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Chapter 1

Review of Algebra

1.1 Sets1

Set theory is about studying collection of objects. The collection may comprise anything or any abstraction.
It can be purely abstract thing like numbers or abstraction of real thing like students studying in class XI
in a school. The members of collection can be numbers, letters, titles of books, people, teachers, provinces �
virtually anything - even other collections. Further, it need not be �nite. For example, a set of integers has
in�nite members. For a set, only requirement is that the members of a collection are properly de�ned.

De�nition 1.1: Set
A set is a collection of well de�ned objects.

In other words, the member of set is clearly identi�able. The terms �object�, �member� or �element� mean
same thing and are used interchangeably.

1.1.1 How to represent a set?

A set is denoted by capital letters like �A�, �B�, �C� etc. In choosing a symbol for a set, it is generally
convenient to use a capital letter that identi�es with the set. For example, it is appropriate to use symbol
�V� to represent collection of vowels in English alphabet.

On the other hand, the members or elements of a set are denoted by small letters like �a�,�b�,�c� etc.
Membership of a set is denoted by the symbol � ∈� . Its literal meaning is �belongs to�. If an object does

not belong to a set, then we convey the same, using symbol � /∈ �.
a ∈ A : we read this as �a� belongs to set "A".
a /∈ A : we read this as �a� does not belong to set "A".
The set is represented in two ways :

• Roaster form
• Set builder form

1.1.1.1 Roaster form

All elements of the set are listed with a comma (�,�) in between and the listing itself is enclosed within braces
�{� and �}�. The order or sequence of elements within the set is not important � though desirable.

The set of numbers, which divide 12, is written as :

A = {1, 2, 3, 4, 6, 12}

1This content is available online at <http://cnx.org/content/m15194/1.3/>.
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2 CHAPTER 1. REVIEW OF ALGEBRA

If a pattern or sequence is easily made out, then we can use ellipsis ("...") to represent continuity of such
pattern. This type of representation is particularly useful to represent an in�nite set. Clearly, sequence of
members in this type of representation is important.

The set of even numbers is written as,

B = {2, 4, 6, 8 . . . . . . . . . }
The roaster form is limited in certain circumstance. For example, we can not represent set of real numbers

in roaster form. Real numbers is an in�nite set, but the elements of this set do not follow a pattern or have
a particular sequence. As such, we can not de�ne same with the help of ellipsis.

Every member of the set is unique and distinct. However, we encounter situations in which collection
can have repeated elements. For example, the set representing scores of three students can be a set of three
numbers one of which is repeated :

S = {80, 80, 70}
We need to reduce such collection as :

⇒ S = {80, 80, 70} = {80, 70}

1.1.1.2 Set builder form

Collections are often characterized by a common property. We can, therefore, de�ne members of a set in
terms of the common property. However, we need to ensure that objects outside the collection do not have
the same common property.

The construction of quali�cation for the common property is quite �exible. Only thing is that we need
to be explicit in what we mean. Generally, we denote the member by a symbol like �x� and then de�ne the
membership. Consider the examples :

A = {x: x is a vowel in English alphabet}

B = {x: x is an integer and 0 < x < 10}
The roaster equivalents of two sets are :

A = {a, e, i, o, u}

B = {1, 2, 3, 4, 5, 6, 7, 8, 9}
Can we write set �B� as the one which comprises single digit natural number? Yes. Thus, we can see that

there are indeed di�erent ways to de�ne and identify members and hence the �exibility in de�ning collection.
We should be careful in using words like �and� and �or� in writing quali�cation for the set. Consider the

example here :

C = {x:x ∈ Z and 2 < x < 4}
Both conditional quali�cations are used to determine the collection. The elements of the set as de�ned

above are integers. Thus, the only member of the set is �3�.
Now, let us consider an example, which involves �or� in the quali�cation,

C = {x: x ∈ A or x ∈ B}
The member of this set can be elements belonging to either of two sets "A" and "B". The set consists of

elements (i) belonging exclusively to set "A", (ii) elements belonging exclusively to set "B" and (iii) elements
common to sets "A" and "B".

Available for free at Connexions <http://cnx.org/content/col11267/1.3>
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1.1.1.3 Example

Problem 1 : A set in roaster form is given as :

A = {5
2

6
,
62

7
,
72

8
}

Write the set in �set builder form�.
Solution : We see here that we are dealing with natural numbers. The numerators are square of

natural numbers in sequence. The number in denominator is one more than numerator for each member.
We can denote natural number by �n�. Clearly, if numerator is � n2 �, then denominator is �n+1�. Therefore,
the expression that represent a member of the set is :

x =
n2

n+ 1
However, this set is not an in�nite set. It has exactly three members. Therefore, we need to specify �n�

so that only members of the set are exclusively denoted by the above expression. We see here that �n� is
greater than 4, but �n� is less than 8. For representing three elements of the set,

5 ≤ n ≤ 7

We can write the set, now, in the builder form as :

A = {x : x =
n2

n+ 1
,where "n" is a natural number and 5 ≤ n ≤ 7}

In set builder form, the sequence within the range is implied. It means that we start with the �rst valid
natural number and proceed sequentially till the last valid natural number.

1.1.2 Some important sets representing numbers

Few key number sets are used regularly in mathematical context. As we use these sets often, it is convenient
to have prede�ned symbols :

• P(prime numbers)
• N (natural numbers)
• Z (integers)
• Q (rational numbers)
• R (real numbers)

We put a superscript �+�, if we want to specify membership of only positive numbers, where appropriate.
" Z+ ", for example, means set of positive integers.

1.1.3 Empty set

An empty set has no member or object. It is denoted by symbol �φ� and is represented by a pair of braces
without any member or object.

φ = {}

The empty set is also called �null� or �void� set. For example, consider a de�nition : �the set of integer
between 1 and 2�. There is no integer within this range. Hence, the set corresponding to this de�nition is
an empty set. Consider another example :

B = {x : x2 = 4 and x is odd}

Available for free at Connexions <http://cnx.org/content/col11267/1.3>



4 CHAPTER 1. REVIEW OF ALGEBRA

An odd integer squared can not be even. Hence, set �B� also does not have any element in it.
There is a bit of paradox here. If the de�nition does not yield an element, then the set is not well de�ned.

We may be tempted to say that empty set is not a set in the �rst place. However, there is a practical
reason to have an empty set. It enables mathematical operations. We shall �nd many examples as we study
operations on sets.

1.1.4 Equal sets

The members of two equal sets are exactly same. There is nothing more to it. However, we need to know
two special aspects of this equality. We mentioned about repetition of elements in a set. We observed that
repetition of elements does not change the set. Consider example here :

A = {1, 5, 5, 8, 7} = {1, 5, 8, 7}

Another point is that sequence does not change the set. Therefore,

A = {1, 5, 8, 7} = {5, 7, 8, 1}

In the nutshell, when we have to compare two sets we look for distinct elements only. If they are same,
then two sets in question are equal.

1.1.5 Cardinality

Cardinality is the numbers of elements in a set. It is denoted by modulus of set like |A|.

De�nition 1.2: Cardinality
The cardinality of a set �A� is equal to numbers of elements in the set.

The cardinality of an empty set is zero. The cardinality of a �nite set is some positive integers. The
cardinality of a number system like integers is in�nity. Curiously, the cardinality of some in�nite set can be
compared. For example, the cardinality of natural numbers is less than that of integers. However, we can
not make such deduction for the most case of in�nite sets.

1.2 Number Systems2

1.2.1 The Number Systems

What are the di�erent number systems?
We are all familiar with the decimal system. However, when working with computers, we need to start with
the binary system. The reason for this is that computers use gates (or switches) which only have two states,
on and o�. This is what translates to the 1's and 0's of binary. From there, it is possible to build up to
other more useful systems such as the decimal system or the hexadecimal system.

This module contains worked examples of how to convert between the decimal, hexadecimal and binary.

1.2.2 Powers of 10 and 2

Before working through some examples, it will be useful to review how we use the decimal system. The
decimal system can express any real rational number using the digits 0-9 and a minus sign. The places of
the digits represent the power of ten that is being used. For example:

321 = 3× 102 + 2× 101 + 1× 100 (1.1)

2This content is available online at <http://cnx.org/content/m36299/1.2/>.
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5023 = 5× 103 + 0× 102 + 2× 101 + 3× 100 (1.2)

In the same way, binary systems use 1's and 0's to express a number:

23 = 10111(binary)

= 1× 24 + 0× 23 + 1× 22 + 1× 21 + 1× 20
(1.3)

1.2.3 Binary - Unsigned

The following examples show how to convert between unsigned binary and decimal values.

Exercise 1.2.1 (Solution on p. 41.)

What is the decimal value of 10101 ?

Exercise 1.2.2 (Solution on p. 41.)

Convert 011010 to decimal.

Exercise 1.2.3 (Solution on p. 41.)

Convert the decimal number 47 to binary unsigned.

1.2.4 Binary Signed

Exercise 1.2.4 (Solution on p. 41.)

Convert 11001110 (signed) to decimal value.

Exercise 1.2.5 (Solution on p. 41.)

Convert -98 to signed binary(8bit).

Exercise 1.2.6 (Solution on p. 42.)

Convert 98 to signed binary(8bit).

1.2.5 Binary - Two's Complement

The table below is a refresher for two's complement.

Available for free at Connexions <http://cnx.org/content/col11267/1.3>



6 CHAPTER 1. REVIEW OF ALGEBRA

Two's Complment

Two's Complement Decimal

0111 7

0110 6

0101 5

0100 4

0011 3

0010 2

0001 1

0000 0

1111 -1

1110 -2

1101 -3

1100 -4

1011 -5

1010 -6

1001 -7

1000 -8

Table 1.1

Exercise 1.2.7 (Solution on p. 42.)

Convert 001011 (two's complement 6-bit) to decimal value.

Exercise 1.2.8 (Solution on p. 42.)

Convert 111011 (two's complement 6-bit) to decimal value

Exercise 1.2.9 (Solution on p. 43.)

Convert -13 to two's complement 8-bit binary.

1.2.6 Hexadecimal

A reference table is attached for conversion between decimal, hexadecimal and binary.

Available for free at Connexions <http://cnx.org/content/col11267/1.3>
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Hexadecimal Reference

Decimal Hexadecimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Table 1.2

Exercise 1.2.10 (Solution on p. 43.)

Convert ABC (hexadecimal) to binary and decimal.
It may sometimes be easier to convert to decimal �rst and then binary.

Exercise 1.2.11 (Solution on p. 43.)

Convert 1010011110000001 to its decimal and hexadecimal values.

1.3 Signed Numbers: Absolute Value3

1.3.1 Section Overview

• Geometric De�nition of Absolute Value
• Algebraic De�nition of Absolute Value

1.3.2 Geometric De�nition of Absolute Value

Absolute Value-Geometric Approach
Geometric de�nition of absolute value:
The absolute value of a number a, denoted | a |, is the distance from a to 0 on the number line.

3This content is available online at <http://cnx.org/content/m35030/1.3/>.
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8 CHAPTER 1. REVIEW OF ALGEBRA

Absolute value answers the question of "how far," and not "which way." The phrase "how far" implies
"length" and length is always a nonnegative quantity. Thus, the absolute value of a number is a nonnegative
number.

1.3.2.1 Sample Set A

Determine each value.

Example 1.1
| 4 |= 4

Example 1.2
| −4 |= 4

Example 1.3
| 0 |= 0

Example 1.4
− | 5 |= −5. The quantity on the left side of the equal sign is read as "negative the absolute value
of 5." The absolute value of 5 is 5. Hence, negative the absolute value of 5 is -5.

Example 1.5
− | −3 |= −3. The quantity on the left side of the equal sign is read as "negative the absolute
value of -3." The absolute value of -3 is 3. Hence, negative the absolute value of -3 is − (3) = −3.

1.3.2.2 Practice Set A

By reasoning geometrically, determine each absolute value.

Exercise 1.3.1 (Solution on p. 43.)

| 7 |
Exercise 1.3.2 (Solution on p. 43.)

| −3 |
Exercise 1.3.3 (Solution on p. 43.)

| 12 |
Exercise 1.3.4 (Solution on p. 43.)

| 0 |
Exercise 1.3.5 (Solution on p. 43.)

− | 9 |
Exercise 1.3.6 (Solution on p. 43.)

− | −6 |

Available for free at Connexions <http://cnx.org/content/col11267/1.3>
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1.3.3 Algebraic De�nition of Absolute Value

From the problems in Section 1.3.2.1 (Sample Set A), we can suggest the following algebraic de�nition of
absolute value. Note that the de�nition has two parts.
Absolute Value�Algebraic Approach
Algebraic de�nition of absolute value
The absolute value of a number a is

|a| = {
a, if a ≥ 0

−a, if < 0
The algebraic de�nition takes into account the fact that the number a could be either positive or zero

(a ≥ 0) or negative (a < 0).

1. If the number a is positive or zero (a ≥ 0), the upper part of the de�nition applies. The upper part of
the de�nition tells us that if the number enclosed in the absolute value bars is a nonnegative number,
the absolute value of the number is the number itself.

2. The lower part of the de�nition tells us that if the number enclosed within the absolute value bars is
a negative number, the absolute value of the number is the opposite of the number. The opposite of a
negative number is a positive number.

note: The de�nition says that the vertical absolute value lines may be eliminated only if we know
whether the number inside is positive or negative.

1.3.3.1 Sample Set B

Use the algebraic de�nition of absolute value to �nd the following values.

Example 1.6
| 8 |. The number enclosed within the absolute value bars is a nonnegative number, so the upper
part of the de�nition applies. This part says that the absolute value of 8 is 8 itself.
| 8 |= 8

Example 1.7
| −3 |. The number enclosed within absolute value bars is a negative number, so the lower part of
the de�nition applies. This part says that the absolute value of -3 is the opposite of -3, which is
− (−3). By the de�nition of absolute value and the double-negative property,
| −3 |= − (−3) = 3

1.3.3.2 Practice Set B

Use the algebraic de�nition of absolute value to �nd the following values.

Exercise 1.3.7 (Solution on p. 43.)

| 7 |
Exercise 1.3.8 (Solution on p. 44.)

| 9 |
Exercise 1.3.9 (Solution on p. 44.)

| −12 |
Exercise 1.3.10 (Solution on p. 44.)

| −5 |
Exercise 1.3.11 (Solution on p. 44.)

− | 8 |

Available for free at Connexions <http://cnx.org/content/col11267/1.3>



10 CHAPTER 1. REVIEW OF ALGEBRA

Exercise 1.3.12 (Solution on p. 44.)

− | 1 |
Exercise 1.3.13 (Solution on p. 44.)

− | −52 |
Exercise 1.3.14 (Solution on p. 44.)

− | −31 |

1.3.4 Exercises

Determine each of the values.

Exercise 1.3.15 (Solution on p. 44.)

| 5 |
Exercise 1.3.16
| 3 |

Exercise 1.3.17 (Solution on p. 44.)

| 6 |
Exercise 1.3.18
| −9 |

Exercise 1.3.19 (Solution on p. 44.)

| −1 |
Exercise 1.3.20
| −4 |

Exercise 1.3.21 (Solution on p. 44.)

− | 3 |
Exercise 1.3.22
− | 7 |

Exercise 1.3.23 (Solution on p. 44.)

− | −14 |
Exercise 1.3.24
| 0 |

Exercise 1.3.25 (Solution on p. 44.)

| −26 |
Exercise 1.3.26
− | −26 |

Exercise 1.3.27 (Solution on p. 44.)

− (− | 4 |)
Exercise 1.3.28
− (− | 2 |)

Exercise 1.3.29 (Solution on p. 44.)

− (− | −6 |)
Exercise 1.3.30
− (− | −42 |)

Exercise 1.3.31 (Solution on p. 44.)

| 5 | − | −2 |

Available for free at Connexions <http://cnx.org/content/col11267/1.3>
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Exercise 1.3.32
| −2 |3

Exercise 1.3.33 (Solution on p. 44.)

| − (2 · 3) |
Exercise 1.3.34
| −2 | − | −9 |

Exercise 1.3.35 (Solution on p. 44.)

(| −6 | + | 4 |)2

Exercise 1.3.36
(| −1 | − | 1 |)3

Exercise 1.3.37 (Solution on p. 44.)

(| 4 | + | −6 |)2 − (| −2 |)3

Exercise 1.3.38
−[|−10| − 6]2

Exercise 1.3.39 (Solution on p. 44.)

−{−[− | −4 | + | −3 |]3}
2

Exercise 1.3.40
A Mission Control O�cer at Cape Canaveral makes the statement �lift-o�, T minus 50 seconds.�
How long is it before lift-o�?

Exercise 1.3.41 (Solution on p. 44.)

Due to a slowdown in the industry, a Silicon Valley computer company �nds itself in debt
$2,400,000. Use absolute value notation to describe this company's debt.

Exercise 1.3.42
A particular machine is set correctly if upon action its meter reads 0. One particular machine has
a meter reading of −1.6 upon action. How far is this machine o� its correct setting?

1.3.4.1 Exercises for Review

Exercise 1.3.43 (Solution on p. 44.)

( here4) Find the sum: 9
70

+ 5
21

+ 8
15
.

Exercise 1.3.44
( here5) Find the value of

3
10

+ 4
12

19

20

.

Exercise 1.3.45 (Solution on p. 44.)

( here6) Convert 3.2 3
5 to a fraction.

Exercise 1.3.46
( here7) The ratio of acid to water in a solution is 3

8 . How many mL of acid are there in a solution
that contain 112 mL of water?

Exercise 1.3.47 (Solution on p. 44.)

( here8) Find the value of −6− (−8).

4"Addition and Subtraction of Fractions, Comparing Fractions, and Complex Fractions: Addition and Subtraction of
Fractions with Unlike Denominators" <http://cnx.org/content/m34935/latest/>

5"Addition and Subtraction of Fractions, Comparing Fractions, and Complex Fractions: Complex Fractions"
<http://cnx.org/content/m34941/latest/>

6"Decimals: Converting a Decimal to a Fraction" <http://cnx.org/content/m34958/latest/>
7"Ratios and Rates: Proportions" <http://cnx.org/content/m34981/latest/>
8"Signed Numbers: Signed Numbers" <http://cnx.org/content/m35029/latest/>
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12 CHAPTER 1. REVIEW OF ALGEBRA

1.4 Arithmetic Review: Factors, Products, and Exponents9

1.4.1 Overview

• Factors
• Exponential Notation

1.4.2 Factors

Let's begin our review of arithmetic by recalling the meaning of multiplication for whole numbers (the
counting numbers and zero).
Multiplication
Multiplication is a description of repeated addition.

In the addition

7 + 7 + 7 + 7

the number 7 is repeated as an addend* 4 times. Therefore, we say we have four times seven
and describe it by writing

4 · 7

The raised dot between the numbers 4 and 7 indicates multiplication. The dot directs us to multi-
ply the two numbers that it separates. In algebra, the dot is preferred over the symbol × to denote
multiplication because the letter x is often used to represent a number. Thus,

4 · 7 = 7 + 7 + 7 + 7
Factors and Products
In a multiplication, the numbers being multiplied are called factors. The result of a multiplication is called
the product. For example, in the multiplication

4 · 7 = 28

the numbers 4 and 7 are factors, and the number 28 is the product. We say that 4 and 7 are fac-
tors of 28. (They are not the only factors of 28. Can you think of others?)

Now we know that

(factor) · (factor) = product

This indicates that a �rst number is a factor of a second number if the �rst number divides into the
second number with no remainder. For example, since

4 · 7 = 28

both 4 and 7 are factors of 28 since both 4 and 7 divide into 28 with no remainder.

9This content is available online at <http://cnx.org/content/m18882/1.5/>.
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1.4.3 Exponential Notation

Quite often, a particular number will be repeated as a factor in a multiplication. For example, in the
multiplication

7 · 7 · 7 · 7

the number 7 is repeated as a factor 4 times. We describe this by writing 74. Thus,

7 · 7 · 7 · 7 = 74

The repeated factor is the lower number (the base), and the number recording how many times the
factor is repeated is the higher number (the superscript). The superscript number is called an exponent.
Exponent
An exponent is a number that records how many times the number to which it is attached occurs as a
factor in a multiplication.

1.4.4 Sample Set A

For Examples 1, 2, and 3, express each product using exponents.

Example 1.8
3 · 3 · 3 · 3 · 3 · 3. Since 3 occurs as a factor 6 times,

3 · 3 · 3 · 3 · 3 · 3 = 36

Example 1.9
8 · 8. Since 8 occurs as a factor 2 times,

8 · 8 = 82

Example 1.10
5 · 5 · 5 · 9 · 9. Since 5 occurs as a factor 3 times, we have 53. Since 9 occurs as a factor 2 times,
we have 92. We should see the following replacements.

5 · 5 · 5︸ ︷︷ ︸
53

· 9 · 9︸︷︷︸
92

Then we have

5 · 5 · 5 · 9 · 9 = 53 · 92

Example 1.11
Expand 35. The base is 3 so it is the repeated factor. The exponent is 5 and it records the number
of times the base 3 is repeated. Thus, 3 is to be repeated as a factor 5 times.

35 = 3 · 3 · 3 · 3 · 3

Example 1.12
Expand 62 · 104. The notation 62 · 104 records the following two facts: 6 is to be repeated as a
factor 2 times and 10 is to be repeated as a factor 4 times. Thus,

62 · 104 = 6 · 6 · 10 · 10 · 10 · 10

Available for free at Connexions <http://cnx.org/content/col11267/1.3>
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1.4.5 Exercises

For the following problems, express each product using exponents.

Exercise 1.4.1 (Solution on p. 45.)

8 · 8 · 8
Exercise 1.4.2
12 · 12 · 12 · 12 · 12
Exercise 1.4.3 (Solution on p. 45.)

5 · 5 · 5 · 5 · 5 · 5 · 5
Exercise 1.4.4
1 · 1
Exercise 1.4.5 (Solution on p. 45.)

3 · 3 · 3 · 3 · 3 · 4 · 4
Exercise 1.4.6
8 · 8 · 8 · 15 · 15 · 15 · 15
Exercise 1.4.7 (Solution on p. 45.)

2 · 2 · 2 · 9 · 9 · 9 · 9 · 9 · 9 · 9 · 9
Exercise 1.4.8
3 · 3 · 10 · 10 · 10
Exercise 1.4.9 (Solution on p. 45.)

Suppose that the letters x and y are each used to represent numbers. Use exponents to express
the following product.

x · x · x · y · y
Exercise 1.4.10
Suppose that the letters x and y are each used to represent numbers. Use exponents to express
the following product.

x · x · x · x · x · y · y · y
For the following problems, expand each product (do not compute the actual value).

Exercise 1.4.11 (Solution on p. 45.)

34

Exercise 1.4.12
43

Exercise 1.4.13 (Solution on p. 45.)

25

Exercise 1.4.14
96

Exercise 1.4.15 (Solution on p. 45.)

53 · 62

Exercise 1.4.16
27 · 34

Exercise 1.4.17 (Solution on p. 45.)

x4 · y4

Exercise 1.4.18
x6 · y2

Available for free at Connexions <http://cnx.org/content/col11267/1.3>
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For the following problems, specify all the whole number factors of each number. For example, the complete
set of whole number factors of 6 is 1, 2, 3, 6.

Exercise 1.4.19 (Solution on p. 45.)

20

Exercise 1.4.20
14

Exercise 1.4.21 (Solution on p. 45.)

12

Exercise 1.4.22
30

Exercise 1.4.23 (Solution on p. 45.)

21

Exercise 1.4.24
45

Exercise 1.4.25 (Solution on p. 45.)

11

Exercise 1.4.26
17

Exercise 1.4.27 (Solution on p. 45.)

19

Exercise 1.4.28
2

Available for free at Connexions <http://cnx.org/content/col11267/1.3>
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1.5 Arithmetic Review: Prime Factorization10

1.5.1 Overview

• Prime And Composite Numbers
• The Fundamental Principle Of Arithmetic
• The Prime Factorization Of A Whole Number

1.5.2 Prime And Composite Numbers

Notice that the only factors of 7 are 1 and 7 itself, and that the only factors of 23 are 1 and 23 itself.
Prime Number
A whole number greater than 1 whose only whole number factors are itself and 1 is called a prime number.

The �rst seven prime numbers are

2, 3, 5, 7, 11, 13, and 17

The number 1 is not considered to be a prime number, and the number 2 is the �rst and only even
prime number.
Many numbers have factors other than themselves and 1. For example, the factors of 28 are 1, 2, 4, 7,
14, and 28 (since each of these whole numbers and only these whole numbers divide into 28 without a
remainder).
Composite Numbers
A whole number that is composed of factors other than itself and 1 is called a composite number.
Composite numbers are not prime numbers.

Some composite numbers are 4, 6, 8, 10, 12, and 15.

1.5.3 The Fundamental Principle Of Arithmetic

Prime numbers are very important in the study of mathematics. We will use them soon in our study of
fractions. We will now, however, be introduced to an important mathematical principle.
The Fundamental Principle of Arithmetic
Except for the order of the factors, every whole number, other than 1, can be factored in one and only one
way as a product of prime numbers.
Prime Factorization
When a number is factored so that all its factors are prime numbers, the factorization is called the prime
factorization of the number.

1.5.4 Sample Set A

Example 1.13
Find the prime factorization of 10.

10 = 2 · 5

Both 2 and 5 are prime numbers. Thus, 2 · 5 is the prime factorization of 10.

Example 1.14
Find the prime factorization of 60.

10This content is available online at <http://cnx.org/content/m21868/1.5/>.
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60 = 2 · 30 30 is not prime. 30 = 2 · 15

= 2 · 2 · 15 15 is not prime. 15 = 3 · 5

= 2 · 2 · 3 · 5 We'll use exponents. 2 · 2 = 22

= 22 · 3 · 5

The numbers 2, 3, and 5 are all primes. Thus, 22 · 3 · 5 is the prime factorization of 60.

Example 1.15
Find the prime factorization of 11.

11 is a prime number. Prime factorization applies only to composite numbers.

1.5.5 The Prime Factorization Of A Whole Number

The following method provides a way of �nding the prime factorization of a whole number. The examples
that follow will use the method and make it more clear.

1. Divide the number repeatedly by the smallest prime number that will divide into the number without
a remainder.

2. When the prime number used in step 1 no longer divides into the given number without a remainder,
repeat the process with the next largest prime number.

3. Continue this process until the quotient is 1.
4. The prime factorization of the given number is the product of all these prime divisors.

1.5.6 Sample Set B

Example 1.16
Find the prime factorization of 60.

Since 60 is an even number, it is divisible by 2. We will repeatedly divide by 2 until we no
longer can (when we start getting a remainder). We shall divide in the following way.

30 is divisible by 2 again.

15 is not divisible by 2, but is divisible by 3, the next largest prime.

5 is not divisible by 3, but is divisible by 5, the next largest prime.

The quotient is 1 sowe stop the division process.

The prime factorization of 60 is the product of all these divisors.

60 = 2 · 2 · 3 · 5 Wewill use exponentswhen possible.

60 = 22 · 3 · 5

Example 1.17
Find the prime factorization of 441.

Since 441 is an odd number, it is not divisible by 2. We'll try 3, the next largest prime.

Available for free at Connexions <http://cnx.org/content/col11267/1.3>



18 CHAPTER 1. REVIEW OF ALGEBRA

147 is divisible by 3.

49 is not divisible by 3 nor by 5, but by 7.

7 is divisible by 7.

The quotient is 1 sowe stop the division process.

The prime factorization of 441 is the product of all the divisors.

441 = 3 · 3 · 7 · 7 Wewill use exponentswhen possible.

441 = 32 · 72

Available for free at Connexions <http://cnx.org/content/col11267/1.3>
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1.5.7 Exercises

For the following problems, determine which whole numbers are prime and which are composite.

Exercise 1.5.1 (Solution on p. 45.)

23

Exercise 1.5.2
25

Exercise 1.5.3 (Solution on p. 45.)

27

Exercise 1.5.4
2

Exercise 1.5.5 (Solution on p. 45.)

3

Exercise 1.5.6
5

Exercise 1.5.7 (Solution on p. 45.)

7

Exercise 1.5.8
9

Exercise 1.5.9 (Solution on p. 45.)

11

Exercise 1.5.10
34

Exercise 1.5.11 (Solution on p. 45.)

55

Exercise 1.5.12
63

Exercise 1.5.13 (Solution on p. 45.)

1044

Exercise 1.5.14
339

Exercise 1.5.15 (Solution on p. 45.)

209

For the following problems, �nd the prime factorization of each whole number. Use exponents on repeated
factors.

Exercise 1.5.16
26

Exercise 1.5.17 (Solution on p. 45.)

38

Exercise 1.5.18
54

Exercise 1.5.19 (Solution on p. 45.)

62

Exercise 1.5.20
56

Available for free at Connexions <http://cnx.org/content/col11267/1.3>
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Exercise 1.5.21 (Solution on p. 46.)

176

Exercise 1.5.22
480

Exercise 1.5.23 (Solution on p. 46.)

819

Exercise 1.5.24
2025

Exercise 1.5.25 (Solution on p. 46.)

148,225

Available for free at Connexions <http://cnx.org/content/col11267/1.3>
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1.6 Arithmetic Review: The Least Common Multiple11

1.6.1 Overview

• Multiples
• Common Multiples
• The Least Common Multiple (LCM)
• Finding The Least Common Multiple

1.6.2 Multiples

Multiples
When a whole number is multiplied by other whole numbers, with the exception of Multiples zero, the
resulting products are called multiples of the given whole number.

Multiples of 2 Multiples of 3 Multiples of 8 Multiples of 10

2·1=2 3·1=3 8·1=8 10·1=10
2·2=4 3·2=6 8·2=16 10·2=20
2·3=6 3·3=9 8·3=24 10·3=30
2·4=8 3·4=12 8·4=32 10·4=40
2·5=10 3·5=15 8·5=40 10·5=50
. . . . . . . . . . . .

Table 1.3

1.6.3 Common Multiples

There will be times when we are given two or more whole numbers and we will need to know if there are any
multiples that are common to each of them. If there are, we will need to know what they are. For example,
some of the multiples that are common to 2 and 3 are 6, 12, and 18.

1.6.4 Sample Set A

Example 1.18
We can visualize common multiples using the number line.

11This content is available online at <http://cnx.org/content/m21870/1.6/>.
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Notice that the common multiples can be divided by both whole numbers.

1.6.5 The Least Common Multiple (LCM)

Notice that in our number line visualization of common multiples (above) the �rst common multiple is also
the smallest, or least common multiple, abbreviated by LCM.
Least Common Multiple
The least common multiple, LCM, of two or more whole numbers is the smallest whole number that
each of the given numbers will divide into without a remainder.

1.6.6 Finding The Least Common Multiple

Finding the LCM
To �nd the LCM of two or more numbers,

1. Write the prime factorization of each number, using exponents on repeated factors.
2. Write each base that appears in each of the prime factorizations.
3. To each base, attach the largest exponent that appears on it in the prime factorizations.
4. The LCM is the product of the numbers found in step 3.

1.6.7 Sample Set B

Find the LCM of the following number.

Example 1.19
9 and 12

1.
9 = 3 · 3 = 32

12 = 2 · 6 = 2 · 2 · 3 = 22 · 3
2. The bases that appear in the prime factorizations are 2 and 3.
3. The largest exponents appearing on 2 and 3 in the prime factorizations are, respectively, 2

and 2 (or 22 from 12, and 32 from 9).
4. The LCM is the product of these numbers.

LCM = 22 · 32 = 4 · 9 = 36

Thus, 36 is the smallest number that both 9 and 12 divide into without remainders.

Example 1.20
90 and 630

1.

90 = 2 · 45 = 2 · 3 · 15 = 2 · 3 · 3 · 5 = 2 · 32 · 5

630 = 2 · 315 = 2 · 3 · 105 = 2 · 3 · 3 · 35 = 2 · 3 · 3 · 5 · 7

= 2 · 32 · 5 · 7
2. The bases that appear in the prime factorizations are 2, 3, 5, and 7.

Available for free at Connexions <http://cnx.org/content/col11267/1.3>
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3. The largest exponents that appear on 2, 3, 5, and 7 are, respectively, 1, 2, 1, and 1.

21 from either 90 or 630

32 from either 90 or 630

51 from either 90 or 630

71 from 630
4. The LCM is the product of these numbers.

LCM = 2 · 32 · 5 · 7 = 2 · 9 · 5 · 7 = 630

Thus, 630 is the smallest number that both 90 and 630 divide into with no remainders.

Example 1.21
33, 110, and 484

1.

33 = 3 · 11

110 = 2 · 55 = 2 · 5 · 11

484 = 2 · 242 = 2 · 2 · 121 = 2 · 2 · 11 · 11 = 22 · 112

2. The bases that appear in the prime factorizations are 2, 3, 5, and 11.
3. The largest exponents that appear on 2, 3, 5, and 11 are, respectively, 2, 1, 1, and 2.

22 from 484

31 from 33

51 from 110

112 from 484
4. The LCM is the product of these numbers.

LCM = 22 · 3 · 5 · 112

= 4 · 3 · 5 · 121

= 7260

Thus, 7260 is the smallest number that 33, 110, and 484 divide into without remainders.

Available for free at Connexions <http://cnx.org/content/col11267/1.3>
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1.6.8 Exercises

For the following problems, �nd the least common multiple of given numbers.

Exercise 1.6.1 (Solution on p. 46.)

8, 12

Exercise 1.6.2
8, 10

Exercise 1.6.3 (Solution on p. 46.)

6, 12

Exercise 1.6.4
9, 18

Exercise 1.6.5 (Solution on p. 46.)

5, 6

Exercise 1.6.6
7, 9

Exercise 1.6.7 (Solution on p. 46.)

28, 36

Exercise 1.6.8
24, 36

Exercise 1.6.9 (Solution on p. 46.)

28, 42

Exercise 1.6.10
20, 24

Exercise 1.6.11 (Solution on p. 46.)

25, 30

Exercise 1.6.12
24, 54

Exercise 1.6.13 (Solution on p. 46.)

16, 24

Exercise 1.6.14
36, 48

Exercise 1.6.15 (Solution on p. 46.)

15, 21

Exercise 1.6.16
7, 11, 33

Exercise 1.6.17 (Solution on p. 46.)

8, 10, 15

Exercise 1.6.18
4, 5, 21

Exercise 1.6.19 (Solution on p. 46.)

45, 63, 98

Exercise 1.6.20
15, 25, 40

Exercise 1.6.21 (Solution on p. 46.)

12, 16, 20
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Exercise 1.6.22
12, 16, 24

Exercise 1.6.23 (Solution on p. 46.)

12, 16, 24, 36

Exercise 1.6.24
6, 9, 12, 18

Exercise 1.6.25 (Solution on p. 46.)

8, 14, 28, 32
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1.7 Arithmetic Review: Equivalent Fractions12

1.7.1 Overview

• Equivalent Fractions
• Reducing Fractions To Lowest Terms
• Raising Fractions To Higher Terms

1.7.2 Equivalent Fractions

Equivalent Fractions
Fractions that have the same value are called equivalent fractions.

For example, 2
3 and 4

6 represent the same part of a whole quantity and are therefore equivalent. Several
more collections of equivalent fractions are listed below.

Example 1.22
15
25 ,

12
20 ,

3
5

Example 1.23
1
3 ,

2
6 ,

3
9 ,

4
12

Example 1.24
7
6 ,

14
12 ,

21
18 ,

28
24 ,

35
30

1.7.3 Reducing Fractions To Lowest Terms

Reduced to Lowest Terms
It is often useful to convert one fraction to an equivalent fraction that has reduced values in the numerator
and denominator. When a fraction is converted to an equivalent fraction that has the smallest numerator
and denominator in the collection of equivalent fractions, it is said to be reduced to lowest terms. The
conversion process is called reducing a fraction.

We can reduce a fraction to lowest terms by

1. Expressing the numerator and denominator as a product of prime numbers. (Find the prime factor-
ization of the numerator and denominator. See Section (Section 1.5) for this technique.)

2. Divide the numerator and denominator by all common factors. (This technique is commonly called
�cancelling.�)

1.7.4 Sample Set A

Reduce each fraction to lowest terms.

Example 1.25

6
18 = 2 · 3

2 · 3 · 3

= )2 · )3
)2 · )3 · 3

2 and 3 are common factors.

= 1
3

12This content is available online at <http://cnx.org/content/m21861/1.4/>.
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Example 1.26

16
20 = 2 · 2 · 2 · 2

2 · 2 · 5

= )2 · )2 · 2 · 2
)2 · )2 · 5

2 is the only common factor.

= 4
5

Example 1.27

56
70 = 2 · 4 · 7

2 · 5 · 7

= )2 · 4 · )7
)2 · 5 · )7

2 and 7 are common factors.

= 4
5

Example 1.28

8
15 = 2 · 2 · 2

3 · 5 There are no common factors.

Thus, 8
15 is reduced to lowest terms.

1.7.5 Raising a Fraction to Higher Terms

Equally important as reducing fractions is raising fractions to higher terms. Raising a fraction to
higher terms is the process of constructing an equivalent fraction that has higher values in the numera-
tor and denominator. The higher, equivalent fraction is constructed by multiplying the original fraction by 1.

Notice that 3
5 and 9

15 are equivalent, that is 3
5 = 9

15 . Also,

This observation helps us suggest the following method for raising a fraction to higher terms.
Raising a Fraction to Higher Terms
A fraction can be raised to higher terms by multiplying both the numerator and denominator by the same
nonzero number.

For example, 3
4 can be raised to 24

32 by multiplying both the numerator and denominator by 8, that is,
multiplying by 1 in the form 8

8 .

3
4

=
3 · 8
4 · 8

=
24
32

How did we know to choose 8 as the proper factor? Since we wish to convert 4 to 32 by multiply-
ing it by some number, we know that 4 must be a factor of 32. This means that 4 divides into 32. In fact,
32 ÷ 4 = 8. We divided the original denominator into the new, speci�ed denominator to obtain the proper
factor for the multiplication.
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1.7.6 Sample Set B

Determine the missing numerator or denominator.

Example 1.29
3
7 = ?

35 . Divide the original denominator, 7, into the newdenominator, 35. 35÷ 7 = 5.

Multiply the original numerator by 5.

3
7 = 3 · 5

7 · 5 = 15
35

Example 1.30
5
6 = 45

? . Divide the original numerator, 5, into the newnumerator, 45. 45÷ 5 = 9.

Multiply the original denominator by 9.

5
6 = 5 · 9

6 · 9 = 45
54
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1.7.7 Exercises

For the following problems, reduce, if possible, each fraction lowest terms.

Exercise 1.7.1 (Solution on p. 46.)
6
8

Exercise 1.7.2
5
10

Exercise 1.7.3 (Solution on p. 46.)
6
14

Exercise 1.7.4
4
14

Exercise 1.7.5 (Solution on p. 46.)
18
12

Exercise 1.7.6
20
8

Exercise 1.7.7 (Solution on p. 46.)
10
6

Exercise 1.7.8
14
4

Exercise 1.7.9 (Solution on p. 46.)
10
12

Exercise 1.7.10
32
28

Exercise 1.7.11 (Solution on p. 46.)
36
10

Exercise 1.7.12
26
60

Exercise 1.7.13 (Solution on p. 46.)
12
18

Exercise 1.7.14
18
27

Exercise 1.7.15 (Solution on p. 47.)
18
24

Exercise 1.7.16
32
40

Exercise 1.7.17 (Solution on p. 47.)
11
22

Exercise 1.7.18
17
51

Exercise 1.7.19 (Solution on p. 47.)
27
81

Exercise 1.7.20
16
42

Exercise 1.7.21 (Solution on p. 47.)
39
13
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Exercise 1.7.22
44
11

Exercise 1.7.23 (Solution on p. 47.)
121
132

Exercise 1.7.24
30
105

Exercise 1.7.25 (Solution on p. 47.)
108
76

For the following problems, determine the missing numerator or denominator.

Exercise 1.7.26
1
3 = ?

12

Exercise 1.7.27 (Solution on p. 47.)
1
5 = ?

30

Exercise 1.7.28
3
3 = ?

9

Exercise 1.7.29 (Solution on p. 47.)
3
4 = ?

16

Exercise 1.7.30
5
6 = ?

18

Exercise 1.7.31 (Solution on p. 47.)
4
5 = ?

25

Exercise 1.7.32
1
2 = 4

?

Exercise 1.7.33 (Solution on p. 47.)
9
25 = 27

?

Exercise 1.7.34
3
2 = 18

?

Exercise 1.7.35 (Solution on p. 47.)
5
3 = 80

?
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1.8 Arithmetic Review: Operations with Fractions13

1.8.1 Overview

• Multiplication of Fractions
• Division of Fractions
• Addition and Subtraction of Fractions

1.8.2 Multiplication of Fractions

Multiplication of Fractions
To multiply two fractions, multiply the numerators together and multiply the denominators together. Reduce
to lowest terms if possible.

Example 1.31
For example, multiply 3

4 ·
1
6 .

3
4 ·

1
6 = 3 · 1

4 · 6

= 3
24 Now reduce.

= 3 · 1
2 · 2 · 2 · 3

= )3 · 1
2 · 2 · 2 · )3

3 is the only common factor.

= 1
8

Notice that we since had to reduce, we nearly started over again with the original two fractions. If
we factor �rst, then cancel, then multiply, we will save time and energy and still obtain the correct
product.

1.8.3 Sample Set A

Perform the following multiplications.

Example 1.32

1
4 ·

8
9 = 1

2 · 2 ·
2 · 2 · 2

3 · 3

= 1

)2 · )2
· )2 · )2 · 2

3 · 3 2 is a common factor.

= 1
1 ·

2
3 · 3

= 1 · 2
1 · 3 · 3

= 2
9

Example 1.33

3
4 ·

8
9 ·

5
12 = 3

2 · 2 ·
2 · 2 · 2

3 · 3 · 5
2 · 2 · 3

= )3

)2 · )2
· )2 · )2 · )2

)3 · 3
· 5

)2 · 2 · 3
2 and 3 are common factors.

= 1 · 1 · 5
3 · 2 · 3

= 5
18

13This content is available online at <http://cnx.org/content/m21867/1.4/>.
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1.8.4 Division of Fractions

Reciprocals
Two numbers whose product is 1 are reciprocals of each other. For example, since 4

5 ·
5
4 = 1, 4

5 and 5
4 are

reciprocals of each other. Some other pairs of reciprocals are listed below.

2
7 ,

7
2

3
4 ,

4
3

6
1 ,

1
6

Reciprocals are used in division of fractions.
Division of Fractions
To divide a �rst fraction by a second fraction, multiply the �rst fraction by the reciprocal of the second
fraction. Reduce if possible.

This method is sometimes called the �invert and multiply� method.

1.8.5 Sample Set B

Perform the following divisions.

Example 1.34

1
3 ÷

3
4 . The divisor is 3

4 . Its reciprocal is
4
3 .

1
3 ÷

3
4 = 1

3 ·
4
3

= 1 · 4
3 · 3

= 4
9

Example 1.35

3
8 ÷

5
4 . The divisor is 5

4 . Its reciprocal is
4
5 .

3
8 ÷

5
4 = 3

8 ·
4
5

= 3
2 · 2 · 2 ·

2 · 2
5

= 3

)2 · )2 · 2
· )2 · )2

5 2 is a common factor.

= 3 · 1
2 · 5

= 3
10

Example 1.36

5
6 ÷

5
12 . The divisor is 5

12 . Its reciprocal is
12
5 .

5
6 ÷

5
12 = 5

6 ·
12
5

= 5
2 · 3 ·

2 · 2 · 3
5

= )5

)2 · )3
· )2 · 2 · )3

)5

= 1 · 2
1

= 2
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1.8.6 Addition and Subtraction of Fractions

Fractions with Like Denominators
To add (or subtract) two or more fractions that have the same denominators, add (or subtract) the numerators
and place the resulting sum over the common denominator. Reduce if possible.

CAUTION

Add or subtract only the numerators. Do not add or subtract the denominators!

1.8.7 Sample Set C

Find the following sums.

Example 1.37

3
7 + 2

7 . The denominators are the same.Add the numerators and place the sumover 7.

3
7 + 2

7 = 3+2
7 = 5

7

Example 1.38

7
9 −

4
9 . The denominators are the same. Subtract 4 from7 and place the di�erence over 9.

7
9 −

4
9 = 7−4

9 = 3
9 = 1

3

1.8.8

Fractions can only be added or subtracted conveniently if they have like denominators.
Fractions with Unlike Denominators
To add or subtract fractions having unlike denominators, convert each fraction to an equivalent fraction
having as the denominator the least common multiple of the original denominators.

The least common multiple of the original denominators is commonly referred to as the least common
denominator (LCD). See Section (Section 1.6) for the technique of �nding the least common multiple of
several numbers.

1.8.9 Sample Set D

Find each sum or di�erence.

Example 1.39

1
6 + 3

4 . The denominators are not alike.Find the LCDof 6 and 4.

{
6 = 2 · 3

4 = 22
TheLCD is 22 · 3 = 4 · 3 = 12.

Convert each of the original fractions to equivalent fractions having the commondenominator 12.

1
6 = 1 · 2

6 · 2 = 2
12

3
4 = 3 · 3

4 · 3 = 9
12

Nowwe can proceedwith the addition.

1
6 + 3

4 = 2
12 + 9

12

= 2+9
12

= 11
12
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Example 1.40

5
9 −

5
12 . The denominators are not alike.Find the LCDof 9 and 12.

{
9 = 32

12 = 22 · 3
TheLCD is 22 · 32 = 4 · 9 = 36.

Convert each of the original fractions to equivalent fractions having the commondenominator 36.

5
9 = 5 · 4

9 · 4 = 20
36

5
12 = 5 · 3

12 · 3 = 15
36

Nowwe can proceedwith the subtraction.

5
9 −

5
12 = 20

36 −
15
36

= 20−15
36

= 5
36
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1.8.10 Exercises

For the following problems, perform each indicated operation.

Exercise 1.8.1 (Solution on p. 47.)
1
3 ·

4
3

Exercise 1.8.2
1
3 ·

2
3

Exercise 1.8.3 (Solution on p. 47.)
2
5 ·

5
6

Exercise 1.8.4
5
6 ·

14
15

Exercise 1.8.5 (Solution on p. 47.)
9
16 ·

20
27

Exercise 1.8.6
35
36 ·

48
55

Exercise 1.8.7 (Solution on p. 47.)
21
25 ·

15
14

Exercise 1.8.8
76
99 ·

66
38

Exercise 1.8.9 (Solution on p. 47.)
3
7 ·

14
18 ·

6
2

Exercise 1.8.10
14
15 ·

21
28 ·

45
7

Exercise 1.8.11 (Solution on p. 47.)
5
9 ÷

5
6

Exercise 1.8.12
9
16 ÷

15
8

Exercise 1.8.13 (Solution on p. 47.)
4
9 ÷

6
15

Exercise 1.8.14
25
49 ÷

4
9

Exercise 1.8.15 (Solution on p. 47.)
15
4 ÷

27
8

Exercise 1.8.16
24
75 ÷

8
15

Exercise 1.8.17 (Solution on p. 47.)
57
8 ÷

7
8

Exercise 1.8.18
7
10 ÷

10
7

Exercise 1.8.19 (Solution on p. 47.)
3
8 + 2

8

Exercise 1.8.20
3
11 + 4

11

Exercise 1.8.21 (Solution on p. 47.)
5
12 + 7

12
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Exercise 1.8.22
11
16 −

2
16

Exercise 1.8.23 (Solution on p. 47.)
15
23 −

2
23

Exercise 1.8.24
3
11 + 1

11 + 5
11

Exercise 1.8.25 (Solution on p. 47.)
16
20 + 1

20 + 2
20

Exercise 1.8.26
3
8 + 2

8 −
1
8

Exercise 1.8.27 (Solution on p. 48.)
11
16 + 9

16 −
5
16

Exercise 1.8.28
1
2 + 1

6

Exercise 1.8.29 (Solution on p. 48.)
1
8 + 1

2

Exercise 1.8.30
3
4 + 1

3

Exercise 1.8.31 (Solution on p. 48.)
5
8 + 2

3

Exercise 1.8.32
6
7 −

1
4

Exercise 1.8.33 (Solution on p. 48.)
8
15 −

3
10

Exercise 1.8.34
1
15 + 5

12

Exercise 1.8.35 (Solution on p. 48.)
25
36 −

7
10

Exercise 1.8.36
9
28 −

4
45

Exercise 1.8.37 (Solution on p. 48.)
8
15 −

3
10

Exercise 1.8.38
1
16 + 3

4 −
3
8

Exercise 1.8.39 (Solution on p. 48.)
8
3 −

1
4 + 7

36

Exercise 1.8.40
3
4 −

3
22 + 5

24
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1.9 Adding and Subtracting Fractions with Like and Unlike Denom-

inators, and LCD14

1.9.1 Adding Fractions with Like Denominators

To add two or more fractions that have the same denominators, add the numerators and place the resulting
sum over the common denominator. Reduce, if necessary.

Example 1.41
Find the following sums.

3
7 + 2

7
The denominators are the same.
Add the numerators and place the sum over the common denominator, 7.
3
7 + 2

7 = 3+2
7 = 5

7

When necessary, reduce the result.

Example 1.42
1
8 + 3

8 = 1+3
8 = 4

8 = 1
2

note: We do not add denominators.

Example 1.43
To see what happens if we mistakenly add the denominators as well as the numerators, let's add

1
2 and 1

2 .
Adding the numerators and mistakenly adding the denominators produces:
1
2 + 1

2 = 1+1
2+2 = 2

4 = 1
2

This means that 1
2 + 1

2 is the same as 1
2 , which is preposterous! We do not add denominators.

1.9.1.1 Adding Fractions with Like Denominators - Exercises

1.9.1.1.1 Find the following sums.

Exercise 1.9.1 (Solution on p. 48.)
3
8 + 3

8

Exercise 1.9.2 (Solution on p. 48.)
7
11

+ 4
11

Exercise 1.9.3 (Solution on p. 48.)
15

20
+ 1

20
+ 2

20

1.9.2 Subtracting Fractions with Like Denominators

To subtract two or more fractions that have the same denominators, subtract the numerators and place the
resulting di�erence over the common denominator. Reduce, if necessary.

Example 1.44
Find the following di�erences.

3
5 - 1

5
The denominators are the same.
Subtract the numerators and place the di�erence over the common denominator, 5.

14This content is available online at <http://cnx.org/content/m26339/1.1/>.
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3
5 - 1

5 = 3−1
5 = 2

5

When necessary, reduce the result.

Example 1.45
8
6 - 2

6 = 6
6 = 1

note: We do not subtract denominators.

Example 1.46
To see what happens if we mistakenly subtract the denominators as well as the numerators, let's
subtract

7
15

- 4
15
.

Subtracting the numerators and mistakenly subtracting the denominators produces:
7
15

- 4
15

= 7−4
15−15 = 3

0
We end up dividing by zero, which is unde�ned. We do not subtract denominators.

1.9.2.1 Subtracting Fractions with Like Denominators - Exercises

1.9.2.1.1 Find the following di�erences.

Exercise 1.9.4 (Solution on p. 48.)
5
12

- 1
12

Exercise 1.9.5 (Solution on p. 48.)
3
16

- 3
16

Exercise 1.9.6 (Solution on p. 48.)
16

5 - 1
5 - 2

5

1.9.3 Adding and Subtracting Fractions with Unlike Denominators

Basic Rule: Fractions can only be added or subtracted conveniently if they have like denomi-
nators.

To see why this rule makes sense, let's consider the problem of adding a quarter and a dime.
A quarter is 1

4 of a dollar.
A dime is 1

10
of a dollar.

We know that 1 quarter + 1 dime = 35 cents. How do we get to this answer by adding 1
4 and 1

10
?

We convert them to quantities of the same denomination.
A quarter is equivalent to 25 cents, or 25

100
.

A dime is equivalent to 10 cents, or 10

100
.

By converting them to quantities of the same denomination, we can add them easily:
25

100
+ 10

100
= 35

100
.

Same denomination → same denominator
If the denominators are not the same, make them the same by building up the fractions so that they

both have a common denominator. A common denominator can always be found by multiplying all the
denominators, but it is not necessarily the Least Common Denominator.
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1.9.4 Least Common Denominator (LCD)

The LCD is the smallest number that is evenly divisible by all the denominators.
It is the least common multiple of the denominators.
The LCD is the product of all the prime factors of all the denominators, each factor taken the greatest

number of times that it appears in any single denominator.

1.9.4.1 Finding the LCD

Example 1.47
Find the sum of these unlike fractions.

1
12

+ 4
15

Factor the denominators:
12 = 2 × 2 × 3
15 = 3 × 5
What is the greatest number of times the prime factor 2 appear in any single denominator?

Answer: 2times. That is the number of times the prime factor 2 will appear as a factor in the
LCD.

What is the greatest number of times the prime factor 3 appear in any single denominator?
Answer: 1 time. That is the number of times the prime factor 3 will appear as a factor in the
LCD.

What is the greatest number of times the prime factor 5 appear in any single denominator?
Answer: 1 time. That is the number of times the prime factor 5 will appear as a factor in the
LCD.

So we assemble the LCD by multiplying each prime factor by the number of times it appears in
a single denominator, or:

2 × 2 × 3 × 5 = 60
60 is the Least Common Denominator (the Least Common Multiple of 12 and 15).

1.9.4.2 Building up the Fractions

To create fractions with like denominators, we now multiply the numerators by whatever factors are missing
when we compare the original denominator to the new LCD.

Example 1.48
In the fraction 1

12
, we multiply the denominator 12 by 5 to get the LCD of 60. Therefore we

multiply the numerator 1 by the same factor (5).
1
12
× 5

5 = 5
60

Similarly,
4
15
× 4

4 = 16

60

1.9.4.3 Adding the Built Up Fractions

Example 1.49
We can now add the two fractions because they have like denominators:

5
60

+ 16

60
= 21

60

Reduce the result: 21

60
= 7

20
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1.9.4.4 Adding and Subtracting Fractions with Unlike Denominators - Exercises

1.9.4.4.1 Find the following sums and di�erences.

Exercise 1.9.7 (Solution on p. 48.)
1
6 + 3

4

Exercise 1.9.8 (Solution on p. 48.)
5
9 - 5

12

Exercise 1.9.9 (Solution on p. 48.)
15

16
+ 1

2 - 3
4

1.9.5 Module Review Exercises

Exercise 1.9.10 (Solution on p. 48.)
9
15

+ 4
15

Exercise 1.9.11 (Solution on p. 48.)
7
10

- 3
10

+ 11

10

Exercise 1.9.12 (Solution on p. 48.)

Find the total length of the screw in this diagram:

Figure 1.1

Exercise 1.9.13 (Solution on p. 48.)
5
2 + 16

2 - 3
2

Exercise 1.9.14 (Solution on p. 48.)
3
4 + 1

3

Exercise 1.9.15 (Solution on p. 48.)

Two months ago, a woman paid o� 3
24

of a loan. One month ago, she paid o� 4
24

of the loan. This
month she will pay o� 5

24
of the total loan. At the end of this month, how much of her total loan

will she have paid o�?

Exercise 1.9.16 (Solution on p. 48.)
8
3 - 1

4 + 7
36
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Solutions to Exercises in Chapter 1

Solution to Exercise 1.2.1 (p. 5)

Step 1. In this case, we are dealing with unsigned binary numbers. Our range of possible numbers are between
0 and 2N − 1 .

Step 2.

10101 = 1× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20

= 1× 24 + 1× 22 + 1

= 16 + 4 + 1

= 21

(1.4)

Solution to Exercise 1.2.2 (p. 5)
Write out the sum of each digit multiplied by its correct power of two:

011010 = 0× 25 + 1× 24 + 1× 23 + 0× 22 + 1× 21 + 0× 20

= 16 + 8 + (2 = 26)
(1.5)

Solution to Exercise 1.2.3 (p. 5)

Step 1. For the decimal number 47, the largest multiple of two is 32 (25).
Step 2.

47− 32 = 15 (1.6)

Step 3.
15− 8 = 7 (1.7)

7− 4 = 3 (1.8)

3− 2 = 1 (1.9)

1− 1 = 0 (1.10)

Step 4.

47 = 32 + 8 + 4 + 2 + 1

= 25 + 23 + 22 + 21 + 20

= 101111(binary)

(1.11)

Note: If necessary, you can check your answer by reversing the steps and converting it back to decimal.

Solution to Exercise 1.2.4 (p. 5)

Step 1. The most signi�cant bit is 1. This means it is negative.
Step 2.

1001110 = 26 + 23 + 22 + 21

= 64 + 8 + 4 + 2

= 78

(1.12)

Step 3. Thus the answer is -78.

Solution to Exercise 1.2.5 (p. 5)
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Step 1. In this case, the decimal number is negative so the most signi�cant bit is 1.
Step 2.

98− 26 = 98− 64

= 34
(1.13)

Step 3.

34− 25 = 34− 32

= 2
(1.14)

2− 21 = 0 (1.15)

Step 4.

−98 = −
(
26 + 25 + 21

)
= 11100010

(1.16)

Solution to Exercise 1.2.6 (p. 5)

Step 1. In this case, the decimal number is negative so the most signi�cant bit is 0.
Since we have already calculated the binary representation for 98, we can use the answer from the
previous example. The steps are shown again to illustrate this.

Step 2.

98− 26 = 98− 64

= 34
(1.17)

Step 3.

34− 25 = 34− 32

= 2
(1.18)

2− 21 = 0 (1.19)

Step 4.

98 = 26 + 25 + 21

= 01100010
(1.20)

Solution to Exercise 1.2.7 (p. 6)

Step 1. In this case, the most signi�cant bit is 0. The number is positive.
Step 2.

001011 = 1011

= 23 + 21 + 20

= 8 + 2 + 1

= 11

(1.21)

Solution to Exercise 1.2.8 (p. 6)

Step 1. The �rst bit is 1 so the number is negative.
Step 2. 11011 �> 00100
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Step 3.

00100 + 1 = 00101

= 22 + 20

= 5

(1.22)

Step 4. Thus the answer is -5.

Solution to Exercise 1.2.9 (p. 6)

Step 1. The number is negative so the most signi�cant bit will be 1.
Step 2.

13 = 8 + 4 + 1

= 23 + 22 + 20

= 1101

(1.23)

Step 3.
1101− 1 = 1100 (1.24)

1100 �> 0011
Step 4. 0011 �> 11110011

Solution to Exercise 1.2.10 (p. 7)

Step 1. ABC �> 10 , 11 , 12
Step 2.

10× 162 + 11× 161 + 12× 160 = 2560 + 176 + 12

= 2748
(1.25)

Step 3. ABC �> 10 + 11 + 12 �> 1010 1011 1100
Step 4. 1010 1011 1100 �> 101010111100

Solution to Exercise 1.2.11 (p. 7)

Step 1. 1010011110000001 �> 1010 0111 1000 0001
Step 2. 1010 0111 1000 0001 �> A781
Step 3. A781 �> 10, 7, 8, 1

10× 163 + 7× 162 + 8× 161 + 1× 160 = 40960 + 1792 + 128 + 1

= 42881
(1.26)

Solution to Exercise 1.3.1 (p. 8)
7
Solution to Exercise 1.3.2 (p. 8)
3
Solution to Exercise 1.3.3 (p. 8)
12
Solution to Exercise 1.3.4 (p. 8)
0
Solution to Exercise 1.3.5 (p. 8)
-9
Solution to Exercise 1.3.6 (p. 8)
-6
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Solution to Exercise 1.3.7 (p. 9)
7
Solution to Exercise 1.3.8 (p. 9)
9
Solution to Exercise 1.3.9 (p. 9)
12
Solution to Exercise 1.3.10 (p. 9)
5
Solution to Exercise 1.3.11 (p. 9)
-8
Solution to Exercise 1.3.12 (p. 10)
-1
Solution to Exercise 1.3.13 (p. 10)
-52
Solution to Exercise 1.3.14 (p. 10)
-31
Solution to Exercise 1.3.15 (p. 10)
5
Solution to Exercise 1.3.17 (p. 10)
6
Solution to Exercise 1.3.19 (p. 10)
1
Solution to Exercise 1.3.21 (p. 10)
-3
Solution to Exercise 1.3.23 (p. 10)
-14
Solution to Exercise 1.3.25 (p. 10)
26
Solution to Exercise 1.3.27 (p. 10)
4
Solution to Exercise 1.3.29 (p. 10)
6
Solution to Exercise 1.3.31 (p. 10)
3
Solution to Exercise 1.3.33 (p. 11)
6
Solution to Exercise 1.3.35 (p. 11)
100
Solution to Exercise 1.3.37 (p. 11)
92
Solution to Exercise 1.3.39 (p. 11)
-1
Solution to Exercise 1.3.41 (p. 11)
−$ | −2, 400, 000 |
Solution to Exercise 1.3.43 (p. 11)
9
10

Solution to Exercise 1.3.45 (p. 11)
3 13

50
or 163

50

Solution to Exercise 1.3.47 (p. 11)
2
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Solutions to Arithmetic Review: Factors, Products, and Exponents

Solution to Exercise 1.4.1 (p. 14)
83

Solution to Exercise 1.4.3 (p. 14)
57

Solution to Exercise 1.4.5 (p. 14)
35 · 42

Solution to Exercise 1.4.7 (p. 14)
23 · 98

Solution to Exercise 1.4.9 (p. 14)
x3 · y2

Solution to Exercise 1.4.11 (p. 14)
3 · 3 · 3 · 3
Solution to Exercise 1.4.13 (p. 14)
2 · 2 · 2 · 2 · 2
Solution to Exercise 1.4.15 (p. 14)
5 · 5 · 5 · 6 · 6
Solution to Exercise 1.4.17 (p. 14)
x · x · x · x · y · y · y · y
Solution to Exercise 1.4.19 (p. 15)
1, 2, 4, 5, 10, 20
Solution to Exercise 1.4.21 (p. 15)
1, 2, 3, 4, 6, 12
Solution to Exercise 1.4.23 (p. 15)
1, 3, 7, 21
Solution to Exercise 1.4.25 (p. 15)
1, 11
Solution to Exercise 1.4.27 (p. 15)
1, 19

Solutions to Arithmetic Review: Prime Factorization

Solution to Exercise 1.5.1 (p. 19)
prime
Solution to Exercise 1.5.3 (p. 19)
composite
Solution to Exercise 1.5.5 (p. 19)
prime
Solution to Exercise 1.5.7 (p. 19)
prime
Solution to Exercise 1.5.9 (p. 19)
prime
Solution to Exercise 1.5.11 (p. 19)
composite
Solution to Exercise 1.5.13 (p. 19)
composite
Solution to Exercise 1.5.15 (p. 19)
composite
Solution to Exercise 1.5.17 (p. 19)
2 · 19
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Solution to Exercise 1.5.19 (p. 19)
2 · 31
Solution to Exercise 1.5.21 (p. 20)
24 · 11
Solution to Exercise 1.5.23 (p. 20)
32 · 7 · 13
Solution to Exercise 1.5.25 (p. 20)
52 · 72 · 112

Solutions to Arithmetic Review: The Least Common Multiple

Solution to Exercise 1.6.1 (p. 24)
23 · 3
Solution to Exercise 1.6.3 (p. 24)
22 · 3
Solution to Exercise 1.6.5 (p. 24)
2 · 3 · 5
Solution to Exercise 1.6.7 (p. 24)
22 · 32 · 7
Solution to Exercise 1.6.9 (p. 24)
22 · 3 · 7
Solution to Exercise 1.6.11 (p. 24)
2 · 3 · 52

Solution to Exercise 1.6.13 (p. 24)
24 · 3
Solution to Exercise 1.6.15 (p. 24)
3 · 5 · 7
Solution to Exercise 1.6.17 (p. 24)
23 · 3 · 5
Solution to Exercise 1.6.19 (p. 24)
2 · 32 · 5 · 72

Solution to Exercise 1.6.21 (p. 24)
24 · 3 · 5
Solution to Exercise 1.6.23 (p. 25)
24 · 32

Solution to Exercise 1.6.25 (p. 25)
25 · 7

Solutions to Arithmetic Review: Equivalent Fractions

Solution to Exercise 1.7.1 (p. 29)
3
4
Solution to Exercise 1.7.3 (p. 29)
3
7
Solution to Exercise 1.7.5 (p. 29)
3
2
Solution to Exercise 1.7.7 (p. 29)
5
3
Solution to Exercise 1.7.9 (p. 29)
5
6
Solution to Exercise 1.7.11 (p. 29)
18
5

Available for free at Connexions <http://cnx.org/content/col11267/1.3>



47

Solution to Exercise 1.7.13 (p. 29)
2
3
Solution to Exercise 1.7.15 (p. 29)
3
4
Solution to Exercise 1.7.17 (p. 29)
1
2
Solution to Exercise 1.7.19 (p. 29)
1
3
Solution to Exercise 1.7.21 (p. 29)
3
Solution to Exercise 1.7.23 (p. 30)
11
12
Solution to Exercise 1.7.25 (p. 30)
27
19
Solution to Exercise 1.7.27 (p. 30)
6
Solution to Exercise 1.7.29 (p. 30)
12
Solution to Exercise 1.7.31 (p. 30)
20
Solution to Exercise 1.7.33 (p. 30)
75
Solution to Exercise 1.7.35 (p. 30)
48

Solutions to Arithmetic Review: Operations with Fractions

Solution to Exercise 1.8.1 (p. 35)
4
9
Solution to Exercise 1.8.3 (p. 35)
1
3
Solution to Exercise 1.8.5 (p. 35)
5
12
Solution to Exercise 1.8.7 (p. 35)
9
10
Solution to Exercise 1.8.9 (p. 35)
1
Solution to Exercise 1.8.11 (p. 35)
2
3
Solution to Exercise 1.8.13 (p. 35)
10
9
Solution to Exercise 1.8.15 (p. 35)
10
9
Solution to Exercise 1.8.17 (p. 35)
57
7
Solution to Exercise 1.8.19 (p. 35)
5
8
Solution to Exercise 1.8.21 (p. 35)
1
Solution to Exercise 1.8.23 (p. 36)
13
23
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Solution to Exercise 1.8.25 (p. 36)
19
20
Solution to Exercise 1.8.27 (p. 36)
15
16
Solution to Exercise 1.8.29 (p. 36)
5
8
Solution to Exercise 1.8.31 (p. 36)
31
24
Solution to Exercise 1.8.33 (p. 36)
5
6
Solution to Exercise 1.8.35 (p. 36)
−1
180
Solution to Exercise 1.8.37 (p. 36)
7
30
Solution to Exercise 1.8.39 (p. 36)
47
18
Solution to Exercise 1.9.1 (p. 37)

6
8 = 3

4
Solution to Exercise 1.9.2 (p. 37)
11

11
= 1

Solution to Exercise 1.9.3 (p. 37)
18

20
= 9

10

Solution to Exercise 1.9.4 (p. 38)
4
12

= 1
3

Solution to Exercise 1.9.5 (p. 38)
Result is 0
Solution to Exercise 1.9.6 (p. 38)
Result is 13

5
Solution to Exercise 1.9.7 (p. 40)
Result is 11

12

Solution to Exercise 1.9.8 (p. 40)
Result is 5

36

Solution to Exercise 1.9.9 (p. 40)
Result is 35

16

Solution to Exercise 1.9.10 (p. 40)
Result is 13

15

Solution to Exercise 1.9.11 (p. 40)
Result is 15

10
(reduce to 1 1

2 )
Solution to Exercise 1.9.12 (p. 40)
Total length is 19

32
in.

Solution to Exercise 1.9.13 (p. 40)
Result is 18

2 (reduce to 9)
Solution to Exercise 1.9.14 (p. 40)
Result is 13

12

Solution to Exercise 1.9.15 (p. 40)
She will have paid o� 12

24
, or 1

2 of the total loan.
Solution to Exercise 1.9.16 (p. 40)
Result is 94

36
(reduce to 47

18
)
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Chapter 2

Functions

2.1 Function Concepts � Introduction1

The unit on functions is the most important in the Algebra II course, because it provides a crucial transition
point. Roughly speaking. . .

• Before Algebra I, math is about numbers.
• Starting in Algebra I, and continuing into Algebra II, math is about variables.
• Beginning with Algebra II, and continuing into Calculus, math is about functions.

Each step builds on the previous step. Each step expands the ability of mathematics to model behavior
and solve problems. And, perhaps most crucially, each step can be frightening to a student. It can be
very intimidating for a beginning Algebra student to see an entire page of mathematics that is covered with
letters, with almost no numbers to be found!

Unfortunately, many students end up with a very vague idea of what variables are (�That's when you
use letters in math�) and an even more vague understanding of functions (�Those things that look like f (x)
or something�). If you leave yourself with this kind of vague understanding of the core concepts, the lessons
will make less and less sense as you go on: you will be left with the feeling that �I just can't do this stu��
without realizing that the problem was all the way back in the idea of a variable or function.

The good news is, variables and functions both have very speci�c meanings that are not di�cult to
understand.

2.2 Function Concepts � What is a Variable?2

A variable is a letter that stands for a number you don't know, or a number that can change.
A few examples:

Example 2.1: Good Examples of Variable De�nitions

• �Let p be the number of people in a classroom.�
• �Let A be John's age, measured in years.�
• �Let h be the number of hours that Susan has been working.�

In each case, the letter stands for a very speci�c number. However, we use a letter instead of a number
because we don't know the speci�c number. In the �rst example above, di�erent classrooms will have di�erent
numbers of people (so p can be di�erent numbers in di�erent classes); in the second example, John's age is a

1This content is available online at <http://cnx.org/content/m18192/1.4/>.
2This content is available online at <http://cnx.org/content/m18194/1.5/>.
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50 CHAPTER 2. FUNCTIONS

speci�c and well-de�ned number, but we don't know what it is (at least not yet); and in the third example,
h will actually change its value every hour. In all three cases, we have a good reason for using a letter: it
represents a number, but we cannot use a speci�c number such as ��3� or � 4 1

2 �.

Example 2.2: Bad Examples of Variable De�nitions

• �Let n be the nickels.�
• �Let M be the number of minutes in an hour.�

The �rst error is by far the most common. Remember that a variable always stands for a number. �The
nickels� are not a number. Better de�nitions would be: �Let n be the number of nickels� or �Let n be the
total value of the nickels, measured in cents� or �Let n be the total mass of the nickels, measured in grams.�

The second example is better, because �number of minutes in an hour� is a number. But there is no
reason to call it �The Mysterious Mr. M� because we already know what it is. Why use a letter when you
just mean �60�?

Bad variable de�nitions are one of the most common reasons that students get stuck on
word problems�or get the wrong answer. The �rst type of error illustrated above leads to variable
confusion: n will end up being used for �number of nickels� in one equation and �total value of the nickels�
in another, and you end up with the wrong answer. The second type of error is more harmless�it won't
lead to wrong answers�but it won't help either. It usually indicates that the student is asking the wrong
question (�What can I assign a variable to?�) instead of the right question (�What numbers do I need to
know?�)

2.2.1 Variables aren't all called x. Get used to it.

Many students expect all variables to be named x, with possibly an occasional guest appearance by y. In
fact, variables can be named with practically any letter. Uppercase letters, lowercase letters, and even Greek
letters are commonly used for variable names. Hence, a problem might start with �Let H be the home team's
score and V be the visiting team's score.�

If you attempt to call both of these variables x, it just won't work. You could in principle call one of them
x and the other y, but that would make it more di�cult to remember which variable goes with which team.
It is important to become comfortable using a wide range of letters. (I do, however, recommend avoiding
the letter o whenever possible, since it looks like the number 0.)

2.3 Function Concepts � What is a Function?3

A function is neither a number nor a variable: it is a process for turning one number into another.
For instance, �Double and then add 6� is a function. If you put a 4 into that function, it comes out with a
14. If you put a 1

2 into that function, it comes out with a 7.
The traditional image of a function is a machine, with a slot on one side where numbers go in and a slot

on the other side where numbers come out.

3This content is available online at <http://cnx.org/content/m18189/1.2/>.
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5→ → 16

Table 2.1: A number goes in. A number comes out. The function is the machine, the process that turns 4
into 14 or 5 into 16 or 100 into 206.

The point of this image is that the function is not the numbers, but the machine itself�the process,
not the results of the process.

The primary purpose of �The Function Game� that you play on Day 1 is to get across this idea of a
numerical process. In this game, one student (the �leader�) is placed in the role of a function. �Whenever
someone gives you a number, you double that number, add 6, and give back the result.� It should be very
clear, as you perform this role, that you are not modeling a number, a variable, or even a list of numbers.
You are instead modeling a process�or an algorithm, or a recipe�for turning numbers into other numbers.
That is what a function is.

The function game also contains some more esoteric functions: �Respond with �3 no matter what number
you are given,� or �Give back the lowest prime number that is greater than or equal to the number you were
given.� Students playing the function game often ask �Can a function do that?� The answer is always yes
(with one caveat mentioned below). So another purpose of the function game is to expand your idea of what
a function can do. Any process that consistently turns numbers into other numbers, is a function.

By the way�having de�ned the word �function� I just want to say something about the word �equation.�
An �equation� is when you �equate� two things�that is to say, set them equal. So x2 − 3 is a function, but
it is not an equation. x2 − 3 = 6 is an equation. An �equation� always has an equal sign in it.

2.4 Function Concepts � Four Ways to Represent a Function4

Modern Calculus texts emphasize that a function can be expressed in four di�erent ways.

1. Verbal - This is the �rst way functions are presented in the function game: �Double and add six.�

4This content is available online at <http://cnx.org/content/m18195/1.3/>.
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2. Algebraic - This is the most common, most concise, and most powerful representation: 2x+ 6 . Note
that in an algebraic representation, the input number is represented as a variable (in this case, an x).

3. Numerical - This can be done as a list of value pairs, as (4, 14) � meaning that if a 4 goes in, a 14
comes out. (You may recognize this as (x, y) points used in graphing.)

4. Graphical - This is discussed in detail in the section on graphing.

These are not four di�erent types of functions: they are four di�erent views of the same function. One of
the most important skills in Algebra is converting a function between these di�erent forms, and this theme
will recur in di�erent forms throughout the text.

2.5 Function Concepts � Functions in the Real World5

Why are functions so important that they form the heart of math from Algebra II onward?
Functions are used whenever one variable depends on another variable. This relationship between

two variables is the most important in mathematics. It is a way of saying �If you tell me what x is, I can
tell you what y is.� We say that y �depends on� x, or y �is a function of� x.

A few examples:

Example 2.3: Function Concepts � Functions in the Real World

• "The area of a circle depends on its radius."
• "The amount of money Alice makes depends on the number of hours she works."
• �Max threw a ball. The height of the ball depends on how many seconds it has been in the

air.�

In each case, there are two variables. Given enough information about the scenario, you could assert that if
you tell me this variable, I will tell you that one. For instance, suppose you know that Alice makes
$100 per day. Then we could make a chart like this.

If Alice works this many days... ...she makes this many dollars

0 0

1 100

1½ 150

8 800

Table 2.2

If you tell me how long she has worked, I will tell you how much money she has made. Her earnings
�depend on� how long she works.

The two variables are referred to as the dependent variable and the independent variable. The
dependent variable is said to �depend on� or �be a function of� the independent variable. �The height of the
ball is a function of the time.�

Example 2.4: Bad Examples of Functional Relationships

• "The number of Trojan soldiers depends on the number of Greek soldiers."
• "The time depends on the height of the ball."

5This content is available online at <http://cnx.org/content/m18193/1.2/>.
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The �rst of these two examples is by far the most common. It is simply not true. There may be a relationship
between these two quantities�for instance, the sum of these two variables might be the total number of
soldiers, and the di�erence between these two quantities might suggest whether the battle will be a fair
one. But there is no dependency relationship�that is, no way to say �If you tell me the number of Greek
soldiers, I will tell you the number of Trojan soldiers��so this is not a function.

The second example is subtler: it confuses the dependent and the independent variables. The height
depends on the time, not the other way around. More on this in the discussion of �Inverse Functions".

2.6 Function Concepts � Lines6

Most students entering Algebra II are already familiar with the basic mechanics of graphing lines. Recapping
very brie�y: the equation for a line is y = mx+ b where b is the y-intercept (the place where the line crosses
the y-axis) and m is the slope. If a linear equation is given in another form (for instance, 4x+ 2y = 5), the
easiest way to graph it is to rewrite it in y = mx + b form (in this case, y = −2x+ 2 1

2 ).
There are two purposes of reintroducing this material in Algebra II. The �rst is to frame the discussion

as linear functions modeling behavior. The second is to deepen your understanding of the important
concept of slope.

Consider the following examples. Sam is a salesman�he earns a commission for each sale. Alice is a
technical support representative�she earns $100 each day. The chart below shows their bank accounts over
the week.

After this many days (t) Sam's bank account (S) Alice's bank account (A)

0 (*what they started with) $75 $750

1 $275 $850

2 $375 $950

3 $450 $1,050

4 $480 $1,150

5 $530 $1,250

Table 2.3

Sam has some extremely good days (such as the �rst day, when he made $200) and some extremely bad
days (such as the second day, when he made nothing). Alice makes exactly $100 every day.

Let d be the number of days, S be the number of dollars Sam has made, and A be the number of dollars
Alice has made. Both S and A are functions of time. But s (t) is not a linear function, and A (t)is a
linear function.

De�nition 2.1: Linear Function
A function is said to be �linear� if every time the independent variable increases by 1, the
dependent variable increases or decreases by the same amount.

Once you know that Alice's bank account function is linear, there are only two things you need to know
before you can predict her bank account on any given day.

• How much money she started with ($750 in this example). This is called the y-intercept.
• How much she makes each day ($100 in this example). This is called the slope.

6This content is available online at <http://cnx.org/content/m18197/1.3/>.
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y-intercept is relatively easy to understand. Verbally, it is where the function starts; graphically, it is where
the line crosses the y-axis.

But what about slope? One of the best ways to understand the idea of slope is to convince yourself that
all of the following de�nitions of slope are actually the same.

De�nitions of Slope

In our example In general On a graph

Each day, Alice's bank account
increases by 100. So the slope is
100.

Each time the independent vari-
able increases by 1, the depen-
dent variable increases by the
slope.

Each time you move to the right
by 1, the graph goes up by the
slope.

Between days 2 and 5, Alice earns
$300 in 3 days. 300/3=100.Be-
tween days 1 and 3, she earns
$200 in 2 days. 200/2=100.

Take any two points. The change
in the dependent variable, di-
vided by the change in the in-
dependent variable, is the slope.

Take any two points. The change
in y divided by the change in x
is the slope. This is often written
as ∆y

∆x , or as
rise

run

The higher the slope, the faster
Alice is making moey.

The higher the slope, the faster
the dependent variable increases.

The higher the slope, the faster
the graph rises as you move to the
right.

Table 2.4

So slope does not tell you where a graph is, but how quickly it is rising. Looking at a graph, you can get
an approximate feeling for its slope without any numbers. Examples are given below.
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(a) (b)

(c) (d)

(e)

Figure 2.1: (a) A slope of 1: each time you go over 1, you also go up 1 (b) A steep slope of perhaps
3 or 4 (c) A gentle slope of perhaps 1

2
. (d) A horizontal line has a slope of 0: each time you go over

1, you don't go up at all! (e) This goes down as you move left to right. So the slope is negative. It is
steep: maybe a �2.
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2.7 Function Concepts � Composite Functions7

You are working in the school cafeteria, making peanut butter sandwiches for today's lunch.

• The more classes the school has, the more children there are.
• The more children there are, the more sandwiches you have to make.
• The more sandwiches you have to make, the more pounds (lbs) of peanut butter you will use.
• The more peanut butter you use, the more money you need to budget for peanut butter.

...and so on. Each sentence in this little story is a function. Mathematically, if c is the number of classes
and h is the number of children, then the �rst sentence asserts the existence of a function h (c).

The principal walks up to you at the beginning of the year and says �We're considering expanding the
school. If we expand to 70 classes, how much money do we need to budget? What if we expand to 75? How
about 80?� For each of these numbers, you have to calculate each number from the previous one, until you
�nd the �nal budget number.

#Classes
→

#Children
→

#Sandwiches
→

lb.
→

$$
→

Table 2.5

But going through this process each time is tedious. What you want is one function that puts the entire
chain together: �You tell me the number of classes, and I will tell you the budget.�

7This content is available online at <http://cnx.org/content/m18187/1.2/>.
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#Classes
→

$$
→

Table 2.6

This is a composite function�a function that represents in one function, the results of an entire chain
of dependent functions. Since such chains are very common in real life, �nding composite functions is a
very important skill.

2.7.1 How do you make a composite Function?

We can consider how to build composite functions into the function game that we played on the �rst day.
Suppose Susan takes any number you give her, quadruples it, and adds 6. Al takes any number you give
him and divides it by 2. Mathematically, we can represent the two functions like this:

S (x) = 4x+ 6 (2.1)

A (x) =
x

2
(2.2)

To create a chain like the one above, we give a number to Susan; she acts on it, and gives the resulting
number to Al; and he then acts on it and hands back a third number.

3→ Susan→ S (3) = 18→ Al→ A (18) = 9
In this example, we are plugging S (3)�in other words, 18� into Al's function. In general, for any x

that comes in, we are plugging S (x) into A (x). So we could represent the entire process as A (S (x)). This
notation for composite functions is really nothing new: it means that you are plugging S (x) into the A
function.

But in this case, recall that S (x) = 4x+ 6 . So we can write:

A (S (x)) =
S (x)

2
=

4x+ 6
2

= 2x+ 3 (2.3)
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What happened? We've just discovered a shortcut for the entire process. When you perform the operation
A (S (x))�that is, when you perform the Al function on the result of the Susan function�you are, in e�ect,
doubling and adding 3. For instance, we saw earlier that when we started with a 3, we ended with a 9. Our
composite function does this in one step:

3→ 2x+ 3→ 9
Understanding the meaning of composite functions requires real thought. It requires understanding the

idea that this variable depends on that variable, which in turn depends on the other variable; and how that
idea is translated into mathematics. Finding composite functions, on the other hand, is a purely mechanical
process�it requires practice, but no creativity. Whenever you are asked for f (g (x)), just plug the g (x)
function into the f (x) function and then simplify.

Example 2.5: Building and Testing a Composite Function
f (x) = x2 − 4x
g (x) = x+ 2
What is f (g (x))?

• To �nd the composite, plug g (x) into f (x), just as you would with any number.

f (g (x)) = (x+ 2)2 − 4 (x+ 2)

• Then simplify.

f (g (x)) =
(
x2 + 4x+ 4

)
− (4x+ 8)

f (g (x)) = x2 − 4

• Let's test it. f (g (x)) means do g, then f . What happens if we start with x = 9?

7→ g (x)→ 7 + 2 = 9→ f (x)→ (9)2 − 4 (9) = 45

• So, if it worked, our composite function should do all of that in one step.

7→ x2 − 4 = (7)2 − 4 = 45 X It worked!

There is a di�erent notation that is sometimes used for composite functions. This book will consistently use
f (g (x)) which very naturally conveys the idea of �plugging g (x) into f (x).� However, you will sometimes
see the same thing written as f ◦g (x), which more naturally conveys the idea of �doing one function, and
then the other, in sequence.� The two notations mean the same thing.

2.8 Function Concepts � Inverse Functions8

Let's go back to Alice, who makes $100/day. We know how to answer questions such as "After 3 days, how
much money has she made?" We use the function m (t) = 100t.

But suppose I want to ask the reverse question: �If Alice has made $300, how many hours has she
worked?� This is the job of an inverse function. It gives the same relationship, but reverses the dependent
and independent variables. t (m) = m/100. Given any amount of money, divide it by 100 to �nd how many
days she has worked.

If a function answers the question: �Alice worked this long, how much money has she made?� then
its inverse answers the question: �Alice made this much money, how long did she work?"

If a function answers the question: �I have this many spoons, how much do they weigh?� then its
inverse answers the question: �My spoons weigh this much, how many do I have?�

If a function answers the question: �How many hours of music �t on 12 CDs?� then its inverse
answers the question: �How many CDs do you need for 3 hours of music?�

8This content is available online at <http://cnx.org/content/m18198/1.4/>.
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2.8.1 How do you recognize an inverse function?

Let's look at the two functions above:

m (t) = 100t (2.4)

t (m) = m/100 (2.5)

Mathematically, you can recognize these as inverse functions because they reverse the inputs and the
outputs.

3→ m (t) = 100t→ 300

300→ t (m) = m/100→ 3

X Inverse functions

Table 2.7

Of course, this makes logical sense. The �rst line above says that �If Alice works 3 hours, she makes
$300.� The second line says �If Alice made $300, she worked 3 hours.� It's the same statement, made in two
di�erent ways.

But this �reversal� property gives us a way to test any two functions to see if they are inverses. For
instance, consider the two functions:

f (x) = 3x+ 7 (2.6)

g (x) =
1
3
x− 7 (2.7)

They look like inverses, don't they? But let's test and �nd out.

2→ 3x+ 7→ 13

13→ 3
x − 7→ 13

3 − 7→ − 8
3

× Not inverse functions

Table 2.8

The �rst function turns a 2 into a 13. But the second function does not turn 13 into 2. So these are not
inverses.

On the other hand, consider:

f (x) = 3x+ 7 (2.8)

g (x) =
1
3

(x− 7) (2.9)

Let's run our test of inverses on these two functions.

2→ 3x+ 7→ 13

13→ 1
3 (x− 7)→ 2

X Inverse functions
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Table 2.9

So we can see that these functions do, in fact, reverse each other: they are inverses.
A common example is the Celsius-to-Fahrenheit conversion:

F (C) =
(

9
5

)
C + 32 (2.10)

C (F ) =
(

5
9

)
(F − 32) (2.11)

where C is the Celsius temperature and F the Fahrenheit. If you plug 100 ◦C into the �rst equation, you
�nd that it is 212 ◦F . If you ask the second equation about 212 ◦F , it of course converts that back into
100 ◦C.

2.8.2 The notation and de�nition of an inverse function

The notation for the inverse function of f (x) is f−1 (x). This notation can cause considerable confusion,
because it looks like an exponent, but it isn't. f−1 (x) simply means �the inverse function of f (x).� It is
de�ned formally by the fact that if you plug any number x into one function, and then plug the result into
the other function, you get back where you started. (Take a moment to convince yourself that this is the
same de�nition I gave above more informally.) We can represent this as a composition function by saying
that f

(
f−1 (x)

)
= x.

De�nition 2.2: Inverse Function
f−1 (x) is de�ned as the inverse function of f (x) if it consistently reverses the f (x) process. That
is, if f (x) turns a into b, then f−1 (x) must turn b into a. More concisely and formally, f−1 (x) is
the inverse function of f (x) if f

(
f−1 (x)

)
= x.

2.8.3 Finding an inverse function

In examples above, we saw that if f (x) = 3x + 7, then f−1 (x) = 1
3 (x− 7). We also saw that the function

1
3x − 7, which may have looked just as likely, did not work as an inverse function. So in general, given a
function, how do you �nd its inverse function?

Remember that an inverse function reverses the inputs and outputs. When we graph functions, we always
represent the incoming number as x and the outgoing number as y. So to �nd the inverse function, switch
the x and y values, and then solve for y.

Example 2.6: Building and Testing an Inverse Function

1. Find the inverse function of f (x) = 2x−3
5

a.: Write the function as y = 2x−3
5

b.: Switch the x and y variables. x = 2y−3
5

c.: Solve for y. 5x = 2y − 3. 5x+ 3 = 2y. 5x+3
2 = y. So f−1 (x) = 5x+3

2 .

2. Test to make sure this solution �lls the de�nition of an inverse function.

a.: Pick a number, and plug it into the original function. 9→ f (x)→ 3.
b.: See if the inverse function reverses this process. 3→ f−1 (x)→ 9. X It worked!

Were you surprised by the answer? At �rst glance, it seems that the numbers in the original function (the
2, 3, and 5) have been rearranged almost at random.

But with more thought, the solution becomes very intuitive. The original function f (x) described the
following process: double a number, then subtract 3, then divide by 5. To reverse this process, we
need to reverse each step in order: multiply by 5, then add 3, then divide by 2. This is just what the
inverse function does.
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2.8.4 Some functions have no inverse function

Some functions have no inverse function. The reason is the rule of consistency.
For instance, consider the function y = x2. This function takes both 3 and �3 and turns them into 9.

No problem: a function is allowed to turn di�erent inputs into the same output. However, what does that
say about the inverse of this particular function? In order to ful�ll the requirement of an inverse function,
it would have to take 9, and turn it into both 3 and �3�which is the one and only thing that functions are
not allowed to do. Hence, the inverse of this function would not be a function at all!

3→
−3→

9→
9→

Table 2.10: If 3 goes in, 9 comes out. If �3 goes in, 9 also comes out. No problem:

9→
9→

3→
−3→

Table 2.11: But its inverse would have to turn 9 into both 3 and �3. No function can do this, so there is no
inverse.

In general, any function that turns multiple inputs into the same output, does not have an inverse
function.

What does that mean in the real world? If we can convert Fahrenheit to Celsius, we must be able to
convert Celsius to Fahrenheit. If we can ask �How much money did Alice make in 3 days?� we must surely
be able to ask �How long did it take Alice to make $500?� When would you have a function that cannot be
inverted?

Let's go back to this example:
Recall the example that was used earlier: �Max threw a ball. The height of the ball depends on how

many seconds it has been in the air.� The two variables here are h (the height of the ball) and t (the number
of seconds it has been in the air). The function h (t) enables us to answer questions such as �After 3 seconds,
where is the ball?�

The inverse question would be �At what time was the ball 10 feet in the air?� The problem with that
question is, it may well have two answers!
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The ball is here... ...after this much time has elapsed

10 ft 2 seconds (*on the way up)

10 ft 5 seconds (*on the way back down)

Table 2.12

So what does that mean? Does it mean we can't ask that question? Of course not. We can ask
that question, and we can expect to mathematically �nd the answer, or answers�and we will do so in the
quadratic chapter. However, it does mean that time is not a function of height because such a �function�
would not be consistent: one question would produce multiple answers.
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Glossary

C Cardinality

The cardinality of a set �A� is equal to numbers of elements in the set.

I Inverse Function

f−1 (x) is de�ned as the inverse function of f (x) if it consistently reverses the f (x) process.
That is, if f (x) turns a into b, then f−1 (x) must turn b into a. More concisely and formally,
f−1 (x) is the inverse function of f (x) if f

(
f−1 (x)

)
= x.

L Linear Function

A function is said to be �linear� if every time the independent variable increases by 1,
the dependent variable increases or decreases by the same amount.

S Set

A set is a collection of well de�ned objects.
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unions, � 1.1(1)
universal, � 1.1(1)
unlike denominators, � 1.9(37)

V variables, � 2.2(49)

venn, � 1.1(1)
verbal, � 2.4(51)

W Worked Example, � 1.2(4)
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