miitalicsSmathml-miitalicsNscrollSN's are useful:
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and
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for simplemathmathml-miitalicsM>mathml-miitalicsK.scrollM>K.





Solutions


Chapter 6. Integration over Smooth Curves in the Plane



6.1. Integration Over Smooth Curves in the Plane C=2π r*



 In this chapter we will define what we mean
by a smooth curve in the plane and what is meant by its arc length.
These definitions are a good bit more tricky than one might imagine.
Indeed, it is the subtlety of the definition of arc length
that prevented us from defining the trigonometric functions in terms of
wrapping the real line around the circle, a definition frequently used in high school trigonometry courses.
Having made a proper definition of arc length, we will then be able to establish the formula C=2πr for the circumference of a circle of radius r.
 By the “plane,” we will mean R2≡C,
and we will on occasion want to carefully distinguish between these two notions of the plane,
i.e., two real variables x and y as opposed to one complex variable z=x+iy.
In various instances, for clarity,
we will use notations like x+iy and (x,y), remembering that both of these represent the
same point in the plane.
As x+iy, it is a single complex number, while as (x,y)
we may think of it as a vector in R2 having a magnitude and, if nonzero, a direction.
 We also will define in this chapter three different kinds of integrals
over such curves.
The first kind, called “integration with respect to arc length,”
will be completely analogous to the integral defined
in Section 6.1 for functions on a closed and bounded interval, and it will only
deal with functions whose domain is the set consisting of the points on the curve.
The second kind of integral, called a “contour integral,” is
similar to the first one, but it emphasizes in a critical way that we are integrating
a complex-valued function over a curve in the complex plane C and not simply over a subset of R2.
The applications of contour integrals is usually to functions
whose domains are open subsets of the plane that contain the curve as a proper subset,
i.e., whose domains are larger than just the curve.
The third kind of integral over a curve, called a “line integral,”
is conceptually very different from the first two.
In fact, we won't be integrating functions at all but rather a new notion that we call “differential forms.”
This is actually the beginnings of the subject called differential geometry,
whose intricacies and power are much more evident in higher dimensions than 2.
 The main points of this chapter include:
 	 The definition of a smooth curve,
and the definition of its arc length,


	 the derivation of the formula C=2πr for the
circumference of a circle of radius r (Theorem 6.5.),


	 the definition of the integral with respect to arc length,


	 the definition of a contour integral,


	 the definition of a line integral, and


	 Green's Theorem (Theorem 6.15.).





6.2. Smooth Curves in the Plane*



 Our first project is to make a satisfactory definition of a smooth curve in the plane,
for there is a good bit of subtlety to such a definition.
In fact, the material in this chapter is all surprisingly tricky,
and the proofs are good solid analytical arguments, with lots of ϵ's and references
to earlier theorems.
 Whatever definition we adopt for a curve, we certainly want straight lines, circles, and other natural geometric objects to be covered by our definition.
Our intuition is that a curve in the plane should be a “1-dimensional” subset, whatever that may mean.
At this point, we have no definition of the dimension of a general set, so this is probably not the way to think about curves.
On the other hand, from the point of view of a physicist, we might well define a curve as the trajectory followed
by a particle moving in the plane, whatever that may be.
As it happens, we do have some notion of how to describe mathematically the trajectory of a moving particle.
We suppose that a particle moving in the plane proceeds in a continuous manner relative to time.
That is, the position of the particle at time t is given by a continuous function f(t)=x(t)+iy(t)≡(x(t),y(t)),
as t ranges from time a to time b.
A good first guess at a definition of a curve joining two points z1 and z2
might well be that it is the range C of a continuous
function f that is defined on some closed bounded interval [a,b]. This would be a
curve that joins the two points z1=f(a) and z2=f(b)
in the plane.
Unfortunately, this is also not a satisfactory definition of a curve, because of the following
surprising and bizarre mathematical example,
first discovered by Guiseppe Peano in 1890.

 THE PEANO CURVE The so-called “Peano curve” is a continuous function f defined on the interval [0,1], whose range
is the entire unit square [0,1]×[0,1] in R2.



 Be careful to realize that we're talking about the “range” of f and not its graph.
The graph of a real-valued function could never be the entire square.
This Peano function is a complex-valued function of a real variable.
Anyway, whatever definition we settle on for a curve, we do not want the entire unit square to
be a curve, so this first attempt at a definition is obviously not going to work.
 Let's go back to the particle tracing out a trajectory.
The physicist would probably agree that the particle should have a continuously varying velocity at all times, or at nearly all times,
i.e., the function f should be continuously differentiable.
Recall that the velocity of the particle is defined to be the rate of change of the position
of the particle, and that's just the derivative f' of f.
We might also assume that the particle is never at rest as it traces out the curve, i.e., the
derivative f'(t) is never 0.
As a final simplification,
we could suppose that the curve never crosses itself, i.e., the particle
is never at the same position more than once during the time interval from t=a to t=b.
In fact, these considerations inspire the formal definition of a curve that we will adopt below.
 Recall that a function f that is continuous on a closed interval
[a,b] and continuously differentiable on the open interval (a,b) is called a smooth function on [a,b].
And, if there exists a partition  of [a,b] such that f is smooth on each subinterval 
then f is called piecewise smooth on [a,b].
Although the derivative of a smooth function is only defined and continuous on the open interval (a,b),
and hence possibly is unbounded,
it follows from part (d) of Exercise 22. that this derivative is improperly-integrable
on that open interval.
We recall also that just because a function is improperly-integrable on an open interval,
its absolute value may not be improperly-integrable.
Before giving the formal definition of a smooth curve,
which apparently will be related to smooth or piecewise smooth functions,
it is prudent to present an approximation theorem about smooth functions.
Exercise 20. asserts that every continuous function on a closed bounded interval
is the uniform limit of a sequence of step functions.
We give next a similar, but stronger, result about smooth functions.
It asserts that a smooth function can be approximated “almost uniformly” by piecewise linear functions.
Theorem 6.1.
 
Let f be a smooth function on a closed and bounded interval [a,b],
and assume that |f'| is improperly-integrable on the open interval (a,b).
Given an ϵ>0, there exists a
piecewise linear function p for which
 	  |f(x)–p(x)|<ϵ for all x∈[a,b].

	  



 That is, the functions f and p are close everywhere, and their
derivatives are close on average in the sense that the
integral of the absolute value of the difference of the derivatives is small.

Proof



 
Because f is continuous on the compact set [a,b], it is uniformly continuous.
Hence, let δ>0 be such that if x,y∈[a,b], and |x–y|<δ,
then |f(x)–f(y)|<ϵ/2.
 Because |f'| is improperly-integrable on the open interval (a,b),
we may use part (b) of Exercise 22.
to find a δ'>0, which may also be chosen to be
<δ, such that ∫aa+δ'|f'|+∫bb–δ'|f'|<ϵ/2,
and we fix such a δ'.
 Now, because f' is uniformly continuous on the compact set  there
exists an α>0 such that
|f'(x)–f'(y)|<ϵ/4(b–a) if x and y belong to
 and |x–y|<α.
Choose a partition  of [a,b]
such that x0=a,x1=a+δ',xn–1=b–δ',xn=b, and xi–xi–1<min(δ,α) for 2≤i≤n–1.
Define p to be the piecewise linear function on [a,b] whose graph is the polygonal line joining the n+1 points
 for 1≤i≤n–1, and 
That is, p is constant on the outer subintervals  and  determined by the partition, and its
graph between x1 and xn–1 is the polygonal line joining the points 
For example, for 2≤i≤n–1, the function p has the form
(6.1)

 on the interval 
So, p(x) lies between the numbers  and  for all i. Therefore,
(6.2)

 Since this inequality holds for all i, part (1) is proved.
 Next, for 2≤i≤n–1, and for each  we have  which,
by the Mean Value Theorem, is equal to  for some 
So, for each such  we have 
and this is less than ϵ/4(b–a),
because |x–yi|<α.
On the two outer intervals, p(x) is a constant, so that p'(x)=0.
Hence,
(6.3)

 The proof is now complete.




 REMARK
It should be evident that the preceding theorem can
easily be generalized to a piecewise smooth function f,
i.e., a function that is continuous on [a,b],
continuously differentiable on each subinterval  of a partition 
and whose derivative f' is absolutely integrable on (a,b).
Indeed, just apply the theorem to each of the subintervals 
and then carefully piece together the piecewise linear
functions on those subintervals.



 Now we are ready to define what a smooth curve is.
	 Definition: 
	 
      
 
By a smooth curve from a point z1 to a different point z2 in the plane, we mean
a set C⊆C that is the
range of a 1-1, smooth, function φ:[a,b]→C,
where [a,b] is a bounded closed interval in R,
where z1=φ(a) and z2=φ(b),
and satisfying φ'(t)≠0 for all t∈(a,b).

      
 More generally, if φ:[a,b]→R2 is
1-1 and piecewise smooth on [a,b],
and if  is a partition of [a,b]
such that φ'(t)≠0 for all 
then the range C of φ is called a piecewise smooth curve from z1=φ(a) to z2=φ(b).

      
 In either of these cases, φ is called a parameterization of the curve C.





 Note that we do not assume that |φ'| is improperly-integrable, though the preceding theorem might
have made you think we would.

 REMARK
Throughout this chapter we will be continually faced with the
fact that a given curve can have many different parameterizations.
Indeed, if φ1:[a,b]→C is a parameterization, and if
g:[c,d]→[a,b] is a smooth function having a nonzero derivative, then φ2(s)=φ1(g(s))
is another parameterization of C.
Since our definitions and proofs about curves often involve a parametrization,
we will frequently need to prove that the results we obtain are independent of the parameterization.
The next theorem will help; it shows that any two parameterizations of C are connected
exactly as above, i.e., there always is such a function g
relating φ1 and φ2.



Theorem 6.2.
 
Let φ1:[a,b]→C and φ2:[c,d]→C be two parameterizations
of a piecewise smooth curve C joining z1 to z2.
Then there exists a piecewise smooth function g:[c,d]→[a,b] such that φ2(s)=φ1(g(s))
for all s∈[c,d].
Moreover, the derivative g' of g is nonzero for all but a finite number of points in [c,d].

Proof



 Because both φ1 and φ2 are continuous and 1-1,
it follows from Theorem 3.10. that the function g=φ1–1∘φ2 is continuous
and 1-1 from [c,d] onto [a,b]. Moreover, from Theorem 3.11.,
it must also be that g is strictly increasing or strictly decreasing.
Write  and

Let  be a partition of [a,b] for which φ1' is continuous
and nonzero
on the subintervals 
and let  be a partition of [c,d]
for which φ2' is continuous and nonzero
on the subintervals 
Then let  be the partition of [c,d] determined by
the finitely many points 
We will show that g is continuously differentiable at each point s in the subintervals 
 Fix an s in one of the intervals  and let 
Of course this means that
φ1(t)=φ2(s), or u1(t)=u2(s) and v1(t)=v2(s).
Then t is in some one of the intervals  so that we know that φ1'(t)≠0.
Therefore, we must have that at least one of u1'(t) or v1'(t) is nonzero.
Suppose it is v1'(t) that is nonzero.
The argument, in case it is u1'(t) that is nonzero, is completely analogous.
Now, because v1' is continuous at t and v1'(t)≠0, it follows
that v1 is strictly monotonic in some neighborhood (t–δ,t+δ) of t and therefore is 1-1 on that interval.
Then v1–1 is continuous by Theorem 3.10., and is differentiable at the point v1(t)
by the Inverse Function Theorem.
We will show that on this small interval g=v1–1∘v2, and this will prove that g is continuously differentiable at s.
 Note first that if φ2(σ)=x+iy is a point on the curve C,
then 
Then, for any τ∈[a,b], we have
(6.4)

 showing that v1–1∘v2=g–1–1=g.
Hence g is continuously differentiable at every point s in the subintervals 
Indeed  for all σ near s,
and hence g is piecewise smooth.
 Obviously, φ2(s)=φ1(g(s)) for all s,
implying that φ2'(s)=φ1'(g(s))g'(s).
Since φ2'(s)≠0 for all but a finite number of points s, it follows that g'(s)≠0
for all but a finite number of points,
and the theorem is proved.



Corollary 6.1.
 
Let φ1 and φ2 be as in the theorem.
Then, for all but a finite number of points z=φ1(t)=φ2(s) on the curve C,
we have
(6.5)


Proof



 From the theorem we have that
(6.6)
          
            φ2'
            
              (
              s
              )
            
            =
            φ1'
            
              (
              g
              
                (
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                )
              
              )
            
            g'
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              )
            
            =
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              (
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              )
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              (
              s
              )
            
          
        
 for all but a finite number of points s∈(c,d). Also, g is strictly increasing, so that
g'(s)≥0 for all points s where g is differentiable.
And in fact, g'(s)≠0 for all but a finite number of s's, because g'(s)
is either  or 
and these are nonzero except for a finite number of points.
Now the corollary follows by direct substitution.




 REMARK
If we think of  as a vector in the plane R2,
then the corollary asserts that the direction of this vector is
independent of the parameterization, at least at all but a finite number of points.
This direction vector will come up again as the unit tangent of the curve.



 The adjective “smooth” is meant to suggest that the curve is bending in
some reasonable way, and specifically it should mean that the curve has a tangent, or tangential direction, at each point.
We give the definition of tangential direction below, but we note that in the
context of a moving particle, the tangential direction
is that direction in which the particle would continue to move if the force
that is keeping it on the curve were totally removed.
If the derivative φ'(t)≠0, then this vector is the velocity vector,
and its direction is exactly what we should mean by the tangential direction.
 The adjective “piecewise” will allow us to consider curves that have a finite number
of points where there is no tangential direction, e.g., where there are “corners.”
 We are carefully orienting our curves at the moment.
A curve C from z1 to z2 is being distinguished from the same curve
from z2 to z1, even though the set C is the same in both instances.
Which way we traverse a curve will be of great importance at the end of this chapter,
when we come to Green's Theorem.
	 Definition: 
	 
      
 
Let C, the range of φ:[a,b]→C, be a piecewise smooth curve,
and let z=(x,y)=φ(c) be a point on the curve.
We say that the curve C has a tangential direction at z,
relative to the parameterization φ,
if the following limit exists:

      
(6.7)


      
 If this limit exists, it is a vector of length 1 in R2,
and this unit vector is called the unit tangent (relative to the parameterization φ) to C at z.

      
 The curve C has a unit tangent at the point z if there exists
a parameterization φ for which the unit tangent at z relative to φ exists.





Exercise 1.
 
       	  Restate the definition of tangential direction and unit tangent using the
R2 version of the plane instead of the C version.
That is, restate the definition in terms of pairs (x,y) of real numbers instead of a complex number z.

	  Suppose φ:[a,b]→C is a parameterization of a piecewise smooth curve C,
and that t∈(a,b) is a point where φ is differentiable
with φ'(t)≠0. Show that the unit tangent (relative to the parameterization φ)
to C at z=φ(t) exists and equals
φ'(t)/|φ'(t)|.
Conclude that, except possibly for a finite number of points, the unit tangent to C at z is independent of the parameterization.


	  Let C be the graph of the function f(t)=|t| for t∈[–1,1].
Is C a smooth curve?
Is it a piecewise smooth curve?
Does C have a unit tangent at every point?


	  Let C be the graph of the function  for t∈[–1,1].
Is C a smooth curve?
Is it a piecewise smooth curve?
Does C have a unit tangent at every point?


	  Consider the set C that is the right half of the unit circle in the plane.
Let φ1:[–1,1]→C be defined by

(6.8)


and let φ2:[–1,1]→C be defined by

(6.9)


Prove that φ1 and φ2 are both parameterizations of C.
Discuss the existence of a unit tangent at the point (1,0)=φ1(0)=φ2(0) relative to these two parameterizations.


	  Suppose φ:[a,b]→C is a parameterization of a curve C
from z1 to z2.
Define ψ on [a,b] by ψ(t)=φ(a+b–t).
Show that ψ is a parameterization of a curve from z2 to z1.







Exercise 2.
 
       	  Suppose f is a
smooth, real-valued function defined on the closed interval [a,b],
and let C⊆R2 be the graph of f.
Show that C is a smooth curve, and find a “natural”
parameterization φ:[a,b]→C of C.
What is the unit tangent to C at the point (t,f(t))?

	  Let z1 and z2 be two distinct points in C,
and define φ:[0,1]→c by φ(t)=(1–t)z1+tz2.
Show that φ is a parameterization of the straight line from the point z1 to the point z2.
Consequently, a straight line is a smooth curve.
(Indeed, what is the definition of a straight line?)


	  Define a function φ:[–r,r]→R2 by
 Show that the range C of φ
is a smooth curve, and that φ is a parameterization of C.

	  Define φ on [0,π/2) by φ(t)=eit.
For what curve is φ a parametrization?


	  Let z1,z2,...,zn be n distinct points in the plane, and suppose
that the polygonal line joing these points in order never crosses itself.
Construct a parameterization of that polygonal line.


	  Let S be a piecewise smooth geometric set determined by the interval [a,b] and the
two piecewise smooth bounding functions u and l. Suppose z1 and z2
are two points in the interior S0 of S. Show that there exists a
piecewise smooth curve C joining z1 to z2,
i.e., a piecewise smooth function  with  and 
that lies entirely in S0.

	  Let C be a piecewise smooth curve, and suppose φ:[a,b]→C
is a parameterization of C.
Let [c,d] be a subinterval of [a,b].
Show that the range of the restriction of φ to [c,d] is a smooth curve.









Exercise 3.
 
       
Suppose C is a smooth curve, parameterized by φ=u+iv:[a,b]→C.

       	  Suppose that u'(t)≠0 for all t∈(a,b).
Prove that there exists a smooth, real-valued function f on some closed interval  such that
C coincides with the graph of f.
HINT: f should be something like v∘u–1.

	  What if v'(t)≠0 for all t∈(a,b)?







Exercise 4.
 
       
Let C be the curve that is the
range of the function φ:[–1,1]→C, where
φ(t)=t3+t6i).

       	  Is C a piecewise smooth curve?
Is it a smooth curve?
What points z1 and z2 does it join?


	  Is φ a parameterization of C?

	  Find a parameterization for C by a function
ψ:[3,4]→C.

	  Find the unit tangent to C and the point 0+0i.







Exercise 5.
 
       Let C be the curve parameterized by φ:[–π,π–ϵ]→C defined by φ(t)=eit=cos(t)+isin(t).

       	  What curve does φ parameterize?


	  Find another parameterization of this curve, but base on the interval [0,1–ϵ].




 



6.3. Arc Length*



 Suppose C is a piecewise smooth curve, parameterized by a function φ.
Continuing to think like a physicist, we might guess that
the length of this curve could be computed as follows.
The particle is moving with velocity φ'(t). This velocity is
thought of as a vector in R2, and as such it has a direction and a magnitude or speed.
The speed is just the absolute value |φ'(t)| of the velocity vector φ'(t). Now distance is
speed multiplied by time, and so a good guess for the formula for the
length L of the curve C would be
(6.10)

 Two questions immediately present themselves. First, and of primary interest,
is whether the function |φ'| is improperly-integrable on (a,b)?
We know by Exercise 22. that φ' itself is improperly-integrable, but
we also know from Exercise 23. that a function can be improperly-integrable on an open interval
and yet its absolute value is not.
In fact, the answer to this first question is no (See Exercise 6.: A curve of infinite length.).
We know only that |φ'| exists and is continuous on the open subintervals of a partition of [a,b].
 The second question is more subtle.
What if we parameterize a curve in two different ways, i.e., with
two different functions φ1 and φ2? How do we know that the two
integral formulas for the length have to agree?
Of course, maybe most important of all to us, we also must justify the physicist's intuition.
That is, we must give a rigorous mathematical definition of the length of a smooth curve and show
that Formula (Equation 6.10) above does in fact give the length of the curve.
First we deal with the independence of parameterization question.
Theorem 6.3.
 
Let C be a smooth curve joining (distinct) points z1 to z2 in C,
and let φ1:[a,b]→C and φ2:[c,d]→C
be two parameterizations of C.
Suppose |φ2'| is improperly-integrable on (c,d). Then
|φ1'|is improperly-integrable on (a,b), and
(6.11)


Proof



 We will use Theorem 6.2.. Thus, let g=φ1–1∘φ2,
and recall that g is continuous on [c,d] and continuously differentiable on each open subinterval of a certain partition of [c,d].
Therefore, by part (d) of Exercise 22., g' is
improperly-integrable on (c,d).
 Let  be a partition of [a,b] for which φ1' is continuous
and nonzero
on the subintervals 
To show that |φ1'| is improperly-integrable on (a,b),
it will suffice to show this integrability on each subinterval 
Thus, fix a closed interval 
and let  be the closed subinterval of [c,d] such that g maps  1-1 and onto 
Hence, by part (e) of Exercise 22., we have
(6.12)

 which, by taking limits as a' goes to xj–1 and b' goes to xj,
shows that
|φ1'| is improperly-integrable over  for every j, and hence integrable over all of (a,b).
Using part (e) of Exercise 22. again, and a calculation similar
to the one above, we deduce the equality
(6.13)
        
          ∫ab
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            |
            =
          
          ∫cd
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          ,
        
      
 and the theorem is proved.



Exercise 6.: A curve of infinite length
 
     

Let φ:[0,1]:R2 be defined by
φ(0)=(0,0), and for t>0,φ(t)=(t,tsin(1/t)). Let C be the smooth
curve that is the range of φ.

     	  Graph this curve.


	  Show that

(6.14)


	  Show that

(6.15)


	  Show that there exists an ϵ>0 so that
for each positive integer n we have cos2(t)–sin(2t)/t>1/2
for all t such that |t–nπ|<ϵ.

	  Conclude that |φ'| is not improperly-integrable on (0,1).
Deduce that, if Formula (Equation 6.10) is correct for the length of a curve, then this curve has infinite length.








 Next we develop a definition of the length of a parameterized curve
from a purely mathematical or geometric point of view.
Happily, it will turn out to coincide with the physically intuitive definition discussed above.
 Let C be a piecewise smooth curve joining the points z1 and z2, and let φ:[a,b]→C
be a parameterization of C.
Let  be a partition of the interval [a,b].
For each 0≤j≤n write  and
think about the polygonal trajectory joining these points  in order.
The length LPφ of this polygonal trajectory is given by the formula
(6.16)

 and this length is evidently an approximation to the length of the curve C.
Indeed, since the straight line joining two points is the shortest curve joining those points, these polygonal trajectories
all should have a length smaller than or equal to the length of the curve.
These remarks motivate the following definition.
	 Definition: 
	 
    
 
Let φ:[a,b]→C be a parameterization of a piecewise smooth curve C⊂C.
By the lengthLφ of C, relative to the parameterization φ,
we mean the number Lφ=supPLPφ,
where the supremum is taken over all partitions P of [a,b].






 
Of course, the supremum in the definition above could well
equal infinity in some cases.
Though it is possible for a curve to have an infinite length,
the ones we will study here will have finite lengths.
This is another subtlety of this subject. After all, every smooth curve is a compact
subset of R2, since it is the continuous image of a closed and bounded interval, and
we think of compact sets as being “finite” in various ways.
However, this finiteness does not necessarily extend to the length of a curve.



Exercise 7.
 
     
Let φ:[a,b]→R2 be a parameterization of a piecewise smooth curve C,
and let P and Q be two partitions of [a,b].

     	  If P is finer than Q, i.e., Q⊆P,
show that LQφ≤LPφ.

	  If φ(t)=u(t)+iv(t), express LPφ
in terms of the numbers  and 







 Of course, we again face the annoying possibility that the definition
of length of a curve will depend on the parameterization we are using.
However, the next theorem, taken together with Theorem 6.3., will show that this is not the case.
Theorem 6.4.
 
If C is a piecewise smooth curve parameterized by φ:[a,b]→C,
then
(6.17)

 specifically meaning that one of these quantities is infinite if and only if the other one is infinite.

Proof



 
We prove this theorem for the case when C is a smooth curve, leaving the
general argument for a piecewise smooth curve to the exercises.
We also only treat here the case when Lφ is finite, also leaving the
argument for the infinite case to the exercises.
Hence, assume that φ=u+iv is a smooth function on [a,b] and that Lφ<∞.
 Let ϵ>0 be given. Choose a partition  of [a,b] for which
(6.18)

 Because φ is continuous, we may assume by making a finer partition if necessary that the tj's
are such that  and 
This means that
(6.19)

 The point of this step (trick) is that
we know that φ' is continuous on the open interval (a,b), but we will use that
it is uniformly continuous on the compact set 
Of course that means that |φ'| is integrable on that closed interval, and in fact one of the
things we need to prove is that |φ'| is improperly-integrable on the open interval (a,b).
 Now, because φ' is uniformly continuous on the closed interval  there exists a δ>0
such that |φ'(t)–φ'(s)|<ϵ if |t–s|<δ and t and s are in the interval 
We may assume, again by taking a finer partition if necessary, that the mesh size of Pis less than this δ.
Then, using part (f) of Exercise 9., we may also assume that
the partition P is such that
(6.20)

 no matter what points sj in the interval  are chosen.
So, we have the following calculation, in the middle of which we use the Mean Value Theorem on the two functions u and v.
(6.21)

 This implies that
(6.22)

 If we now let t1 approach a and tn–1 approach b, we get
(6.23)
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 which completes the proof, since ϵ is arbitrary.



Exercise 8.
 
     	  Take care of the piecewise case in the preceding theorem.


	  Take care of the case when Lφ is infinite in the preceding theorem.








 We now have all the ingredients necessary to define the
length of a smooth curve.
	 Definition: 
	 
    
 
Let C be a piecewise smooth curve in the plane.
The length or arc lengthL≡L(C) of C is defined by the formula

    
(6.24)


    
 where φ is any parameterization of C.

    
 If z and w are two points on a piecewise smooth curve C,
we will denote by L(z,w) the arc length of the portion of the curve between z and w.






 REMARK
According to Theorem 6.3. and Theorem 6.4., we have the following formula for the length of a piecewise smooth curve:
(6.25)

 where φ is any parameterization of C.
 It should come as no surprise that the length of a curve C from z1 to z2
is the same as the length of that same curve C, but thought of as joining z2 to z1.
Nevertheless, let us make the calculation to verify this.
If φ:[a,b]→C is a parameterization of this curve from z1 to z2,
then we have seen in part (f) of exercise 6.1 that ψ:[a,b]→C, defined by ψ(t)=φ(a+b–t),
is a parameterization of C from z2 to z1.
We just need to check that the two integrals giving the lengths are equal. Thus,
(6.26)

 where the last equality follows by changing variables, i.e., setting t=a+b–s.
 We can now derive the formula for the circumference of a circle, which was one of our main goals.
TRUMPETS?



Theorem 6.5.
 
Let C be a circle of radius r in the plane.
Then the length of C
is 2πr.

Proof



 
Let the center of the circle be denoted by (h,k).
We can parameterize the top half of the circle by the function
φ on the interval [0,π] by
φ(t)=h+rcos(t)+i(k+rsin(t)). So, the length of this half circle is given by
(6.27)

 The same kind of calculation would show that the lower half of the circle has length πr,
and hence the total length is 2πr.



 The integral formula for the length of a curve is frequently not much help,
especially if you really want to know how long a curve is.
The integrals that show up are frequently not easy to work out.
Exercise 9.
 
     	  Let C be the portion of the graph of the function
y=x2 between x=0 and x=1.
Let φ:[0,1]→C be the parameterization of this curve given by
φ(t)=t+t2i.
Find the length of this curve.


	  Define φ:[–0,π]→C by φ(t)=acos(t)+ibsin(t).
What curve does φ parameterize, and can you find its length?









6.4. Integration with Respect to Arc Length*



 We introduce next what would appear to be the best
parameterization of a piecewise smooth curve, i.e., a parameterization by arc length.
We will then use this parameterization to define the integral of a function
whose domain is the curve.
Theorem 6.6.
 
Let C be a piecewise smooth curve of finite length L joining two distinct points z1 to z2.
Then there exists a parameterization
γ:[0,L]→C for which the arc length
of the curve joining γ(t) to γ(u) is equal to |u–t| for
all t<u∈[0,L].

Proof



 
Let φ:[a,b]→C be a parameterization of C.
Define a function F:[a,b]→[0,L] by
(6.28)

 In other words, F(t) is the length of the portion of C that joins the points z1=φ(a) and φ(t).
By the Fundamental Theorem of Calculus, we know that the function F
is continuous on the entire interval [a,b]
and is continuously differentiable on every subinterval  of the partition
P determined by the piecewise smooth parameterization φ.
Moreover, F'(t)=|φ'(t)|>0 for all 
implying that F is strictly increasing on these subintervals.
Therefore, if we write  then the si's
form a partition of the interval [0,L],
and the function  is invertible, and its inverse F–1
is continuously differentiable.
It follows then that γ=φ∘F–1:[0,L]→C is a parameterization of C.
The arc length between the points γ(t) and γ(u)
is the arc length between  and 
and this is given by the formula
(6.29)

 which completes the proof.



Corollary 6.2.
 
If γ is the parameterization by arc length of the preceding theorem,
then, for all  we have |γ'(s)|=1.

Proof



 We just compute
(6.30)

 as desired.



 We are now ready to make the first of our three definitions of integral over a curve.
This first one is pretty easy.
 Suppose C is a piecewise smooth curve joining z1 to z2 of finite length L, parameterized by arc length.
Recall that this means that there is a 1-1 function γ from the interval [0,L] onto C
that satisfies the condidition that the arc length betweenthe two points γ(t) and γ(s)
is exactly the distance between the points t and s.
We can just identify the curve C with the interval [0,L], and relative distances will correspond perfectly.
A partition of the curve C will correspond naturally to a partition of the interval [0,L].
A step function on the dcurve will correspond in an obvious way
to a step function on the interval [0,L],
and the formula for the integral
of a step function on the curve is analogous to what it is on the interval.
Here are the formal definitions:
	 Definition: 
	 
    
 
Let C be a piecewise smooth curve of finite length L joining distinct points,
and let γ:[0,L]→C be a parameterization of C by arc length.
By a partition of C we mean a set  of points on C
such that  for all j,
where the points  form a partition of the interval [0,L].
The portions of the curve between the points zj–1 and zj, i.e., the
set  are called the elements of the partition.

    
 A step fucntion on C is a real-valued function h on C
for which there exists a partition  of C such that
h(z) is a constant aj on the portion of the curve between zj–1 and zj.





 Before defining the integral of a step function on a curve, we need to establish the usual consistency
result, encountered in the previous cases of
integration on intervals and integration over geometric sets,
the proof of which this time we put in an exercise.
Exercise 10.
 
     
Suppose h is a function on a piecewise smooth curve of finite length L,
and assume that there exist two partitions  and  of C such that
h(z) is a constant ak on the portion of the curve between zk–1 and zk, and h(z) is a constant bj
on the portion of the curve between wj–1 and wj.
Show that

    (6.31)


     HINT: Make use of the fact that h∘γ is a step function on the interval [0,L].




 Now we can make the definition of the integral of a step function on a curve.
	 Definition: 
	 
    
 
Let h be a step function on a piecewise smooth curve C of finite length L.
The integral, with respect to arc length of h over C is denoted by
 and is defined by

    
(6.32)


    
 where  is a partition of C for which h(z) is
the constant aj on the portion of C between zj–1 and zj.





 Of course, integrable functions on C with respect to arc length will
be defined to be functions that are uniform limits of step functions.
Again, there is the consistency issue in the definition of the integral of an integrable function.
Exercise 11.
 
     	  Suppose  is a sequence of step functions
on a piecewise smooth curve C of finite length, and assume that
the sequence  converges uniformly to a function f.
Prove that the sequence  is a convergent sequence of real numbers.


	  Suppose  and  are two sequences of step functions on a
piecewise smooth curve C of finite length l,
and that both sequences converge uniformly to the same function f.
Prove that

(6.33)








	 Definition: 
	 
    
 
Let C be a piecewise smooth curve of finite length L.
A function f with domain C is called integrable with respect to arc length on C if
it is the uniform limit of step functions on C.

    
 The integral with respect to arc length of an integrable function f on C
is again denoted by  and
is defined by

    
(6.34)


    
 where  is a sequence of step functions that converges uniformly to f on C.





 In a sense, we are simply identifying the curve C with the interval [0,L] by means
of the 1-1 parameterizing function γ.
The next theorem makes this quite plain.
Theorem 6.7.
 
Let C be a piecewise smooth curve of finite length L, and let γ be a parameterization of C by arc length.
If f is an integrable function on C, then
(6.35)


Proof



 
First, if h is a step function on C, let
 be a partition of C for which
h(z) is a constant aj on the portion of the curve between zj–1 and zj.
Let  be the partition of [0,L] for which  for every j.
Note that h∘γ is a step function on [0,L], and that h∘γ(t)=aj for all 
Then,
(6.36)

 which proves the theorem for step functions.



 Finally, if f=limhn is an integrable function on C, then
the sequence  converges uniformly to f∘γ on [0,L], and so
(6.37)

 where the final equality follows from Theorem 5.6..
Hence, Theorem 6.7. is proved.
 Although the basic definitions of integrable and integral, with respect to arc length,
are made in terms of the particular parameterization γ of the curve,
for computational purposes we need to know how to evaluate these integrals using
different parameterizations.
Here is the result:
Theorem 6.8.
 
Let C be a piecewise smooth curve of finite length L, and
let φ:[a,b]→C be a parameterization of C.
If f is an integrable function on C. Then
(6.38)


Proof



 Write γ:[0,L]→C for a parameterization of C by arc length.
As in the proof to Theorem 6.7.,
we write g:[a,b]→[0,L] for γ–1∘φ.
Just as in that proof, we know that g is a piecewise smooth function on the interval [a,b].
Hence, recalling that |γ'(t)|=1 and g'(t)>0 for all but a finite number of points, the following calculation is justified:
(6.39)

 as desired.



Exercise 12.
 
     
Let C be the straight line joining the points (0,1) and (1,2).

     	  Find the arc length parameterization 

	  Let f be the function on this curve given by f(x,y)=x2y.
Compute 

	  Let f be the function on this curve that is defined by
f(x,y) is the distance from (x,y) to the point (0,3).
Compute 







 The final theorem of this section sums up the properties of
integrals with respect to arc length. There are no surprises here.
Theorem 6.9.
 
Let C be a piecewise smooth curve of finite length L, and write
I(C) for the set of all functions that are integrable with respect
to arc length on C. Then:
 	  I(C) is a vector space ovr the real numbers, and

(6.40)


for all f,g∈I(C) and all a,b∈R.

	  (Positivity) If f(z)≥0 for all z∈C, then 

	 If f∈I(C), then so is |f|,
and 

	 If f is the uniform limit of functions fn,
each of which is in I(C), then f∈I(C)
and 

	 Let  be a sequence of functions in I(C),
and suppose that for each n there is a number
mn, for which |un(z)|≤mn for all z∈C,
and such that the infinite series ∑mn converges.
Then the infinite series ∑un converges uniformly to an integrable function,
and 






Exercise 13.
 
     	  Prove the preceding theorem.
Everything is easy if we compose all functions on C with the parameterization γ, obtaining functions on [0,L],
and then use Theorem 5.6..


	  Suppose C is a piecewise smooth curve of finite length joining z1 and z2.
Show that the integral with respect to arc length of a function
f
over C is the same whether we think of C as being a curve from z1 to z2 or, the other way around,
a curve from z2 to z1.








 REMARK
Because of the result in part (b) of the preceding exercise,
we speak of “integrating over C” when we are integrating
with respect to arc length. We do not speak of “integrating from z1 to z2,” since the direction
doesn't matter. This is in marked contrast to the next two kinds of
integrals over curves that we will discuss.
 here is one final bit of notation.
Often, the curves of interest to us are graphs of real-valued functions.
If g:[a,b]→R is a piecewise smooth function, then its graph C is a piecewise
smooth curve, and we write 
for the integral with respect to arc length of f over C=graph(g).




6.5. Contour Integrals*



 We discuss next what appears to be a simpler notion
of integral over a curve.
In this one, we really do regard the curve C as a subset of the complex plane as opposed to two-dimensional real space;
we will be integrating complex-valued functions; and we explicitly think of the
parameterizations of the curve as complex-valued functions on an interval [a,b].
Also, in this definition, a curve C from z1 to z2 will be distinguished
from its reverse, i.e., the same set C thought of as a curve from z2 to z1.
	 Definition: 
	 
    
 
Let C be a piecewise smooth curve from z1 to z2 in the plane C,
parameterized by a (complex-valued) function φ:[a,b]→C.
If f is a continuous, complex-valued function on C,
The contour integral of f from z1 to z2 along C will be denoted by
 or more precisely
by 
and is defindd by

    
(6.41)







 REMARK
There is, as usual, the question about whether this definition depends on the parameterization.
Again, it does not.
See the next exercise.
 The definition of a contour integral looks very like a
change of variables formula for integrals.
See Theorem 5.11. and part (e) of Exercise 22..
This is an example of how mathematicians often use
a true formula from one context to make a new definition in another context.
 Notice that the only difference between the computation of a contour integral and an
integral with respect to arc length on the curve is the absence of the absolute value bars around the factor φ'(t).
This will make contour integrals more subtle than integrals with
respect to arc length, just as conditionally convergent infinite series
are more subtle than absolutely convergent ones.
 Note also that there is no question about the integrability of f(φ(t))φ'(t), because
of Exercise 22..
f is bounded, φ' is improperly-integrable on (a,b), and therefore so is their product.



Exercise 14.
 
     	  State and prove the “independence of parameterization”
result for contour integrals.


	  Prove that

(6.42)


Just remember how to parameterize the curve in the opposite direction.


	  Establish the following relation between the absolute value of a contour integral and
a corresponding integral with respect to arc length.

(6.43)








 Not all the usual properties hold for contour integrals,
e.g., like those in Theorem 6.9. above.
The functions here, and the values of their contour integrals, are
complex numbers, so all the properties of integrals having to do with positivity and inequalities,
except for the one in part (c) of Exercise 14., no longer make any sense.
However, we do have the following results for contour integrals,
the verification of which is just as it was for Theorem 6.9..
Theorem 6.10.
 
Let C be a piecewise smooth curve of finite length joining z1 to z2.
Then the contour integrals of continuous functions on C have the following properties.
 	 If f and g are any two continuous functions on C, and a and b are any two complex numbers, then

(6.44)


	 If f is the uniform limit on C of a sequence  of continuous functions,
then 

	 Let  be a sequence of continuous functions on C,
and suppose that for each n there is a number
mn, for which |un(z)|≤mn for all z∈C,
and such that the infinite series ∑mn converges.
Then the infinite series ∑un converges uniformly to a continuous function,
and 






 In the next exercise, we give some important contour integrals,
which will be referred to several times in the sequel.
Make sure you understand them.
Exercise 15.
 
     
Let c be a point in the complex plane, and let r be a positive number.
Let C be the curve parameterized by φ:[–π,π–ϵ]:C defined by φ(t)=c+reit=c+rcos(t)+irsin(t).
For each integer n∈Z, define fn(z)=(z–c)n.

     	  What two points z1 and z2 does C join,
and what happens to z2 as ϵ approaches 0?


	  Compute 
for all integers n, positive and negative.


	  What happens to the integrals computed in part (b) when ϵ approaches 0?


	  Set ϵ=π, and compute
 for all integers n.

	  Again, set ϵ=π. Evaluate

(6.45)


HINT: Make use of the infinite series representations of the trigonometric functions.









6.6. Vector Fields, Differential Forms, and Line Integrals*



 We motivate our third definition of an integral over a curve
by returning to physics.
This definition is very much a real variable one, so that we think
of the plane as R2 instead of C. A connection between this real variable
definition and the complex variable definition of a contour integral will emerge later.
	 Definition: 
	 
    
 
By a vector field on an open subset U of R2,
we mean nothing more than a continuous function  from U into R2.
The functions P and Q are called the components of the vector field 

    
 We will also speak of smooth vector fields, by which we will mean
vector fields  both of whose component functions
P and Q have continuous partial derivatives

    
(6.46)


    
 on U.






 
The idea from physics is to think of a vector field as a force field,
i.e., something that exerts a force at the point (x,y) with magnitude  and acting in the direction of the vector 
For a particle to move within a force field, “work” must be done,
that is energy must be provided to move the particle against the force,
or energy is given to the particle as it moves under the influence of the force field.
In either case, the basic
definition of work is the product of force and distance traveled.
More precisely, if a particle is moving in a direction  within a force field, then the
work done on the particle is the product of the component of the force field in the direction of  and the distance traveled by the particle in that direction.
That is, we must compute dot products of the vectors  and 
Therefore, if a particle is moving along a curve C, parameterized with respect to arc length by γ:[0,L]→C,
and we write γ(t)=(x(t),y(t)),
then the work  done on the particle as it moves from z1=γ(0) to z2=γ(L) within the force field 
should intuitively be given by the formula
(6.47)

 where the last expression is explicitly defining the shorthand notation we will be using.



 The preceding discussion leads us to a
new notion of what kind of object should be “integrated” over a curve.
	 Definition: 
	 
    
 
A differential form on a subset U of R2
is denoted by ω=Pdx+Qdy, and is determined by two continuous
real-valued functions
P and Q on U.
We say that ω is bounded or uniformly continuous
if the functions P and Q are bounded or uniformly continuous functions on U.
We say that the differential form ω is smooth of order k
if the set U is open, and
the functions P and Q have continuous mixed partial derivatives of order k.

    
 If ω=Pdx+Qdy is a differential form on a set U,
and if C is any piecewise smooth curve of finite length contained in U,
then we define the line integral∫Cω of ω over C by

    
(6.48)


    
 where γ(t)=(x(t),y(t)) is a parameterization of C by arc length.






 REMARK
There is no doubt that the integral in this definition exists,
because P and Q are continuous functions on the compact set C, hence bounded,
and γ' is integrable, implying that both x' and y' are integrable.
Therefore P(γ(t))x'(t)+Q(γ(t))y'(t) is integrable on (0,L).
 These differential forms ω really should be called
“differential 1-forms.”
For instance, an example of a differential 2-form would look like 
and in higher dimensions, we could introduce notions of differential forms of higher and higher orders,
e.g., in 3 dimension things like 
Because we will always be dealing with R2, we will have no need for higher order differential forms,
but the study of such things is wonderful.
Take a course in Differential Geometry!
 Again, we must see how this quantity ∫Cω depends, if it does,
on different parameterizations.
As usual, it does not.



Exercise 16.
 
     
Suppose ω=Pdx+Qdy is a differential form on a subset U of R2.

     	  Let C be a piecewise smooth curve of finite length contained in U
that joins z1 to z2.
Prove that

(6.49)


for any parameterization φ:[a,b]→C having components x(t) and y(t).

	  Let C be as in part (a), and let 
denote the reverse of C, i.e., the same set C but thought of as a curve joining z2 to z1.
Show that


	  Let C be as in part (a).
Prove that

(6.50)


where MP and MQ are bounds for the continuous functions |P| and |Q| on the compact set C,
and where L is the length of C.







Example 6.1. 
 
The simplest interesting example of a differential form is constructed as follows.
Suppose U is an open subset of R2, and
let f:U→R be a differentiable real-valued function of two real variables;
i.e., both of its partial derivatives exist at every point (x,y)∈U.
(See the last section of Chapter IV.)
Define a differential form ω=df, called the differential of f, by
(6.51)

 i.e., P=tialf/tialx and Q=tialf/tialy.
These differential forms df are called exact differential forms.



 REMARK
Not every differential form ω is exact, i.e., of the form df.
Indeed, determining which ω's are df's boils down to
what may be the simplest possible partial differential equation problem.
If ω is given by two functions P and Q, then
saying that ω=df amounts to saying that
f is a solution of the pair of simultaneous partial differential equations
(6.52)




 See part (b) of the exercise below for an example of a nonexact differential form.
 Of course if a real-valued function f has continuous partial derivatives of the second order, then Theorem 4.22.
tells us that the mixed partials fxy and fyx must be equal.
So, if ω=Pdx+Qdy=df for some such f,
Then P and Q would have to satisfy
tialP/tialy=tialQ/tialx.
Certainly not every P and Q would satisfy this equation, so it is in fact trivial to find examples
of differential forms that are not differentials of functions.
A good bit more subtle is the question of whether every differential form
Pdx+Qdy, for which tialP/tialy=tialQ/tialx, is equal to some df.
Even this is not true in general, as part (c) of the exercise below shows.
The open subset U on which the differential form is defined plays a significant role,
and, in fact, differential forms provide a way of studying
topologically different kinds of open sets.
 In fact, although it may seem as if a differential form
is really nothing more than a pair of functions,
the concept of a differential form is in part a way of
organizing our thoughts about partial differential equation problems
into an abstract mathematical context.
This abstraction is a good bit more enlightening in higher dimensional spaces,
i.e., in connection with functions of more than two variables.
Take a course in Multivariable Analysis!
Exercise 17.
 
     	  Solve the pair of simultaneous partial differential equations

(6.53)


	  Show that it is impossible to solve the pair of simultaneous partial differential equations

(6.54)


Hence, conclude that the differential form ω=(x+y)dx+y3dy
is not the differential df of any real-valued function f.

	  Let U be the open subset of R2
that is the complement of the single point (0,0).
Let  and 
Show that tialP/tialy=tialQ/tialx at every point of U,
but that ω=Pdx+Qdy
is not the differential df of any smooth function f on U.
HINT: If P were fx, then f would have to be of the form
f(x,y)=–tan–1(x/y)+g(y), where g is some differentiable function of y.
Show that if Q=fy then g(y) is a constant c.
Hence, f(x,y) must be –tan–1(x/y)+c.
But this function f is not continuous, let alone differentiable, at the point (1,0).
Consider limf(1,1/n) and limf(1,–1/n).







 The next thing we wish to investigate is the continuity of ∫Cω as a function
of the curve C.
This brings out a significant difference in the concepts of
line integrals versis integrals with respect to arc length.
For the latter, we typically think of a fixed
curve and varying functions, whereas with line integrals, we typically think of
a fixed differential form and variable curves.
This is not universally true, but should be kept in mind.
Theorem 6.11.
 

Let ω=Pdx+Qdy be a fixed, bounded, uniformly continuous differential form on a set U in R2,
and let C be a fixed piecewise smooth curve of finite length L, parameterized by φ:[a,b]→C, that is contained in U.
Then, given an ϵ>0 there exists a δ>0
such that, for any curve  contained in U,
whenever the following conditions on the curve  hold:
 	   is a piecewise smooth curve of finite length  contained in U,
parameterized by 

	   for all t∈[a,b].

	  




Proof



 
Let ϵ>0 be given.
Because both P and Q are bounded on U,
let MP and MQ be upper bounds for the functions |P| and |Q| respectively.
Also, since both P and Q are uniformly continuous on U,
there exists a δ>0 such that if
 then  and 
We may also choose this δ to be less than both ϵ/4MP and ϵ/4MQ.
Now, suppose  is a curve of finite length  parameterized by
 and that 
for all t∈[a,b], and that 
Writing φ(t)=(x(t),y(t)) and  we have
(6.55)

 as desired.



 Again, we have a special notation when the curve C is a graph.
If g:[a,b]→R is a piecewise smooth function, then its graph C is a piecewise
smooth curve, and we write 
for the line integral of the differential form Pdx+Qdy over the curve C=graph(g).
 As alluded to earlier, there is a connection between
contour integrals and line integrals. It is that a single contour
integral can often be expressed in terms of two line integrals.
Here is the precise statement.
Theorem 6.12.
 
Suppose C is a piecewise curve of finite length,
and that f=u+iv is a complex-valued, continuous
function on C.
Let φ:[a,b]→C be a parameterization of C,
and write φ(t)=x(t)+iy(t).
Then
(6.56)


Proof



 
We just compute:
(6.57)

 as asserted.




6.7. Integration Around Closed Curves, and Green's Theorem*



 Thus far, we have discussed integration over curves joining two distinct points z1 and z2.
Very important in analysis is the concept of integrating around a closed curve, i.e., one that starts and ends at the same point.
There is nothing really new here; the formulas for
all three kinds of integrals we have defined will look the same, in the sense that they all
are described interms of some parameterization φ.
A parameterization φ:[a,b]→C of a closed curve C
is just like the parameterization for a curve joining two points, except that the two
points φ(a) and φ(b) are equal.
 Two problems are immediately apparent concerning integrating
around a closed curve.
First, where do we start on the curve,
which point is the initial point? And second, which way to we go around the curve?
Recall tha if φ:[a,b]→C is a parameterization of C, then
ψ:[a,b]→C, defined by ψ(t)=φ(a+b–t),
is a parameterization of C that is the reverse of φ, i.e., it goes around
the curve in the other direction.
If we are integrating with respect to arc length, this reverse direction
won't make a difference, but, for contour integrals and line integrals,
integrating in the reverse direction will introduce a minus sign.
 The first question mentioned above is not so difficult to handle. It doesn't really matter where we start
on a closed curve; the parameterization can easily be shifted.
Exercise 18.
 
     

Let φ[a,b]→R2 be a piecewise smooth function that is 1-1 except that φ(a)=φ(b).
For each 0<c<b–a, define  by
 for a+c≤t≤b,
and  for b≤t≤b+c.

     	  Show that  is a piecewise smooth function, and that the range C
of φ coincides with the range of 

	  Let f be an integrable (with respect to arc length) function on C.
Show that

(6.58)


That is, the integral  of f with respect
to arc length around the closed
curve C is independent of where we start.


	  Let f be a continuous complex-valued function on C.
Show that

(6.59)


That is, the contour integral  of f around the closed
curve C is independent of where we start.


	  Let ω=Pdx+Qdy be a differential form on C.
Prove that

(6.60)


That is, the line integral ∫Cω of ω around C
is independent of where we start.








 The question of which way we proceed around a closed curve is one that leads to
quite intricate and difficult mathematics, at least when we consider totaly general smooth curves.
For our purposes it wil, suffice to study a special kind of closed curve, i.e.,
curves that are the boundaries of piecewise smooth geometric sets.
Indeed, the intricate part of the general situation has a lot to do with determining which is the “inside”
of the closed curve and which is the “outside,”
a question that is easily settled in the case of a geometric set.
Simple pictures make this general question seem silly, but precise proofs that there is a definite inside and a definite outside are difficult,
and eluded mathematicians for centuries,
culminating in the famous Jordan Curve Theorem, which asserts exactly what our intuition predicts:
Theorem 6.13.
 
The complement of a closed curve is the union of two disjoint components, one bounded and one unbounded.



 We define the bounded component to be the inside of the curve and the unbounded component to be the outside.
 We adopt the following convention for how we
integrate around the boundary of a piecewise smooth geometric set S.
That is, the curve CS will consist of four parts: the lower boundary (graph of the
lower bounding function l), the righthand boundary (a portion of the vertical line x=b),
the upper boundary (the graph of the upper bounding function u),
and finally the lefthand side (a portion of the vertical line x=a).
By integrating around such a curve CS, we will always mean proceeding counterclockwise around the curves.
Specifically, we move from left to right along the lower boundary, from bottom to top along
the righthand boundary, from right to left across the upper boundary,
and from top to bottom along the lefthand boundary.
Of course, as shown in the exercise above, it doesn't matter where we start.
Exercise 19.
 
     
Let S be the closed piecewise smooth geometric set that is
determined by the interval [a,b] and the two piecewise smooth bounding functions u and l.
Assume that the boundary CS of S has finite length.
Suppose the graph of u intersects the lines x=a and x=b at the points (a,c) and (b,d),
and suppose that the graph of l intersects those lines at the points (a,e) and (b,f).
Find a parameterization  of the curve CS.

     HINT: Try using the interval [a,b+d–f+b–a+c–e] as the domain  of φ.




 The next theorem, though simple to state and use,
contains in its proof a combinatorial idea that is truly central to all that follows in this chapter.
In its simplest form, it is just the realization that
the line integral in one direction along a curve
is the negative of the line integral in the opposite direction.
Theorem 6.14.
 
Let S1,...,Sn be a collection of closed geometric sets that constitute a partition of a geometric set S, and assume that
the boundaries of all the Si's, as well as the boundary of S,
have finite length.
Suppose ω is a continuous differential form on all the boundaries 
Then
(6.61)


Proof



 
We give a careful proof for a special case, and then outline the general argument.
Suppose then that S is a piecewise smooth geometric set, determined by the
interval [a,b] and the two bounding functions u and l, and
assume that the boundary CS has finite length.
Suppose m(x) is a piecewise smooth function on [a,b], satisfying ∫ab|m'|<∞,
and assume that l(x)<m(x)<u(x) for all x∈(a,b).
Let S1 be the geometric set determined by the interval [a,b] and the two bounding functions m and l,
and let S2 be the geometric set determined by the interval [a,b] and the two bounding
functions u and m.
We note first that the two geometric sets S1 and S2 comprise a partition of the geometric set S,
so that this is indeed a
pspecial case of the theorem.
 Next, consider the following eight line integrals:
First, integrate from left to write along the graph of m,
second, up the line x=b from (b,m(b)) to (b,u(b)),
third, integrate from right to left across the graph of u,
fourth, integrate down the line x=a from (a,u(a)) to (a,m(a)),
fifth, continue down the line x=a from (a,m(a)) to (a,l(a)),
sixth, integrate from left to right across the graph of l,
seventh, integrate up the line x=b from (b,l(b)) to (b,m(b)),
and finally, integfrate from right to left across the graph of m.
 The first four line integrals
comprise the line integral around the geometric set S2,
and the last four comprise the line integral around the geometric set S1.
On the other hand, the first and eighth line integrals here cancel out,
for one is just the reverse of the other.
Hence, the sum total of these eight line integrals, integrals 2–7, is just the line integral
around the boundary CS of S.
Therefore
(6.62)
        
          ∫CS
          ω
          =
          ∫CS1
          ω
          +
          ∫CS2
          ω
        
      
 as desired.



 We give next an outline of the proof for a general partition S1,...,Sn of S.
Let Sk be determined by the interval  and the two bounding functions uk and lk.
Observe that, if the boundary CSk of Sk intersects the boundary CSj of Sj
in a curve C,
then the line integral of ω along C, when it is computed as part of
integrating counterclockwise around Sk, is the negative of the line
integral along C, when it is computed as part of the
line integral counterclockwise around Sj.
Indeed, the first line integral is the reverse of the second one.
(A picture could be helpful.)
Consequently, when we compute the sum of the line integrals of ω around the CSk's,
All terms cancel out except those line integrals that ar computed along parts of the boundaries of the Sk's that intersect no other Sj.
But such parts of the boundaries of the Sk's must coincide with parts
of the boundary of S.
Therefore, the sum of the line integrals of ω around the boundaries of the Sk's equals the line integral of ω
around the boundary of S, and this is precisely what the theorem asserts.
Exercise 20.
 
     Prove the analog of Theorem 6.14. for contour integrals:
Let S1,...,Sn be a collection of closed geometric
sets that constitute a partition of a geometric set S, and assume that
the boundaries of all the Si's, as well as the boundary of S,
have finite length.
Suppose f is a continuous complex-valued function on all the boundaries  as well as on the boundary CS.
Then

    (6.63)





 We come now to the most remarkable theorem in the subject of
integration over curves, Green's Theorem.
Another fanfare, please!
Theorem 6.15.
  
Let S be a piecewise smooth, closed, geometric set,
let CS denote the closed curve that is the boundary of S,
and assume that CS is of finite length.
Suppose ω=Pdx+Qdy is a continuous differential form on S that is smooth on
the interior S0 of S.
Then
(6.64)





 REMARK
The first thing to notice about this theorem is that
it connects an integral around a (1-dimensional) curve with an integral over a (2-dimensional) set,
suggesting a kind of connection between a 1-dimensional process and a 2-dimensional one.
Such a connection seems to be unexpected, and it should
therefore have some important implications, as indeed
Green's Theorem does.
 The second thing to think about is the case when ω
is an exact differential df of a smooth function f of two real variables.
In that case, Green's Theorem says
(6.65)

 which would be equal to 0 if f∈C2(S), by Theorem 4.22..
Hence, the integral of df around any such curve would be 0.
If U is an open subset of R2,
there may or may not be some other ω's, called closed differential forms, having the property
that their integral around every piecewise smooth curve of finite length in U is 0,
and the study of these closed differential forms ω that are not exact differential forms df has led to much interesting mathematics.
It turns out that the structure of the open set U, e.g., how many
“holes” there are in it, is what's important.
Take a course in Algebraic Topology!



 The proof of Green's Theorem is tough, and we break it into several steps.
Lemma 6.1.
 Suppose S is the rectangle [a,b]×[c,d].
Then Green's Theorem is true.

Proof



 We think of the closed curve CS bounding the rectangle as the union of four
straight lines,
C1,C2,C3 and C4,
and we parameterize them as follows:
Let φ:[a,b]→C1 be defined by φ(t)=(t,c);
let φ:[b,b+d–c]→C2 be defined by φ(t)=(b,t–b+c);
let φ:[b+d–c,b+d–c+b–a]→C3 be defined by φ(t)=(b+d–c+b–t,d);
and let φ:[b+d–c+b–a,b+d–c+b–a+d–c]→C4 be defined by φ(t)=(a,b+d–c+b–a+d–t).
One can check directly to see that this φ parameterizes the boundary of the rectangle S=[a,b]×[c,d].
 As usual, we write φ(t)=(x(t),y(t)).
Now, we just compute, use the Fundamental Theorem of Calculus in the middle, and use
part (d) of Exercise 30. at the end.
(6.66)

 proving the lemma.



Lemma 6.2.
 Suppose S is a right triangle whose vertices are of the form (a,c),(b,c) and (b,d).
Then Green's Theorem is true.

Proof



 We parameterize the boundary CS of this triangle
as follows:
For t∈[a,b], set φ(t)=(t,c);
for t∈[b,b+d–c], set φ(t)=(b,t+c–b);
and for t∈[b+d–c,b+d–c+b–a], set φ(t)=(b+d–c+b–t,b+d–c+d–t).
Again, one can check that this φ parameterizes the boundary of the triangle S.
 Write φ(t)=(x(t),y(t)).
Again, using the Fundamental Theorem and Exercise 30., we have
(6.67)

 which proves Lemma 6.2..



Lemma 6.3.
 Suppose S1,...,Sn is a partition of the geometric set S,
and that the boundary CSk has finite length for all 1≤k≤n.
If Green's Theorem holds for each geometric set Sk, then it holds for S.

Proof



 From Theorem 6.14. we have
(6.68)

 and from Theorem 5.24. we have
(6.69)

 Since Green's Theorem holds for each k, we have that
(6.70)
        
          ∫CSk
          ω
          =
          ∫Sk
          Qx
          –
          Py
          ,
        
      
 and therefore
(6.71)
        
          ∫CS
          ω
          =
          ∫S
          Qx
          –
          Py
          ,
        
      
 as desired.



Exercise 21.
 
     	  Prove Green's Theorem for a right triangle with vertices of the form
(a,c),(b,c), and (a,d).

	  Prove Green's Theorem for a trapezoid having vertices of the form
(a,c),(b,c),(b,d), and (a,e), where both d and e are greater than c.
HINT: Represent this trapezoid as the union of a rectangle and a right
triangle that share a border. Then use Lemma 6.3..


	  Prove Green's Theorem for S any quadrilateral that has two vertical sides.


	  Prove Green's Theorem for any geometric set S whose upper and lower
bounding functions are piecewise linear functions.
HINT: Show that S can be thought of as a finite union of quadrilaterals, like those in part (c),
each one sharing a vertical boundary with the next. Then, using induction and the previous exercise
finish the argument.








 We need one final lemma before we can complete the general proof of Green's Theorem.
This one is where the analysis shows up; there are carefully
chosen ϵ's and δ's.
Lemma 6.4.
 Suppose S is contained in an open set U and that
ω is smooth on all of U.
Then Green's Theorem is true.

Proof



 Let the piecewise smooth geometric set S be determined by the interval [a,b] and the two bounding functions u and l.
Using Theorem 2.11., choose an r>0 such that the neighborhood Nr(S)⊆U.
Now let ϵ>0 be given, and choose delta to satisfy the following conditions:
 	  δ<r/2, from which it follows that
the open neighborhood Nδ(S) is a subset of the compact set
 (See part (f) of Exercise 24..)


	  δ<ϵ/4M, where M is a common bound for all four
continuous functions |P|,|Q|,|Py|, and |Qx| on the compact set 

	  δ<ϵ/4M(b–a).

	  δ satisfies the conditions of Theorem 6.11..




 Next, using Theorem 6.1., choose two piecewise linear functions
pu and pl so that
 	  |u(x)–pu(x)|<δ/2 for all x∈[a,b].

	  |l(x)–pl(x)|<δ/2 for all x∈[a,b].

	  

	  



 Let  be the geometric set determined by the
interval [a,b] and the two bounding functions  and  where
 and 
We know that both  and  are piecewise linear functions.
We have to be a bit careful here, since for some x's it could be that
pu(x)<pl(x). Hence, we could not simply use
pu and pl themselves as bounding functions for 
We do know from (1) and (2) that  and 
which implies that the geometric set S is contained in the geometric set 
Also  is a subset of the neighborhood Nδ(s),
which in turn is a subset of the compact set 
 Now, by part (d) of the preceding exercise, we know that Green's Theorem holds for 
That is
(6.72)

 We will show that Green's Theorem holds for S by showing two things:
(i)  and
(ii) 
We would then have, by the usual adding and subtracting business, that
(6.73)

 and, since ϵ is an arbitrary positive number, we would obtain
(6.74)

 Let us estabish (i) first.
We have from (1) above that  for all x∈[a,b],
and from (3) that
(6.75)

 Hence, by Theorem 6.11.,
(6.76)

 Similarly, using (2) and (4) above, we have that
(6.77)

 Also,
the difference of the line integrals of ω along the
righthand boundaries of S and  is less than ϵ. Thus
(6.78)

 Of course, a similar calculation shows that
(6.79)

 These four line integral inequalities combine to give us that
(6.80)

 establishing (i).
 Finally, to see (ii), we just compute
(6.81)

 This establishes (ii), and the proof is complete.



 At last, we can finish the proof of this remarkable result.
Theorem 6.16.

Proof



 
As usual, let S be determined by the interval [a,b] and the
two bounding functions u and l.
Recall that u(x)–l(x)>0 for all x∈(a,b).
For each natural number n>2, let Sn be the
geometric set that is determined by the interval
[a+1/n,b–1/n] and the two bounding functions un and ln,
where un=u–(u–l)/n restricted to the interval [a+1/n,b–1/n],
and ln=l+(u–l)/n restricted to [a+1/n,b–1/n].
Then each Sn is a piecewise smooth geometric set, whose boundary
has finite length, and each Sn is contained in the open set S0
where by hypothesis ω is smooth.
Hence, by Lemma 4, Green's Theorem holds for each Sn.
Now it should follow directly, by taking limits,
that Green's Theorem holds for S.
In fact, this is the case, and we leave the details to the exercise that follows.



Exercise 22.
 
     
Let S,ω, and the Sn's be as in the preceding proof.

     	  Using Theorem 6.11., show that

(6.82)∫CSω=lim∫CSnω.

	  Let f be a bounded integrable function on the geometric set S.
Prove that

(6.83)∫Sf=lim∫Snf.

	  Complete the proof to Green's Theorem; i.e.,
take limits.









 REMARK
Green's Theorem is primarily a theoretical result.
It is rarely used
to “compute” a line integral around a curve
or an integral of a function
over a geometric set.
However, there is one amusing exception to this, and that is
when the differential form 
For that kind of ω, Green's Theorem says that
the area of the geometric set S can be computed as follows:
(6.84)




 This is certainly a different way of computing areas of sets from the methods we developed earlier.
Try this way out on circles, ellipses, and the like.

Glossary



	Definition: 
	
      

By a italicssmooth curve from a point simplemathmathml-miitalicsz1scrollz1 to a different point simplemathmathml-miitalicsz2scrollz2 in the plane, we mean
a set simplemathmathml-miitalicsC⊆mathml-miitalicsCscrollC⊆C that is the
range of a 1-1, smooth, function simplemathmathml-miitalicsφ:[mathml-miitalicsa,mathml-miitalicsb]→mathml-miitalicsC,scrollφ:[a,b]→C,
where simplemath[mathml-miitalicsa,mathml-miitalicsb]scroll[a,b] is a bounded closed interval in simplemathmathml-miitalicsR,scrollR,
where simplemathmathml-miitalicsz1=mathml-miitalicsφ(mathml-miitalicsa)scrollz1=φ(a) and simplemathmathml-miitalicsz2=mathml-miitalicsφ(mathml-miitalicsb),scrollz2=φ(b),
and satisfying simplemathmathml-miitalicsφ'(mathml-miitalicst)≠0scrollφ'(t)≠0 for all simplemathmathml-miitalicst∈(mathml-miitalicsa,mathml-miitalicsb).scrollt∈(a,b).

      
More generally, if simplemathmathml-miitalicsφ:[mathml-miitalicsa,mathml-miitalicsb]→mathml-miitalicsR2scrollφ:[a,b]→R2 is
1-1 and piecewise smooth on simplemath[mathml-miitalicsa,mathml-miitalicsb],scroll[a,b],
and if scroll{t0<t1<...<tn} is a partition of simplemath[mathml-miitalicsa,mathml-miitalicsb]scroll[a,b]
such that simplemathmathml-miitalicsφ'(mathml-miitalicst)≠0scrollφ'(t)≠0 for all scrollt∈(ti-1,ti),
then the range simplemathmathml-miitalicsCscrollC of simplemathmathml-miitalicsφscrollφ is called a italicspiecewise smooth curve from simplemathmathml-miitalicsz1=mathml-miitalicsφ(mathml-miitalicsa)scrollz1=φ(a) to simplemathmathml-miitalicsz2=mathml-miitalicsφ(mathml-miitalicsb).scrollz2=φ(b).

      
In either of these cases, simplemathmathml-miitalicsφscrollφ is called a italicsparameterization of the curve simplemathmathml-miitalicsC.scrollC.



	Definition: 
	
      

Let simplemathmathml-miitalicsC,scrollC, the range of simplemathmathml-miitalicsφ:[mathml-miitalicsa,mathml-miitalicsb]→mathml-miitalicsC,scrollφ:[a,b]→C, be a piecewise smooth curve,
and let simplemathmathml-miitalicsz=(mathml-miitalicsx,mathml-miitalicsy)=mathml-miitalicsφ(mathml-miitalicsc)scrollz=(x,y)=φ(c) be a point on the curve.
We say that the curve simplemathmathml-miitalicsCscrollC has a tangential direction at simplemathmathml-miitalicsz,scrollz,
relative to the parameterization simplemathmathml-miitalicsφ,scrollφ,
if the following limit exists:
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If this limit exists, it is a vector of length 1 in simplemathmathml-miitalicsR2,scrollR2,
and this unit vector is called the unit tangent (relative to the parameterization simplemathmathml-miitalicsφscrollφ) to simplemathmathml-miitalicsCscrollC at simplemathmathml-miitalicsz.scrollz.

      
The curve simplemathmathml-miitalicsCscrollC has a italicsunit tangent at the point simplemathmathml-miitalicszscrollz if there exists
a parameterization simplemathmathml-miitalicsφscrollφ for which the unit tangent at simplemathmathml-miitalicszscrollz relative to simplemathmathml-miitalicsφscrollφ exists.



	Definition: 
	
    

Let simplemathmathml-miitalicsφ:[mathml-miitalicsa,mathml-miitalicsb]→mathml-miitalicsCscrollφ:[a,b]→C be a parameterization of a piecewise smooth curve simplemathmathml-miitalicsC⊂mathml-miitalicsC.scrollC⊂C.
By the italicslengthsimplemathmathml-miitalicsLmathml-miitalicsφscrollLφ of simplemathmathml-miitalicsCscrollC, relative to the parameterization simplemathmathml-miitalicsφ,scrollφ,
we mean the number simplemathmathml-miitalicsLmathml-miitalicsφ=supmathml-miitalicsPmathml-miitalicsLmathml-miitalicsPmathml-miitalicsφ,scrollLφ=trueprefixsupPLPφ,
where the supremum is taken over all partitions simplemathmathml-miitalicsPscrollP of simplemath[mathml-miitalicsa,mathml-miitalicsb].scroll[a,b].



	Definition: 
	
    

Let simplemathmathml-miitalicsCscrollC be a piecewise smooth curve in the plane.
The italicslength or italicsarc lengthsimplemathmathml-miitalicsL≡mathml-miitalicsL(mathml-miitalicsC)scrollL≡L(C) of simplemathmathml-miitalicsCscrollC is defined by the formula
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where simplemathmathml-miitalicsφscrollφ is any parameterization of simplemathmathml-miitalicsC.scrollC.

    
If simplemathmathml-miitalicszscrollz and simplemathmathml-miitalicswscrollw are two points on a piecewise smooth curve simplemathmathml-miitalicsC,scrollC,
we will denote by simplemathmathml-miitalicsL(mathml-miitalicsz,mathml-miitalicsw)scrollL(z,w) the arc length of the portion of the curve between simplemathmathml-miitalicszscrollz and simplemathmathml-miitalicsw.scrollw.



	Definition: 
	
    

Let simplemathmathml-miitalicsCscrollC be a piecewise smooth curve of finite length simplemathmathml-miitalicsLscrollL joining distinct points,
and let simplemathmathml-miitalicsγ:[0,mathml-miitalicsL]→mathml-miitalicsCscrollγ:[0,L]→C be a parameterization of simplemathmathml-miitalicsCscrollC by arc length.
By a italicspartition of simplemathmathml-miitalicsCscrollC we mean a set scroll{z0,z1,...,zn} of points on simplemathmathml-miitalicsCscrollC
such that scrollzj=γ(tj) for all simplemathmathml-miitalicsj,scrollj,
where the points scroll{t0<t1<...<tn} form a partition of the interval simplemath[0,mathml-miitalicsL].scroll[0,L].
The portions of the curve between the points simplemathmathml-miitalicszmathml-miitalicsj–1scrollzj-1 and simplemathmathml-miitalicszmathml-miitalicsj,scrollzj, i.e., the
set scrollγ(tj-1,tj), are called the italicselements of the partition.

    
A italicsstep fucntion on simplemathmathml-miitalicsCscrollC is a real-valued function simplemathmathml-miitalicshscrollh on simplemathmathml-miitalicsCscrollC
for which there exists a partition scroll{z0,z1,...,zn} of simplemathmathml-miitalicsCscrollC such that
simplemathmathml-miitalicsh(mathml-miitalicsz)scrollh(z) is a constant simplemathmathml-miitalicsamathml-miitalicsjscrollaj on the portion of the curve between simplemathmathml-miitalicszmathml-miitalicsj–1scrollzj-1 and simplemathmathml-miitalicszmathml-miitalicsj.scrollzj.



	Definition: 
	
    

Let simplemathmathml-miitalicshscrollh be a step function on a piecewise smooth curve simplemathmathml-miitalicsCscrollC of finite length simplemathmathml-miitalicsL.scrollL.
The italicsintegral, with respect to arc length of simplemathmathml-miitalicshscrollh over simplemathmathml-miitalicsCscrollC is denoted by
scroll∫Ch(s)0.166667emds, and is defined by
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where scroll{z0,z1,...,zn} is a partition of simplemathmathml-miitalicsCscrollC for which simplemathmathml-miitalicsh(mathml-miitalicsz)scrollh(z) is
the constant simplemathmathml-miitalicsamathml-miitalicsjscrollaj on the portion of simplemathmathml-miitalicsCscrollC between simplemathmathml-miitalicszmathml-miitalicsj–1scrollzj-1 and simplemathmathml-miitalicszmathml-miitalicsj.scrollzj.



	Definition: 
	
    

Let simplemathmathml-miitalicsCscrollC be a piecewise smooth curve of finite length simplemathmathml-miitalicsL.scrollL.
A function simplemathmathml-miitalicsfscrollf with domain simplemathmathml-miitalicsCscrollC is called italicsintegrable with respect to arc length on simplemathmathml-miitalicsCscrollC if
it is the uniform limit of step functions on simplemathmathml-miitalicsC.scrollC.

    
The italicsintegral with respect to arc length of an integrable function simplemathmathml-miitalicsfscrollf on simplemathmathml-miitalicsCscrollC
is again denoted by scroll∫Cf(s)0.166667emds, and
is defined by

    
(6.88)scrolldisplay
        
          
            ∫
            C
          
          f
          
            (
            s
            )
          
          0.166667em
          d
          s
          =
          trueprefixlim
          
            ∫
            C
          
          
            h
            n
          
          
            (
            s
            )
          
          0.166667em
          d
          s
          ,
        
      


    
where scroll{hn} is a sequence of step functions that converges uniformly to simplemathmathml-miitalicsfscrollf on simplemathmathml-miitalicsC.scrollC.



	Definition: 
	
    

Let simplemathmathml-miitalicsCscrollC be a piecewise smooth curve from simplemathmathml-miitalicsz1scrollz1 to simplemathmathml-miitalicsz2scrollz2 in the plane simplemathmathml-miitalicsC,scrollC,
parameterized by a (complex-valued) function simplemathmathml-miitalicsφ:[mathml-miitalicsa,mathml-miitalicsb]→mathml-miitalicsC.scrollφ:[a,b]→C.
If simplemathmathml-miitalicsfscrollf is a continuous, complex-valued function on simplemathmathml-miitalicsC,scrollC,
The italicscontour integral of f from simplemathmathml-miitalicsz1scrollz1 to simplemathmathml-miitalicsz2scrollz2 along simplemathmathml-miitalicsCscrollC will be denoted by
scroll∫Cf(ζ)0.166667emdζ or more precisely
by scroll∫Cz1z2f(ζ)0.166667emdζ,
and is defindd by
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	Definition: 
	
    

By a italicsvector field on an open subset simplemathmathml-miitalicsUscrollU of simplemathmathml-miitalicsR2,scrollR2,
we mean nothing more than a continuous function scrolltrueV→(x,y)≡(P(x,y),Q(x,y)) from simplemathmathml-miitalicsUscrollU into simplemathmathml-miitalicsR2.scrollR2.
The functions simplemathmathml-miitalicsPscrollP and simplemathmathml-miitalicsQscrollQ are called the italicscomponents of the vector field scrolltrueV→.

    
We will also speak of italicssmooth vector fields, by which we will mean
vector fields scrolltrueV→ both of whose component functions
simplemathmathml-miitalicsPscrollP and simplemathmathml-miitalicsQscrollQ have continuous partial derivatives
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on simplemathmathml-miitalicsU.scrollU.



	Definition: 
	
    

A italicsdifferential form on a subset simplemathmathml-miitalicsUscrollU of simplemathmathml-miitalicsR2scrollR2
is denoted by simplemathmathml-miitalicsω=mathml-miitalicsPmathml-miitalicsdmathml-miitalicsx+mathml-miitalicsQmathml-miitalicsdmathml-miitalicsy,scrollω=Pdx+Qdy, and is determined by two continuous
real-valued functions
simplemathmathml-miitalicsPscrollP and simplemathmathml-miitalicsQscrollQ on simplemathmathml-miitalicsU.scrollU.
We say that simplemathmathml-miitalicsωscrollω is italicsbounded or italicsuniformly continuous
if the functions simplemathmathml-miitalicsPscrollP and simplemathmathml-miitalicsQscrollQ are bounded or uniformly continuous functions on simplemathmathml-miitalicsU.scrollU.
We say that the differential form simplemathmathml-miitalicsωscrollω is italicssmooth of order simplemathmathml-miitalicskscrollk
if the set simplemathmathml-miitalicsUscrollU is open, and
the functions simplemathmathml-miitalicsPscrollP and simplemathmathml-miitalicsQscrollQ have continuous mixed partial derivatives of order simplemathmathml-miitalicsk.scrollk.

    
If simplemathmathml-miitalicsω=mathml-miitalicsPmathml-miitalicsdmathml-miitalicsx+mathml-miitalicsQmathml-miitalicsdmathml-miitalicsyscrollω=Pdx+Qdy is a differential form on a set simplemathmathml-miitalicsU,scrollU,
and if simplemathmathml-miitalicsCscrollC is any piecewise smooth curve of finite length contained in simplemathmathml-miitalicsU,scrollU,
then we define the italicsline integralsimplemath∫mathml-miitalicsCmathml-miitalicsωscroll∫Cω of simplemathmathml-miitalicsωscrollω over simplemathmathml-miitalicsCscrollC by
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where simplemathmathml-miitalicsγ(mathml-miitalicst)=(mathml-miitalicsx(mathml-miitalicst),mathml-miitalicsy(mathml-miitalicst))scrollγ(t)=(x(t),y(t)) is a parameterization of simplemathmathml-miitalicsCscrollC by arc length.





Solutions


