

Chapter 33. Angular Momentum -- The Mathematics of Torque

Table of Contents

 	

Preface

 	

General

	

Prerequisites

	

Viewing tip

 	

Figures

		

	

Supplemental material

	

	

Discussion

 	

A review of rotational
		kinematics

	

Torque from a
		mathematical viewpoint

	

Torque from an
		anecdotal viewpoint

	

A graph board
		exercise on torque

	

	

Example scenarios

 	

Net torque on the Lazy Susan turntable

	

A door-closing scenario

	

Torque and the moment of
		inertia

	

	

Repeat the computations

	

Resources

	

Miscellaneous

Preface

General

This module is part of a collection (see

http://cnx.org/content/col11294/latest/

) of modules designed to make physics
concepts accessible to blind students. The collection is intended to supplement but not to
replace the textbook in an introductory course in high school or college
physics.

This module explains the mathematics of torque in a format that is accessible
to blind students.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these modules:

 	
A graph board for plotting graphs and vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
A protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
An audio screen reader that is compatible with your operating system,
	such as the NonVisual Desktop Access program (NVDA), which is freely
	available at

	http://www.nvda-project.org/

.

	
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor
	(

http://www.userite.com/ecampus/lesson1/tools.php

).

	
A device to create Braille labels. Will be used to label graphs
	constructed on the graph board.

The minimum prerequisites for understanding the material in these modules
	include:

 	
A good understanding of algebra.

	
An understanding of the use of a graph board for plotting graphs and
	vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
An understanding of the use of a protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
A basic understanding of the use of sine, cosine, and tangent from
	trigonometry (

http://www.clarku.edu/~djoyce/trig/

).

	
An introductory understanding of JavaScript programming (

http://www.dickbaldwin.com/tocjscript1.htm

 and

http://www.w3schools.com/js/default.asp

).

	
An understanding of all of the material covered in the earlier modules
	in this collection.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
while you are reading about them.

Figures

 	

Figure 1

. Tangential force, mass, radius, and angular acceleration.

	

Figure 2

. Tangential force, radius, angular acceleration, and moment of inertia.

	

Figure 3

. Torque, rotational inertia, and angular acceleration.

	

Figure 4

. The torque vector.

	

Figure 5

. A general equation for net torque.

	

Figure 6

. The definition of torque.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

Discussion

I will begin this discussion with a brief review of what we have learned
about the rotation of rigid bodies and go from there into a discussion of
torque.

A review of rotational
kinematics

One of the objectives of this review is to summarize the angular kinematic variables that are used to describe
rotational motion and relate them
to the translational kinematic variables that we already know about.

Given a system of particles, we can describe motion as having two components:

 	
The motion of the center of mass.

	
Motion relative to the center of mass.

Terminology

When an object rotates, it experiences an angular displacement, which I will
refer to as theta in this review.

(Textbooks typically use the Greek letter theta for this purpose. However,
your Braille display probably won't display the Greek letter theta. Therefore, I
will spell it out when I use it in text, and will replace it by the character
"Q" when I use it in an equation.)

The time rate of change of the angular
displacement is the angular velocity, which I will refer to as omega in this
review.

The time rate of change of the angular velocity is the angular
acceleration, which I will refer to as alpha in this review.

Similarity to translational motion

These definitions are very similar to definitions from earlier modules having
to do with translational motion. For example, when an object moves, it
experiences a displacement. The time rate of change of the displacement is the
velocity, and the time rate of change of the velocity is the acceleration.

This similarity derives from the fact that rotational motion can be described by a
single angular displacement, theta, just as linear motion can be described by a single spatial
displacement, x.

Constant angular acceleration

For constant angular acceleration, we can derive a set of equations that are
analogous to corresponding equations for translational motion:

Q = Q0 + w0*t + (1/2)*a*t^2

w = w0 + a*t

w^2 = w0^2 + 2*a*(Q - Q0)

where

 	
Q represents the angular displacement theta

	
Q0 represents the initial angular displacement

	
w represents the angular velocity omega

	
w0 represents the initial angular velocity

	
a represents the angular acceleration alpha

	
t represents time in seconds

Corresponding translational equations

For reference, here are the three translational equations that correspond to the equations
given

above

. These equations were explained
in an earlier module that involved the constant translational acceleration of gravity.

h = h0 v0*t + 0.5*g*t^2

v = v0 + g*t

v^2 = v0^2 + 2*g*(h-h0)

where

 	
h represents the translational displacement

	
h0 represents the initial translational displacement

	
v represents the translational velocity

	
v0 represents the initial translational velocity

	
g represents the acceleration of gravity

	
t represents time in seconds

Motion of a point that is a fixed distance from the rotational axis

It is customary to define counter clockwise rotation as the positive direction
of rotation. That will be the case in this review.

Consider a rotating disk. Since all
points on the disk are rotating together, we can
determine the linear displacement, speed and
acceleration of any point on the disk in terms
of the corresponding angular parameters.

Parameters for a point on a rotating disk

Consider a point on the disk that is a distance R from the axis of rotation.
Assume that the disk has rotated through an angle theta. The point will have
moved through a distance, s, along the circumference of a circle of radius R.
The distance s is equal to the product of the radius and the angular
displacement measured in radians:

s = R * Q

where

 	
s represents the distance traveled around the circumference of a circle
	of radius R

	
R represents the radius of the circle

	
Q represents the displacement angle theta measured in radians

Relationship between speed and angular velocity

With a little calculus, we can find a relationship between the tangential speed of the
point along its path around the circle and the angular velocity of the disk:

v = R*w

where

 	
v represents the tangential speed of the point that is moving on the circumference
	of the circle

	
R represents the radius of the circle

	
w represents the angular velocity omega

Relationship between tangential acceleration and angular acceleration

By using a little more calculus, we can find a relationship between the
tangential acceleration of the point along its circular path and
the angular acceleration of the disk:

y = R*a

where

 	
y represents the tangential acceleration of the point along the circular
	path

	
R represents the radius

	
a represents the angular acceleration alpha

Kinetic energy in rotation

Consider the hypothetical case of a rigid object made up of a set of point
particles connected by rods with zero mass. In other words, ignore the mass of
the mechanism that holds the point particles in a rigid geometry.

Assume that this object rotates about a fixed axis with a constant angular
velocity, omega. Also assume that you know the mass of each particle and that you
know the distance of each particle from the axis of rotation.

Kinetic energy of each individual particle

We know how to compute the

speed

 of each particle along its circular path.

The kinetic energy of each particle would be

Ki = (1/2)*mi*vi^2

where

 	
Ki is the kinetic energy of the ith point particle

	
mi is the mass of the ith point particle

	
vi is the speed of the ith point particle

Kinetic energy for translational motion

Hopefully you recognize the above

equation

 as
being the same as the following equation that we saw in an earlier module
involving the kinetic energy of an object in translational motion.

KE = 0.5*m*v^2

where

 	
KE represents the kinetic energy possessed by the object

	
m represents the mass of the object

	
vv represents the velocity of the object

Kinetic energy for the object

The object described

above

 is made up of a system of particles.

The total kinetic energy of the system is the sum of the kinetic energy
values of each of its particles.

The kinetic energy for the system is

Ks = (1/2)*(sum from i=0 to i=N(mi*ri^2))*w^2

where

 	
Ks represents the kinetic energy of the system

	
((sum from i=0 to i=N(...)) represents the sum of the values resulting
	from evaluating the expression in parentheses for each one of N+1 particles

	
mi represents the mass of the ith point particle

	
ri represents the distance of the ith point particle from the axis of
	rotation

	
w represents the angular velocity omega

Rotational inertia or moment of inertia

Define the rotational inertia, or the moment of inertia, whichever term you
prefer as

I = sum from i=0 to i=N(mi*ri^2)

where

 	
I represents the rotational inertia or the moment of inertia

	
mi represents the mass of the ith point particle

	
ri represents the distance of the ith point particle from the axis of
	rotation

Rotational kinetic energy based on rotational inertia

From this, we can determine that

Ks = (1/2)*I*w^2

where

 	
Ks represents the kinetic energy for the system

	
I represents the rotational inertia for the system

	
w represents the angular velocity of the system

Similar to translational kinetic energy

Note the similarity between the kinetic energy of a rotating system and the
kinetic energy an
object undergoing translational motion:

Ke = (1/2)*I*w^2

Kt = (1/2)*m*v^2

where

 	
Kr represents the kinetic energy for the rotating system

	
I represents the rotational inertia for the rotating system

	
w represents the angular velocity of the rotating system

	
Kt represents translational kinetic energy

	
m represents the mass of an object undergoing translational motion

	
v represents the velocity speed of the object undergoing translational
	motion

Similarities between rotational inertia and mass

The mass of an object tells us how its kinetic
energy is related to the square of its velocity.

The rotational inertia of a rotating object
tells us how its kinetic energy is related to the square of its angular velocity.

The rotational inertia plays the same role in rotational motion that mass plays in
translational motion.

Differences between mass and rotational inertia

While mass and rotational inertia play similar roles, there are also major
differences between the two including:

 	
Rotational inertial depends not just on the total mass of an object, but also on
	the geometric distribution of the mass within the object.

	
Rotational inertia also depends on the
choice of the rotation axis, because distances are measured relative to that axis.

Torque from a mathematical
viewpoint

Consider a point mass that is constrained to move in a circle. Let the mass
be acted upon by an arbitrary force F. We learned earlier that in order for the
mass to be moving in a circle, there must be a component of force, (the
centripetal force), that is directed toward the center of the circle.

Tangential force, mass, radius, and angular acceleration

If we assume that the speed of the mass is changing, there must also be a
component of the force that is tangential to the circle at the location of the
point mass acting on the mass. This force is required to produce acceleration. Therefore, we can
write:

Ft = m*y

From

above

,

y = r*a

Substitution yields

Ft = m*r*a

	

Ft = m*r*a

where

 	
Ft represents the tangential force

	
m represents the mass

	
y represents the tangential acceleration of the point mass along the circular
	path

	
r represents the radius

	
a represents the angular acceleration alpha

Figure 33.1.

Tangential force, mass, radius, and angular acceleration.

Tangential force, mass, radius, and angular acceleration.

Tangential force, radius, angular acceleration, and moment of inertia

We confirmed earlier that the rotational analog of mass is the

rotational inertia

. In
the case of a single mass,

I = m*r^2

Substitution yields

Ft = m*r*a, or

Ft = (I/r^2)*r*a, or

Ft = (I/r)*a

Multiplying both side by r yields

r*Ft = I*a

	

r*Ft = I*a

where

 	
Ft represents the tangential force

	
r represents the radius

	
I represents the rotational inertia or the moment of inertia, whichever
	term you prefer

	
a represents the angular acceleration alpha

Figure 33.2.

Tangential force, radius, angular acceleration, and moment of inertia .

Tangential force, radius, angular acceleration, and moment of inertia .

Similar to Newton's second law

The

equation

 in

Figure 2

 looks a lot like Newton's second law
for translational motion, which is often expressed as

Force = mass * acceleration

In this case, the rotational inertia, I, is analogous to mass and the
rotational acceleration, a, is analogous to translational acceleration.

If this similarity holds, that
must mean that the term on the

left side

 is analogous
to force in the tangential motion scenario.

Torque, rotational inertia, and angular acceleration

The term on the

left

, consisting of the product of
the force and the distance from the point of
application of the force to the axis of rotation is commonly known as the torque.
The common symbol for torque is the Greek letter tau, which I will replace with
the character T in equations in this module.

T = r*Ft

= I*a

, or

T = I*a

	

	

T = I*a

where

 	
T represents torque

	
r represents radius

	
Ft represents the tangential component of force

	
I represents rotational inertia or moment of inertia

	
a represents angular acceleration

Figure 33.3.

Torque, rotational inertia, and angular acceleration.

Torque, rotational inertia, and angular acceleration.

Torque produces angular acceleration

Thus, we have determined that a torque, which is the product of a tangential force and the distance
from the application point of this force to the axis of rotation, produces an angular acceleration.

This is beginning to look a lot like Newton's second law
for rotation. We will refine it some more later to improve the analogy. To do
that, we will need to define torque and angular acceleration
as vector quantities. We will accomplish that using the cross product of two
vectors that you learned about in an earlier module.

The convention for positive rotation

If you imagine a rotating object from a viewpoint in which the rotation axis
is perpendicular to the page, it is conventional to define a counter clockwise
rotation as the positive direction of rotation. That is the convention that I will use in this module.

You learned about the right-hand rule involving vectors in an earlier module.
There is a similar right-hand rule that we use to describe rotating objects.

The right-hand rule for angular velocity

If you curl the fingers of your right hand in the
direction of rotation of the object, your thumb will
point in the direction of the angular velocity
vector of the object.

In other words, if some object
is spinning in the counter-clockwise direction in
the x-y plane, curling the fingers of your right
hand in this direction results in your thumb
pointing in the +z direction which we define to be
the direction of the angular velocity vector.

The rule for angular acceleration

If the magnitude of the angular velocity
increases in time, then the angular acceleration
vector has the same direction as that of the angular
velocity. If the magnitude of the angular velocity
decreases in time, then the angular acceleration
vector has the opposite direction as that of the
angular velocity.

Defining torque as a vector quantity

The magnitude of a torque is the product of two terms:

 	
The
length of a line that connects the axis of rotation to the point where the force acts.
	Refer to this line as r.

	
The
component of the force, Ft, that is perpendicular to this line.

Define theta as the angle between the line and the force vector F (not the
tangential component of the force vector but the force vector itself). Then the
magnitude of the tangential force vector is given by

Ft = Fmag*sin(theta)

where

 	
Ft represents the magnitude of the tangential force vector that is perpendicular to the
	line r

	
Fmag is the magnitude of the force vector

	
theta is the angle between the line and the force vector

Define a vector R

Let R represent a vector that lies along the line from the axis of rotation to the point where the force
acts with its tail at the axis of rotation. I will refer to
the magnitude of this vector as Rmag

Doing a little algebra, we can write

T = r*Ft, or

Tvec = Rmag*Fmag*sin(theta)

where

 	
Tvec represents the tangential force vector

	
Rmag is the magnitude of the vector R

	
Fmag is the magnitude of the vector F

The cross product

Why do I refer to Tvec as a vector in the

above

equation?

You learned in an earlier module that the cross product of two vectors A and
B is given by

AxB = Amag*Bmag*sin(angle between A and B)

where

 	
AxB represents the cross product of the vectors
 named A and B

	
Amag is the magnitude of vector A

	
Bmag is the magnitude of vector B

The torque vector

Comparing the

torque vector

 with the

cross product

, we determine that

Tvec = RxF

	

	

Tvec = RxF

where

 	
Tvec is a torque vector

	
R is a vector that points from the axis of rotation to the point where
	the vector force F is applied

	
F is a force vector

	
RxF is the vector cross product between the vector R and the vector F

Figure 33.4.

The torque vector .

The torque vector .

The direction of the torque vector

Recall from the earlier module that the direction of Tvec is perpendicular to
both R and F and obeys the right-hand rule in terms of its absolute direction.

The relationship of torque and rotational inertia

Combining this with what we learned earlier about the relationship among
torque, rotational inertia, and rotational acceleration, we can write

Tvec

 = I*A

	

	

Tvec

 = I*A

where

 	
Tvec is the torque vector whose direction obeys the right-hand rule

	
I is the rotational inertia or the moment of inertia of the object about
	the chosen axis of rotation

	
A is the rotational acceleration treated as a vector whose direction
	obeys the right-hand rule

Figure 33.5.

A general equation for net torque.

A general equation for net torque.

A general equation for net torque

The equation shown in

Figure 5

 is a general equation for net torque. The net
torque about an axis of rotation is equal to the product of the rotational
inertia about that axis and the angular acceleration.

Similar to Newton's second law

This equation is Newton's second law applied to a system of particles in
rotation about a given axis. It makes no assumptions about constant rotational
velocity.

Torque from an anecdotal
viewpoint

One of the objectives of this module is to develop concepts involving rotational motion
that are analogous to concepts from earlier modules that involve translational
motion.

A Lazy Susan

On my dining room table, there is a device that is commonly called a Lazy
Susan. In case you are unfamiliar with such devices, it is essentially a
turntable. By a turntable, I mean a rather large disk mounted on bearings so
that it is free to turn in a plane that is slightly above but parallel with the
top of the dining room table.

The purpose of the Lazy Susan

The purpose of a Lazy Susan is to make it easier to serve food at the dining
room table. Various dishes are placed on it . When someone wants a helping of
carrots, for example, instead of saying "Please pass the carrots," they simply
turn the Lazy Susan until they can reach the bowl of carrots and help
themselves.

Not a module about carrots

However, we won't be discussing how to serve carrots in this module. In this
module, I will use the Lazy Susan, in its empty state between meals, to discuss
various aspects of rotating rigid objects.

To make it easier to type the material under discussion, I will refer to the
Lazy Susan as a turntable. (For some reason, I can type turntable much more
quickly than I can type Lazy Susan.)

Low angular acceleration when coasting

My turntable has pretty good bearings. It is also rather heavy for its size and therefore
has a relatively large rotational inertia or moment of inertia, whichever term you
prefer.

If you give it a good spin, it will spin for quite a while before all of
its rotational energy is dissipated through friction in the bearings and air
resistance. By default, therefore, its angular acceleration is low. In other
words, the rate of change of its angular velocity is small.

A perpetual motion machine

If we could find a way to eliminate all of the frictional forces acting on
the turntable, including air resistance, then it would spin forever. In that
case, we would
have invented what has been called a perpetual motion machine. The
rate of change of angular velocity would be zero, meaning that its angular
acceleration would also be zero.

Similar to Newton's first law

This reminds us of a moving body that satisfies Newton's first law, which can
be paraphrased something like the following:

 	
a body in motion, being acted upon by no net
forces, will continue moving forever in a straight line.

In other words, that
law tells us that absent a force to the contrary, a moving body will continue to
move with no change in velocity.

If we could eliminate all of the frictional forces acting on my turntable
(which is a rotating body), we might like to say that

 	
absent any net forces
acting on the body, a rotating body with a constant rotational inertia will
continue rotating with the same angular velocity forever.

However, that would not be a true statement.

Houston, we have a problem

Assume that you do the following to our hypothetical frictionless turntable
while it is spinning. Using one finger from each hand, press on opposite sides
of the turntable, applying an equal force directed towards the center of the
turntable on each side of the turntable.

No net force

In this case, the turntable would not
experience any net forces. Assuming that you are facing north when you do this,
and that you press on the east and west sides of the turntable, the frictional
forces generated by your fingers would be directed in opposite directions.

If
the turntable were spinning counter clockwise (when viewed from the top), the
frictional force created by your finger on the east side would be directed
toward the south. The frictional force created by your finger on the west side
of the turntable would be directed toward the north.

From a translational viewpoint, at least, there would be no net force
applied to the turntable. The force that points to the north would be cancelled
by the force that points to the south. The force that points to the east would
be cancelled by the force that points to the west. Therefore, the turntable
would be in translational equilibrium.

Acceleration would no longer be zero

Despite that, the velocity would be decreased meaning
that the acceleration would no longer be zero. From this we might conclude that
just because a rotating object is in translational equilibrium, it is not
necessarily in rotational equilibrium.

The world of torque

We have just entered the world of torque with this hypothetical experiment. Torque is a quantity that plays
a role in rotation that is analogous to the role that force plays in translation.

However, torque is not
separate from force. It is not possible to exert a torque without exerting a
force.

Torque is a measure...

In anecdotal terms, torque is a measure of how effective a force is at
changing the angular velocity of an object. Stated differently, torque is a
measure of how effective a force is at causing an object to have a non-zero
angular acceleration.

Angular acceleration can be either positive or negative

For an object that is rotating about a fixed axis (or is capable of rotating
about a fixed axis), such as my turntable,
torque can either increase or decrease the angular velocity of the object.

Net translational force was zero

When you pressed your fingers on my turntable as described earlier, the net
translational force applied to the turntable was zero. Therefore, the turntable remained in
translational equilibrium, meaning that it didn't go sliding towards the edge of
the table.

Net torque was not zero

However, the net torque was not zero, so it was not in angular
equilibrium. The kinetic frictional forces generated on each side of the
turntable resulted in the same algebraic sign of non-zero angular acceleration.

Each force caused the angular velocity to decrease. The two torques created by
the kinetic friction forces were not only equal, they had the same algebraic sign.
Therefore, the turntable experienced a non-zero net torque.

How are force and torque related?

To begin with, torque is proportional to the magnitude of the applied force,
but that is not the end of the story. The rest of the story involves
exactly where and in what direction the force is applied.

Create a torque to close a door

For example, consider applying a force for the purpose of creating a torque
to close an open door. Initially, the door has zero angular velocity.

You could apply a force
in any direction at any point on either side or the edge of the door that you
are tall enough to reach. However, with regard to the objective of closing the
door, it would matter very much where and in what direction you applied the
force.

A very intuitive topic

The interesting thing about this topic is that you already know all about it
from a practical and intuitive viewpoint. You would already know intuitively
where and in what direction to push on the door to cause it to close with a
minimum expenditure of energy.

You probably wouldn't push on the edge of the door

If you pushed on the edge of door, directing your force directly at
the hinges (the axis of rotation), the door wouldn't move. While this might prove to be a good form of
isometric exercise, it would not be an effective way to close the door.

A force in any other direction

A force that is applied to the door, (even on the edge of the door) acting in
any direction other than directly toward the hinges could be decomposed into two components:

 	
A radial component acting directly towards the axis or rotation or the
	hinges.

	
A perpendicular component acting perpendicular to the surface of the
	door.

The radial component is wasted effort

The radial component would make no contribution to the development of the torque
required to change the angular velocity of the door and cause the door to close.
Only the perpendicular component would contribute to the development of such a
torque.

Could develop torque at any point on the door

So now you know that you could apply a force at any point on the door, and so
long as that force has a component that is perpendicular to the surface of the
door, the perpendicular component would contribute to the development of torque.

Location, location, and location

However, it is also important where you push on the door to apply the force.
If you push on what we normally consider to be the inside surface of the
door, it might create a torque, but that torque may have the wrong sign or
direction to cause the door to close. In fact, that would cause the door to open
even further.

Once you realize that you must push on what we would call the outside surface
of the door, it would still be important where you push and apply the force.
Suppose for example that you were to push at a point that is only one inch away
from the hinge. You know intuitively that even for a lightweight door, you might
have to apply a very strong force to cause the door to close by applying the
force at that location.

Where would you push?

You would
probably push on the door at a point somewhere between the center of the door
and the outer edge of the door.

If the door happened to be a really heavy door,
you would probably push on the door at a point as close to the outer edge as
possible. This would make it possible for you to cause the door to close with
the minimum effort on your part.

The magnitude of the torque

In an attempt to codify your intuition, your instinctive knowledge, or
perhaps your acquired knowledge into something more mathematical, we will define
the magnitude of the torque as

torque = r*F

The conventional symbol for torque is the Greek letter tau. However, your
Braille display probably won't display that Greek letter, so in this module, I
will represent torque with the letter T as shown in

Figure 6

.

The sign convention for torque

In this module, I will use a sign convention such that a force whose
perpendicular component, when acting alone, would cause the object to rotate in
a counter clockwise direction as a positive torque.

If that torque is the only torque acting, it would cause a positive angular
acceleration.

A definition of torque

You saw a mathematical definition of torque

earlier

.

Figure 6

 shows a somewhat less mathematical definition of torque.

	

	

	
 	T = r*F

where

						

 	
T represents torque

	
r is the shortest distance from the axis of rotation to the point of application of the applied force

	
F is the component of the applied force that is
							perpendicular to a line from the axis of rotation to
							the point of the applied force

						

The SI unit for torque is newton meters or N*m.
						

Figure 33.6.

The definition of 	torque.

The definition of 	torque.

The units can be confusing

The units for torque can be confusing because the SI unit for work or energy in joules is
also N*m. However, even though torque and energy have the same units, they have
entirely different meanings. Torque is not a form of energy.

A graph board exercise on
torque

Imagine a puck sliding in a circular groove that has been cut in the ice at
an ice rink. A cross section of the grove is rectangular so that the puck just
fits from side to side and sets level on the bottom of the groove. When a puck
slides inside the groove, it will move in a large circle.

Apply a force to the puck

If you apply a force to the puck in (almost) any direction, a component of that force
will directed toward or away from the center of the circle. For any case where
the direction of the force doesn't lie on a line from the puck to the center of
the circle, there will also be a component of the force that is perpendicular to
that line, which will make it tangential to the circle.

Construct a graph board simulation

Use your graph board and create a Cartesian coordinate system with the
origin near the lower-left corner of the graph board. Use pushpins and pipe
cleaners to draw a quarter of a circle, with the center of the circle at the
origin. Make the radius approximately one-half of the
smallest dimension of the graph board. This circle should include the entire
upper-right quadrant of your Cartesian coordinate system.

Identify the location of the puck

Now insert a pushpin at a point somewhere on the circle about mid way between
the intersection of the circle and the x and y axes of the coordinate system.

Imagine that this is the puck mentioned above
that is constrained to move in a circle. Label this point P.

A radial line from the center

Use a pipe cleaner or a rubber band to draw a line from the puck to the
center of the circle. Label this line r.

Create a force vector

Make a little loop at one end of a pipe cleaner that is about half the radius
of your circle and place the loop around the pushpin that represents the puck at
P.

Leave it loose enough that it can be rotated around the pin. Imagine that
this is a vector that describes a force being applied to the puck with the tail
of the vector at the puck.

Point the force vector at the center

Begin by pointing the force vector directly at the center of the circle. You
will probably be able to imagine that since the puck is not free to move
directly to the center, a force in this direction will not cause the puck to
move.

The technical reason that it won't cause the puck to move is because the
force doesn't have a component that is tangent to the circle at the location
of the puck.

Rotate the force vector

Now rotate the force vector clockwise by about 30 or 40 degrees and pin it down so
that it won't move. Label the tip of the force vector F.

Draw the tangential component of the force vector

This may be the most difficult part of this exercise for a blind student. Use your protractor
(or some other method that you know about) to find a point on the line labeled r such that a line
through that point and
perpendicular to r goes through the tip of the force vector. Mark that point
with a pushpin and label it Q.

Draw a line from Q to F

Use a pipe cleaner to draw a line from Q to F. That line represents the
component of the force vector that is tangent to the circle at the location
of the puck. (Actually it is parallel to the tangential component of the force
vector, but that is OK. It is still the correct length and points in the correct
direction.) The direction of that tangential force component is from Q to F.

This is the component of the force vector that causes the puck to move. Label
this vector Ft for tangential force.

The radial component of force

Use a pipe cleaner to draw a line from P to Q. This is the component of the
force vector that points directly from the puck to the center of the circle. This
component won't cause the puck to move.

A right triangle

If you examine your vector diagram at this point, you can determine that the
points labeled P, Q, and F represent the vertices of a right triangle, with the
right angle at the point Q.

The length of the tangential force vector

Label the interior angle at P with an A. Now you should be able to determine that the length
of the tangential vector named Ft is equal to the product of the force F and the
sine of the angle A.

Ft = F*sin(A)

where

 	
F is the force vector.

	
Ft is the component of the force vector that is tangent to the circle at
	the location of the puck. This force is also perpendicular to the line from
	the puck to the center of the circle.

	
A is the angle that the force vector makes with the line r.

The torque

Referring back to

Figure 6

, we find that the torque produced by this force is
equal to the product of the distance from the center to P and the tangential or
perpendicular component of the force vector.

Therefore,

T = Ft*r, or

T = F*sin(A)*r

where

 	
T represents torque

	
Ft represents the tangential component of the force vector

	
r represents the distance from the puck to the center of the circle

	
F represents the force vector

	
A represents the angle between the force vector and the line from the
	puck to the center of the circle

Example scenarios

This section contains several example scenarios involving torque.

Net torque on the Lazy
Susan turntable

The turntable discussed earlier, which has a radius of 24 cm, is spinning
clockwise. You press your fingers on the east and west sides of the turntable with equal
forces of 6.67 N. The coefficient of friction between the turntable and your
fingers is 0.75. What is the net torque on the wheel?

Solution:

The 13.3 N force on each side of the table creates a tangential kinetic
friction force on each side of the table equal to

Ft = 6.67 N * 0.75

Each force is in the opposite direction of the direction of rotation.

The net torque is equal to the sum of the torques.

Each torque is equal to the product of the force and the distance from the
center of the turntable to the point at which the force is applied.

T = 2 * Ft * r, or

T = 2 * 6.67 newtons * 0.75 * 24 cm

Entering this expression into the Google calculator gives us

T = 2.4 joules

However, this is one case where the Google calculator gives us a misleading
answer. We know that torque is not measured in joules. Instead, torque is
measured in N*m. Therefore, the net torque on the turntable is

T = 2.4 N*m

A door-closing scenario

When viewed from above, the scenario is a door that is open. From above, the wall to which the door is attached can be represented by a horizontal
line that runs from west to east. The door can be represented by a line segment at an angle of about 45 degrees
south of east. The line segment (door) is attached to the wall at the upper-left end of the
line segment. That is the point where the door is hinged, and that point is the axis of
rotation for the door.

Assume that the axis of rotation extends out of the page towards you.

The door will need to rotate
about 45 degrees counter clockwise to become flush with the wall and be closed.

A person is standing on the north side of the wall pulling on a rope that is
attached to the door. The rope is attached 11.5 cm from the hinge and makes a 45
degree angle with the surface of the door. That person pulls on the rope with a
force of 51 N.

Using the door hinges as the axis of rotation, find the magnitude of the
torque that is exerted on the door. What is the sign of the torque.

Solution:

This solution is based on the cross product from

Figure 4

.

The magnitude of the torque is given by

T = r * F * sin(angle), or

T = 11.5 cm * 51 newtons * sin(45 degrees)

Entering this expression into the Google calculator gives us

T = 4.15 N*m

The torque will cause the door to rotate in a counter clockwise
direction. Therefore, the torque has a positive sign.

Torque and the moment of inertia

Three objects are rotating about their centers. All three objects have a mass
of 10 kg. The three objects have the following
shapes:

A. A solid disk with a moment of inertia given by

I = (1/2)*m*r^2

where

 	
r = 2m

B. A disk with a round hole in the center with a moment of inertia given by

I = (1/2)*m*(r1^2 + r2^2)

where

 	
r1 = 1m

	
r2 = 2m

C. A square plate with a moment of inertia given by

I = (1/12)*m*(h^2 + w^2)

where

 	
h = w = 3.54m

Find the net torque required to cause each object to accelerate at a rate of
10 radians/sec^2.

Solution:

All three solutions are based on the general equation for torque given in

Figure 5

.

A. T = I * A, or

T = (1/2)*m*r^2 * A, or

T = (1/2)*10kg*(2m)^2 * 10 radians/second^2

Entering this expression into the Google calculator gives us

T = 200 N*m

B. T = I * A, or

T = (1/2)*m*(r1^2 + r2^2) * A, or

T = (1/2)*10kg*((1m)^2 + (2m)^2) * 10 radians/second^2, or

T = 250 N*m

Note that because more of the mass is located close to the outer edge of the
disk, the moment of inertia is higher and more torque is required to achieve the
same acceleration for the same mass.

C. T = I * A, or

T = (1/12)*m*(h^2 + w^2) * A, or

T = (1/12)*10kg*((3.54m)^2 + (3.54m)^2) * 10 radians/second^2, or

T = 2.09 N*m

Note that the square in part C was designed to have the same surface area as
the disk in part A. The mass in both cases was uniformly distributed throughout
the entire surface. Under those conditions, a square has a slightly higher
moment of inertia than a disk and thus requires a slightly greater torque to
achieve the same acceleration.

Repeat the computations

I encourage you to repeat the computations that I have presented in this lesson to
confirm that you get the same results. Experiment with
the scenarios, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

Resources

I will publish a module containing consolidated links to resources on my
Connexions web page and will update and add to the list as additional modules
in this collection are published.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Angular Momentum -- The Mathematics of Torque for Blind Students

	
File: Phy1320.htm

	
Keywords:

 	
physics

	
accessible

	
accessibility

	
blind

	
graph board

	
protractor

	
screen reader

	
refreshable Braille display

	
JavaScript

	
trigonometry

	
torque

	
force

	
mass

	
angular acceleration

	
moment of inertia

	
rotational inertia

	
vector

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

-end-

Solutions

Chapter 8. Scientific Notation and Significant Figures

Table of Contents

 	

Preface

 	

General

	

Prerequisites

	

Viewing tip

 	

Figures

	

Listings

		

	

Supplemental material

	

	

General background information

 	

Accuracy and precision

	

Scientific notation

	

Significant figures

	

	

Discussion and sample code

	

Run the scripts

	

Resources

	

Miscellaneous

Preface

General

This module is part of a collection of modules designed to make physics
concepts accessible to blind students.

See

http://cnx.org/content/col11294/latest/

 for the main page of the collection
and

http://cnx.org/content/col11294/latest/#cnx_sidebar_column

 for the table of
contents for the collection.

The collection is intended to supplement but not to replace the textbook in
an introductory course in high school or college physics.

The purpose of this module is to explain the use of scientific notation and
significant figures in a format that is accessible to blind students.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these modules:

 	
A graph board for plotting graphs and vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
A protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
An audio screen reader that is compatible with your operating system,
	such as the NonVisual Desktop Access program (NVDA), which is freely
	available at

	http://www.nvda-project.org/

.

	
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor
	(

http://www.userite.com/ecampus/lesson1/tools.php

).

	
The ability to create tactile graphics as described at
	

	http://cnx.org/content/m38546/latest/

.

The minimum prerequisites for understanding the material in these modules
	include:

 	
A good understanding of algebra.

	
An understanding of the use of a graph board for plotting graphs and
	vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
An understanding of the use of a protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
A basic understanding of the use of sine, cosine, and tangent from
	trigonometry (

http://www.clarku.edu/~djoyce/trig/

).

	
An introductory understanding of JavaScript programming (

http://www.dickbaldwin.com/tocjscript1.htm

 and

http://www.w3schools.com/js/default.asp

).

	
An understanding of all of the material covered in the earlier modules
	in this collection.

	
An understanding of the creation and use of tactile graphics as
	described at

	http://cnx.org/content/m38546/latest/

.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. Examples of significant figures.

	

Figure 2

. Screen output from Listing #1.

	

Figure 3

. Screen output from Listing #2.

	

Figure 4

. Behavior of the toPrecision method.

	

Figure 5

. Screen output from Listing #3.

Listings

 	

Listing 1

. An exercise involving addition.

	

Listing 2

. An exercise involving
	multiplication.

	

Listing 3

. An exercise involving combined operations.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background
information

This section will contain a discussion of accuracy, precision,
scientific notation, and significant figures.

Accuracy and precision

Let's begin with a brief discussion of accuracy and precision. These two
terms are often confused in everyday conversation, but they have very different
meanings in the world of science and engineering.

Accuracy

In science and engineering, the accuracy of a measurement system is the degree of
closeness of measurements of a quantity to its actual (true) value.

Precision

The precision of a measurement system (also called reproducibility or
repeatability) is the degree to which repeated measurements under unchanged
conditions show the same result.

Four possibilities

A measurement system can be:

 	
Both accurate and precise.

	
Accurate but not precise.

	
Precise but not accurate.

	
Neither accurate nor precise.

A hypothetical experiment

Consider an experiment where a firearm is clamped into a fixture, very
carefully aimed at a bulls eye on a downrange target, and fired six times.
(Although you may never have seen or touched a firearm, you probably have a
pretty good idea of how they behave.)

If the six holes produced by the bullets in the target fall in a tight
cluster in the bulls eye, the system can be considered to be both accurate and
precise.

If all of the holes fall in the general area of the bulls eye but the cluster
is not very tight, the system can be considered to be accurate but not precise.

If all of the holes fall in a tight cluster but the cluster is some distance
from the bulls eye, the system can be considered to be precise but not accurate.

If the holes are scattered across a wide area of the target, the system can
be considered to be neither accurate nor precise.

Another use of the word precision

Another use of the word precision, which will be important in this module, is
based on the concept that the precision of a measurement describes the units
that you use to measure something.

How tall are you?

For example, if you tell someone that you are about five feet tall, that
wouldn't be very precise. If you told someone that you are 62 inches tall, that
would be more precise. If you told someone that you are 62.3 inches tall, that
would be even more precise, and if you told someone that you are 62.37 inches
tall, that would be very precise for a measurement of that nature.

The smaller the unit...

The smaller the unit you use to measure with, the more precise the
measurement can be. For example, assume that you measure someone's height with a
tactile measuring stick that is longer than the person is tall. Assume also that
the measuring stick is graduated only in feet. In that case, the best that you
could hope for would be to get the measurement correct to the nearest foot and
perhaps estimate a second digit to the nearest tenth of a foot.

One-inch graduations

On the other hand, if the measuring stick is graduated in inches and you are
careful, you should be able to get the measurement correct to the nearest inch
and perhaps estimate another digit to the nearest tenth of an inch. The second
measurement using the one-inch graduations would be more precise than the first
using the one-foot graduations.

Diminishing returns

If the measuring stick were graduated in tenth-inch units, however,
that may or may not lead to a more precise measurement. That would be
approaching the point of diminishing returns where your inability to take full
advantage of the more precise graduations and the inability of the subject to
always stand with the same degree of rigidity might come into play.

Scientific notation

According to

Wikipedia

, scientific notation is a way of writing numbers that accommodates values too large or small to be conveniently written in standard decimal notation.
The notation has a number of useful properties and is commonly used by scientists and engineers.
A variation of scientific notation is also used internally by computers.

Scientific notation format

Numbers in scientific notation are written using the following format:

x * 10^y

which can be read as the value

x

 multiplied by ten raised to
the

y

 power where

y

 is an integer and

x

 is any real number. (Constraints are placed on the value of

x

 when
using the

normalized

 form of scientific notation which I will explain below.)

The values for

x

 and

y

 can be either
positive or negative.

The term referred to as

x

 is often called the

significand

 or the

mantissa

 (not to be confused with
the term mantissa used with common logarithms).

The computer display version of scientific notation

Because of difficulties involved in displaying superscripts in the output of
computer programs, a typical display of a number in scientific notation by a
computer program might look something like the following example:

-3.141592653589793e+1

where

 	
Either numeric value can be positive, negative, or zero.

	
The number of digits in the numeric value to the left of the

e

 (the
	mantissa) may range
	from a few to many.

	
The

e

 may be either upper-case or lower-case depending on the computer
	and the program.

A power of ten is understood

In this format, it is understood that the number consists of the value to the
left of the

e

 (the mantissa) multiplied by ten raised to a power given by the value to the
right of the

e

 (the exponent).

For example, in JavaScript exponential format, the value -10*Math.PI is
displayed as

-3.141592653589793e+1

The value Math.PI/10 is displayed as

3.141592653589793e-1

The value Math.PI is displayed as

3.141592653589793e+0

The value 0 is displayed as

0e+0

The normalized form of scientific notation

Using general scientific notation, the number -65700 could be written
in several different ways including the following:

 	
-6.57 * 10^4

	
-65.7 * 10^3

	
-657 * 10^2

In normalized scientific notation, the exponent is chosen such that the absolute value of
the mantissa is at least one but less than ten. For example, -65700 is written:

-6.57 * 10^4

In normalized notation the exponent is negative for a number with absolute value between 0 and 1.
For example, the value 0.00657 would be written:

6.57 * 10^(-3)

The 10 and the exponent are usually omitted when the exponent is 0.

Significant figures

According to

Wikipedia

, The significant figures of a number are those digits that carry meaning contributing to its precision. This includes all digits except:

 	
Leading zeros where they serve merely as placeholders to indicate the scale of the number
	(.00356 for example).

	
Spurious digits introduced, for example, by calculations carried out to greater accuracy than that of the original data, or measurements reported to a greater precision than the equipment supports.

A popular physics textbook provides a more complete set of rules for identifying the
significant figures in a number:

 	
Nonzero digits are always significant.

	
Final or ending zeros written to the right of the decimal point are significant.

	
Zeros written to the right of the decimal point for the purpose of spacing the
decimal point are not significant.

	
Zeros written to the left of the decimal point may be significant, or they may
only be there to space the decimal point. For example, 200 cm could have one,
two, or three significant figures; it's not clear whether the distance was measured
to the nearest 1 cm, to the nearest 10 cm, or to the nearest 100 cm. On
the other hand, 200.0 cm has four significant figures (see rule 5). Rewriting the
number in scientific notation is one way to remove the ambiguity.

	
Zeros written between significant figures are significant.

Ambiguity of the last digit in scientific notation

Again, according to

Wikipedia

, it is customary in scientific measurements to record all the significant digits from the measurements, and to guess one additional digit if there is any information at all available to the observer to make a guess. The resulting number is considered more valuable than it would be without that extra digit, and it is considered a significant digit because it contains some information leading to greater precision in measurements and in aggregations of measurements (adding them or multiplying them together).

Examples of significant digits

Referring back to the physics textbook mentioned earlier,

Figure 1

 shows:

 	
Four different numbers

	
The number of significant figures in each number.

	
The default JavaScript exponential representation of each number.

	

1. 409.8 4 4.098e+2
2. 0.058700 5 5.87e-2
3. 9500 ambiguous 9.5e+3
4. 950.0 * 10^1 4 9.5e+3

Figure 8.1.

Examples of significant figures.

Examples of significant figures.

Note that the default JavaScript exponential representation fails to
	display the significant trailing zeros for the numbers on row 2 and row 5. I
	will show you some ways that you may be able to deal with this issue
	later but you may not find them to be very straightforward.

Discussion and sample code

Beyond knowing about scientific notation and significant figures from a
formatting viewpoint, you need to know how to perform arithmetic while
satisfying the rules for scientific notation and significant figures.

Performing arithmetic involves

three main rules

:

 	
For addition and subtraction, the final result should be rounded so as
	to have the same number of decimal places as the number that was included in
	the sum that has the smallest number of decimal places. In accordance with
	the discussion early in this module, this is the least precise number.

	
For multiplication and division, the final result should be rounded to
	have the same number of significant figures as the number that was included
	in the product with the smallest number of significant figures.

	
The two rules listed above should not be applied to intermediate
	calculations. For intermediate calculations, keep as many digits as
	practical. Round to the correct number of significant figures or the correct
	number of decimal places in the final result.

An exercise involving addition

Please copy the JavaScript code shown in

Listing 1

 into an html file and open
the file in your browser.

Example 8.1.
 <!-- File JavaScript01.html -->
<html><body>
<script language="JavaScript1.3">

//Compute and display the sum of three
// numbers
var a = 169.01
var b = 0.00356
var c = 385.293
var sum = a + b + c
document.write("sum = " + sum + "</br>")

//Round the sum to the correct number
// of digits to the right of the decimal
// point.
var round = sum.toFixed(2)
document.write("round = " + round + "</br>")

//Display a final line as a hedge against
// unidentified coding errors.
document.write("The End")

</script>
</body></html>

Screen output

When you open the html file in your browser, the text shown in

Figure 2

	should appear in your browser.

	

 sum = 554.30656
round = 554.31
The End

Figure 8.2.

Screen output from Listing #1.

Screen output from Listing #1.

The code in

Listing 1

 begins by declaring three variables named

a

,
	

b

, and

c

, adding them together, and
	displaying the sum in the JavaScript default format in the browser window.

Too many decimal digits

As you can see from the first line in

Figure 2

, the result is computed and
displayed with eight decimal digits, five of which are to the right of the
decimal point. We know, however, from

rule #1

,
that we should present the result rounded to a precision of two digits to the
right of the decimal point in order to match the least precise of the numbers
included in the sum. In this case, the value stored in the variable named

a

 is the least precise.

Correct the problem

The code in

Listing 1

 calls a method named

toFixed

 on the
value stored in the variable

sum

 passing a value of 2 as a
parameter to the method. This method returns the value from

sum

rounded to two decimal digits. The returned value is stored in the variable
named

round

. Then the script displays that value as the second line of
text in

Figure 2

.

The output text that reads "The End"

There is a downside to using JavaScript (as opposed to other programming
languages such as Java). By default, if there is a coding
error in your script, there is no indication of the error in the output in the
main browser window.
Instead, the browser simply refuses to display some or all of the output that
you are expecting to see. (Remember, I told you that JavaScript is not my favorite
programming language, but it is probably the most accessible for blind students
who have no programming experience.)

Put a marker at the end

Writing the script in such a way that a known line of text, such as "The End"
will appear following all of the other output won't solve coding errors.
However, if it doesn't appear, you will know that there is a coding error and
some or all of the output text may be missing.

JavaScript and error consoles

I explained how you can open a JavaScript console in the Google Chrome
browser or an error console in the Firefox browser in an earlier module titled

JavaScript
for Blind Students

. While the diagnostic information provided in those
consoles is limited, it will usually indicate the line number in the source code
where the programming error was detected. Knowing the line number will help you
examine the code and fix the error.

An exercise involving multiplication

Please copy the code shown in

Listing 2

 into an html file and open it in
	your browser.

Example 8.2.
 <!-- File JavaScript02.html -->
<html><body>
<script language="JavaScript1.3">

//Compute and display the product of three
// numbers, each having a different number
// of significant figures.
var a = 169.01
var b = 0.00356
var c = 386.253
var product = a * b * c
document.write("product = " + product + "</br>")

//Round the product to the correct number
// of significant figures
var rounded = product.toPrecision(5)
document.write("rounded = " + rounded + "</br>")

//Display a final line as a hedge against
// unidentified coding errors.
document.write("The End")

</script>
</body></html>

The screen output

When you open your html file in your browser, the text shown in

Figure 3

should appear in your browser window.

	

 product = 232.39900552679998
rounded = 232.40
The End

Figure 8.3.

Screen output from Listing #2.

Screen output from Listing #2.

The code in

Listing 2

 begins by declaring three variables named

a

,
	

b

, and

c

, multiplying them together, and
	displaying the product in the browser window. Each of the factors in the
	product have a different number of significant figures, with the factor of
	value 169.01 having the least number (5) of significant figures. We know
	from

rule #2

, therefore, that we need to
	present the result rounded to five significant figures.

The toPrecision method

Listing 2

 calls a method named

toPrecision

 on the variable
named

product

, passing the desired number of significant
figures (5) as a parameter. The method rounds the value stored in

product

 to the desired number of digits and returns the result, which
is stored in the variable named

rounded

. Then the contents of
the variable named

rounded

 are displayed, producing the second
line of text in

Figure 3

.

What about other parameter values

Note that the method named

toPrecision

 knows nothing about
significant figures. It was up to me to figure out the desired number of
significant figures in advance and to pass that value as a parameter to the
method.

Although this has nothing to do with significant figures, it may be
instructive to examine the behavior of the method named

toPrecision

for several different parameter values.

Figure 4

 shows the result of replacing the parameter value of 5 in the
	call to the

toPrecision

 method with the values in the first
	column of

Figure 4

 and displaying the value returned by the method.

	

1 rounded = 2e+2
2 rounded = 2.3e+2
3 rounded = 232
4 rounded = 232.4
5 rounded = 232.40
6 rounded = 232.399
7 rounded = 232.3990
10 rounded = 232.3990055
15 rounded = 232.399005526800
20 rounded = 232.39900552679998214

Figure 8.4.

Behavior of the toPrecision method.

Behavior of the toPrecision method.

And the point is...

The point to this is to emphasize that the method named

	toPrecision

 is not a method that knows how to compute and display
	the required number of significant figures. Instead, according to the
	JavaScript documentation:

"The toPrecision() method formats a number to a specified length. A decimal point and nulls are added (if needed), to create the specified length."

It is up to you, the author of the script, to determine what that length
	should be and to provide that information as a parameter to the

	toPrecision

 method.

Combined operations

This is where things become a little hazy. I have been unable to find
	definitive information as to how to treat the precision and the number of
	significant figures when doing computations that combine addition and/or
	subtraction with multiplication and/or division.

Two contradictory procedures

I have found two procedures documented on the web that seem to be somewhat
contradictory. Both sources seem to say that you should perform the addition
and/or subtraction first and that you should apply

rule #1

 to the
results. However, they differ with regard to how stringently you apply that rule
before moving on to the multiplication and/or division.

The more stringent procedure

One source seems to suggest that you should round the results of
the addition and/or subtraction according to

rule #1

and replace the addition or subtraction expression in your overall expression
with the rounded result. Using that approach, you simply create one the factors
that will be used later in the multiplication and/or division. That factor has a
well-defined number of significant figures.

Then you proceed with the multiplication and/or division and adjust the
number of significant figures in the final result according to

rule #2

.

The less stringent procedure

The other source seems to suggest that you mentally round the results of the
addition and/or subtraction according to

rule #1

 and
make a note of the number of significant figures that would result if you were
to actually round the result. However, you should not actually round the result at that point in time. In other words, you
should use the raw result of the addition and/or subtraction as a factor in the
upcoming multiplication and/or division knowing that you may be carrying excess
precision according to

rule #1

.

Then you proceed with the multiplication and/or division and adjust the
number of significant figures in the final result according to

rule #2

. However, when you adjust the number of
significant figures, you should include the number of significant figures from
your note in the decision process. If that is the smallest number of significant figures
of all the factors, you should use it as the number of significant figures for
the final result.

Consult with your instructor

Before accepting either of these procedures as the correct procedure, I
recommend that you consult with your physics instructor to confirm which, if
either of the procedures is correct for combined operations.

An exercise involving combined operations

Evaluate the following expression and display the final result with the
correct number of significant figures.

(169.01 + 3294.6372) * (0.00365 - 29.333)

Please copy the code from

Listing 3

 into an html file and open it in your
browser.

Example 8.3.
 <!-- File JavaScript03.html -->
<html><body>
<script language="JavaScript1.3">

//Compute, fix the number of decimal places,
// and display the sum of two numbers.
var a1 = 169.01
var a2 = 3294.6372
var aSum = (a1 + a2).toFixed(2)
document.write("aSum = " + aSum + "</br>")

//Compute, fix the number of decimal places,
// and display the difference between two
// other numbers.
var b1 = 0.00356
var b2 = 29.333
var bDiff = (b1 - b2).toFixed(3)
document.write("bDiff = " + bDiff + "</br>")

//Compute and display the product of the
// sum and the difference.
var product = aSum * bDiff
document.write("product = " + product + "</br>")

//Round the product to the correct number
// of significant figures based on the least
// number of significant figures in the
// factors.
var final = product.toPrecision(5)
document.write("final = " + final + "</br>")

//Display a final line as a hedge against
// unidentified coding errors.
document.write("The End")

</script>
</body></html>

When you open your html file in your browser, the text shown in

Figure 5

should appear in the browser window.

	

 aSum = 3463.65
bDiff = -29.329
product = -101585.39085000001
final = -1.0159e+5
The End

Figure 8.5.

Screen output from Listing #3.

Screen output from Listing #3.

The more stringent procedure

The code in

Listing 3

 implements the
	

more stringent procedure

, not
	because it is necessarily the correct one. Rather, it is simpler to
	implement in a script.

Do addition and subtraction first

Listing 3

 begins by adding two numbers, adjusting the precision to the least
precise of the two numbers, and saving the result in the variable named

aSum

.

Then

Listing 3

 subtracts one number from another number, adjusts the
precision to the least precise of the two numbers, and saves the result in the
variable named

bDiff

.

Display to get information on significant figures

Both results are displayed immediately after they are obtained. This is
necessary for me to know which one has the least number of significant figures.
I need to know that to be able to properly adjust the number of
significant figures in the final product.

In other words, it was necessary for me to write and execute the
addition/subtraction portion of the script in order to get the information
required to write the remainder of the script.

Do the multiplication

Then

Listing 3

 multiplies the sum and difference values and displays the
result in the default format with far too many significant figures as shown by
the third line of text in

Figure 5

.

Finally

Listing 3

 adjusts the number of significant figures in the product
based on the number of significant figures in

bDiff

 and
displays the final result with five significant figures in normalized scientific
(exponential) notation.

Run the scripts

I encourage you to run the scripts that I have presented in this lesson to
confirm that you get the same results. Copy the code for each script into a
	text file with an extension of html. Then open that file in your browser. Experiment with
the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

Resources

I will publish a module containing consolidated links to resources on my
Connexions web page and will update and add to the list as additional modules
in this collection are published.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Scientific Notation and Significant Figures

	
File: Phy1040.htm

	
Revised 06/19/2011

	
Keywords:

 	
physics

	
accessible

	
blind

	
screen reader

	
Braille display

	
JavaScript

	
scientific notation

	
significant figures

	
accuracy

	
precision

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

-end-

Solutions

Chapter 2. If You Can Imagine It, You Can Draw It using SVG

Table of Contents

 	

Preface

 	

General

	

Prerequisites

	

Viewing tip

 	

Figures

	

Listings

		

	

Supplemental material

	

	

Discussion

 	

Creation of tactile graphics

	

What is SVG

(Scalable Vector Graphics)

?

	

What does this mean to you?

	

Sample drawing

	

Two approaches

 	

Writing raw SVG code

	

Using drawing tools

		

	

Sample program

 	

Beginning of the program named Svg21a.java

	

Create a drawing canvas

	

Draw a rectangular border on the canvas

	

Draw the floor and the wall

	

Draw more rectangles

	

Draw a polygon

	

Draw the rectangular pulley support

	

Draw a circle

	

Draw more lines

	

Change line thicknesses

	

Draw text

	

Write the output file

	

The remaining Java code

		

	

The SVG graphics library

	

Another sample program

	

	

Writing, compiling, and running Java programs

 	

Writing Java code

	

Preparing to compile and run Java code

 	

The java development kit
			

(JDK)

	

JDOM version 1.1.1

		

	

Compiling and running
		Java code

	

	

Resources

	

Complete program listings

	

Miscellaneous

Preface

General

This module is part of a collection of modules designed to make physics
concepts accessible to blind students.

See

http://cnx.org/content/col11294/latest/

 for the main page of the
collection and

http://cnx.org/content/col11294/latest/#cnx_sidebar_column

 for the table of
contents for the collection.

The collection is intended to supplement but not to
replace the textbook in an introductory course in high school or college
physics.

The study of physics is replete with requirements to create and analyze
technical drawings. This is obviously more difficult for blind students than for
sighted students. However, blind students can draw technical diagrams and the
purpose of this module is to show you how. If you can imagine it, you can draw
it using SVG.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools

(as a minimum)

 to work through the exercises in these modules:

 	
A graph board for plotting graphs and vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
A protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
An audio screen reader that is compatible with your operating system,
	such as the NonVisual Desktop Access program (NVDA), which is freely
	available at

	http://www.nvda-project.org/

.

	
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor
	(

http://www.userite.com/ecampus/lesson1/tools.php

).

	
A device to create Braille labels. Will be used to label graphs
	constructed on the graph board.

	
The ability to create tactile graphics as described at
	

	http://cnx.org/content/m38546/latest/

.

The minimum prerequisites for understanding the material in these modules
	include:

 	
A good understanding of algebra.

	
An understanding of the use of a graph board for plotting graphs and
	vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
An understanding of the use of a protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
A basic understanding of the use of sine, cosine, and tangent from
	trigonometry (

http://www.clarku.edu/~djoyce/trig/

).

	
An introductory understanding of JavaScript programming (

http://www.dickbaldwin.com/tocjscript1.htm

 and

http://www.w3schools.com/js/default.asp

).

	
An understanding of all of the material covered in the earlier modules
	in this collection.

	
An understanding of the creation and use of tactile graphics as
	described at

	http://cnx.org/content/m38546/latest/

.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. Mirror image from the file named Svg21a1r.svg.

	

Figure 2

. Non-mirror-image version of the image from the file named Svg21a1r.svg.

Listings

 	

Listing 1

. Raw SVG code for Figure 2.

	

Listing 2

. Beginning of the program named Svg21a.java.

	

Listing 3

. Create a drawing canvas.

	

Listing 4

. SVG code to create a canvas.

	

Listing 5

. Draw a rectangular border on the canvas.

	

Listing 6

. SVG code to draw a rectangle.

	

Listing 7

. Draw the floor and the wall.

	

Listing 8

. SVG code to draw a line.

	

Listing 9

. Draw more rectangles.

	

Listing 10

. SVG code to draw more rectangles.

	

Listing 11

. Draw a polygon.

	

Listing 12

. SVG code to draw a polygon.

	

Listing 13

. Draw the rectangular pulley support.

	

Listing 14

. Draw a circle.

	

Listing 15

. SVG code to draw a circle.

	

Listing 16

. Draw more lines.

	

Listing 17

. SVG code to draw more lines.

	

Listing 18

. Set the stroke-width attribute value.

	

Listing 19

. Modified stroke-width attribute value.

	

Listing 20

. Draw text.

	

Listing 21

. SVG code to draw text.

	

Listing 22

. Write the output file.

	

Listing 23

. The remaining Java code.

	

Listing 24

. Windows batch file.

	

Listing 25

. The program named Svg21a.java.

	

Listing 26

. The program named SvgLib21.java.

	

Listing 27

. The program named Svg21.java.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

Discussion

Creation of tactile graphics

The module titled

Manual Creation of Tactile Graphics

 at

http://cnx.org/content/m38546/latest/

 explains how to create tactile
graphics from svg files that I will provide.

If you are going to have an assistant create tactile graphics for this
module,

you will need to

download the file named
Phy1002.zip

, which contains the svg files for this module. Extract the svg
files from the zip file and provide them to your assistant.

In each case where I am providing an svg file for the creation of tactile
graphics, I will identify the name of the appropriate svg file and display an
image of the contents of the file for the benefit of your assistant. As
explained at

http://cnx.org/content/m38546/latest/

, those images will be mirror images of
the actual images so that your assistant can emboss the image from the back of
the paper and you can explore it from the front.

I will also display a non-mirror-image version of the image so that your
assistant can easily read the text in the image.

What is SVG

(Scalable Vector Graphics)

?

The shortest answer that I can come up with is that SVG is a technology that
makes it possible for a blind student to create technical drawings. If the
student can imagine it, the student can draw it using SVG and drawing tools
that I will provide in this module.

According to

Wikipedia

"Scalable Vector Graphics (SVG) is a family of specifications of an XML-based file format for describing two-dimensional vector graphics, both static and dynamic (i.e. interactive or animated).

The SVG specification is an open standard that has been under development by the World Wide Web Consortium (W3C) since 1999.

SVG images and their behaviors are defined in XML text files. This means that they can be searched, indexed, scripted and, if required, compressed.

Since they are XML files

, SVG images can be created and edited with any text editor, but it is often more convenient to create these types of images with drawing programs such as

Inkscape

.

All major modern web browsers have at least some degree of support and
render SVG markup directly, including Mozilla Firefox, Internet Explorer 9,
Google Chrome and Safari. However, no earlier versions of Microsoft Internet
Explorer (IE) support SVG natively."

The SVG home page

The SVG home page is located at

http://www.w3.org/TR/SVG/

That is where you will find technical specifications for the many
capabilities that SVG has to offer. Those capabilities are vast. In this module,
you will learn to create SVG files to draw the following

basic shapes

along with text:

 	
line

	
rectangle

	
circle

	
ellipse

	
polyline

	
polygon

You will also learn how to manipulate certain aspects of the following

attributes

 on those shapes and on the text that you
create:

 	
stroke

	
stroke-width

	
stroke-opacity

	
fill

	
fill-opacity

	
font-style

	
font-weight

While this barely scratches the surface in terms of overall SVG capability,
it does provide a set of tools that will put you in good stead relative to creating
drawings for your science, technology, engineering, and mathematics courses.

What does this mean to you?

Let me

refer back

 to the most
important statement so far in this document:

"

Since they are XML files, SVG images can be created and edited with any
text editor

"

What this means is that if you can imagine a technical drawing in terms of
objects created from the

basic shapes

 listed above
along with their

attributes

, and you can mentally
organize the sizes and positions of those objects in a drawing, you can use a
text editor to create an SVG file, which, in turn can be used to render the
drawing on the screen or on paper.

Using the SVG file

Once the drawing exists in the form of an SVG file, it can be printed and
submitted as part of an assignment. Also, if you have access to the necessary
equipment or assistance, it can be turned into a tactile drawing for you and
other blind students to explore by touch.

You can also use the file format converter at

http://www.online-utility.org/image_converter.jsp

 to convert the file to
other formats such as

png and jpeg

. This makes it possible for you to use
the drawing for other purposes, such as conversion to sound using software that
is available at

http://www.seeingwithsound.com/winvoice.htm

.

And last but not least, if you happen to have access to the

IVEO learning
system

, the SVG files that you create can be used with that system to be
explored by touch and sound.

Even though you may be blind or visually impaired and you may never have drawn
anything in your life, don't let that stop you. If you can imagine it, you can
draw it using SVG. My purpose in publishing this module is to help you develop
that skill.

Sample drawing

Before going any further, I am going to provide the SVG files for a sample
drawing that I will discuss in detail later. Hopefully, you can ask your
assistant to print the file named

Svg21a1r.svg

 and create a tactile version of the drawing as
described at

http://cnx.org/content/m38546/latest/

Tactile graphics

The file named

Svg21a1r.svg

 contains a mirror image of the
image that I created for this discussion. You should have downloaded that file

earlier

.

Figure 1

 shows the mirror image that is contained in that file for the benefit of your assistant who will create the tactile graphic for this
discussion.

 [image: Missing image]

Figure 2.1.

Mirror image from the file 			named Svg21a1r.svg.

Mirror image from the file 			named Svg21a1r.svg.

Figure 2

 shows a
non-mirror-image version of the same image.

 [image: Missing image]

Figure 2.2.

Non-mirror-image version of 			the image from the file named Svg21a1r.svg.

Non-mirror-image version of 			the image from the file named Svg21a1r.svg.

This image contains only one line of text. It reads

"Friction free table"

 and appears on the
side of a table. Therefore, I didn't provide a key-value table as described at

http://cnx.org/content/m38546/latest/

What does the image show

?

Just in case you were unable to get a tactile version of the image, I will
describe it to you. It isn't very complicated.

There are three objects connected together with a cord. Two of the objects,
each of which has a square shape, are setting on top of a table. The left end of
the table is attached to a
wall. The right end of the table is supported by a table leg.

The leftmost object on the table is tied to the wall. The
two objects on the table are tied to one another.

The third object is shaped like a triangle. It is connected to the
rightmost square object with a cord, but it is not setting on the table.
Instead, there is a pulley wheel connected to the rightmost corner of the table.
The triangular object is hanging from the cord, which threads up and over the
pulley wheel and connects to the rightmost square object, which is to the left
of the pulley wheel.

A label on the table reads

"Friction free table."

Straight lines, rectangles, circles, and polygons

As you may have observed from the description, this drawing is made up entirely of straight lines,
rectangles, a polygon for the triangle, and a circle for the pulley wheel. This
is representative of many of the drawing used to illustrate physics concepts.

This drawing uses all of the basic shapes described

earlier

 except for the ellipse and the polyline. Different line thicknesses
were used to visually differentiate the objects from one another.

Processing an SVG file

An SVG file can be processed using an SVG processor, such as IE 9 or Firefox
5 to convert the commands contained in the SVG file into a drawing. If you are
using a browser as your SVG processor, the drawing will appear in the browser
window, from which it can be viewed and/or printed.

In addition, some products, such as

Inkscape

and the

IVEO learning system

 can read the SVG file directly and use it to provide additional
benefits such as converting text labels and shapes into spoken words and displaying the
drawing in tactile form using an embossing graphic printer.

Also, as mentioned

earlier

, you can convert the
SVG file to other formats, such as png and jpeg for use with other programs such
as

The vOICe Learning
Edition

.

Two approaches

There are at least two approaches for using SVG to create a drawing like
this:

 	
writing raw SVG code

	
using drawing tools

Writing raw SVG code

As mentioned earlier, the contents of an SVG file are plain text. That text can
be produced using any plain text editor, such as Windows Notepad.

If you are willing to study the specifications at

http://www.w3.org/TR/SVG/

, you can use
your text editor to create raw SVG code and accomplish everything that is
possible using SVG. However, that can be a daunting task.

Listing 1

 shows the raw SVG code that produced the image shown in

Figure 2

.
You might conclude that you don't want to spend your time writing text like that
when you should be studying physics concepts instead.

Example 2.1.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns="http://www.w3.org/2000/svg" version="1.1"
 width="990" height="765">
 <title>Document Title</title>
 <rect fill="none" stroke="black" stroke-width="3"
 x="1" y="1" width="987" height="762">
 <title>rectangle</title>
 </rect>
 <line stroke="black" stroke-width="9"
 x1="45" y1="720" x2="945" y2="720">
 <title>line</title>
 </line>
 <line stroke="black" stroke-width="9"
 x1="90" y1="720" x2="90" y2="90">
 <title>line</title>
 </line>
 <rect fill="none" stroke="black" stroke-width="3"
 x="90" y="405" width="630" height="90">
 <title>rectangle</title>
 </rect>
 <rect fill="none" stroke="black" stroke-width="3"
 x="585" y="495" width="45" height="225">
 <title>rectangle</title>
 </rect>
 <rect fill="none" stroke="black" stroke-width="5"
 x="180" y="225" width="180" height="180">
 <title>rectangle</title>
 </rect>
 <rect fill="none" stroke="black" stroke-width="5"
 x="450" y="225" width="180" height="180">
 <title>rectangle</title>
 </rect>
 <polygon stroke="black" stroke-width="5" fill="none"
 points="675 675 855 675 765 540 ">
 <title>polygon</title>
 </polygon>
 <rect fill="none" stroke="black" stroke-width="5"
 x="709" y="346" width="35" height="95">
 <title>rectangle</title>
 </rect>
 <circle fill="none" stroke="black" stroke-width="5"
 cx="725" cy="355" r="41">
 <title>circle</title>
 </circle>
 <line stroke="black" stroke-width="3"
 x1="90" y1="315" x2="180" y2="315">
 <title>line</title>
 </line>
 <line stroke="black" stroke-width="3"
 x1="360" y1="315" x2="450" y2="315">
 <title>line</title>
 </line>
 <line stroke="black" stroke-width="3"
 x1="630" y1="315" x2="725" y2="315">
 <title>line</title>
 </line>
 <line stroke="black" stroke-width="3"
 x1="765" y1="360" x2="765" y2="540">
 <title>line</title>
 </line>
 <text fill="black" stroke="black"
 x="225" y="468" font-size="32" font-family="arial">
 Friction free table.
 </text>
</svg>

Although the concepts involved in manually writing SVG code aren't complicated, the
process is very tedious and you are very likely to make errors in the coding
process.

Using drawing tools

Fortunately for sighted students, drawing tools are readily available that
make the creation of SVG drawings relatively easy. One of the best is the free
open source SVG graphics editor named

Inkscape

. Sighted students are able to use
that editor with the mouse and the keyboard to create drawings in a visual drawing
environment.

I use

Inkscape

 all of the time to create SVG files for the drawings that I
need. However, I don't know of any blind students that have attempted to use

Inkscape

.
It doesn't look to me like it would be very accessible for blind students.
However, it is free, so you should give it a try just so you will know for sure.

SVG drawing editors for blind students

I am unaware of any SVG drawing editors that are designed for use by blind
students who are unable to use a mouse.

(If you know of any, please let me
know.)

 Therefore, I will provide an SVG graphics library that I have
designed specifically for blind students in this module. It isn't

Inkscape

; far
from it. However, it does not require the use of a mouse and it works well. It is my hope that the
use of my library
will make it possible for you to use SVG to draw the diagrams that you need to
successfully pursue your coursework in physics and other technical areas.

Seeking improvements in the interface

There are a large number of excellent blind programmers scattered around the
world. It is my hope that one or more of those programmers will pick up the challenge
and develop an improved interface for the library that will make it even easier for blind
students to draw
using SVG.

I would like to see a JavaScript version of an SVG drawing editor designed
for use by blind students. That's not because JavaScript is my favorite
programming language, which it isn't. That is because JavaScript has the lowest
barrier to entry of any programming environment that I am aware of.

(See my
JavaScript module at

http://cnx.org/content/m37433/latest/

)

How does it work?

Basically what I will provide in this module is an SVG graphics library
written in the Java programming language along with a template and instructions
for you to use in writing Java programs to produce the drawings that you need.

I don't have a fancy interface to go with the graphics library.
Instead, I will provide a template that you can use to write a new Java program
for each new drawing. The procedure will be to write a program that encapsulates
the drawing that you have in your mind. When you run the program, it will
produce the SVG file that describes your drawing.

If you determine that there are errors in your drawing, you can make
corrections to your program code and run it again to get a new version of the SVG
file.

Raw SVG code versus my SVG graphics library

Only you can decide whether you prefer to write raw SVG code or you prefer to
use the graphics library. I will present examples of both in this module.

I will
point out one major advantage of using the library, however. Once you learn how to write Java programs that incorporate the library to
create drawings, there is nothing to prevent you from expanding those programs
to also solve physics problem and draw graphs of the results.

For example, suppose you have a physics assignment to compute and draw the
trajectory of a projectile. Using raw SVG code, you would first need to compute
and save the coordinates of the projectile as a set of incremental data points. Then you could write raw SVG code incorporating that data to draw the
trajectory.

Using the library, you could write a program that would compute and also draw the trajectory
in a single operation. In my
opinion, that would be a much cleaner solution to the assignment.

Sample program

A complete listing of the program named

Svg21a.java

, that was used to produce
the drawing shown in

Figure 2

 is provided in

Listing 25

 near the end of the
module.

This program requires access to the SVG graphics library in the file
named

SvgLib21.java

. A complete listing of this
program is shown in

Listing 26

 near the end of the module.

This program also requires access to the
free

Java
Development Kit

, version 6 or
later, which I will also discuss later.

Finally, this program also requires access to

JDOM 1.1.1

, which
is free, and which I will also
discuss later.

Purpose of the program

The primary purpose of this program is to demonstrate the use of my SVG
graphics library in the file named

SvgLib21

. It uses that library to draw an
abbreviated version of a mass-pulley system shown in the module at

http://cnx.org/content/m38211/latest/#Figure_4

The drawing in that module contains several lines of text. However, this
program draws only one line of text. Otherwise,
the drawing produced by this program is the same as
the drawing used in
that module titled

Force and Motion -- Units of Force

.

I created the original drawing using

Inkscape

. I
created this drawing using
my SVG graphics library and the program that I am about to discuss.

This program was tested using J2SE 6, JDOM 1.1.1, and Firefox 5
running under Windows Vista Home Premium Edition.

Beginning of the program named Svg21a.java

I will explain this program in fragments and explain how you can write
similar programs to create the SVG drawing files that you need. The first
fragment, which shows the beginning of the program, is shown in

Listing 2

.

(Note that complete listings are provided in

Listing 25

,

Listing 26

, and

Listing 27

. That code is ready to copy into your editor, save as Java source
code files, compile, and run as explained under

Writing, compiling,
and running Java programs

.)

Example 2.2.

import java.io.*;
import org.jdom.*;

public class Svg21a{
 public static void main(String[] args){

 //DO NOT MODIFY ANY OF THE CODE ABOVE THIS LINE.
 //##//

Java comments

Whenever you see the following character sequence, //, in a Java program, the
text that follows to the end of the line is a comment. That is to say, that text
is meant to provide information to a human reader and is ignored by the
computer.

Listing 2

 contains two comments. I will use many
more comments in subsequent listings to help explain the code.

Java program files

Java programs are simply text files with the file name of your choice and an
extension of .java. You can create those files using any plain text editor. I will explain later how you
can "compile"
those files to create
executable programs.

If this were a module on computer programming, I would explain what is meant
by the program code in

Listing 2

. However, since this is not a module on
computer program, I will simply tell you to replicate the text shown in

Listing 2

 at the beginning of your Java program file with one exception. That
exception has to do with the name of the program and the name of the file.

The name of the program

The name of this program is

Svg21a

. You can see that name on the line
following the word class in

Listing 2

. You can use just about any name you want
as long as the first character is a letter and the remainder of the name
contains only letters and numbers. However, the name of the program, as shown in

Listing 2

, must match the name of the file containing that program except that
the file name must have an extension of .java.

For example, this program named

Svg21a

 is stored in a file named

Svg21a.java

.

Also be aware that everything in Java, including program names and file names,
is case sensitive. By that I mean that Joe is not the same as jOe, which is not
the same as joE.

Create a drawing canvas

The next code fragment is shown at the top of

Listing 3

. This fragment contains two Java
programming statements.

(Usually Java program statements end with a semicolon.)

These must be the first two statements in your Java
program and they must appear only once.

The first statement, down to the semicolon, creates the canvas on which the
drawing will appear. You may modify this statement as explained below.

The second statement at the bottom of

Listing 3

 is a housekeeping statement and must not be modified.

Example 2.3.

 //ONLY THE CODE BELOW THIS LINE CAN BE MODIFIED

 //CREATE A DRAWING CANVAS
 //This must be the first statement that you write in
 // the program and it must appear only once.
 //The following statement creates a canvas that is
 // 8.5x11 inches in size in a landscape layout.
 Element svg = SvgLib21.makeSvg(ns,
 "Document Title",
 11, //width
 8.5 //height
);

 //DO NOT MODIFY THE FOLLOWING STATEMENT
 //This statement must immediately follow the call to
 // the makeSvg method above and this statement MUST
 // NOT BE MODIFIED.
 Document doc = new Document(svg,docType);

What does this code mean?

 The first statement shown in

Listing 3

 creates a canvas that is
 8.5 x 11 inches in size in a landscape layout. In other words, the canvas has
a width of 11 inches and a height of 8.5 inches. When you print the drawing
produced on this canvas, it should fit perfectly on 8.5x11 inch paper provided
that you tell the printer to print in landscape

(as opposed to portrait)

 mode.

 If your printer uses 8.5 x 11 inch paper, the only modification that you
will want to make to this statement is to sometimes reverse the order of the
width and height values

(see the comments)

 to cause the canvas to accommodate portrait mode.

 If your printer uses larger paper, you might want to modify the width and
height values to accommodate the actual size of your printer paper.

 When modifying the width and height values in the first statement, be
careful not to delete the comma and DON'T MAKE ANY OTHER CHANGES to the
statement with the possible exception of the

"Document Title"

 parameter
discussed below.

The Document Title

 The

makeSvg

 method, and most of the other

makeZzz

 methods discussed below have a parameter that adds a title to
the SVG element. These parameters have default values in this program such as
"Document Title", "line", "rectangle", "circle", "ellipse", "polyline", and
"polygon".

 The purpose of these parameters is to provide compatibility with the
speaking capability of the

IVEO viewer

.

 If the output SVG file is opened in the

IVEO viewer

,
the title for the

svg

element is spoken when the user opens the
file.

 The titles for the individual shapes are spoken by the

IVEO viewer

when the user touches a corresponding shape on the touchpad or clicks on that
shape on the screen.

 If the SVG file won't be used with the

IVEO viewer

,
just leave the title strings unchanged. If the SVG file will be used with the
the

IVEO
viewer

, you can modify those strings to cause the viewer to speak whatever
titles you choose.

(Don't remove the quotation marks if you modify the title
string.)

 You can read more about this capability under

The SVG graphics library

.

SVG code to create a canvas

If you were to delete all of the remaining code in

Listing 25

 down to but not
including the statement that writes the output SVG file, the resulting SVG code
would be that shown in

Listing 4

.

Example 2.4.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns="http://www.w3.org/2000/svg" version="1.1"
 width="990" height="765">
 <title>Document Title</title>

The width and the height of the canvas

The first three lines of text in

Listing 4

 constitute housekeeping
information that you needn't worry about. It will always be the same.

The fourth and fifth lines of text in

Listing 4

 define the width and height
of the canvas.

As you can see, the width is set to a value of 990 and the height is set to a
value of 765.

The last line of text in

Listing 4

 is the

title

 element discussed

earlier

.

SVG units

SVG doesn't inherently deal with dimensions in inches

(although it is
possible to specify inches when you define the value for a size attribute.)

. Instead, it deals with
dimensions in something that I will refer to as "SVG units", and for reasons
that I am unable to explain, there appear to be 90 SVG units per inch or 35.43
SVG units per centimeter.

Thus, a width of 990

(as shown in

Listing 4

) corresponds to a width of 11 inches and a height of 765
corresponds to a height of 8.5 inches.

If you elect to write raw SVG code for you drawings, you will need to think
in terms of SVG units instead of inches

(or write all of the size attribute
values something like "8.5in")

. However, I designed my SVG graphics library
so that you can think in terms of inches instead of SVG units without having to
remember to specify the units for every size value.

Draw a rectangular border on the canvas

The Java code in

Listing 5

 draws a rectangular border on the canvas by creating an
SVG element of type

rect

(for rectangle)

.

Example 2.5.

 //Draw a rectangular border on the canvas.
 Element border = SvgLib21.makeRect(svg,
 ns,
 "rectangle",//title
 0.015,/lower-left x-coordinate in inches
 0.015,//lower-left y-coordinate in inches
 10.97,//width in inches
 8.47 //height in inches
);

What are you allowed to change?

There are only six things that you are allowed to change in the code in

Listing 5

(pay attention to the comments)

:

 	
The name of the

rect

 element, which is

border

 in
	

Listing 5

.

(Later on, I will refer to this as an
	object instead of an element.)

	
The title for the element, which is

"rectangle"

 in
	

Listing 5

.

	
The x-coordinate of the lower-left corner of the rectangle, which is
	0.015 inches in

Listing 5

.

	
The y-coordinate of the lower-left corner of the rectangle, which is
	0.015 inches in

Listing 5

.

	
The width of the rectangle, which is 10.97 inches in

Listing 5

.

	
The height of the rectangle, which is 8.47 inches in

Listing 5

.

Multiple rect elements

You can replicate this code to define as many

rect

 elements as you need in your
drawing so long as you provide a unique name for each element

(object)

.

The size of the rectangle

If you carefully examine the values that I specified for the coordinates of
the lower-left corner, the width, and the height, you will see that I made the
rectangle slightly smaller than the size of the paper so that it will fit just
inside the edges of the paper.

SVG code to draw a rectangle

The use of the Java code in

Listing 5

 to draw a rectangle results in the
SVG code shown in

Listing 6

.

Example 2.6.

 <rect fill="none" stroke="black" stroke-width="1"
 x="1" y="1" width="987" height="762">
 <title>rectangle</title>
 </rect>

In order
to force the SVG code to fit in this publication format, it was necessary for me
to insert a line break following the "1". Those two lines were originally a
single line in the SVG code.

View my tutorials

SVG is simply one flavor of something called XML. I have
published hundreds of online tutorials on Java programming, XML, and SVG. If you
are interested in reading what I have to say in those tutorials, just Google the
following keywords:

 	
Richard Baldwin Java

	
Richard Baldwin XML

	
Richard Baldwin SVG

The rect element

The four lines in

Listing 6

 that begin with an angle
bracket followed by

rect

 and end with /> constitute what is called
an XML element named

rect

.

The

rect

 element has a

title

 element as its
content. The

title

 element has the word

rectangle

as its content.

The attributes of the rect element

The following items are known as the

attributes

 of the

rect

 element:

 	
fill

	
stroke

	
stroke-width

	
x

	
y

	
width

	
height

The attribute values

The text that appears in quotation marks, such as "762" are known as the
values of the attribute to which they are joined by an equals character "=".

How does it all work?

When an SVG processor, such as the one incorporated into Firefox 5, sees an
SVG/XML element named

rect

 in an SVG file, it knows that
it needs to draw a rectangle. It then looks to the attributes and their values
to determine other aspects of that rectangle.

For example, in this case, the SVG processor is told to draw a rectangle
consisting of an outline only

 (fill="none")

.

The color of the outline is to be black

(stroke="black")

.

The thickness of the outline is to be a single SVG unit

(stroke-width="1")

.

The lower-left corner of the outline is to be very close to the origin when
described in SVG units

(x="1" and y="1")

.

The width of the rectangle is to be 987 SVG units

(width="987")

, and the
height of the rectangle is to be 762 SVG units

(height="762")

.

If you were to run the program at this point, open the output SVG file in Firefox
5, and print the result, you would have a blank sheet of paper with a black
outline barely inside the edges of the paper.

(Note, however, that on my
system, there is a margin of approximately one-half inch at the bottom of the
paper.)

Draw the floor and the wall

In the image shown in

Figure 2

, the floor consists of a line parallel to the
horizontal axis near the bottom of the drawing. The wall consists of a line
parallel to the vertical axis near the left side of the drawing. The Java code
in

Listing 7

 causes those two lines to be drawn.

(All coordinate values and dimensions given in this and the following Java
code are in inches, so I will stop mentioning that at this point.)

Example 2.7.

 //Draw the floor.
 Element floor = SvgLib21.makeLine(svg,
 ns,
 "line",//title
 0.5, //x-coordinate of one end of line
 0.5, //y-coordinate of one end of line
 10.5,//x-coordinate of other end of line
 0.5 //y-coordinate of other end of line
);

 //Draw the wall.
 Element wall = SvgLib21.makeLine(svg,
 ns,
 "line",
 1.0,
 0.5,
 1.0,
 7.5
);

Two SVG elements of type line

Each of the Java statements in

Listing 7

 causes a new SVG element of type
line to be created. The first element is named

floor

 in the Java code.

(

I
will have more to say about element names later

.)

 The second element is
named

wall

.

(See

Listing 8

 later.)

What can you change?

As before, there are only six things that you are allowed to change in each
of the Java statements in

Listing 7

:

 	
The names of the line elements

(floor and wall in

	

Listing 7

.)

	
The values of the titles

("line" in

	

Listing 7

.)

	
The x and y coordinate values for one end of each line.

	
The x and y coordinate values for the other end of each line.

If you examine the x and y coordinate values for one end of the line named
floor in

Listing 7

(0.5, 0.5)

, you will see that one end of the line is near
the origin at the lower-left corner of the drawing.

If you examine the x and y coordinate values for the other end of the line
named

floor

(10.5, 0.5)

, you will see that the other end of the line is near the
lower-right corner of the drawing. Furthermore, both y-coordinate values are
0.5, meaning that the line is parallel to the horizontal axis as desired.

A similar analysis of the line named

wall

 will reveal that it intersects the
floor near the left end at

(1.0, 0.5)

 and is parallel to the vertical axis.

SVG code to draw a line

Listing 8

 shows the two

line

 elements created by the Java
code shown in

Listing 7

.

Example 2.8.

 <line stroke="black" stroke-width="1"
 x1="45" y1="720" x2="945" y2="720">
 <title>line</title>
 </line>

 <line stroke="black" stroke-width="1"
 x1="90" y1="720" x2="90" y2="90">
 <title>line</title>
 </line>

An explanation of element names

I promised

earlier

 that I would have more to say about element names later. That time
has come.

SVG elements don't have names, other than the name that defines the
type of element such as

rect

(

Listing 6

) and

line

(

Listing 8

). Names such as

border

(

Listing 5

),

floor

and

wall

 (

Listing 7

) are purely Java mechanisms for keeping
track of the different elements in the drawing.

(I should have been referring border, floor, and wall as objects instead of elements in the Java
code earlier, but I didn't want to make things even more confusing than they may already
be.)

The names disappear

By the time the Java code is converted into SVG code, those identifying names
have disappeared and the SVG code consists of

 	
elements of specific types

	
having attributes with
	

 	
specific names

	
and specific values.

	

(There is also something in the SVG code called content, which is
represented by the title element in

Listing 8

.)

The line elements

The first SVG element named

line

 in

Listing 8

 corresponds to
the Java object named

floor

 in

Listing 7

. The second SVG
element named

line

 in

Listing 8

 corresponds to the Java object
named

wall

 in

Listing 7

.

Attributes of the line elements

The stroke and stroke-width attributes in

Listing 8

 should already be
familiar to you as should the coordinate attributes named x1, y1, x2, and y2.

Unlike the SVG code for the rect element in

Listing 6

, where there
was only one pair of coordinate attributes named x and y, a line element as
shown in

Listing 8

 requires two sets of coordinate
attributes. Therefore, the two sets are distinguished from one another by
appending a 1 and a 2 to the basic attribute names of x and y

(x1, y1, x2,
and y2)

.

If you compare the coordinate attributes in

Listing 8

 with the coordinate
values in the Java code in

Listing 7

, and convert from inches to SVG
units, you should find that they match.

Draw more rectangles

The Java code in

Listing 9

 causes four more rectangles to be drawn that represent
the following objects in the drawing:

 	
The top of the table on which two rectangular masses are setting.

	
The table leg that supports the rightmost end of the table.

(The
	leftmost end is
	attached to the wall.)

	
One of the rectangular masses, referred to as Mass C.

(This mass sets on
	top of the table closest to the wall on the left end of the table.)

	
The other rectangular mass referred to as Mass B.

(This mass sets on top
	of the table closest to the rightmost end of the table away from the wall.)

Example 2.9.

 //Draw the table top.
 Element tableTop = SvgLib21.makeRect(svg,
 ns,
 "rectangle",
 1.0,
 3.0,
 7.0,
 1.0
);

 //Draw the table leg.
 Element tableLeg = SvgLib21.makeRect(svg,
 ns,
 "rectangle",
 6.5,
 0.5,
 0.5,
 2.5
);

 //Draw Mass C
 Element massC = SvgLib21.makeRect(svg,
 ns,
 "rectangle",
 2.0,
 4.0,
 2.0,
 2.0
);

 //Draw Mass B
 Element massB = SvgLib21.makeRect(svg,
 ns,
 "rectangle",
 5.0,
 4.0,
 2.0,
 2.0
);

The corresponding SVG code

The Java code in

Listing 9

 causes the four

rect

elements shown in

Listing 10

 to be created in the
output SVG code.

Example 2.10.

 <rect fill="none" stroke="black" stroke-width="1"
 x="90" y="405" width="630" height="90">
 <title>rectangle</title>
 </rect>

 <rect fill="none" stroke="black" stroke-width="1"
 x="585" y="495" width="45" height="225">
 <title>rectangle</title>
 </rect>

 <rect fill="none" stroke="black" stroke-width="1"
 x="180" y="225" width="180" height="180">
 <title>rectangle</title>
 </rect>

 <rect fill="none" stroke="black" stroke-width="1"
 x="450" y="225" width="180" height="180">
 <title>rectangle</title>
 </rect>

You already know all about drawing rectangles, so no further explanation of
the code in

Listing 9

 and

Listing 10

 should be needed.

Draw a polygon

The next task is to draw a triangular object that represents Mass C in the
drawing. This is accomplished by the Java code in

Listing 11

 that causes a polygon,
in the shape of a triangle, to be drawn.

Example 2.11.

 //Draw Mass A
 Element massA = SvgLib21.makePolygon(
 svg,
 ns,
 "polygon",
 new double[]{
 7.5, 1.0,//x-y coordinate pair
 9.5, 1.0,//x-y coordinate pair
 8.5, 2.5 //x-y coordinate pair
 });

What can you modify?

You can modify the following items in the Java code shown in

Listing 11

.

 	
The name of the object

(

massA

 in

Listing 11

).

	
The title

(

"polygon"

 in

Listing 11

).

	
The number of x-y coordinate pairs in the list of x-y coordinate pairs
	along with the values of the coordinates.

What is a polygon?

In SVG terminology, a polygon is a drawing that consists of a series of
points in two-dimensional space connected by line segments. An additional line
segment is automatically drawn
from the last point to the first point. For example, triangles, pentagons,
and hexagons are polygons.

What is a polyline?

In SVG terminology, a polyline is exactly like a polygon except that a line
segment is not automatically drawn to connect the last point to the first point.

There are no polyline elements in this example drawing, but there is one in the
program for a different drawing shown in

Listing 27

. The
Java code for drawing a polyline is the same as the Java code for drawing a
polygon. The difference between the two occurs when the SVG processor draws the
shapes and either does, or does not automatically connect the last point to the
first point.

The most versatile shape

 The polyline is the most versatile of all of the basic shapes. With enough patience, it can be used to draw any
 shape that can be drawn with curved lines. To
 draw a curved line using polyline elements, approximate it using a large
 number of short line segments. For example, polyline elements provide an
ideal mechanism for drawing the kind of shapes that are commonly referred to as
"curves" in math, physics, and engineering courses. By this, I mean a drawing
that shows how a dependent variable behaves relative to an independent variable.

Drawing the polygon

(or the polyline)

 Getting back to the Java code in

Listing 11

, you can insert any number

(two or more)

 of x-y coordinate-pairs inside
 the curly brackets

(but you must insert them in pairs)

. Line segments will
be drawn from the first coordinate location to the second, from the second to
the third, and so on.

(Of course there need to be two or more coordinate pairs
in order for things to make sense.)

 If you examine the coordinate values shown in

Listing 11

, you will see
that they define the vertices of a triangle whose base is parallel to the
horizontal axis. Since this is a polygon, it will be drawn as a closed triangle
with lines for all three sides. If it were a polyline, it would not be drawn as
a closed triangle. Instead, only two lines would be drawn and the third side of
the triangle would be open.

SVG code to draw a polygon

Listing 12

 shows the SVG code produced by the Java code in

Listing 11

.

Example 2.12.

 <polygon stroke="black" stroke-width="1" fill="none"
 points="675 675 855 675 765 540 ">
 <title>polygon</title>
 </polygon>

The attribute named points

The polygon element in

Listing 12

 contains a new attribute name that you
haven't seen before:

points

.

As you have probably figured out by now, the value of the attribute
named points is a
series of numeric values, separated by spaces, that represent the x-y coordinate pairs in

Listing 11

,
converted from inches to SVG units.

Hopefully by now you are beginning to see patterns that relate the Java code
to the resulting SVG code.

Draw the rectangular pulley support

The drawing in

Figure 2

 shows a pulley connected to the rightmost end of the
table. The drawing of the pulley consists of a rectangle as the support member
and a circle as the pulley wheel. The Java code to draw the pulley support is
shown in

Listing 13

.

Example 2.13.
 //Draw pulley support
 Element pullySupport = SvgLib21.makeRect(svg,
 ns,
 "rectangle",
 7.883,
 3.595,
 0.392,
 1.06
);

The Java code in

Listing 13

 simply draws another rectangle, so it shouldn't need
further explanation.

Draw a circle

The Java code in

Listing 14

 draws a circle to serve as the pulley wheel in the
drawing.

Example 2.14.

 //Draw the pulley wheel.
 Element pulleyWheel = SvgLib21.makeCircle(
 svg,
 ns,
 "circle",
 8.05, //x-coordinate of center of circle
 4.56, //y-coordinate of center of circle
 0.45 //radius of circle
);

What are you allowed to change?

There are only four things that you are allowed to change in the code in

Listing 14

:

 	
The name of the

circle

 object, which is

	pulleyWheel

 in

Listing 14

.

	
The title

(

"circle"

 in

Listing 14

)

.

	
The value of the x-coordinate of the center of the circle.

	
The value of the y-coordinate of the center of the circle.

	
The radius of the circle.

You will need to examine the coordinate values for the center of the circle
along with the radius of the circle and imagine how the position and size of the
circle relates to the right end of the table top in

Figure 2

.

(Or hopefully, get
a tactile version of the drawing and explore it by touch.)

SVG code to draw a circle

Listing 15

 shows the SVG code produced by the Java code in

Listing 14

.

Example 2.15.

 <circle fill="none" stroke="black" stroke-width="1"
 cx="725" cy="355" r="41">
 <title>circle</title>
 </circle>

By now, you should see the pattern and there should be no need to explain the
relationship between the attributes of the circle element and the parameter
values in the call to the

makeCircle

 method in

Listing 14

.

Draw more lines

The earlier section titled

What does the
image show

 describes how three cords are used to tie the masses to one
another and to tie the leftmost mass to the wall. This is accomplished using the four
calls to the Java

makeLine

 method shown in

Listing 16

.

Example 2.16.

 //Draw cord from wall to Mass C
 Element cordR = SvgLib21.makeLine(svg,
 ns,
 "line",
 1.0,
 5.0,
 2,
 5.0
);

 //Draw cord from Mass C to Mass B
 Element cordQ = SvgLib21.makeLine(svg,
 ns,
 "line",
 4.0,
 5.0,
 5.0,
 5.0
);

 //Draw cord from Mass B to the top of the pulley.
 Element cordP1 = SvgLib21.makeLine(svg,
 ns,
 "line",
 7.0,
 5.0,
 8.05,
 5.0
);

 //Draw the cord from the right side of the pulley to
 // Mass A
 Element cordP2 = SvgLib21.makeLine(svg,
 ns,
 "line",
 8.5,
 4.5,
 8.5,
 2.5
);

There is nothing new in

Listing 16

.

SVG code to draw more lines

The Java code in

Listing 16

 produces
the SVG code shown in

Listing 17

.

Example 2.17.

 <line stroke="black" stroke-width="1"
 x1="90" y1="315" x2="180" y2="315">
 <title>line</title>
 </line>

 <line stroke="black" stroke-width="1"
 x1="360" y1="315" x2="450" y2="315">
 <title>line</title>
 </line>

 <line stroke="black" stroke-width="1"
 x1="630" y1="315" x2="725" y2="315">
 <title>line</title>
 </line>

 <line stroke="black" stroke-width="1"
 x1="765" y1="360" x2="765" y2="540">
 <title>line</title>
 </line>

There is also nothing new in

Listing 17

.

Change line thicknesses

With the exception of text to be discussed shortly, we have now created an
element for every object that we need in our drawing.

As you may have noticed, the value of the

stroke-width

attribute for every element created so far has been "1". That is the default
value. We may not be satisfied with that default value in all cases. We may prefer that
some of the lines that describe the geometrical objects be thicker than lines
that describe other geometrical objects.

My SVG graphics library provides a method named

setStrokeWidth

that we can use to adjust the stroke-width attribute values for an element
before the final output SVG file is written.

(As you will see if you examine

Listing 27

, the library provides methods that let you adjust other attribute
values as well.)

Set the stroke-width

The line thickness is controlled by the value of the

stroke-width

 attribute
in the SVG element that causes the geometrical object to be drawn.

Listing 18

 contains a series of Java statements that set new values for the
stroke-width attribute for each of a variety of objects. Since the statements are all
essentially the same, I will discuss only the first one.

Example 2.18.

 SvgLib21.setStrokeWidth(
 border,//name of the object of interest
 0.03 //new value for the stroke-width attribute
);

 SvgLib21.setStrokeWidth(floor,0.1);
 SvgLib21.setStrokeWidth(wall,0.1);
 SvgLib21.setStrokeWidth(tableTop,0.03);
 SvgLib21.setStrokeWidth(tableLeg,0.03);
 SvgLib21.setStrokeWidth(massC,0.05);
 SvgLib21.setStrokeWidth(massB,0.05);
 SvgLib21.setStrokeWidth(massA,0.05);
 SvgLib21.setStrokeWidth(pullySupport,0.05);
 SvgLib21.setStrokeWidth(pulleyWheel,0.05);
 SvgLib21.setStrokeWidth(cordR,0.03);
 SvgLib21.setStrokeWidth(cordQ,0.03);
 SvgLib21.setStrokeWidth(cordP1,0.03);
 SvgLib21.setStrokeWidth(cordP2,0.03);

What are you allowed to change?

There are only two things that you can change in a call to the

setStrokeWidth

method as shown in

Listing 18

:

 	
The name of the Java object of interest

(

border

 for the first call in
	

	

Listing 18

).

	
The new value for the

stroke-width

 attribute in the SVG element that
	corresponds to the specified Java object

(0.03 for the first call in Listing
	18)

.

Recall that

border

 is the name of the Java object that is used to draw a
rectangular border on the canvas

(see

Listing 5

).

Recall also that the initial default value of the stroke-width attribute for
the rect element was equal to "1"

(see

Listing 6

).

To see the effect of the first call to the

setStrokeWidth

 method in

Listing 18

, go back and take a look at the final SVG output code in

Listing 1

. Pay
particular attention to the first

rect

 element.

Modified stroke-width attribute value

I have reproduced that

rect

 element in

Listing 19

 for convenient
viewing.

Example 2.19.

 <rect fill="none" stroke="black" stroke-width="3"
 x="1" y="1" width="987" height="762">
 <title>rectangle</title>
 </rect>

As mentioned earlier, the default value for the stroke-width attribute of the
rect element shown in

Listing 6

 was "1". However, after I added the first call
to the

setStrokeWidth

 method in

Listing 18

 and re-ran the program, the attribute
value was changed to "3" corresponding approximately to a line thickness of 0.03
inch.

If you compare the parameter values to the remaining calls to the

setStrokeWidth

 method in

Listing 18

 with the final values of the stroke-width
attribute values in

Listing 1

, they should all correspond accordingly.

Draw text

All that we have left to do in this program is to draw some text and write
the output SVG file.

The Java code in

Listing 20

 can be used to draw one line of text.

Example 2.20.

 //Draw text
 Element textA = SvgLib21.makeText(
 svg,
 ns,
 2.5, //x-coordinate of beginning of text
 3.3, //y-coordinate of beginning of text
 "arial",//font-family (optionally "")
 32, //font size in points
 "Friction free table." //text to be drawn
);

Usage

Begin by setting the name of the Java object

(

textA

 in

Listing 20

)

to the
name that you prefer.

Then set the x and y coordinate values for the location in the drawing where
the text will be drawn.
This specifies the location of the lower-left corner of the first character in
the text string.

Then set the name of the font family

("

arial

" in

Listing 20

) or
optionally leave that name blank. If no name is set

("")

 or an invalid name is set, a default font family will be used.

Then set the font size to the desired font size in points

(

32

 in

Listing 20

).

Finally, set the last parameter to the string of text that is to be drawn.

Make sure that you include the quotation marks in both cases where they are
used in

Listing 20

.

Don't make any other changes to the code shown in

Listing 20

.

Setting the font style and font weight

By default the text is

normal

(not bold, not italic, etc.)

. My SVG graphics
library provides methods by which you can change the weight and style of the
text, such as making it bold and italic.

(See usage instructions for those
methods in

Listing 27

.)

SVG code to draw text

Listing 21

 shows the SVG code produced by the Java code in

Listing 20

.

Example 2.21.

 <text fill="black" stroke="black" x="225" y="468"
 font-size="32" font-family="arial">
 Friction free table.
 </text>

You should be able to recognize all of the attributes and their values shown
in

Listing 21

.

The content of an element

There is something in

Listing 21

 that was not previously discussed in
any detail -- content.
The actual text,

Friction free table

, is not an attribute. Instead, it is what
is called

content

 in XML/SVG.

In addition, many of the earlier SVG code fragments had elements whose
content consisted of a

title

 element, which in turn had text
content with words like

line

,

polygon

, etc.

This isn't particularly important to you as a user
of my SVG graphics library. However, if you elect to create drawings by writing
raw SVG code, this is something that you will need to study a little more
deeply.

Write the output file

If you elect to create your drawings by writing raw SVG code in a text
editor, all you need to do to write the output file is to save the text file
from inside the editor.

However, if you elect to use my SVG graphics library and create your drawings
by writing Java code, you need to include the code shown in

Listing 22

 to cause
the final output SVG file to be written.

(Don't include the .svg extension in the file name that you specify. It
is added automatically.)

Example 2.22.

 //WRITE OUTPUT FILE
 SvgLib21.writePrettyFile("Svg21a",doc);

 This must be the last statement that you write in your program. Otherwise, you will get an incomplete file.

 Set the value inside the quotation marks to the desired path and filename
for the file.

(Don't include the .svg extension in the file name that you specify. It
is added automatically.)

 Don't make any other changes to the code in

Listing 22

.

 The Java code in

Listing 22

 writes the output file with the name

Svg21.svg

 in the folder from which the
 program is being executed

(the current folder)

. Because it is being written
into the current folder, it isn't necessary to provide a path.

The remaining Java code

The remaining code that you will need to include in your Java program file is
shown in

Listing 23

.

Simply copy this code, without modifications, and paste it at the end of your
file.

Example 2.23.

 //ONLY THE CODE ABOVE THIS LINE CAN BE MODIFIED
 //##//
 //DO NOT MODIFY ANY OF THE FOLLOWING CODE.
 }//end main
 //--//

 //Create a String variable containing the namespace
 // URI to reduce the amount of typing that is required
 // later. Note that the variable name is short and
 // easy to type.
 static String ns = "http://www.w3.org/2000/svg";

 //For clarity, create strings containing the name of
 // the element that is constrained by the DTD (the
 // root element), the Public ID of the DTD, and the
 // System ID of the DTD.
 static String dtdConstrainedElement = "svg";
 static String dtdPublicID = "-//W3C//DTD SVG 1.1//EN";
 static String dtdSystemID =
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd";

 static DocType docType = new DocType(
 dtdConstrainedElement,dtdPublicID,dtdSystemID);

}//end class

The SVG graphics library

The Java code for my SVG graphics library is provided in

Listing 26

. All you need
to do is copy this code into a file named

SvgLib21.java

 and place that file in
the same folder with your program code. I will explain later what you need to do
after that.

The graphics library in Listing 26 was updated on 08/11/11 to add new features.
However, the text in this module has not been updated to illustrate the use of
those new features. The downloadable documentation has been updated to include
those features.

IVEO compatibility

Note that the library was revised on 08/07/11 to add a

title

 element to each shape
element and to the

svg

 element. As a result, when the output SVG file is
opened in the

IVEO
viewer

 and you click on a shape, information about that shape is spoken by IVEO. When you open the file in the

IVEO
viewer

, the text content of the

title

 element belonging to
the

svg

 element is spoken.

Note that you
must be careful about the order in which you add the
shapes to the drawing. For example, a rectangle that
is added after a line is added can cover the line
and prevent the information about the line from being
spoken by IVEO even though the rectangle may be transparent.
Therefore, for IVEO compatibility, you must not allow
one shape object to cover another shape object.

Graphics library documentation

Click

here

 to download a zip file named

SvgLib21Docs.zip

 containing standard Java documentation for the
graphics library.

To view the documentation, YOU MUST EXTRACT the contents of the zip file into
an empty folder.

(Forgive me for shouting, but my students are constantly
forgetting to extract material from a zip file before they try to use that
material.)

 Then open the file named

index.html

 in your
browser. If you are unfamiliar with the format of the documentation, the
explanation at

http://www.apl.jhu.edu/~hall/java/beginner/api.html

 might be helpful.

Another sample program

Another sample program that produces a different drawing is provided in

Listing 27

. This program contains extensive usage instructions in the form of
comments for all of the capabilities of my SVG graphics library. If you
encounter any difficulties using the library, you should consult the
instructions in that program.

Writing, compiling, and running Java programs

Writing Java code

Fortunately, writing Java code is straightforward. You can write Java code
using any plain text editor. You simply need to cause the output file to have
an extension of .java.

There are a number of high-level Integrated Development Environments

(IDEs)

available, such as Eclipse and NetBeans, but they tend to be overkill for the relatively simple Java programs
described in this module.

There are also some low-level IDEs available, such as JCreator and DrJava,
which are very useful for sighted students. However, I don't know anything about
their level of accessibility. I normally use a free version of JCreator, mainly
because it contains a color-coded editor, but that feature wouldn't be useful
for a blind student.

So, just find an editor that you are happy with and use it to write your Java
code.

Preparing to compile and
run Java code

Perhaps the most complicated thing is to get your computer set up for
compiling and running Java code in the first place.

The java development kit

(JDK)

You will need to download and install the free Java JDK from

http://www.oracle.com/technetwork/java/javase/downloads/index.html

I notice that Java SE 7 has been released very recently. However, my SVG
graphics library was tested using Java SE 6 Update 26, and that is what I would
recommend. Also there is a 64-bit version, but my library has not been tested
with the 64-bit version. If your operating system will accommodate it, I
recommend that you stick with the 32 bit version just in case the 64-bit version
is not compatible with my library.

You will find installation instructions on the download page shown above.

JDOM version 1.1.1

You will also need to download and install a class library named JDOM 1.1.1
at

http://www.jdom.org/

When you do that download, you will receive a zip file that also contains
some installation instructions. However, my experience is that those
installation instructions are overkill, at least that is the case on a Windows
machine.

All you need to do is to extract the file named

jdom.jar

 from the zip file

(look for it in the build directory in the zip file)

, store it somewhere on your
disk, and put it on the classpath at compile time and runtime.

(I will explain
the bit about the classpath a little later.)

In my case, I'm running Windows Vista Premium Home Edition and I elected to
store the

jdom.jar

 file in the

following folder

:

C:\Program Files (x86)\Java\jdom-1.1.1\build\jdom.jar

It doesn't really matter where you store it as long as you know how to
specify that location in the classpath later.

Compiling and running Java code

There are a variety of ways to compile and run Java code. The way that I will
describe here is the most basic and, in my opinion, the most reliable. These instructions
apply to a Windows operating system. If you are using a different operating
system, you will need to translate the instructions to your operating system.

Write your Java program

Begin by writing your Java program into a text file with an extension of
.java. Save it in a folder somewhere on your disk. Make sure that you adhere to
the earlier instructions regarding the name of the class and the name of the
file, and remember that everything is case sensitive.

Create a file named

SvgLib21.java

 that contains an exact replica of the Java
code in

Listing 26

. Store that file in the same folder as your Java program.

Create a batch file

(or whatever the equivalent is for your operating system)

containing the text shown in

Listing 24

.

Then execute the batch file.

If everything is successful, a Firefox window should open showing your
drawing ready to be printed.

Example 2.24.

cls

del *.class
del Svg21a.svg
javac -cp ".;C:\Program Files (x86)\Java\jdom-1.1.1\build\jdom.jar" SvgLib21.java
javac -cp ".;C:\Program Files (x86)\Java\jdom-1.1.1\build\jdom.jar" Svg21a.java
java -cp ".;C:\Program Files (x86)\Java\jdom-1.1.1\build\jdom.jar" Svg21a
start Firefox.exe Svg21a.svg
pause

Comments regarding the batch file

Note that the text inside the quotation marks is the same as the location
where I

stored the file

 named

jdom.jar

. In fact,
it is identical except that ".;" appears before that location in

Listing 24

. You need to cause your batch file to identify the location of the
file named

jdom.jar

 on your system just like I did in

Listing 24

.

Do not modify the text that reads

"SvgLib21.java"

 in

Listing 24

.

Replace the text that reads

"Svg21a"

 in all three locations in

Listing 24

with the name of your program. Note, however, that the first time it appears, it
is specifying the name of the output SVG file. In case you elected to give your
output SVG file a different name than the name of your program, you need to
insert that name in place of

Svg21a.svg

.

Starting the browser automatically

Listing 24

 also assumes that you have Firefox 5 or later installed on your
system and starts it running automatically

. (It will probably also work with
earlier versions of Firefox. However, I
have been unable to cause either Google Chrome or IE 9 to start automatically
using this approach.)

In any event, the last line of text before the pause can be deleted from

Listing 24

 with no harmful effects. It simply won't
start the browser
automatically if you delete that text. In that case, you will have to manually open the output SVG file in the
browser

(or in some other SVG processor program)

 in order to print it.

(Opening the SVG file manually seems to work in Firefox 5, IE 9, and Google
Chrome 12.)

Don't delete the pause command

The

pause

 command causes the command-line window to stay on the
screen. You will need to examine the contents of the window if there are errors
when you attempt to compile and run your program, so don't delete the pause
command.

Translate to other operating systems

Remember, the format of the batch file in

Listing 24

 is a Windows format. If
you are using a different operating system, you will need to translate the
information in

Listing 24

 into the correct format for your operating system.

Resources

I will publish a module containing consolidated links to resources on my
Connexions web page and will update and add to the list as additional modules
in this collection are published.

Complete program listings

Complete listings of the three programs discussed in this module are provided
in

Listing 25

,

Listing 26

, and

Listing 27

.

Example 2.25.

/*File Svg21a.java,
Copyright 2011, R.G.Baldwin

Revised 08/07/11 to support the addition of a title
parameter to each element for IVEO compatibility. If the
output SVG file is opened in IVEO, the title for the svg
element is spoken when the user opens the file, and the
titles for the individual elements are spoken when the
user touches a corresponding shape on the touchpad or
clicks on that shape on the screen. If the SVG file won't
be used with IVEO, just leave the title strings unchanged.

This program requires access to the file
named SvgLib21.java

This is a demonstration program.

This program uses JDOM 1.1.1 and an SVG graphics library
class of my own design named SvgLib21 to draw an
abbreviated version of the mass-pulley system shown in
http://cnx.org/content/m38211/latest/#Figure_4

Only one line of text is drawn by this program. Otherwise,
the drawing produced by this program is the same as
the drawing in the file named Phy1150a1.svg used in
that module titled Force and Motion -- Units of Force. The
original drawing was produced by a sighten person using
Inkscape. This drawing was produced by a sighted person
using Baldwin's svg drawing library.

Tested using J2SE 6, JDOM 1.1.1, and Firefox 5
running under Windows Vist Home Premium Edition.
***/
import java.io.*;
import org.jdom.*;

public class Svg21a{
 public static void main(String[] args){

 //DO NOT MODIFY ANY OF THE CODE ABOVE THIS LINE.
 //##//
 //ONLY THE CODE BELOW THIS LINE CAN BE MODIFIED

 //CREATE A DRAWING CANVAS
 //This must be the first statement that you write in
 // the program and it must appear only once.
 //The following statement creates a canvas that is
 // 8.5x11 inches in size in a landscape layout.
 Element svg = SvgLib21.makeSvg(ns,
 "Document Title",
 11,//width
 8.5 //height
);

 //DO NOT MODIFY THE FOLLOWING STATEMENT
 //This statement must immediately follow the call to
 // the makeSvg method above and this statement MUST
 // NOT BE MODIFIED.
 Document doc = new Document(svg,docType);

 //Draw a rectangular border on the canvas.
 Element border = SvgLib21.makeRect(svg,
 ns,
 "rectangle",
 0.015,
 0.015,
 10.97,
 8.47
);

 //Draw the floor.
 Element floor = SvgLib21.makeLine(svg,
 ns,
 "line",
 0.5,
 0.5,
 10.5,
 0.5
);

 //Draw the wall.
 Element wall = SvgLib21.makeLine(svg,
 ns,
 "line",
 1.0,
 0.5,
 1.0,
 7.5
);

 //Draw the table top.
 Element tableTop = SvgLib21.makeRect(svg,
 ns,
 "rectangle",
 1.0,
 3.0,
 7.0,
 1.0
);

 //Draw the table leg.
 Element tableLeg = SvgLib21.makeRect(svg,
 ns,
 "rectangle",
 6.5,
 0.5,
 0.5,
 2.5
);

 //Draw Mass C
 Element massC = SvgLib21.makeRect(svg,
 ns,
 "rectangle",
 2.0,
 4.0,
 2.0,
 2.0
);

 //Draw Mass B
 Element massB = SvgLib21.makeRect(svg,
 ns,
 "rectangle",
 5.0,
 4.0,
 2.0,
 2.0
);

 //Draw Mass A
 Element massA = SvgLib21.makePolygon(svg,
 ns,
 "polygon",
 new double[]{
 7.5,1.0,
 9.5,1.0,
 8.5,2.5
 });

 //Draw pully support
 Element pullySupport = SvgLib21.makeRect(svg,
 ns,
 "rectangle",
 7.883,
 3.595,
 0.392,
 1.06
);

 //Draw the pulley wheel.
 Element pulleyWheel = SvgLib21.makeCircle(svg,
 ns,
 "circle",
 8.05,
 4.56,
 0.45
);

 //Draw cord from wall to Mass C
 Element cordR = SvgLib21.makeLine(svg,
 ns,
 "line",
 1.0,
 5.0,
 2,
 5.0
);

 //Draw cord from Mass C to Mass B
 Element cordQ = SvgLib21.makeLine(svg,
 ns,
 "line",
 4.0,
 5.0,
 5.0,
 5.0
);

 //Draw cord from Mass B to the top of the pulley.
 Element cordP1 = SvgLib21.makeLine(svg,
 ns,
 "line",
 7.0,
 5.0,
 8.05,
 5.0
);

 //Draw the cord from the right side of the pulley to
 // Mass A
 Element cordP2 = SvgLib21.makeLine(svg,
 ns,
 "line",
 8.5,
 4.5,
 8.5,
 2.5
);

 //Set the line thicknesses for various objects.
 SvgLib21.setStrokeWidth(border,0.03);
 SvgLib21.setStrokeWidth(floor,0.1);
 SvgLib21.setStrokeWidth(wall,0.1);
 SvgLib21.setStrokeWidth(tableTop,0.03);
 SvgLib21.setStrokeWidth(tableLeg,0.03);
 SvgLib21.setStrokeWidth(massC,0.05);
 SvgLib21.setStrokeWidth(massB,0.05);
 SvgLib21.setStrokeWidth(massA,0.05);
 SvgLib21.setStrokeWidth(pullySupport,0.05);
 SvgLib21.setStrokeWidth(pulleyWheel,0.05);
 SvgLib21.setStrokeWidth(cordR,0.03);
 SvgLib21.setStrokeWidth(cordQ,0.03);
 SvgLib21.setStrokeWidth(cordP1,0.03);
 SvgLib21.setStrokeWidth(cordP2,0.03);

 //Draw text
 Element textA = SvgLib21.makeText(
 svg,
 ns,
 2.5,
 3.3,
 "arial",
 32,
 "Friction free table."
);

 //WRITE OUTPUT FILE
 //Don't include extension in output file name.
 SvgLib21.writePrettyFile("Svg21a",doc);

 //ONLY THE CODE ABOVE THIS LINE CAN BE MODIFIED
 //##//
 //DO NOT MODIFY ANY OF THE FOLLOWING CODE.
 }//end main
 //--//

 //Create a String variable containing the namespace
 // URI to reduce the amount of typing that is required
 // later. Note that the variable name is short and
 // easy to type.
 static String ns = "http://www.w3.org/2000/svg";

 //For clarity, create strings containing the name of
 // the element that is constrained by the DTD (the
 // root element), the Public ID of the DTD, and the
 // System ID of the DTD.
 static String dtdConstrainedElement = "svg";
 static String dtdPublicID = "-//W3C//DTD SVG 1.1//EN";
 static String dtdSystemID =
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd";

 static DocType docType = new DocType(
 dtdConstrainedElement,dtdPublicID,dtdSystemID);

}//end class Svg21a

Note that the strange comments in

Listing 26

 were
placed there so that the program named

javadoc

 could be used to
produce

standard Java documentation

 for the
graphic library.

Example 2.26.

import java.io.*;
import org.jdom.*;
import org.jdom.output.XMLOutputter;
import org.jdom.output.Format;

/**
File SvgLib21.java
<p>
Copyright 2011, R.G.Baldwin
<p>
Revised 08/11/11 to add a method named setDescription
that can be called to add a <desc> element to any other
element. The description can be spoken in IVEO by first
selecting the element an pressing Ctrl+d.
<p>
Revised 08/07/11 to add a parameter for the title to
allow the user to pass in a string for the title element.
<p>
Revised 08/06/11 to add a title element to each shape
element. As a result, when the SVG file is
opened in IVEO and you click on the shape, the name of
the shape is spoken by IVEO. Note, however, that you
must be careful about the order in which you add the
shapes to the drawing. For example, a rectangle that
is added after a line is added can cover the line
and prevent the information about the line from being
spoken even though the rectangle may be transparent.
Therefore, for IVEO compatibility, you must not allow
one shape object to cover another shape object.
<p>
DESCRIPTION
<p>
This is a graphics library that is designed to eliminate
much of the pain involved in writing JDOM code to
create SVG output. The library contains individual
static methods that are used to construct and return
all of the SVG basic shape elements, text elements,
description elements and comment elements.
<p>
In addition there are methods to set various attributes
on shape elements and text elements.

This library provides methods to instantiate, return,
and manipulate the following types of SVG elements:

line
rect
circle
ellipse
polyline
polygon
desc
comment
text

<p>
Methods that return elements set the stroke attribute
value to black and set the stroke-width attribute
value to 1.
<p>
All of the methods that accept coordinate values or
dimensions as input require those values to be in
inches or fractions thereof. They are then converted
to svg units using a scale factor of 90 svg units
per inch.
<p>
All incoming vertical coordinate values are modified
to cause the origin to be at the lower-left corner.
Positive x is to the right and positive y is up the
page. Therefore, the user can think in terms of a
typical graphing assignment with the origin at the
lower-left corner.
<p>
One svg unit equals approximately 0.011 inch. An svg
unit is not necessarily the same size as a pixel on a
monitor or a printer. However, dimensions specified in
inches should be very close when you print the image.
<p>
In addition to the methods mentioned above, this library
provides two different methods for writing the final
SVG/XML out to a file. One is named writePrettyFile and
the other is named writeCompactFile.
<p>
Tested using J2SE 6.0, JDOM 1.1.1, Firefox 5, running
under Windows Vista Home Premius Edition.
<p>
author: Richard G. Baldwin
*/
public class SvgLib21{

/*The following instance variable is used to cause the
origin to be at the bottom left corner of the
drawing.
*/
 private static double svgHeight = 11.0;

 //--//

 /**This method constructs and returns a circle node for
 *a given parent in a given namespace. By default,the
 *stroke is black, the stroke-width is 1, and the fill
 *is none. Other methods can be called to change these
 *default values later.
 *
 * @param parent the SVG parent element
 * @param namespace the SVG namespace
 * @param elementTitle the title for IVEO compatibility
 * @param cx the x-coordinate of the center in inches
 * @param cy the y-coordinate of the center in inches
 * @param r the radius of the circle in inches
 *
 * @return A reference to an object that represents an
 *SVG circle element
 */
 public static Element makeCircle(
 Element parent,
 String namespace,
 String elementTitle,
 double cx,//Center coordinate in inches
 double cy,//Center coordinate in inches
 double r //Radius in inches
){
 Element circle = new Element("circle",namespace);
 parent.addContent(circle);

 //Set default attribute vales
 circle.setAttribute("fill","none");
 circle.setAttribute("stroke","black");
 circle.setAttribute("stroke-width","1");

 //Set user specified attribute values.
 int cxInPix = (int)(Math.round(cx*90));
 int cyInPix =
 (int)(Math.round((svgHeight-cy)*90));
 int rInPix = (int)(Math.round(r*90));

 circle.setAttribute("cx",""+cxInPix);
 circle.setAttribute("cy",""+cyInPix);
 circle.setAttribute("r",""+rInPix);

 //Add a title element for IVEO compatibility
 Element title = new Element("title",namespace);
 title.addContent(elementTitle);
 circle.addContent(title);

 return circle;
 }//end makeCircle
 //--//

 /**This method constructs and returns a comment node
 *for a given given parent.
 *
 * @param parent the SVG parent element
 * @param text the text content for this comment element
 *
 *@return A reference to an object that represents an
 *SVG comment element.
 */
 public static Comment makeComment(
 Element parent,//The parent of this element.
 String text//Text content for this element.
){
 Comment comment = new Comment(text);
 parent.addContent(comment);

 return comment;
 }//end makeComment
 //--//

 /**
 *DEPRECATED This method has been deprecated Use the
 *method named setDescription instead.
 *
 *This method constructs and returns a description node
 *for a given namespace and a given parent.
 *
 * @param parent the SVG parent element
 * @param nameSpace the SVG namespace
 * @param text the text content for this desc element
 *
 *@return A reference to an object that represents an
 *SVG desc element.
 */
 public static Element makeDescription(
 Element parent,//The parent of this element.
 String nameSpace,//The namespace.
 String text//Text content for this element.
){
 Element desc = new Element("desc",nameSpace);
 parent.addContent(desc);
 desc.setText(text);

 return desc;
 }//end makeDescription
 //--//

 /**This method constructs and returns an ellipse node
 *for a given parent in a given namespace. By default,
 *the stroke is black, the stroke-width is 1, and the
 *fill is none.
 *
 * @param parent the SVG parent element
 * @param namespace the SVG namespace
 * @param elementTitle the title for IVEO compatibility
 * @param cx the x-coordinate of the center in inches
 * @param cy the y-coordinate of the center in inches
 * @param rx the horizontal radius of the ellipse
 * in inches
 * @param ry the vertical radius of the ellipse
 * in inches
 *
 * @return A reference to an object that represents an
 *SVG ellipse element
 */
 public static Element makeEllipse(
 Element parent,
 String namespace,
 String elementTitle,
 double cx,//Center coordinate in inches
 double cy,//Center coordinate in inches
 double rx,//Horizontal radius in inches
 double ry //Vertical radius in inches
){
 Element ellipse = new Element("ellipse",namespace);
 parent.addContent(ellipse);

 //Set default attribute vales
 ellipse.setAttribute("fill","none");
 ellipse.setAttribute("stroke","black");
 ellipse.setAttribute("stroke-width","1");

 //Set user specified attribute values.
 int cxInPix = (int)(Math.round(cx*90));
 int cyInPix =
 (int)(Math.round((svgHeight-cy)*90));
 int rxInPix = (int)(Math.round(rx*90));
 int ryInPix = (int)(Math.round(ry*90));

 ellipse.setAttribute("cx",""+cxInPix);
 ellipse.setAttribute("cy",""+cyInPix);
 ellipse.setAttribute("rx",""+rxInPix);
 ellipse.setAttribute("ry",""+ryInPix);

 //Add a title element for IVEO compatibility
 Element title = new Element("title",namespace);
 title.addContent(elementTitle);
 ellipse.addContent(title);

 return ellipse;
 }//end makeEllipse
 //--//

 /**This method constructs and returns a line node for a
 *given parent in a given namespace. By default, the
 *stroke is black and the stroke-width is 1.
 *
 * @param parent the SVG parent element
 * @param namespace the SVG namespace
 * @param elementTitle the title for IVEO compatibility
 * @param x1 start x-coordinate in inches
 * @param y1 start y-coordinate in inches
 * @param x2 end x-coordinate in inches
 * @param y2 end y-coordinate in inches
 *
 * @return A reference to an object that represents an
 *SVG line element
 */
 public static Element makeLine(
 Element parent,
 String namespace,
 String elementTitle,
 double x1,//Start coordinate in inches
 double y1,//Start coordinate in inches
 double x2,//End coordinate in inches
 double y2 //End coordinate in inches
){
 Element line = new Element("line",namespace);
 parent.addContent(line);

 //Set default attribute vales
 line.setAttribute("stroke","black");
 line.setAttribute("stroke-width","1");

 //Set user specified attribute values.
 int x1InPix = (int)(Math.round(x1*90));
 int y1InPix =
 (int)(Math.round((svgHeight-y1)*90));
 int x2InPix = (int)(Math.round(x2*90));
 int y2InPix =
 (int)(Math.round((svgHeight-y2)*90));

 line.setAttribute("x1",""+x1InPix);
 line.setAttribute("y1",""+y1InPix);
 line.setAttribute("x2",""+x2InPix);
 line.setAttribute("y2",""+y2InPix);

 //Add a title element for IVEO compatibility
 Element title = new Element("title",namespace);
 title.addContent(elementTitle);
 line.addContent(title);

 return line;
 }//end makeLine
 //--//

 /**This method constructs and returns a polygon node for
 *a given parent in a given namespace.
 *<p>
 *The array of type double[], which contains the
 *coordinates for each point in the polygon, must
 *contain an even number of values for the polygon
 *to be drawn correctly. Otherwise, it simply won't be
 *drawn.
 *<p>
 *The values are extracted from the array, converted
 *to svg units as type int, and treated as coordinate
 *values x1,y1, x2,y2, x3,y3 ... etc.
 *<p>
 *The stroke is set to black one pixel wide with no
 *fill.
 *<p>
 *The main difference between a polygon and a polyline
 *is that a polygon is automatically closed by
 *connecting the last point to the first point.
 *
 * @param parent the SVG parent element
 * @param namespace the SVG namespace
 * @param elementTitle the title for IVEO compatibility
 * @param points an array of x-y coordinate pairs in
 * inches that define the locations of the vertices of
 * the polygon.
 *
 * @return A reference to an object that represents an
 *SVG polygon element
 */
 public static Element makePolygon(Element parent,
 String namespace,
 String elementTitle,
 double[] points){
 Element polygon = new Element("polygon",namespace);
 parent.addContent(polygon);

 //Set default attributes.
 polygon.setAttribute("stroke","black");
 polygon.setAttribute("stroke-width","1");
 polygon.setAttribute("fill","none");

 //Set user specified attributes.
 String dataPoints = "";
 for(int cnt=0;cnt<points.length;cnt++){
 //Correct all of the y coordinates to place the
 // origin at the bottom left.
 if(cnt%2==0){
 //even values
 dataPoints += "" +
 (int)(Math.round(points[cnt]*90)) + " ";
 }else{
 //odd values
 dataPoints += "" +
 (int)(Math.round((svgHeight-points[cnt])
 *90)) + " ";
 }//end else
 }//end for loop

 polygon.setAttribute("points",dataPoints);

 //Add a title element for IVEO compatibility
 Element title = new Element("title",namespace);
 title.addContent(elementTitle);
 polygon.addContent(title);

 return polygon;
 }//end makePolygon
 //--//

 /**This method constructs and returns a polyline node
 *for a given parent in a given namespace.
 *<p>
 *The array of type double[], which contains the
 *coordinates for each point in the polyline, must
 *contain an even number of values for the polyline
 *to be drawn correctly. Otherwise, it simply won't be
 *drawn.
 *<p>
 *The values are extracted from the array, converted
 *to svg units as type int, and treated as coordinate
 *values x1,y1, x2,y2, x3,y3 ... etc.
 *<p>
 *The stroke is set to black one pixel wide with no
 *fill.
 *<p>
 *The main difference between a polyline and a polygon
 *is that a polygon is automatically closed by
 *connecting the last point to the first point.
 *
 * @param parent the SVG parent element
 * @param namespace the SVG namespace
 * @param elementTitle the title for IVEO compatibility
 * @param points an array of x-y coordinate pairs in
 * inches that define the locations of the end points
 * and the vertices of the polyline.
 *
 * @return A reference to an object that represents an
 *SVG polyline element
 */
 public static Element makePolyline(Element parent,
 String namespace,
 String elementTitle,
 double[] points){
 Element polyline = new Element("polyline",namespace);
 parent.addContent(polyline);

 //Set default attributes
 polyline.setAttribute("stroke","black");
 polyline.setAttribute("stroke-width","1");
 polyline.setAttribute("fill","none");

 //Set user specified attributes.
 String dataPoints = "";
 for(int cnt=0;cnt<points.length;cnt++){
 //Correct all of the y coordinates to place the
 // origin at the bottom left.
 if(cnt%2==0){
 //even values
 dataPoints += "" +
 (int)(Math.round(points[cnt]*90)) + " ";
 }else{
 //odd values
 dataPoints += "" +
 (int)(Math.round((svgHeight-points[cnt])
 *90)) + " ";
 }//end else
 }//end for loop

 polyline.setAttribute("points",dataPoints);

 //Add a title element for IVEO compatibility
 Element title = new Element("title",namespace);
 title.addContent(elementTitle);
 polyline.addContent(title);

 return polyline;
 }//end makePolyline
 //--//

 /**This method constructs and returns a rect node for a
 *given parent in a given namespace. By default,the
 *stroke is black, the stroke-width is 1, and the fill
 *is none.
 *
 * @param parent the SVG parent element
 * @param namespace the SVG namespace
 * @param elementTitle the title for IVEO compatibility
 * @param x x-coordinate of lower left corner in inches
 * @param y y-coordinate of lower left corner in inches
 * @param width width in inches
 * @param height height in inches
 *
 * @return A reference to an object that represents an
 *SVG rect element
 */
 public static Element makeRect(
 Element parent,
 String namespace,
 String elementTitle,
 double x,//Lower-left corner in inches.
 double y,//Lower-left corner in inches.
 double width,//in inches
 double height//in inches
){
 Element rect = new Element("rect",namespace);
 parent.addContent(rect);

 //Set default attribute values.
 rect.setAttribute("fill","none");
 rect.setAttribute("stroke","black");
 rect.setAttribute("stroke-width","1");

 //Set user specified attribute values.
 int xInPix = (int)(Math.round(x*90));
 int yInPix =
 (int)(Math.round((svgHeight-y-height)*90));
 int widthInPix = (int)(Math.round(width*90));
 int heightInPix = (int)(Math.round(height*90));

 rect.setAttribute("x",""+xInPix);
 rect.setAttribute("y",""+yInPix);
 rect.setAttribute("width",""+widthInPix);
 rect.setAttribute("height",""+heightInPix);

 //Add a title element for IVEO compatibility
 Element title = new Element("title",namespace);
 title.addContent(elementTitle);
 rect.addContent(title);

 return rect;
 }//end makeRect
 //--//

 /**This method constructs and returns a reference to an
 *SVG root element node named svg.
 *
 *The svg element represents the canvas on which
 *various shapes can be drawn. The width and height
 *attribute values of the svg element establish the
 *physical size of the canvas on the screen and on
 *the printer.
 *
 *The preserveAspectRatio defaults to none.
 *
 * @param ns the SVG namespace URI
 * @param documentTitle the title for IVEO compatibility
 * @param dWidth the width of the canvas in inches
 * @param dHeight the height of the canvas in inches
 *
 * @return A reference to an SVG element object
 */
 public static Element makeSvg(
 String ns,//namespace URI
 String documentTitle,
 double dWidth,
 double dHeight
){
 Element svg = new Element("svg",ns);

 //Save the height of the canvas. This is used later
 // to make corrections to y-coordinate values to put
 // the origin at the lower-left corner of the canvas.
 svgHeight = dHeight;

 int width = (int)(Math.round(dWidth*90));
 int height = (int)(Math.round(dHeight*90));

 //Set default attribute values.
 svg.setAttribute("version","1.1");
 svg.setAttribute("width",""+width);
 svg.setAttribute("height",""+height);

 //Add a title element for IVEO compatibility
 Element title = new Element("title",ns);
 title.addContent(documentTitle);
 svg.addContent(title);

 return svg;
 }//end makeSvg
 //--//

 /**This method constructs and returns a text node for a
 *given parent in a given namespace. By default,the
 *stroke is black, and the fill is none.
 *
 * @param parent the SVG parent element
 * @param namespace the SVG namespace
 * @param x x-coordinate of lower left corner of first
 * character in inches
 * @param y y-coordinate of lower left corner of first
 * character in inches
 * @param fontFamily font family such as arial
 * @param fontSize font size in points such as 32
 * @param textIn the text to be displayed
 *
 * @return A reference to an object that represents an
 *SVG text element
 */
 public static Element makeText(
 Element parent,
 String namespace,
 double x,//Beginning coordinate in inches
 double y,//Beginning coordinate in inches
 String fontFamily, //Font face
 int fontSize, //font size in points
 String textIn //text to be displayed
){
 Element text = new Element("text",namespace);
 parent.addContent(text);

 //Set default attribute values
 text.setAttribute("fill","black");
 text.setAttribute("stroke","black");

 //Set user specified attribute values.
 int xInPix = (int)(Math.round(x*90));
 int yInPix = (int)(Math.round((svgHeight-y)*90));

 text.setAttribute("x",""+xInPix);
 text.setAttribute("y",""+yInPix);
 text.addContent(textIn);
 text.setAttribute("font-size","" +fontSize);
 text.setAttribute("font-family",fontFamily);

 return text;
 }//end makeText
 //--//

 /**This method can be used to set the fill color for
 *closed shapes such as rectangles, circles, ellipses,
 *and polygons. It can also be applied to polylines,
 *but the results may not be what you expect.
 *<p>
 *The fill color can be set to "none" or to any of the
 *color names at
 *<p>

http://www.w3.org/TR/SVG/types.html#ColorKeywords
 *<p>
 *There may be other possibilities as well.
 *
 *@param element the element for which the fill will be
 *set
 *@param fillColor the new color for the fill
 */
 public static void setFill(Element element,
 String fillColor){
 element.setAttribute("fill",fillColor);
 }//end setFill
 //--//

 /**This method can be used to set the fill opacity for
 *all closed shapes such as rectangles, circles,
 *ellipses, and polygons.
 *<p>
 *The fill opacity can be set to any value between
 *0,0 and 1.0 inclusive, where 0.0 is totally
 *transparent and 1.0 is totally opaque.
 *
 *@param element the element for which the opacity
 *will be set
 *@param opacity the numeric opacity value
 */
 public static void setFillOpacity(Element element,
 double opacity){
 element.setAttribute("fill-opacity","" + opacity);
 }//end setFillOpacity
 //--//

 /**This method can be used to set the font style
 *for text.
 *<p>
 *The font-style can be set to
 *<p>
 *normal | italic | oblique
 *
 *@param element the text element for which the font
 *style will be set
 *@param fontStyle the new font style
 */
 public static void setFontStyle(Element element,
 String fontStyle){
 element.setAttribute("font-style","" + fontStyle);
 }//end setFontStyle
 //--//

 /**This method can be used to set the font weight
 *for text.
 *<p>
 *The font-weight can be set to
 *<p>
 *normal | bold | bolder | lighter | 100 | 200 | 300|
 *400 | 500 | 600 | 700 | 800 | 900 |
 *
 *@param element the text element for which the font
 *weight will be set
 *@param fontWeight the new font weight
 */
 public static void setFontWeight(Element element,
 String fontWeight){
 element.setAttribute("font-weight","" + fontWeight);
 }//end setFontWeight
 //--//

 /**This method can be used to set the stroke color for
 *all shapes.
 *<p>
 *The stroke color can be set to "none" or any of the
 *color names at
 *<p>

http://www.w3.org/TR/SVG/types.html#ColorKeywords
 *<p>
 *There may be other possibilities as well.
 *
 *@param element the element for which the stroke color
 *will be set
 *@param strokeColor the new stroke color
 */
 public static void setStroke(Element element,
 String strokeColor){
 element.setAttribute("stroke",strokeColor);
 }//end setStroke
 //--//

 /**This method can be used to set the stroke opacity
 *for all shapes.
 *<p>
 *The stroke opacity can be set to any value between
 *0,0 and 1.0 inclusive, where 0.0 is totally
 *transparent and 1.0 is totally opaque.
 *
 *@param element the element for which the stroke color
 *will be set
 *@param opacity the numeric opacity value
 */
 public static void setStrokeOpacity(Element element,
 double opacity){
 element.setAttribute("stroke-opacity","" + opacity);
 }//end setStrokeOpacity
 //--//

 /**This method can be used to set the stroke width
 *for rectangles, circles, ellipses, lines, polylines,
 *and polygons.
 *
 *@param element the element for which the stroke color
 *will be set
 *@param widthInInches the new stroke width in inches
 *or parts thereof
 */
 public static void setStrokeWidth(Element element,
 double widthInInches){
 //Scale and round the double width value to an
 // int value in svg units where there are 90 svg
 // units per inch.
 int widthInPix =
 (int)(Math.round(widthInInches*90));
 element.setAttribute("stroke-width","" + widthInPix);
 }//end setStrokeWidth
 //--//

 /**This method can be used to add a description <desc>
 *element to any other element
 *
 * @param parent the element to which the description
 *will be added
 * @param namespace the SVG namespace
 *@param description the text for the new description.
 */
 public static void setDescription(Element parent,
 String namespace,
 String description){
 Element desc = new Element("desc",namespace);
 parent.addContent(desc);
 desc.addContent(description);
 }//end setStrokeWidth
 //--//

 /**This method writes the SVG code into an output file
 *in whitespace-normalized format, which is more
 *efficient than the prettyPrint format.
 *@param fname path and name of output SVG file
 *including the .svg filename extension
 *@param doc a reference to an object of type Document
 *which was instantiated as
 *<p>
 *new Document(svg,docType)
 *<p>
 *where svg is the root element of the SVG document
 *<p>
 *and docType was instantiated as
 *<p>
 *DocType docType = new DocType(
 * dtdConstrainedElement,dtdPublicID,dtdSystemID);
 */
 public static void writeCompactFile(
 String fname, Document doc){
 try{
 FileOutputStream out = new FileOutputStream(fname);

 XMLOutputter xmlOut =
 new XMLOutputter(Format.getCompactFormat());
 xmlOut.output(doc,out);

 out.flush();
 out.close();
 }catch (IOException e){
 System.err.println(e);
 }//end catch
 }//end writePrettyFile
 //--//

 /**This method writes the SVG code into an output file
 *in pretty-print format. The pretty-print format
 *is less efficient than the compact format, but it
 *is very useful during test and debugging because
 *you can view source in your browser and the XML
 *code will be reasonably well formatted.
 *<p>
 *Note that the extension is automatically appended to
 *the output file name, so it should not be included
 *in the file name input parameter.
 *
 *@param fname path and name of output SVG file
 *excluding the .svg filename extension
 *@param doc a reference to an object of type Document
 *which was instantiated as
 *<p>
 *new Document(svg,docType)
 *<p>
 *where svg is the root element of the SVG document
 *<p>
 *and docType was instantiated as
 *<p>
 *DocType docType = new DocType(
 * dtdConstrainedElement,dtdPublicID,dtdSystemID);
 */
 public static void writePrettyFile(
 String fname, Document doc){
 try{
 FileOutputStream out =
 new FileOutputStream(fname + ".svg");

 XMLOutputter xmlOut =
 new XMLOutputter(Format.getPrettyFormat());
 xmlOut.output(doc,out);

 out.flush();
 out.close();
 }catch (IOException e){
 System.err.println(e);
 }//end catch
 }//end writePrettyFile
 //--//

}//end class SvgLib21

Example 2.27.

/*File Svg21.java,
Copyright 2011, R.G.Baldwin

Revised 08/07/11 to support the addition of a title
parameter to each element for IVEO compatibility. If the
output SVG file is opened in IVEO, the title for the svg
element is spoken when the user opens the file, and the
titles for the individual elements are spoken when the
user touches a corresponding shape on the touchpad or
clicks on that shape on the screen. If the SVG file won't
be used with IVEO, just leave the title strings unchanged.

This program requires access to the file
named SvgLib21.java

This is a demonstration program.

This program uses JDOM 1.1.1 and an SVG graphics library
class of my own design named SvgLib21 to create an XML
file named Svg21.svg that draws at least one of each of
the following six basic SVG shapes when rendered in an
SVG graphics engine such as Firefox 5.

 * rectangle
 * circle
 * ellipse
 * line
 * polyline
 * polygon

In addition, the program illustrates the creation of the
following two types of elements in the output SVG file.

 * description
 * comment

The main purpose is to demonstrate how to create an SVG
file using the JDOM SVG graphics library that can be
displayed using Firefox 5 or IE 9. The file can also
be opened in other programs such as InkScape and IVEO.

All coordinate values are in inches and fractions of
inches.

One svg unit equals approximately 0.011 inch. An svg
unit is not necessarily the same size as a pixel on your
monitor or your printer. However, dimensions specified
in inches should be very close when you print the image.

By default, all lines that define the geometric shapes
are black and are one pixel wide. This can be changed
by calling appropriate methods to change attribute values.

By default, the fill attribute for all geometric shapes
is "none". This can be changed by calling appropriate
methods to change attribute values.

This program creates a canvas that is 8.5x11 inch in
a portrait orientation.

The origin is at the lower-left corner. Positive x is
to the right and positive y is up the page.

Tested using J2SE 6, JDOM 1.1.1, and Firefox 5
running under Windows Vist Home Premium Edition.
***/
import java.io.*;
import org.jdom.*;

public class Svg21{
 public static void main(String[] args){

 //DO NOT MODIFY ANY OF THE CODE ABOVE THIS LINE.
 //##//
 //ONLY THE CODE BELOW THIS LINE CAN BE MODIFIED

 //CREATE A DRAWING CANVAS
 //This must be the first statement that you write in
 // the program and it must appear only once.
 //The following statement creates a canvas that is
 // 8.5x11 inches in size in a portrait layout. The
 // size of the canvas can be changed by changing the
 // width and height parameters in the method call.
 Element svg = SvgLib21.makeSvg(ns,
 "Document Title",
 8.5,//width
 11 //height
);

 //DO NOT MODIFY THE FOLLOWING STATEMENT
 //This statement must immediately follow the call to
 // the makeSvg method above and this statement MUST
 // NOT BE MODIFIED.
 Document doc = new Document(svg,docType);

 //DESCRIPTION ELEMENT
 //The following code can be used to add a <desc>
 // element to the svg file if you want one. Replace
 // the text in quotation marks with your description.
 // Don't make any other changes to the code.
 SvgLib21.makeDescription(svg,
 ns,
 "The basic SVG shapes."
);

 //XML/SVG COMMENT
 //The following code can be used to insert a comment
 // into the svg file if you want one. Replace the
 // text in quotatin marks with your comment text.
 // Don't make any other changes to the code. You can
 // insert as many statements of this type as you
 // need, one for each comment. A comment will be
 // inserted into the svg file each time you insert a
 // makeComment statement.
 SvgLib21.makeComment(svg,
 "Show outline of canvas."
);

 //Create some geometrical shapes.

 //LINE SEGMENT
 //The following code can be used to draw a line
 // segment.
 //Set the values of the first two parameters
 // following ns to specify the x and y coordinates of
 // one end of the line segment.
 //Set the final two parameters to specify the other
 // end of the line segment.
 //By default the line segment (the stroke) is one
 // pixel wide and black.
 //You can insert as many statements of this type as
 // you need, one for each line segment.
 //Give each line segment a unique name such as lineA,
 // lineB, lineC, etc.
 //Don't make any other changes to the code, and in
 // particular, don't delete the commas.
 //The line segment drawn by the following statement
 // extends from the lower-left to the upper-right
 // corner of the canvas.
 Element lineA = SvgLib21.makeLine(svg,
 ns,
 "line",
 0,
 0,
 8.5,
 11.0
);

 //RECTANGLE
 //The following code can be used to draw a
 // rectangle whose sides are parallel to the
 // horizontal and vertical axes.
 //Set the values of the first two parameters
 // following ns to specify the x and y coordinates of
 // the lower-left corner of the rectangle.
 //Set the final two parameters to specify the width
 // and height of the rectangle.
 //By default the outline of the rectangle (the stroke)
 // is one pixel wide and black.
 //You can insert as many statements of this type as
 // you need, one for each rectangle.
 //Give each rectangle a unique name such as rectA,
 // rectB, rectC, etc.
 //Don't make any other changes to the code.
 //The rectangle drawn by this statement barely fits
 // inside the 8.5x11 inch canvas with a portrait
 // layout.
 Element rectA = SvgLib21.makeRect(svg,
 ns,
 "rectangle",
 0.05,
 0.05,
 8.4,
 10.9
);

 //CIRCLE
 //The following code can be used to draw a circle.
 //Set the first two parameters following ns to
 // specify the x and y coordinates of the center of
 // the circle.
 //Set the third parameter to specify the radius of
 // the circle.
 //By default the outline of the circle (the stroke)
 // is one pixel wide and black.
 //You can insert as many statements of this type as
 // you need, one for each circle.
 //Give each circle a unique name such as circleA,
 // circleB, circleC, etc.
 //Don't make any other changes to the code.
 // The circle drawn by this statement is centered in
 // the canvas. The radius is slightly less than half
 // the width of the canvas.
 Element circleA = SvgLib21.makeCircle(svg,
 ns,
 "circle",
 4.25,
 5.5,
 4.15
);

 //ELLIPSE
 //The following code can be used to draw an ellipse
 // whose major and minor axes are parallel to the
 // horizontal and vertical axes.
 //Set the first two parameters following ns to
 // specify the x and y coordinates of the center of
 // the ellipse.
 //Set the third parameter to specify the horizontal
 // radius of the ellipse.
 //Set the fourth parameter to specify the vertical
 // radius.
 //By default the outline of the ellipse (the stroke)
 // is one pixel wide and black.
 //You can insert as many statements of this type as
 // you need, one for each ellipse.
 //Give each ellipse a unique name such as ellipseA,
 // ellipseB, ellipseC, etc.
 //Don't make any other changes to the code.
 //The ellipse drawn by this statement is centered in
 // the canvas. It is two inches wide and one inch
 // high.
 Element ellipseA = SvgLib21.makeEllipse(svg,
 ns,
 "ellipse",
 4.25,
 5.5,
 1.0,
 0.5
);

 //POLYLINE
 //The following code can be used to draw a polyline,
 // which is a line constructed from a set of line
 // segments that extend from one set of x,y
 // coordinate values to the next set of x,y
 // coordinate values.
 //This is the most versatile of all of the shapes.
 // With enough patience, it can be used to draw any
 // shape that can be drawn with curved lines. To
 // draw a curved line, approximate it using a large
 // number of short line segments.
 //Insert any number of x,y coordinate-pairs inside
 // the curly brackets.
 //By default, the polyline is black with a line width
 // (thickness) of one pixel.
 //You can insert as many statements of this type as
 // you need, one for each polyline.
 //Give each polyline a unique name such as polylineA,
 // polylineB, polylineC, etc.
 //Don't make any other changes to the code.
 //The polyline drawn by the coordinate values used
 // here consists of two line segments that form two
 // sides of a triangle with the third or top side
 // missing.
 Element polylineA = SvgLib21.makePolyline(
 svg,
 ns,
 "polyline",
 new double[]{
 3.25,4.02,
 4.25,3.01,
 5.25,4.02
 });

 //POLYGON
 //The following code can be used to draw a polygon,
 // which is like a polyline except that an extra line
 // is automatically drawn to connect the last point
 // to the first point. You can use a polygon to draw
 // any closed shape.
 //For example, you could use a polygon to draw a
 // rectangle whose sides are not parallel to the
 // horizontal and vertical axes, or an ellipse whose
 // axes are not parallel to the horizontal and
 // vertical axes.
 //Insert any number of x,y coordinate-pairs inside
 // the curly brackets.
 //By default, the polygon is black with a line
 // thickness of one pixel.
 //You can insert as many statements of this type as
 // you need, one for each polygon.
 //Give each polygon a unique name such as polygonA,
 // polygonB, polygonC, etc.
 //Don't make any other changes to the code.
 //The polygon drawn by the coordinate values used
 // here draws two line segments that form two sides of
 // a triangle with the third or top side being
 // automatically drawn.
 Element polygonA = SvgLib21.makePolygon(svg,
 ns,
 "polygon",
 new double[]{
 3.25,8.02,
 4.25,7.01,
 5.25,8.02
 });

 //TEXT
 //The following code can be used to add one line of
 // text to the drawing.
 //Set the values of the first two parameters
 // following ns to specify the x and y coordinates of
 // the bottom left corner of the first letter in the
 // line of text.
 //Set the third parameter following ns to the name of
 // the font family. If no name or an invalid name is
 // entered between the quotation marks, a default
 // font family will be used.
 //Set the fourth parameter following ns to the
 // desired size of the text in points.
 //Set the last parameter to the string of text that
 // is to be drawn.
 //By default the text is normal (not bold, not
 // italic, etc.).
 //You can insert as many statements of this type as
 // you need, one for each line of text.
 //Give each line of text a unique name such as textA,
 // textB, textC, etc.
 //Don't make any other changes to the code.
 //The line of text drawn by the following statement
 // is positioned 2.125 inches from the left edge of
 // the canvas one inch up from the bottom.
 //The bold italic decoration will be applied later.
 Element textA = SvgLib21.makeText(
 svg,
 ns,
 2.125,
 1.00,
 "arial",
 36,
 "Here is some bold italic text."
);

 //Decorate the objects in the drawing.

 //FONT STYLE
 //The following code can be used to set the font
 // style to normal | italic | oblique where
 // the | character means you must specify one of the
 // choices as a parameter.
 //Set the value of the first parameter to the name of
 // the line of text being modified.
 //Set the value of the second parameter to one of the
 // available choices.
 //Each time you call this method, you must pass a
 // reference to an existing text object as the first
 // parameter.
 //Don't make any other changes to the code.
 //The following statement changes the style of textA
 // from normal to italic.
 SvgLib21.setFontStyle(textA,
 "italic"
);

 //FONT WEIGHT
 //The following code can be used to set the font
 // weight to normal | bold | bolder | lighter | 100 |
 // 200 | 300| 400 | 500 | 600 | 700 | 800 | 900
 // where the | character means you must specify one
 // of the choices as a parameter.
 //Set the value of the first parameter to the name of
 // the line of text being modified.
 //Set the value of the second parameter to one of the
 // available choices.
 //Each time you call this method, you must pass a
 // reference to an existing text object as the first
 // parameter.
 //Don't make any other changes to the code.
 //The following statement statement changes the
 // weight of textA from its previous weight to bold.
 SvgLib21.setFontWeight(textA,
 "bold"
);

 //LINE WIDTH
 //The following code can be used to specify the
 // stroke (line) width for rectangles, circles,
 // ellipses, lines, polylines, and polygons.
 //Set the value of the first parameter to the name of
 // the object whose line width is being modified.
 //Set the second parameter to the value of the
 // desired line width in inches.
 //Each time you call the method, you must pass a
 // reference to an existing object as the first
 // parameter
 //Don't make any other changes to the code.
 //Note that when you increase the thickness of a line,
 // the original one-pixel line remains in the center
 // of the new thicker line. In other words, the
 // thickness of the line increases on both sides of
 // the original line.

 // The following statement changes the line width of
 // the rectangle to 0.1 inch.
 SvgLib21.setStrokeWidth(rectA,0.1);

 // The following statement changes the line width of
 // the ellipse to 0.25 inch.
 SvgLib21.setStrokeWidth(ellipseA,0.25);

 // The following statement changes the line width of
 // the polyline to 0.15 inch.
 SvgLib21.setStrokeWidth(polylineA,0.15);

 // The following statement changes the line width of
 // the polygon to 0.15 inch.
 SvgLib21.setStrokeWidth(polygonA,0.15);

 // The following statement changes the line width of
 // the line to 0.1 inch.
 SvgLib21.setStrokeWidth(lineA,0.1);

 // The following statement changes the line width of
 // the circle to 0.1 inch.
 SvgLib21.setStrokeWidth(circleA,0.1);

 //With the exception of the code to write the output
 // file, the following code may not be of interest
 // to blind students. However, it may be of interest
 // to students with low vision, so I am including it
 // for completeness.

 //STROKE OPACITY
 //The following code can be used to specify the
 // stroke opacity for rectangles, circles, ellipses,
 // lines, polylines, and polygons.
 //Set the value of the first parameter to the name of
 // the object whose stroke opacity is being modified.
 //Set the second parameter to the value of the
 // desired opacity level. A value of 0.0 causes the
 // stroke to be totally transparent. A value of 1.0
 // causes the stroke to be completely opaque. Values
 // between 0.0 and 1.0 result in a proportional
 // opacity level.
 //Each time you call the method, you must pass a
 // reference to an existing object as the first
 // parameter
 //Don't make any other changes to the code.
 //The following statement changes the line to be
 //40-percent opaque, or 60-percent transparent,
 // whichever you prefer.
 SvgLib21.setStrokeOpacity(lineA,0.4);

 //FILL COLOR
 //The following code can be used to specify the fill
 // color for closed shapes such as rectangles,
 // circles, ellipses, and polygons. It can also be
 // applied to polylines, but the results may not be
 // what you expect.
 //Set the value of the first parameter to the name of
 // the object whose fill color is being modified.
 //Set the second parameter to the name of the desired
 // color. The fill color can be set to "none" or to
 // the name of any of the colors at
 // http://www.w3.org/TR/SVG/types.html#ColorKeywords,
 // and possibly some other values as well.
 //Each time you call the method, you must pass a
 // reference to an existing object as the first
 // parameter
 //Don't make any other changes to the code.
 //The following statement changes the fill color for
 // the polygon from its previous fill color to dark
 // blue.
 SvgLib21.setFill(polygonA,"blue");

 //FILL OPACITY
 //The following code can be used to specify the fill
 // opacity for rectangles, circles, ellipses,
 // polylines, and polygons. (As with fill color, it
 // might not work as expected with polylines.)
 //Set the value of the first parameter to the name of
 // the object whose fill opacity is being modified.
 //Set the second parameter to the value of the
 // desired opacity level (see the discussion regarding
 // opacity values above).
 // Each time you call the method, you must pass a
 // reference to an existing object as the first
 // parameter
 //Don't make any other changes to the code.
 //The following statement changes the dark blue fill
 // for the polygon to become only 30-percent opaque.
 // Because the background underneath the fill is
 // white, this causes the visible color of the fill
 // to change to a light blue.
 SvgLib21.setFillOpacity(polygonA,0.3);

 //STROKE COLOR
 //The following code can be used to specify the
 // stroke color for rectangles, circles, ellipses,
 // lines, polylines, and polygons.
 //Set the value of the first parameter to the name of
 // the object whose stroke color is being modified.
 //Set the second parameter to the name of the desired
 // color. (See the discussion of available colors
 // above.)
 //Each time you call the method, you must pass a
 // reference to an existing object as the first
 // parameter.
 //Don't make any other changes to the code.
 //The following statement changes the stroke color
 // for the polygon from its previous color to red.
 SvgLib21.setStroke(polygonA,"red");

 //WRITE OUTPUT FILE
 //The following code can be used to write an output
 // file containing the instructions needed by an svg
 // processor (such as a browser) to display the
 // drawing.
 //This must be the last statement that you write in
 // your program. Otherwise, you will get an
 // incomplete file.
 //Set the value of the first parameter to the desired
 // path and name for the file. Always specify the
 // extension to be svg.
 //Don't make any other changes to the code.
 //The following code writes the output file with the
 // name Svg21.svg in the folder from which the
 // program is being executed (the current folder).
 //Don't include extension in output file name.
 SvgLib21.writePrettyFile("Svg21",doc);

 //ONLY THE CODE ABOVE THIS LINE CAN BE MODIFIED
 //##//
 //DO NOT MODIFY ANY OF THE FOLLOWING CODE.
 }//end main
 //--//

 //Create a String variable containing the namespace
 // URI to reduce the amount of typing that is required
 // later. Note that the variable name is short and
 // easy to type.
 static String ns = "http://www.w3.org/2000/svg";

 //For clarity, create strings containing the name of
 // the element that is constrained by the DTD (the
 // root element), the Public ID of the DTD, and the
 // System ID of the DTD.
 static String dtdConstrainedElement = "svg";
 static String dtdPublicID = "-//W3C//DTD SVG 1.1//EN";
 static String dtdSystemID =
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd";

 static DocType docType = new DocType(
 dtdConstrainedElement,dtdPublicID,dtdSystemID);
}//end class Svg21

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: If You Can Imagine It, You Can Draw It using SVG

	
File: Phy1002.htm

	
Revised 08/09/11 to add javadocs for the graphic library

	
Keywords:

 	
physics

	
accessible

	
accessibility

	
blind

	
graph board

	
protractor

	
screen reader

	
refreshable Braille display

	
JavaScript

	
trigonometry

	
SVG

	
scalable vector graphics

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

-end-

Solutions

Chapter 6. Brief Trigonometry Tutorial

Table of Contents

 	

Preface

 	

General

	

Prerequisites

	

Viewing tip

 	

Figures

	

Listings

		

	

Supplemental material

	

	

General background information

	

Discussion

 	

Degrees versus radians

	

Sine, cosine, and tangent

 	

The sine and arcsine of an angle

	

The cosine and
			arccosine of an angle

	

The tangent
			and arctangent of an angle

		

	

Dealing with quadrants

	

Normal (non-mirror-image) graphics

	

	

Run the scripts

	

Resources

	

Miscellaneous

Preface

General

This module is part of a collection of modules designed to make physics
concepts accessible to blind students.

See

http://cnx.org/content/col11294/latest/

 for the main page of the
collection and

http://cnx.org/content/col11294/latest/#cnx_sidebar_column

 for the table of
contents for the collection.

The collection is intended to supplement but not to
replace the textbook in an introductory course in high school or college
physics.

Many of the computational requirements for an introductory

physics course involve trigonometry. This module provides a brief

tutorial on trigonometry fundamentals that is designed to be accessible to blind

students.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these modules:

 	
A graph board for plotting graphs and vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
A protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
An audio screen reader that is compatible with your operating system,
	such as the NonVisual Desktop Access program (NVDA), which is freely
	available at

	http://www.nvda-project.org/

.

	
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer
	screen
	(

http://www.userite.com/ecampus/lesson1/tools.php

).

	
The ability to manually create tactile graphics as described at
	

	http://cnx.org/content/m38546/latest/

.

The minimum prerequisites for understanding the material in these modules
	include:

 	
A good understanding of algebra.

	
An understanding of the use of a graph board for plotting graphs and
	vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
An understanding of the use of a protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
A basic understanding of the use of sine, cosine, and tangent from
	trigonometry (

http://www.clarku.edu/~djoyce/trig/

).
	

(The purpose of this module is to help you to gain such an understanding.)

	
An introductory understanding of JavaScript programming (

http://www.dickbaldwin.com/tocjscript1.htm

 and

http://www.w3schools.com/js/default.asp

).

	
An understanding of all of the material covered in the earlier modules
	in this collection.

	
An understanding of the manual creation and use of tactile graphics as
	described at

	http://cnx.org/content/m38546/latest/

.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. Output for script in Listing 1.

	

Figure 2

. Mirror image from file Phy1020b1.svg.

	

Figure 3

. Page Setup for file Phy1020b1.svg.

	

Figure 4

. Text values for Braille keys in file Phy1020b2svg.

	

Figure 5

. Output for script in Listing 2.

	

Figure 6

. Output for script in Listing 3.

	

Figure 7

. Interesting sine equations.

	

Figure 8

. Interesting cosine equations.

	

Figure 9

. Output for script in Listing 5

	

Figure 10

. Two very important equations.

	

Figure 11

. Interesting tangent equations.

	

Figure 12

. Output for script in Listing 7.

	

Figure 13

. Sinusoidal values at 90-degree increments.

	

Figure 14

. Sinusoidal values at 45-degree
	increments.

	

Figure 15

. Sinusoidal values at 22.5-degree
	increments.

	

Figure 16

. Mirror image plot of cosine and sine curves from the file named Phy1020a1svg.

	

Figure 17

. Algebraic signs versus quadrants.

	

Figure 18

. Output from the code in Listing 9.

	

Figure 19

. Normal image from file Phy1020b1.svg.

	

Figure 20

. Normal image plot of cosine and sine curves from the file named Phy1020a1svg.

Listings

 	

Listing 1

. Conversions between radians and degrees.

	

Listing 2

. Arcsin of 3-4-5 triangle.

	

Listing 3

. Finding length of the opposite side.

	

Listing 4

. Arccosine of 3-4-5 triangle.

	

Listing 5

. Finding the length of the adjacent side.

	

Listing 6

. Arctan of 3-4-5 triangle.

	

Listing 7

. Finding the length of the opposite side.

	

Listing 8

. Sinusoidal amplitude versus angle.

	

Listing 9

. A function to deal with quadrants.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background
information

Many of the computational requirements for an introductory physics course involve trigonometry. This module provides a brief tutorial on trigonometry fundamentals that is
designed to be accessible to blind students.

Sine, cosine, and tangent

There are many topics, such as identities, that are covered in an
introductory trigonometry course that won't be covered in this module. Instead,
this module will concentrate mainly on performing computations on right angles
using the sine, cosine, and tangent of an angle.

If I find it necessary to deal with identities in a later module, I will come
back and update this module accordingly.

Discussion

Download files

You will need to download two svg graphics files to complete the work in
this module.

Click this link to download a zip file named
Phy1020.zip

 containing those svg files.

If you don't already have it, you may also need to download and install the
free IVEO Viewer software. As of this writing, the Viewer is available for
downloading at

http://www.viewplus.com/products/software/hands-on-learning/

.

Graph board and protractor

Unless you can create tactile graphics on paper, you will need your graph board and your protractor to perform the exercises
in this module. Please prepare your graph board with perpendicular horizontal
and vertical axes with the origin located near the center of the graph board.

Degrees versus radians

The most common unit of angular measurement used by the general public is the degree. As
you are probably aware, there are 360 degrees in a circle.

The most common unit of angular measurement used by scientists and engineers is
the
radian.

(If you would like more background on radians, go to

http://www.clarku.edu/~djoyce/trig/

.)

Conversions between radians and degrees

You may or may not be aware that one radian is equal to approximately
57.3 degrees. It is easier to remember, however, that 180 degrees is equal to PI
radians where PI is the mathematical constant having an approximate value of
3.14159. We will use this latter relationship extensively to convert from
degrees to radians and to convert from radians to degrees while working through
the exercises in these modules.

An exercise involving degrees and radians

Let's do a short exercise involving degrees and radians. Please create an
html file containing the code shown in

Listing 1

 and open it in your browser.

Example 6.1.
 <!-- File JavaScript01.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
 return degrees*Math.PI/180
}//end function toRadians
//==//

function toDegrees(radians){
 return radians*180/Math.PI
}//end function toDegrees
//==//

var degrees = 90
var radians = toRadians(degrees)
document.write("degrees = " + degrees +
 " : radians = " + radians + "</br>")
radians = 1
degrees = toDegrees(radians)
document.write("radians = " + radians +
 " : degrees = " + degrees + "</br>")

radians = Math.PI
degrees = toDegrees(radians)
document.write("radians = " + radians +
 " : degrees = " + degrees)

</script>
</body></html>

Output for script in Listing 1

When you open the file in your browser, the text shown in

Figure 1

 should be
displayed in the browser window.

	

 degrees = 90 : radians = 1.5707963267948965
radians = 1 : degrees = 57.29577951308232
radians = 3.141592653589793 : degrees = 180

Figure 6.1.

Output for script in Listing 1.

Output for script in Listing 1.

The toRadians and toDegrees functions

Because it will frequently be necessary for us to convert between degrees and
radians, I decided to write two functions that we will use to make those conversions. That
will eliminate the need for us to stop
and think about the conversion (and possibly get it backwards) when writing
code. We will simply call the function that performs the conversion in the
required direction.

The

toRadians

function expects to receive an input parameter describing an angle in degrees
	and returns the value for that same angle in radians.

The

toDegrees

function expects to receive an input parameter describing an angle in radians
	and returns the value for that same angle in degrees.

Global variables named degrees and radians

The code in

Listing 1

 begins by declaring global variables named

degrees

 and

radians

. The variable named

degrees

 is initialized to 90 degrees.

The

toRadians

 function is called to convert that value of degrees to radians. The returned
value in radians is stored in the variable named

radians

.

Display contents of both variables

Then the

document.write

 method is called to display the values
contained in both variables, producing the first line of output text shown in

Figure 1

.

Modify variable contents, convert, and display again

Following that, a value of 1 is assigned to the variable named

radians

. The

toDegrees

 function is called to convert
that value to degrees, and the result is stored in the variable named

degrees

.

Once again, the

document.write

 method is called to display the
current contents of both variables, producing the second line of output text
shown in

Figure 1

.

One more time

Finally, the mathematical constant, PI, is stored in the variable named

radians

. Then that value is converted to degrees and stored in the
variable named

degrees

. The current values in both
variables are displayed, producing the last line of output text shown in Figure
1.

And the results were...

As you can see from

Figure 1

,

 	
Ninety degrees is equal to 1.57 radians

	
One radian is equal to 57.296 degrees

	
3.14 (PI) radians is equal to 180 degrees

A template

You might want to save your html file as a template for use with future
exercises that require conversions between radians and degrees. This will be
particularly useful when we write scripts that use JavaScript's built-in
trigonometric methods. Those methods deal with angles almost exclusively in
radians while we tend to think of angles in degrees. We will
use these two functions to perform conversions between degrees and radians when
required.

Sine, cosine, and tangent

An exercise involving a right triangle

For the next exercise, I would like for you to create a right triangle on
your graph board by placing pushpins at the following coordinates:

 	
The origin

	
x=3, y=0

	
x=3, y=4

(If you are able to use the svg file mentioned

below

 to create tactile graphics, it probably won't be necessary for you to
do the graph-board exercise. You can explore the tactile graphics instead.)

The vertices of a right triangle

Each pushpin represents a vertex of a right triangle. If you enclose all
three pushpins with a rubber band, you will have "drawn" a right triangle with
its base on the horizontal axis.

The base of the triangle will have a length of three units. Another side of
the triangle will have a length of four units. The hypotenuse of the triangle will have still another length.

The angle at the origin

The base and the hypotenuse will form an angle
at the origin opening outward to the right. As mentioned before, the base will be on the horizontal
axis. The side that connects the base and
the far end of the hypotenuse will be parallel to the vertical axis.

Names for the three sides of the right triangle

Lets establish some names for the three sides of the right triangle when
located on the graph board in this manner.

We will continue to refer to the hypotenuse as the hypotenuse and abbreviate it

hyp

. We will
refer to the base as the

adjacent

 side relative to the angle at the origin and
abbreviate it

adj

. We will refer to the third side as the

opposite

 side relative to the angle at the origin and abbreviate it

opp

.

Tactile graphics

 -- the file named Phy1020b1.svg

Much of the material in the next several paragraphs will only make sense to
you if you are very familiar with the module named Manual Creation of Tactile Graphics
at

http://cnx.org/content/m38546/latest/

.

When you downloaded the zip file named Phy1020.zip using the link given

above

, you should
have found that the zip file contains a file named Phy1020b1.svg.

The purpose of this file is to make it possible for you to create
tactile graphics for the right triangle. The procedure for creating the tactile
graphics is explained in the earlier module named
Manual Creation of Tactile
Graphics at

http://cnx.org/content/m38546/latest/

.

Image from file Phy1020b1.svg

For the benefit of any sighted persons that may be assisting you,

Figure 2

 shows a reduced version of the graphic
contained in the file named Phy1020b1.svg. This is a mirror image of the image
that is to be presented to the student after embossing. A non-mirror-image
version is presented in

Figure 19

.

 [image: Missing image]

Figure 6.2.

Mirror image from file Phy1020b1.svg.

Mirror image from file Phy1020b1.svg.

Page Setup information

If you use the IVEO Viewer software to print this svg file, you will need to
set up the page by selecting Page Setup on the IVEO File menu. The Page Setup information for this file is shown in

Figure 3

. These are the
default settings for Letter (Portrait) in IVEO.

	

 Paper List: Letter (Portrait)
Paper Width: 8.5 inch
Paper Height: 11.0 inch
Orientation: portrait
Left Margin: 0.75 inch
Right Margin: 0.3 inch
Top Margin: 0.75 inch
Bottom Margin: 0.3 inch

Figure 6.3.

Page Setup for file Phy1020b1.svg.

Page Setup for file Phy1020b1.svg.

Braille keys

Note that the file named Phy1020b1.svg and

Figure 2

 contain keys using the characters from
"m" through "z" and "A" that can be used to create
Braille characters during manual embossing. The key characters are shown in an
oblique font that is smaller than the normal text. The purpose of these keys is
explained in the earlier module titled Manual Creation of Tactile Graphics at

http://cnx.org/content/m38546/latest/

.

Key-value pairs

Figure 4

 contains the text values associated with each of the Braille
	keys.

	

m: A 3-4-5 Triangle
n: 4
o: Vertical axis
p: 0
q: 0
r: Adjacent side
s: 53.13 Degrees
t: adj
u: 3
v: opp
w: Opposite side
x: hyp
y: Hypotenuse
z: Horizontal axis
A: Not drawn to scale

Figure 6.4.

Text values for Braille keys in file Phy1020b2svg.

Text values for Braille keys in file Phy1020b2svg.

The length of the hypotenuse

Now that you have your right triangle on the graph board, or you have access
to tactile graphics created from the svg file, and you know the
lengths of the adjacent and opposite sides, do you remember how to calculate the
length of the hypotenuse?

The Pythagorean theorem

Hopefully you know that for a right triangle, the
square of the hypotenuse is equal to the sum of the squares of the two other
sides. Thus, the length of the hypotenuse is equal to the square root of the sum
of the squares of the other two sides.

In this case we can do the arithmetic in our heads to compute the length of
the hypotenuse. (I planned it that way.)

The square of the adjacent side is 9. The square of the opposite side is 16.
The sum of the squares is 25, and the square root of 25 is
5. Thus, the length of the hypotenuse is 5.

A 3-4-5 triangle

You have created a rather unique triangle. You have created a right triangle
in which the sides are either equal to, or proportional to the integer
values 3, 4, and 5.

I chose this triangle on purpose for its simplicity. We will use it to
investigate some aspects of trigonometry.

The sine and arcsine of an angle

You will often hear people talk about the sine of an angle or the cosine of
an angle. Just what is the sine of an angle anyway?

Although the sine of an angle is based on very specific geometric
considerations involving circles (see

http://www.clarku.edu/~djoyce/trig/

), for our purposes, the sine of an angle
is simply a ratio between the lengths of two different sides of a right
triangle.

A ratio of two sides

For our purposes, we will say that the sine of an angle is equal to the ratio of the opposite
side and the hypotenuse. Therefore, in the case of the 3-4-5 triangle that you
have on your graph board, the

sine of the angle

 at the origin is equal to 4/5 or
0.8.

If we know the lengths of the hypotenuse and the opposite side, we can
compute the sine and use it to determine the value
of the angle. (We will do this later using the arcsine.)

Conversely, if we know the value of the angle but don't know the lengths of the
hypotenuse and/or the opposite side, we can obtain the value of the sine of the
angle using a scientific
calculator (such as the Google calculator) or lookup table.

The sine of an angle -- sample computation

Enter the following into the Google search box:

sin(53.13010235415598 degrees)

The following will appear immediately below the search box:

sin(53.13010235415598 degrees) = 0.8

This matches the value that we computed

above

as the ratio of the opposite side and the hypotenuse.

The arcsine (inverse sine) of an angle

The arcsine of an angle is the value of the angle having a given sine value.
In other words, if you know the value of the sine of an unknown angle, you can
use a scientific calculator or lookup table to find the value of the angle.

For
example, we know that the sine of the angle at the origin on your graph board is
4/5. From that, we can determine the value of the angle. However, we probably can't
do this calculation in our heads so we will use the Google calculator to compute
the value of the angle.

The arcsine of an angle -- sample computation

Enter the following into the Google search box:

arcsin(4/5) in degrees

The following will appear immediately below the search box:

arcsin(4/5) = 53.1301024 degrees

This is the angle that corresponds to a ratio of the opposite side to the
hypotenuse of 4/5.

We can also write a JavaScript script to perform
	the calculation, which we will do shortly.

Getting the angle for a known sine value

Please use your protractor to measure and record the angle at the origin on
your graph board, or measure it on your tactile graphic. Then create an html file containing the code shown in

Listing
2

 and open it in your browser.

Example 6.2.
 <!-- File JavaScript02.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
 return degrees*Math.PI/180
}//end function toRadians
//==//

function toDegrees(radians){
 return radians*180/Math.PI
}//end function toDegrees
//==//

var opp = 4
var hyp = 5
var ratio = opp/hyp
var angRad = Math.asin(ratio)
var angDeg = toDegrees(angRad)

document.write("radians = " + angRad + "</br>")
document.write("degrees = " + angDeg)

</script>
</body></html>

The output for the angle

When you open your html file in your browser, the output shown in

Figure 5

should appear in the browser window.

	

 radians = 0.9272952180016123
degrees = 53.13010235415598

Figure 6.5.

Output for script in Listing 2.

Output for script in Listing 2.

Did you measure the angle to be 53 degrees with your protractor. If so,
	congratulations. If not, you should probably take another look at it.

Define conversion functions

The code in

Listing 2

 begins by defining the functions named

toRadians

 and

toDegrees

 that we developed earlier
in

Listing 1

. (In this case, we will only need the function named

toDegrees

 so I could have omitted the code for the function named

toRadians

.)

Declare and initialize variables

Then the code in

Listing 2

 declares and initializes variables to
	represent the lengths of the opposite side and the hypotenuse for the
	triangle on your graph board (

opp

 and

hyp

).
	Then it computes and saves the ratio of the two. (We learned earlier that
	the ratio is the value of the sine of the angle at the origin even though we
	don't know the value of the angle.)

The built-in Math.asin method

JavaScript has a built-in method named

Math.asin

 that
	receives the sine value for an unknown angle and returns the value of the
	corresponding angle in radians. (The

Math.asin

 method has
	the same purpose at the word arcsin in the Google calculator.)

The returned value is an angle between -PI/2 and PI/2 radians. (I will
	have more to say about this later.)

Listing 2

 calls the

Math.asin

 method, passing the ratio (sine
	of the angle) as a parameter, and stores the returned value in a variable
	named

angRad

.

Then

Listing 2

 calls the

toDegrees

 method, passing the
	value of

angRad

 as a parameter and stores the returned
	value in a variable named

angDeg

.

Finally,

Listing 2

 calls the

	document.write

 method twice in success
to display the angle values shown in

Figure 5

.

Another exercise with a different viewpoint

Now let's approach things from a different viewpoint. Assume that

 	
You know the value of the angle in degrees.

	
You know the length of the hypotenuse.

	
You need to find the length of the opposite side.

Assume also that for some reason you can't simply measure the length of the
opposite side. Therefore, you must calculate it. This is a common situation in
physics, so let's see if we can write a script that will perform that
calculation for us.

Please create an html file containing the code shown in

Listing 3

 and open
the file in your browser.

Example 6.3.
 <!-- File JavaScript03.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
 return degrees*Math.PI/180
}//end function toRadians
//==//

function toDegrees(radians){
 return radians*180/Math.PI
}//end function toDegrees
//==//

var hyp = 5
var angDeg = 53.13
var angRad = toRadians(angDeg)
var sine = Math.sin(angRad)

var opp = hyp * sine

document.write("opposite = " + opp + "</br>")

hyp = opp/sine

document.write("hypotenuse = " + hyp + "</br>")

</script>
</body></html>

The output for the opposite side

When you open your html file in your browser, the output shown in Figure
3 should appear in your browser window.

	

opposite = 3.999994640742543
hypotenuse = 5

Figure 6.6.

Output for script in Listing 3.

Output for script in Listing 3.

Computing length of opposite side with the Google calculator

We could also compute the length of the opposite side using the Google
calculator.

The length of the opposite side -- sample computation

Enter the following into the Google search box:

5*sin(53.1301024 degrees)

The following will appear immediately below the search box:

5 * sin(53.1301024 degrees) = 4

This is the length of the opposite side for the given angle and the given
length of the hypotenuse.

Interesting equations

We learned earlier that the sine of the angle is equal to the ratio of
	the opposite side and the hypotenuse. We also learned that the angle is the
	arcsine of that ratio.

If we know any two of those values (

angle

,

opp

,

hyp

), we
	can find the third (with a little algebraic manipulation) as shown in

Figure 7

.

	

sine(angle) = opp/hyp

angle = arcsine(opp/hyp)
opp = hyp * sine(angle)
hyp = opp/sine(angle)

Figure 6.7.

Interesting sine equations.

Interesting sine equations.

Getting back to Listing 3

After defining the radian/degree conversion functions,

Listing 3

 declares
	and initializes variables representing the length of the hypotenuse and the
	angle in degrees. (Note that the angle in degrees was truncated to four
	significant digits, which may introduce a slight inaccuracy into the
	computations.)

Get and use the sine of the angle

That angle is converted to radians and passed as a parameter to the
	

Math.sin

 method, which returns the value of the sine of the
	angle.

The value for the sine of the angle is then used in an algebraic equation
	to compute the length of the opposite side, which is displayed in

Figure 6

.
	(This equation is one of the equations shown in

Figure 7

.)

Looks very close to me

As you can see, the computed value for the opposite side shown in
	

Figure 6

 is extremely close to the known value
	of 4 units.

Re-compute the length of the hypotenuse

After that, the value of the hypotenuse is re-computed (as though it were the
unknown in the problem) using the value of the sine and the recently computed
value of the opposite side. (Once again, one of the equations from

Figure 7

 is used to perform the computation.) The output length for the hypotenuse is shown in

Figure 6

, and it matches the
known value.

Example usage of Math.asin and Math.sin methods

Listing 2

 and

Listing 3

 provide examples of how to use the JavaScript

Math.asin

 and

Math.sin

 methods to find the angle, the
opposite side, or the hypotenuse of a right triangle when the other two are
known as shown by the equations in

Figure 7

.

The cosine and arccosine of
an angle

You are going to find the discussion in this section to be very similar to the
discussion in the previous section on the sine and the arcsine of an angle.

Once again, although the cosine of an angle is based on very specific
geometric considerations involving circles (see

http://www.clarku.edu/~djoyce/trig/

), for our purposes, the cosine of an
angle is simply a ratio between the lengths of two different sides of a right
triangle.

A ratio of two sides

For our purposes, we will say that the cosine of an angle is equal to the
ratio of the adjacent side and the hypotenuse. Therefore, in the case of the
3-4-5 triangle that you have on your graph board, the cosine of the angle at the
origin is equal to 3/5 or 0.6.

As before, if we know the lengths of the hypotenuse and the adjacent side, we
can compute the cosine and use it to determine the value of the angle. (We will
do this later.)

Conversely, if we know the value of the angle but don't know the lengths of
the hypotenuse and/or the adjacent side, we can obtain the cosine value (the
ratio of the adjacent side and the hypotenuse) using a
scientific calculator or lookup table and use it for other purposes later.

The cosine of an angle -- sample computation

Enter the following into the Google search box:

cos(53.13010235415598 degrees)

The following will appear immediately below the search box:

cos(53.13010235415598 degrees) = 0.6

This matches the ratio of the adjacent side to the hypotenuse for a 3-4-5
triangle.

The arccosine (inverse cosine) of an angle

The arccosine of an angle is the value of the angle having a given cosine
value. In other words, if you know the value of the cosine of an unknown angle,
you can use a scientific calculator or lookup table to find the value of the
angle.

Getting the angle for a known cosine value

For example, we know that the cosine of the angle at the origin on your graph
board is 0.6. From that, we can determine the value of the angle using either
the Google calculator or JavaScript.

The arccosine of an angle -- sample computation

Enter the following into the Google search box:

arccos(3/5) in degrees

The following will appear immediately below the search box:

arccos(3/5) = 53.1301024 degrees

This is the angle that corresponds to a ratio of the adjacent side to the
hypotenuse of 3/5.

As you should expect. the computed angle is the same as before. We didn't
change the angle, we simply computed it using a different approach.

Getting the angle using JavaScript

Please create an html file containing the code shown in

Listing 4

 and open it
in your browser.

Example 6.4.
 <!-- File JavaScript04.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
 return degrees*Math.PI/180
}//end function toRadians
//==//

function toDegrees(radians){
 return radians*180/Math.PI
}//end function toDegrees
//==//

var adj = 3
var hyp = 5
var ratio = adj/hyp
var angRad = Math.acos(ratio)
var angDeg = toDegrees(angRad)

document.write("radians = " + angRad + "</br>")
document.write("degrees = " + angDeg)

</script>
</body></html>

Similar to a previous script

If you examine the code in

Listing 4

 carefully, you will see that it is very similar to
the code in

Listing 2

 with a couple of exceptions:

 	
The variable

opp

 having a value of 4 was replaced by
	the variable

adj

 having a value of 3.

	
The call to the

Math.asin

 method was replaced by a call to
	the

Math.acos

 method.

The output

When you load your html file into your browser, it should produce the output
shown earlier in

Figure 5

. In other words, we know that the angle at the origin
didn't change. What changed was the manner in which we computed the value of
that angle.

Different approaches to the same solution

In

Listing 2

, we used the length of the hypotenuse and the length of the
opposite side, along with the arcsine method to compute the angle.

In

Listing 4

, we used the length of the hypotenuse and the length of the
adjacent side, along with the arccosine method to compute the angle.

Which approach should you use?

As would be expected, since the angle didn't change, both approaches produced
the same result. Deciding which approach to use often depends on
the values that are available to use in the computation.

Sometimes you only have
the lengths of the hypotenuse and the opposite side available, in which case
you could use the arcsine. Sometimes you only have
the lengths of the hypotenuse and the adjacent side available, in which case you
could use the arccosine. Sometimes you have the
lengths of both the opposite side and the adjacent side in addition to the
length of the hypotenuse, in which case you can
use either approach.

Both approaches use the length of the hypotenuse

It is important to note however that both of these approaches require you to
have the length of the hypotenuse. Later in this module we will discuss the
tangent and arctangent for an angle, which allows us to work with the opposite
side and the adjacent side devoid of the length of the hypotenuse. (Of course, if
you have the lengths of the opposite side and the adjacent side, you can always
find the length of the hypotenuse using the Pythagorean theorem.)

Interesting cosine equations

The equations in

Figure 8

 are similar to equations in

Figure 7

. The
difference is that the equations in

Figure 7

 are based on the use of the sine of
the angle and the opposite side whereas the equations in

Figure 8

 are based on the use of the cosine
of the angle and the adjacent side.

As you can see in

Figure 8

, if you know any two of the values for

angle

,

adj

, and

hyp

, you can find
the other value. This is illustrated in the script shown in

Listing 5

, which
produces the output shown in

Figure 9

.

	

cosine(angle) = adj/hyp

angle = arccosine(adj/hyp)
adj = hyp * cosine(angle)
hyp = adj/cosine(angle)

Figure 6.8.

Interesting cosine equations.

Interesting cosine equations.

Finding the length of the adjacent side

The code in

Listing 5

 is very similar to the code in

Listing 2

. The main
difference is that

Listing 2

 is based on the use of the sine of the angle and
the length of the opposite side whereas

Listing 5

 is based on the use of the
cosine of the angle and the length of the adjacent side.

Example 6.5.
 <!-- File JavaScript05.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
 return degrees*Math.PI/180
}//end function toRadians
//==//

function toDegrees(radians){
 return radians*180/Math.PI
}//end function toDegrees
//==//

var hyp = 5
var angDeg = 53.13
var angRad = toRadians(angDeg)
var cosine = Math.cos(angRad)

var adj = hyp * cosine

document.write("adjacent = " + adj + "</br>")

hyp = adj/cosine

document.write("hypotenuse = " + hyp + "</br>")

</script>
</body></html>

No further explanation needed

Because of the similarity of

Listing 5

 and

Listing 2

, no further explanation
of the code in

Listing 5

 should be needed. As you can see from

Figure 9

, the
output values match the known lengths for the hypotenuse and the adjacent side
for the triangle on your plot board.

	

adjacent = 3.0000071456633126
hypotenuse = 5

Figure 6.9.

Output for script in Listing 5.

Output for script in Listing 5.

Computing length of adjacent side with the Google calculator

We could also compute the length of the adjacent side using the Google
calculator.

The length of the adjacent side -- sample computation

Enter the following into the Google search box:

5*cos(53.1301024 degrees)

The following will appear immediately below the search box:

5 * cos(53.1301024 degrees) = 3

This is the length of the adjacent side for the given angle and the given
length of the hypotenuse.

Two very important equations

From an introductory physics viewpoint, two of the most important
	and perhaps most frequently used equations from

Figure 7

 and

Figure 8

 are
	shown in

Figure 10

.

	

opp = hyp * sine(angle)
adj = hyp * cosine(angle)

Figure 6.10.

Two very important equations.

Two very important equations.

These two equations are so important that it might be worth your while to
	memorize them. Of course, you will occasionally need most of the equations
	in

Figure 7

 and

Figure 8

, so you should try to remember them,
	or at least know where to find them when you need them.

Vectors

As you will see later in the module that deals with vectors,
you are often presented with something that resembles the hypotenuse of a right
triangle whose adjacent side is on the horizontal axis and whose opposite side
is parallel to the vertical axis.

The thing that looks like the hypotenuse of a right triangle is called a

vector

. It has a length and it has a direction. Typically, the direction is
stated as the angle between the vector and the horizontal axis. Thus, the
direction is analogous to the angle at the origin in the triangle on your graph
board.

Horizontal and vertical components

For reasons that I won't explain until we get to that module, you will often
need to compute the horizontal and vertical components of the vector.
The horizontal component is essentially the adjacent side of our current right
triangle. Thus, the value of the horizontal component can be computed using the
second equation in

Figure 10

.

The vertical component is essentially the opposite side of our current right
triangle, and its value can be computed using the first equation in

Figure 10

.

The tangent and arctangent
of an angle

Once again, although the tangent of an angle is based on very specific
	geometric considerations involving circles (see
	

	http://www.clarku.edu/~djoyce/trig/

), for our purposes, the tangent of an
angle is simply a ratio between the lengths of two different sides of a right
triangle.

A ratio of two sides

For our purposes, we will say that the tangent of an angle is equal to the
ratio of the opposite side and the adjacent side. Therefore, in the case of the
3-4-5 triangle that you have on your graph board, the

tangent of the angle at
the origin is equal to

 4/3 or 1.333.

Not limited to 1.0

Note that the absolute value for the sine and the cosine of an angle is
limited to a maximum value of 1.0. However, the tangent of an angle is not so
limited. In fact, the tangent of 45 degrees is 1.0 and the tangent of 90 degrees
is infinity. This results from the length of the adjacent side, which is the
denominator in the ratio, going to zero at 90 degrees.

Dividing by zero in a script is usually not a good thing. This is a pitfall that you must watch out for when working with tangents.
I will provide code later on that shows you how deal with this issue.

Computing the tangent

If we know the lengths of the opposite side and the adjacent side, we can
compute the tangent and use it for other purposes later without having to know
the value of the angle.

Conversely, if we know the value of the angle but don't know the lengths of
the adjacent side and/or the opposite side, we can obtain the tangent value
using a scientific calculator or lookup table and use it for other purposes
later.

The tangent of an angle -- sample computation

Enter the following into the Google search box:

tan(53.13010235415598 degrees)

The following will appear immediately below the search box:

	
tan(53.13010235415598 degrees) = 1.33333333

	
This agrees with the ratio that we computed

earlier

.

The arctangent (inverse tangent) of an angle

The arctangent of an angle is the value of the angle having a given tangent
value. (For example, as mentioned above, the arctangent of infinity is 90
degrees and the arctangent of 1.0 is 45 degrees.) In other words, if you know the value of the tangent of an unknown angle,
you can use a scientific calculator or lookup table to find the value of the
angle.

For example, we know that the tangent of the angle at the origin on your
graph board is 1.333. From that, we can determine the value of the angle.

The arctangent of an angle -- sample computation

Enter the following into the Google search box:

arctan(4/3) in degrees

The following will appear immediately below the search box:

arctan(4/3) = 53.1301024 degrees

We can also write a JavaScript script to perform the calculation.

Getting the angle for a known tangent value using JavaScript

Please create an html file containing the code shown in

Listing 6

 and open it
in your browser.

Example 6.6.
 <!-- File JavaScript06.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
 return degrees*Math.PI/180
}//end function toRadians
//==//

function toDegrees(radians){
 return radians*180/Math.PI
}//end function toDegrees
//==//

var opp = 4
var adj = 3
var ratio = opp/adj
var angRad = Math.atan(ratio)
var angDeg = toDegrees(angRad)

document.write("radians = " + angRad + "</br>")
document.write("degrees = " + angDeg)

</script>
</body></html>

The output from the script

Once again, when you open this file in your browser, the output shown in

Figure 5

 should appear in your browser window.

The code in

Listing 6

 is very similar to the code in

Listing 2

. They both
describe the same right triangle, so the output should be the
same in both cases.

The code in

Listing 2

 uses the opposite side and the hypotenuse along with
the arcsine to compute the angle. The code in

Listing 6

 uses the opposite side
and the adjacent side along with the arctangent to compute the angle. Otherwise,
no further explanation should be required.

Interesting tangent equations

In the spirit of

Figure 7

 and

Figure 8

,

Figure 11

 provides some interesting
equations that deal with the angle, the opposite side, and the adjacent side.
Given any two, you can find the third using either the tangent or arctangent.

	

tangent(angle) = opp/adj

angle = arctangent(opp/adj)
opp = tangent(angle) * adj
adj = opp/tangent(angle)

Figure 6.11.

Interesting tangent equations.

Interesting tangent equations.

An exercise involving the tangent

Please copy the code from

Listing 7

 into an html file and open it in your
browser.

Example 6.7.
 <!-- File JavaScript07.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
 return degrees*Math.PI/180
}//end function toRadians
//==//

function toDegrees(radians){
 return radians*180/Math.PI
}//end function toDegrees
//==//

var adj = 3
var angDeg = 53.13
var angRad = toRadians(angDeg)
var tangent = Math.tan(angRad)

var opp = adj * tangent

document.write("opposite = " + opp + "</br>")

adj = opp/tangent

document.write("adjacent = " + adj + "</br>")

</script>
</body></html>

When you open your html file in your browser, the output shown in

Figure 12

should appear in your browser window. We can see that the values in

Figure 12

 are
correct for our 3-4-5 triangle.

	

 opposite = 3.9999851132269173
adjacent = 3

Figure 6.12.

Output for script in Listing 7.

Output for script in Listing 7.

Very similar code

The code in

Listing 7

 is very similar to the code in

Listing 3

 and
	

Listing 5

. The essential differences are that

 	

Listing 3

 uses the sine along with the opposite side and the hypotenuse.

	

Listing 5

 uses the cosine along with the adjacent side and the
	hypotenuse.

	

Listing 7

 uses the tangent along with the opposite side and the adjacent
	side.

You should be able to work through those differences without further
	explanation from me.

The cotangent of an angle

There is also something called the cotangent of an angle, which is simply the
ratio of the adjacent side to the opposite side. If you know how to work with
the tangent, you don't ordinarily need to use the cotangent, so I won't discuss
it further.

Computing length of opposite side with the Google calculator

We could also compute the length of the opposite side using the Google
calculator.

The length of the opposite side -- sample computation

Enter the following into the Google search box:

3*tan(53.1301024 degrees)

The following will appear immediately below the search box:

3 * tan(53.1301024 degrees) = 4.00000001

Dealing with different quadrants

Up to this point, we have dealt exclusively with angles in the range of 0
	to 90 degrees (the first quadrant). As long as you stay in the first
	quadrant, things are relatively straightforward.

As you are probably aware, however, angles can range anywhere from 0 to 360
degrees (or more). Once you begin working with angles that are greater then 90 degrees,
things become a little less straightforward.

Another svg file

When you downloaded the zip file named Phy1020.zip using the link given

above

, you should also have found that
the zip file contains a file named Phy1020a1.svg.

The purpose of this file is to make it possible for you to create tactile
graphics for sine and cosine curves using the procedure explained in the earlier
module named Manual Creation of Tactile Graphics at

http://cnx.org/content/m38546/latest/

.

If you have the ability to create tactile graphics, you don't need to
perform the work in the following graph board exercise. However, you should
read about it anyway because that will probably help you to better understand
the sine and the cosine of an angle.

I will get back to tactile graphics after I describe the graph board
exercise.

Another graph board exercise

In this graph board exercise, we will plot a graph of the
amplitude of the sine of an angle on the vertical axis versus the angle itself on
the horizontal.

We will also do the same thing for the cosine. It would be very good if you
could plot one curve on the top half of your graph board and the other curve on
the bottom half of your graph board so that you can easily compare the two.

Interpreting gridline values

Since I don't know how many tactile grid lines there are on your graph board,
I can't tell you exactly how to interpret the grid lines so as to make maximum
use of the space on the board. All that I can tell you is that the vertical
amplitude values for each curve will range from -1.0 to +1.0. We would like to
plot values from -360 degrees to + 360 degrees on the horizontal. You should
interpret the values of the gridlines on your graph board accordingly.

Sinusoidal amplitude versus angle

Please copy the code from

Listing 8

 into an html file and open the file in
your browser.

Example 6.8.
 <;!-- File JavaScriptZZ.html -->
<;html><;body>
<;script language="JavaScript1.3">

function toRadians(degrees){
 return degrees*Math.PI/180
}//end function toRadians
//==//

function toDegrees(radians){
 return radians*180/Math.PI
}//end function toDegrees
//==//

var angInc = 90
var angStart = -360
var ang = angStart
var angEnd = 360
var sine
var cosine

while(ang <;= angEnd){
 //Compute sine and cosine of angle
 sine = Math.sin(toRadians(ang))
 cosine = Math.cos(toRadians(ang))

 //Reduce the number of digits in the output
 sine = (Math.round(100*sine))/100
 cosine = (Math.round(100*cosine))/100

 //Display the results
 document.write("Angle: " + ang +
 " Sine: " + sine +
 " Cosine: " + cosine +
 "<;/br>")

 //Increase the angle for next iteration
 ang = ang + angInc
}//end while loop

<;/script>
<;/body><;/html>

Output from the script

When you open your html file in your browser, the output shown in

Figure 13

should appear in your browser window.

	

 Angle: -360 Sine: 0 Cosine: 1
Angle: -270 Sine: 1 Cosine: 0
Angle: -180 Sine: 0 Cosine: -1
Angle: -90 Sine: -1 Cosine: 0
Angle: 0 Sine: 0 Cosine: 1
Angle: 90 Sine: 1 Cosine: 0
Angle: 180 Sine: 0 Cosine: -1
Angle: 270 Sine: -1 Cosine: 0
Angle: 360 Sine: 0 Cosine: 1

Figure 6.13.

Sinusoidal values at 90-degree increments.

Sinusoidal values at 90-degree increments.

Figure 13

 contains the data for two different curves. One is a sine curve
	and the other is a cosine curve.

Plot the points using pushpins

You should be able to plots these data values as two separate curves on your
graph board by inserting pushpins at the coordinate values shown and then
connecting the pushpins with rubber bands, pipe cleaners, yarn, flexible wire,
or something similar. (Rubber bands might not work if you are using a homemade
plot board constructed from Styrofoam, because the pins pull too easily.)

Remember, the angle values from -360
degrees (-2*PI radians) to +360 degrees (+2*PI radians) are horizontal coordinates while the corresponding
values for the sine and cosine are vertical coordinates.

Saw tooth curves

Once you have plotted the points, you should be able to discern two curves,
each of which is a saw tooth.

The two curves have exactly the same shape, but one is shifted horizontally
relative to the other. For example, the sine curve has a value of zero at an
angle of zero (the origin) and it is asymmetric about the vertical axis.

The cosine curve, on the other hand has a value of 1 at an angle of zero and
it is symmetric about the vertical axis.

Periodic curves

These are periodic curves. For example, the shape of the sine curve between
-360 and 0 is the same as the shape of the sine curve between 0 and +360. Each
of those ranges represents one

cycle

 of the periodic curve.

We only computed the values from -360 to +360. However, if we had computed
the values from -3600 to + 3600, the overall shape of the curve would not differ
from what we have here. The shape of each cycle of the curve would be identical to the
shape of the cycle to the left and the cycle to the right.

Not really a saw tooth

The sine and cosine curves don't really have a saw tooth shape. That is an
	artifact of the fact that we didn't compute enough points to reliably
	describe the shape of the curves. Let's improve on that.

Modify the script

Modify the code in
	your script to initialize the value of the variable named

angInc

	to 45 degrees instead of 90 degrees and then load the revised version into your browser. This will cause the
	script to fill in data points
	between the points that we already have producing the output shown in

Figure
	16

.

	

 Angle: -360 Sine: 0 Cosine: 1
Angle: -315 Sine: 0.71 Cosine: 0.71
Angle: -270 Sine: 1 Cosine: 0
Angle: -225 Sine: 0.71 Cosine: -0.71
Angle: -180 Sine: 0 Cosine: -1
Angle: -135 Sine: -0.71 Cosine: -0.71
Angle: -90 Sine: -1 Cosine: 0
Angle: -45 Sine: -0.71 Cosine: 0.71
Angle: 0 Sine: 0 Cosine: 1
Angle: 45 Sine: 0.71 Cosine: 0.71
Angle: 90 Sine: 1 Cosine: 0
Angle: 135 Sine: 0.71 Cosine: -0.71
Angle: 180 Sine: 0 Cosine: -1
Angle: 225 Sine: -0.71 Cosine: -0.71
Angle: 270 Sine: -1 Cosine: 0
Angle: 315 Sine: -0.71 Cosine: 0.71
Angle: 360 Sine: 0 Cosine: 1

Figure 6.14.

Sinusoidal values at 45-degree increments.

Sinusoidal values at 45-degree increments.

Plot the new points

Every other line of text in

Figure 14

 should contain sine and cosine values for
	angles that are half way between the points that you already have plotted.
	Use pushpins to plot the new points and connect all of the points in each
curve using rubber bands, pipe cleaners, or whatever you find most useful for
this purpose.

Same shape but shifted horizontally

The two curves still have the same shape, although shifted horizontally
relative to one another and they are still periodic. However, they no longer
have a saw tooth shape. They tend to be a little more rounded near the peaks and
they are beginning to provide a better representation of the actual shapes of
the sine and cosine curves.

Let's do it again

Change the value of the variable named

angInc

 from 45
	degrees to
	22.5 degrees and load the new version of the html file into your browser. Now the
	output should look like

Figure 15

.

	

 Angle: -360 Sine: 0 Cosine: 1
Angle: -337.5 Sine: 0.38 Cosine: 0.92
Angle: -315 Sine: 0.71 Cosine: 0.71
Angle: -292.5 Sine: 0.92 Cosine: 0.38
Angle: -270 Sine: 1 Cosine: 0
Angle: -247.5 Sine: 0.92 Cosine: -0.38
Angle: -225 Sine: 0.71 Cosine: -0.71
Angle: -202.5 Sine: 0.38 Cosine: -0.92
Angle: -180 Sine: 0 Cosine: -1
Angle: -157.5 Sine: -0.38 Cosine: -0.92
Angle: -135 Sine: -0.71 Cosine: -0.71
Angle: -112.5 Sine: -0.92 Cosine: -0.38
Angle: -90 Sine: -1 Cosine: 0
Angle: -67.5 Sine: -0.92 Cosine: 0.38
Angle: -45 Sine: -0.71 Cosine: 0.71
Angle: -22.5 Sine: -0.38 Cosine: 0.92
Angle: 0 Sine: 0 Cosine: 1
Angle: 22.5 Sine: 0.38 Cosine: 0.92
Angle: 45 Sine: 0.71 Cosine: 0.71
Angle: 67.5 Sine: 0.92 Cosine: 0.38
Angle: 90 Sine: 1 Cosine: 0
Angle: 112.5 Sine: 0.92 Cosine: -0.38
Angle: 135 Sine: 0.71 Cosine: -0.71
Angle: 157.5 Sine: 0.38 Cosine: -0.92
Angle: 180 Sine: 0 Cosine: -1
Angle: 202.5 Sine: -0.38 Cosine: -0.92
Angle: 225 Sine: -0.71 Cosine: -0.71
Angle: 247.5 Sine: -0.92 Cosine: -0.38
Angle: 270 Sine: -1 Cosine: 0
Angle: 292.5 Sine: -0.92 Cosine: 0.38
Angle: 315 Sine: -0.71 Cosine: 0.71
Angle: 337.5 Sine: -0.38 Cosine: 0.92
Angle: 360 Sine: 0 Cosine: 1

Figure 6.15.

Sinusoidal values at 22.5-degree increments.

Sinusoidal values at 22.5-degree increments.

A lot of data points

Once again, every other line of text in

Figure 15

 contains new sine and cosine
	values for angles that you don't have plotted yet.

Plotting all of these point is going to require a lot of pushpins and a lot
of effort. Before you do that, let's think about it.

Two full cycles

You should have been able to discern by now that your plots for the sine
and cosine graphs each contain two full cycles. An important thing about
periodic functions is that once you know the shape of the curve for any one
cycle, you know the shape of the curve for every cycle from minus infinity to infinity. The
shape of every cycle is exactly the same as the shape of every other cycle.

Saving pushpins and effort

If you are running out of pushpins or running out of patience, you might consider
updating your plots for only one cycle.

You should be able to discern that your curves no
longer have a saw tooth shape. Each time we have run the script, we have sampled
the amplitude values of each curve at twice as many points as before. Therefore,
the curves should be taking on a smoother rounded shape that is better
representation of the actual shape of the curves.

Continue the process

You can continue this process of improving the curves for as long as you have the graph board space,
pushpins, and patience to do so. Just divide the value of the variable named

angInc

 by a factor of two and rerun the script. That will
produce twice as many data points that are only half as far apart on the
horizontal axis.

If you choose to do so, you can plot only the new points in one-half of a cycle
to get an idea of the shape. By now you should have discerned that each half of a cycle has the same shape, only one
half is above the horizontal axis and the other half is a mirror image below the axis.

Plot of cosine and sine curves

Getting back to tactile graphics, for the benefit of any sighted person that
may be assisting you,

Figure 16

 shows a cosine curve plotted above a sine
curve very similar to the curves that you have plotted on your graph board.
(

Figure 16

 shows a mirror image of the actual curves because the file named
Phy1020a1.svg is intended to be used for manual embossing from the back of the
paper.) A non-mirror-image version is shown in

Figure 20

.

 [image: missing image]

Figure 6.16.

Mirror image plot of cosine and sine curves from the file named Phy1020a1svg.

Mirror image plot of cosine and sine curves from the file named Phy1020a1svg.

This image contains lines that aren't straight, but with a little care,
your assistant should be able to do a reasonably good job of embossing them when
the image is printed as the full 8.5x11 inch version.

Page setup

If you use the IVEO Viewer to print the file named Phy1020a1.svg, you should
use the default Page Setup selection for Letter (Landscape).

Grid lines

The image in

Figure 16

 contains 7 vertical grid lines. The vertical grid line
in the center represents an angle of zero degrees. The space between each grid
line on either side of the center represents an angle of 90 degrees or PI/2
radians.

There are two horizontal grid lines. One is one-fourth of the way down from
the top. The other is one-fourth of the way up from the bottom.

The curves

A cosine curve is plotted with vertical values relative to the top grid line.
It extends from -360 degrees on the left to +360 degrees on the right.

A sine curve is plotted with vertical values relative to the bottom grid
line. It also extends from -360 degrees on the left to +360 degrees on the
right. (Note once again that

Figure 16

 was flipped
horizontally to crate a mirror image.)

Return values for the Math.asin, Math.acos, and Math.atan methods

I told you earlier that the

Math.asin

 method returns a value
between -PI/2 and PI/2. However, I didn't tell you that the

Math.acos

method returns a value between 0 and PI, or that the

Math.atan

method returns a value between -PI/2 and PI/2. You now have enough information
to understand why this is true.

Smooth curves

If you examine the two curves that you have just plotted, you can surmise
that the sine and cosine functions are smooth curves whose values range between
-1 and +1 inclusive. For every possible value between -1 and +1, there is an
angle in the range -PI/2 and PI/2 whose sine value matches that value. There is
also an angle in the range 0 and PI whose cosine value matches that value.

(Although you haven't plotted the curve for the tangent, a similar situation
holds there also.)

An infinite number of angles

Therefore, given a specific numeric value between -1 and +1,
there are an infinite number of angles whose sine and cosine values match that
numeric value and the method has no way of distinguishing between them.
Therefore, the

Math.asin

 method returns the matching angle that is
closest to zero and the

 Math.acos

 method returns the matching
positive angle that is closest to zero.

What can we learn from this?

One important thing that we can learn is there is no difference between
	the sine or cosine of an angle and the sine or cosine of a different angle
	that differs from the original angle by 360 degrees. Thus, the

	Math.asin

 and
	

Math.acos

 methods cannot be used to distinguish between angles that differ
	by 360 degrees. (As you learned above, the situation involving the

	Math.asin

 and
	

Math.acos

 methods is even more stringent than that.)

One-quarter cycle contains all of the information

Another thing that we can learn is that once you know the shape of the cosine
curve from 0 degrees to 90 degrees, you have enough information to construct the
entire cosine curve and the entire sine curve across any range of angles. Every
possible value or the negative of every possible value that can occur in a sine
or cosine curve occurs in the cosine curve between 0 degrees and 90 degrees.
Furthermore, the order of those values is also well defined.

Think about these relationships

You should think about these kinds of relationships. As I mentioned earlier,
as long as we are working with angles between 0 and 90 degrees, everything is
relatively straightforward. However, once we start working with angles between
90 degrees and 360 degrees (or greater), things become a little less
straightforward.

If you have a good picture in your mind of the shape of the two
curves between -360 degrees and +360 degrees, you may be able to avoid errors once you start working on physics problems that involve angles outside
the range of 0 to 90 degrees.

Quadrants

We often think of a two-dimensional space with horizontal and vertical axes
and the origin at the center in quadrants. Each quadrant is bounded by
half the horizontal axis and half the vertical axis.

It is common practice to number the
quadrants in counter-clockwise order with the upper-right quadrant being
quadrant 1, the upper-left quadrant being quadrant 2, the bottom-left quadrant
being quadrant 3, and the bottom-right quadrant being quadrant 4.

Angles fall in quadrants

If you measure the angle between the positive horizontal axis and a line
segment that
emanates from the origin, quadrant 1 contains angles between 0 and PI/2,
quadrant 2 contains the angles between PI/2 and PI, quadrant 3 contains the
angles between PI and 3*PI/2, and quadrant 4 contains the angles between 3*PI/2
and 2*PI (or zero). (Note that I didn't attempt to reconcile the inclusion of
each axis in the two quadrants on either side of the axis.)

Algebraic signs versus quadrant number

It is sometimes useful to consider how the algebraic sign of the sine,
cosine, and tangent values varies among the four quadrants.

Figure 17

 contains a
table that shows the sign of the sine, cosine, and tangent values for each of
the four quadrants

	

 1 2 3 4
sine + + - -
cosine + - - +
tangent + - + -

Figure 6.17.

Algebraic signs versus quadrants.

Algebraic signs versus quadrants.

Working with arctangents is more difficult than arcsine or
	arccosine

Working with arctangent is somewhat more difficult than working with arcsine
or arccosine, if for no other reason than the possibility of dividing by zero
when working with the arctangent.

Listing 9

 shows a JavaScript function named getAngle that deals with this issue.

Example 6.9.
 <!---------------- File JavaScript09.html --------------------->
<html><body>
<script language="JavaScript1.3">

document.write("Start Script </br>");

//The purpose of this function is to receive the adjacent
// and opposite side values for a right triangle and to
// return the angle in degrees in the correct quadrant.
function getAngle(adjacent,opposite){
 if((adjacent == 0) && (opposite == 0)){
 //Angle is indeterminate. Just return zero.
 return 0;
 }else if((adjacent == 0) && (opposite > 0)){
 //Avoid divide by zero denominator.
 return 90;
 }else if((adjacent == 0) && (opposite < 0)){
 //Avoid divide by zero denominator.
 return -90;
 }else if((adjacent < 0) && (opposite >= 0)){
 //Correct to second quadrant
 return Math.atan(opposite/adjacent)*180/Math.PI + 180;
 }else if((adjacent < 0) && (opposite <= 0)){
 //Correct to third quadrant
 return Math.atan(opposite/adjacent)*180/Math.PI + 180;
 }else{
 //First and fourth quadrants. No correction required.
 return Math.atan(opposite/adjacent)*180/Math.PI;
 }//end else
}//end function getAngle

//Modify these values and run for different cases.
var adj = 3;
var opp = 4;

document.write("adj = " + adj.toFixed(2) +
" opp = " + opp.toFixed(2) + " units</br>");

document.write("angle = " + getAngle(adj,opp).toFixed(2)
 + " units</br>");

var adj = -3;
var opp = 4;

document.write("adj = " + adj.toFixed(2) +
" opp = " + opp.toFixed(2) + " units</br>");

document.write("angle = " + getAngle(adj,opp).toFixed(2)
 + " units</br>");

var adj = -3;
var opp = -4;

document.write("adj = " + adj.toFixed(2) +
" opp = " + opp.toFixed(2) + " units</br>");

document.write("angle = " + getAngle(adj,opp).toFixed(2)
 + " units</br>");

var adj = 3;
var opp = -4;

document.write("adj = " + adj.toFixed(2) +
" opp = " + opp.toFixed(2) + " units</br>");

document.write("angle = " + getAngle(adj,opp).toFixed(2)
 + " units</br>");

</script>
</body></html>

The code in

Listing 9

 begins by defining a function named getAngle that
accepts the signed values of the adjacent side and the opposite side of the right
triangle and returns the angle that the hypotenuse makes with the positive
horizontal axis.

Then the code in

Listing 9

 tests the result for four different triangles
situated in each of the four quadrants.

Figure 18

 shows the output produced by this script.

	

 Start Script
adj = 3.00 opp = 4.00 units
angle = 53.13 units
adj = -3.00 opp = 4.00 units
angle = 126.87 units
adj = -3.00 opp = -4.00 units
angle = 233.13 units
adj = 3.00 opp = -4.00 units
angle = -53.13 units

Figure 6.18.

Output from the code in Listing 9.

Output from the code in Listing 9.

This is an issue that will become important when we reach the module that
	deals with vectors in all four quadrants.

Structure of the script

The script shown in

Listing 9

 begins by defining a function named

getAngle

. The purpose of this function is to return an angle in degrees
in the correct quadrant based on the lengths of the adjacent and opposite sides
of an enclosing right triangle. As mentioned above, the returned angle is the
angle that the hypotenuse makes with the positive horizontal axis.

An indeterminate result

The getAngle function calls the Math.atan method to compute the angle whose
tangent is the ratio of the opposite side to the adjacent side of a right
triangle.

If the lengths of both the opposite and adjacent sides are zero, the ratio opposite/adjacent is
indeterminate and the value of the angle cannot be computed. In fact there is no
angle corresponding to the ratio 0/0. However, the function must either return
the value of an angle, or must return some sort of flag indicating that
computation of the angle is not possible.

In this case, the function simply returns the value zero for the angle.

Avoiding division by zero

If the length of adjacent side is zero and the length of opposite side is not zero, the
ratio opposite/adjacent is infinite. Therefore, the value of the angle cannot be
computed. However, in this case, the angle is known to be 90 degrees (for
opposite greater than zero) or 270 degrees (-90 degrees, for opposite less than
zero). The getAngle function traps both of those cases and returns the correct
angle in each case.

Correcting for the quadrant

The Math.atan method receives one parameter and it is either a positive or
negative value. If the value is positive, the method returns an angle between 0
and 90 degrees. If the value is negative, the method returns an angle between 0
and -90 degrees. Thus, the angles returned by the Math.atan method always lie in
the first or fourth quadrants.

(Actually, as I mentioned earlier, +90 degrees and -90 degrees are not
possible because the tangent of +90 degrees or -90 degrees is an infinitely
large positive or negative value. However, the method can handle angles that are
very close to +90 or -90 degrees.)

A negative opposite/adjacent ratio

If the opposite/adjacent ratio is negative, this doesn't necessarily mean
that the angle lies in the fourth quadrant. That negative ratio could result
from a positive value for opposite and a negative value for adjacent. In that
case, the angle would lie in the second quadrant between 90 degrees and 180
degrees.

The getAngle function tests the signs of the values for opposite and
adjacent. If the signs indicate that the angle lies in the second quadrant, the
value returned from the Math.atan method is corrected to place the angle in the
second quadrant. The corrected angle is returned by the getAngle function.

A positive opposite/adjacent ratio

Similarly, if the opposite/adjacent ratio is positive, this doesn't
necessarily mean that the angle lies in the first quadrant. That positive ratio
could result from a negative opposite value and a negative adjacent value. In
that case, the angle would lie in the third quadrant between 180 degrees and 270
degrees.

Again, the getAngle function tests the signs of the values for opposite and
adjacent. If both values are negative, the value returned from the Math.atan
method is corrected to place the angle in the third quadrant.

No corrections required...

Finally, if no corrections are required for the quadrant, the getAngle
function returns the value returned by the Math.atan method. Note however, that
in all cases, the Math.atan method returns the angle in radians. That value is
converted to degrees by the getAngle function and the returned value is in
degrees.

Positive and negative angles

As you can see from the results of the test shown in

Figure 18

, angles in the
first, second, and third quadrants are returned as positive angles in degrees.
However, angles in the fourth quadrant are returned as negative angles in
degrees.

Normal (non-mirror-image) graphics

Figure 2

 and

Figure 16

 show the actual mirror image versions of the images
contained in the svg files.

Figure 19

 and

Figure 20

 show the same images in
their non-mirror-image orientation.

 [image: Missing image]

Figure 6.19.

Normal image from file Phy1020b1.svg.

Normal image from file Phy1020b1.svg.

 [image: Missing image]

Figure 6.20.

Normal image plot of cosine and sine curves from the file named Phy1020a1svg.

Normal image plot of cosine and sine curves from the file named Phy1020a1svg.

Run the scripts

I encourage you to run the scripts that I have presented in this lesson to
confirm that you get the same results. Copy the code for each script into a
	text file with an extension of html. Then open that file in your browser. Experiment with
the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

Resources

I will publish a module containing consolidated links to resources on my
Connexions web page and will update and add to the list as additional modules
in this collection are published.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Brief Trigonometry Tutorial

	
Revised: 07/02/2011

	
File: Phy1020.htm

	
Keywords:

 	
physics

	
accessible

	
blind

	
graph board

	
protractor

	
screen reader

	
refreshable Braille display

	
JavaScript

	
trigonometry

	
angle

	
sine

	
cosine

	
tangent

	
arcsine

	
arccosine

	
arctangent

	
quadrant

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

-end-

Solutions

Chapter 34. Angular Momentum -- Torque, Work and Energy

Table of Contents

 	

Preface

 	

General

	

Prerequisites

	

Viewing tip

 	

Figures

		

	

Supplemental material

	

	

Discussion

 	

Constant torque

	

Variable torque

	

	

Example scenario

 	

Part 1

	

Part 2

	

	

Do the computations

	

Resources

	

Miscellaneous

Preface

General

This module is part of a collection (see

http://cnx.org/content/col11294/latest/

) of modules designed to make physics
concepts accessible to blind students. The collection is intended to supplement but not to
replace the textbook in an introductory course in high school or college
physics.

This module explains torque, work and energy in a format that is accessible
to blind students.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these modules:

 	
A graph board for plotting graphs and vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
A protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
An audio screen reader that is compatible with your operating system,
	such as the NonVisual Desktop Access program (NVDA), which is freely
	available at

	http://www.nvda-project.org/

.

	
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor
	(

http://www.userite.com/ecampus/lesson1/tools.php

).

	
A device to create Braille labels. Will be used to label graphs
	constructed on the graph board.

The minimum prerequisites for understanding the material in these modules
	include:

 	
A good understanding of algebra.

	
An understanding of the use of a graph board for plotting graphs and
	vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
An understanding of the use of a protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
A basic understanding of the use of sine, cosine, and tangent from
	trigonometry (

http://www.clarku.edu/~djoyce/trig/

).

	
An introductory understanding of JavaScript programming (

http://www.dickbaldwin.com/tocjscript1.htm

 and

http://www.w3schools.com/js/default.asp

).

	
An understanding of all of the material covered in the earlier modules
	in this collection.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
while you are reading about them.

Figures

 	

Figure 1

. Work done by perpendicular component of force.

	

Figure 2

. Work done by constant torque.

	

Figure 3

. Power generated or consumed by a constant torque.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

Discussion

This section will begin by developing the equations from which you can
compute the work done by a constant torque that causes a known displacement. Then it will provide a brief
discussion of the situation where the torque is not constant.

Constant torque

One of the textbooks that I have read uses a very familiar example to
illustrate that torque can do work. The example is that of a person pulling on
the rope on a power mower or outboard engine to try to get it started.

If you are unfamiliar with that scenario, many small internal combustion
engines use a rope wrapped around a pulley to start the engine. When the user
pulls the rope, a torque is created on the pulley by the rope. The torque causes
an angular displacement of the pulley, which in turn causes certain parts inside
the engine to move. If you are lucky and everything is working properly, the
engine starts.

The machine fights back

However, the machine
fights back and the compression in the cylinders creates a resistive torque. If
the user pulls hard enough, the torque created by the user overcomes the
resistive torque, the pulley
turns, the parts inside the engine move appropriately, and hopefully the engine starts running.

When the engine refuses to start...

Clearly when the engine refuses to start, it becomes apparent very quickly that
torque can do work on a human. A few dozen pulls on the rope will cause even the most
physically fit user to become exhausted.

The force does the work

The textbook point out that it is actually the force and not the torque that
does the work. However, torque and force are related in a very definitive way,
and the textbook points out that it is often easer to calculate the amount of
work done on the basis of torque rather than making the calculation on the basis
of force.

Review -- what is work?

You learned in an earlier module on translational motion that the work done
by a constant force is the product of the force and the displacement caused by
that force. In other words,

Wt = Ft * d

where

 	
Wt represents translational work in joules or newton-meters

	
Ft represents translational force in newtons

	
d represents the displacement in meters

A rotational analogy

Similarly, work done by a constant torque can be calculated as the product of
the constant torque and the displacement caused by that torque.

A constant torque

It is important
to note that the entire remaining discussion in this section applies only to the
application of a constant torque. I will have a few words about a variable
torque in the

next section

.

Power

The power generated or consumed by the application of a constant torque can be calculated
as the product of the constant torque and the angular velocity.

A wheel scenario

Imagine a force being applied to a point on the outer edge of a wheel to cause
an angular displacement of the wheel. As you will recall from an earlier module,
the torque produced by the force is equal to the product of

 	
the distance from the center of the wheel to the point
	where the force is applied and

	

the component of the force

 that
	is perpendicular to a line drawn from that point to the center of the wheel.

The point moves through a circular arc

When the force causes an angular displacement of the wheel, the point at
which the point is applied moves through a
circular arc. The length of that circular, often referred to by s, can be
measured. The work done is equal to the product of

 	
the length of the circular
arc and

	
the perpendicular component of applied force.

The work resulting from the application of the perpendicular force is given
by the equation shown in

Figure 1

.

	

W = Fp * s

where

 	
W represents the work done by the perpendicular force

	
Fp is the perpendicular component of force described
	

above

	
s is the length of the circular arc through which the point moves

Figure 34.1.

Work done by perpendicular component of force.

Work done by perpendicular component of force.

Work as a function of torque

Now that we have the work as a function of the perpendicular force and the
length of the arc, let's rewrite it in terms of torque and displacement.

Torque

We know that torque is equal to

T = r * Fp

where

 	
T represents torque

	
r represents the distance from the center of the wheel to the point
	where the perpendicular force is applied

	
Fp represents the perpendicular force

Arc length

We also know that the arc length is given by

s = r * A

where

 	
s represents the arc length

	
r represents the distance from the center of the wheel to the point
	where the perpendicular force is applied as before

	
A represents the angle of displacement measured in radians

Through substitution

W = Fp * s, or

W = (T/r)*r*A, or

The work done by a constant torque is given by the equation shown in Figure
2.

	

W = T*A

where

 	
W represents the work done by a constant torque

	
T represents the constant torque

	
A represents the angle of displacement measured in radians resulting
	from the application of the constant torque

Work can be either positive or negative. If the
torque and the angular displacement have the same sign, the work is positive.
Otherwise, the work is negative.

Figure 34.2.

Work done by constant torque.

Work done by constant torque.

Power

As in the translational case, power is a measure of the work done per unit of
time. If we divide both sides of the above

equation

 by time,
we get

(W/t) = T*(A/t)

where

 	
W/t = work per second or power

	
A is the angular displacement in radians

	
t is time in seconds

	
A/t is the displacement in radians per second, which we recognize as
	angular velocity

Thus, the power generated or consumed by applying a constant torque is given by
the equation shown in

Figure 3

.

	

P = T*w

where

 	
P represents power in watts (joules per second or newton-meters per
	second)

	
T represents torque in newton meters

	
w represents angular velocity in radians per second

Figure 34.3.

Power generated or consumed by a constant 	torque.

Power generated or consumed by a constant 	torque.

Variable torque

A torque doesn't have to be constant to do work. In fact, the torque
generated by the user with the starter rope on the power mower discussed in the
previous section probably isn't constant.

However, if the torque is not constant, you cannot use the equations
developed in the

previous section

 to compute the work
done by the torque.

Maybe you can use calculus

If the torque as a function of time can be described by a function that you
can integrate using integral calculus, you can use calculus to compute the work
done by the torque. However, in the real word, this is probably rarely the case.

Maybe you can use a computer

If you are in the business of computing work done by a variable torque, the
most likely case is that you will have equipment that allows you to sample the
torque and displacement values at uniform intervals of time and to save the
values of the samples for digital processing. Then you can use any one of
several digital methods to approximately integrate the product of the torque
function and the displacement function.

Example scenario

I once visited a factory where mirrors were made. At one of the stations on
the manufacturing line, a person used a large horizontal grinding wheel to grind
a bevel on the edge of the mirror.

Assume that the grinding wheel is a uniform disk with:

 	
A moment of inertia, I, equal to (1/2)*M*R^2

	
M = mass = 80 kg

	
R = radius = 0.0.5 meters

Part 1

Find the amount of work that must be done to bring the wheel from rest to
an angular velocity of 8.38 radians/sec

Solution:

Recall from a previous module that the rotational kinetic energy for a
rotating object is given by

Ks = (1/2)*I*w^2

 	
where

Ks represents the kinetic energy for the system

	
I represents the rotational inertia for the system

	
w represents the angular velocity of the system

We could rewrite this equation as

deltaKs = (1/2)*I*(w0 - wf)^2

where

 	
deltaKs represents the change in kinetic energy

	
w0 represents the initial kinetic energy

	
wf represents the final kinetic energy

However, since the initial kinetic energy value is zero, that would simply
complicate the algebra. Therefore, we will stick with the original

equation

.

We either have, or can calculate values for all of the terms in this
equation. Substituting the values given above gives us

Ks = (1/2)*I*w^2

 , or

Ks = (1/2)*((1/2)*M*R^2)*w^2

, or

Ks = (1/2)*((1/2)*80kg*(0.5m)^2)*(8.38 radians/sec)^2

Entering this expression into the Google calculator gives us

Ks = 351 joules

This is the amount of work that must be done to bring the wheel from rest to
an angular velocity of 8.38 radians/sec

Part 2

If the motor that drives the wheel delivers a constant torque of 10 N*m during this time, how many
revolutions does the wheel turn in coming up to speed.

Solution:

We know how to relate the displacement angle and the work for a constant
torque using the equation in

Figure 2

.

W = T*A

where

 	
W represents the work done by a constant torque

	
T represents the constant torque

	
A represents the angle of displacement measured in radians resulting
	from the application of the constant torque

In this case, we know the amount of work and the value of the torque and need
to find the angle. Therefore,

A = W*joules/T*n*m

However, this gives us the angular displacement in radians. We need to scale
to convert it to revolutions.

A = (W*joules/T*n*m)/2*pi, or

A = (351joules/10newton meters)/(2*pi), or

A = 5.59 revolutions

This is the number of revolutions that the wheel turns in coming up to speed.

Do the computations

I encourage you to repeat the computations that I have presented in this lesson to
confirm that you get the same results. Experiment with
the scenarios, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

Resources

I will publish a module containing consolidated links to resources on my
Connexions web page and will update and add to the list as additional modules
in this collection are published.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Angular Momentum -- Torque, Work and Energy for Blind Students

	
File: Phy1330.htm

	
Keywords:

 	
physics

	
accessible

	
accessibility

	
blind

	
graph board

	
protractor

	
screen reader

	
refreshable Braille display

	
JavaScript

	
trigonometry

	
force

	
torque

	
work

	
energy

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

-end-

Solutions

 [image: Accessible Physics Concepts for Blind Students]

 Chapter 23. Energy -- Power

Table of Contents

 	

Preface

 	

General

	

Prerequisites

	

Supplemental material

	

	

General background information

	

Sample calculations

	

Do the calculations

	

Resources

	

Miscellaneous

Preface

General

This module is part of a collection (see

http://cnx.org/content/col11294/latest/

) of modules designed to make physics
concepts accessible to blind students. The collection is intended to supplement but not to
replace the textbook in an introductory course in high school or college
physics.

This module explains power in a format that is accessible to blind
students.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these modules:

 	
A graph board for plotting graphs and vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
A protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
An audio screen reader that is compatible with your operating system,
	such as the NonVisual Desktop Access program (NVDA), which is freely
	available at

	http://www.nvda-project.org/

.

	
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor
	(

http://www.userite.com/ecampus/lesson1/tools.php

).

	
A device to create Braille labels. Will be used to label graphs
	constructed on the graph board.

The minimum prerequisites for understanding the material in these modules
	include:

 	
A good understanding of algebra.

	
An understanding of the use of a graph board for plotting graphs and
	vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
An understanding of the use of a protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
A basic understanding of the use of sine, cosine, and tangent from
	trigonometry (

http://www.clarku.edu/~djoyce/trig/

).

	
An introductory understanding of JavaScript programming (

http://www.dickbaldwin.com/tocjscript1.htm

 and

http://www.w3schools.com/js/default.asp

).

	
An understanding of all of the material covered in the earlier modules
	in this collection.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background
information

What is work?

You learned in an earlier module that work occurs when a force causes a mass to be displaced by some
distance. You learned that the equation for the quantity of work done is equal to

W = (f*newton)*(d*meter) = f*d*N*m

You also learned that work is measured in joules, where one joule is equal to one newton multiplied by
one meter.

1 joule = 1 N * 1 m, or

1 joule = (1 kg * m/s^2) * m, or

1 joule = 1 kg*m^2/s^2

Paste the right-hand expression into the Google search box and press Enter
just to be sure.

What about time?

Note that the equation for work says nothing about time. The same amount of
work is done if it takes one second or one month for the object to which the
force is applied to move by the same distance.

That doesn't sound right!

This goes against our normal concept of work. If Joe spreads one cubic yard
of topsoil on the lawn in one hour and Bill requires three hours to do the same
job, we might say that Joe is working harder than Bill.

Power

To be correct from a physics viewpoint, we would need to say that Joe is
delivering more

power

 than Bill. In other words,

power

is a measure of the rate at which work is done. They both do the same amount of
work, but Joe does it more quickly than Bill. Hence Joe delivers more power than
Bill.

Power in equation form

Power is the ratio of work to time. In equation form,

Power = Work/time

The SI unit for power

The SI unit for power is the

watt

. One watt of power is
being delivered when one
joule of work or energy is being delivered each second.

An electric heater

In other words, if you have an electric heater that is properly rated at 60
watts, it will deliver 60 joules of energy per second when it is turned on.

This means that
somewhere in the world, someone or something must be doing work at a rate of 60
joules per second in order to insert the energy into the electrical grid that
your heater will be taking out of the grid and turning into heat energy.

Horsepower

For historical reasons, particularly in the U.S., we also use the term

horsepower

 to describe the power delivered by a machine. This is
particularly true in the automotive industry, but it applies to other kinds of
machines as well. We might speak of a car with a 300 horsepower engine, or a
clothes washing machine with a quarter-horsepower motor.

One horsepower is equal to approximately 750 watts.

Most machines do work

Most machines are designed to consume electrical or chemical energy and do
work on an object. Some machines, such as the treadmill at the health center, are designed to consume
human energy in order to do work.

In order for a machine to do work, it must
consume energy in some form.

Power ratings for machines

Machines are often described by a power rating. The power rating
indicates the rate at which that machine can do work on objects.

When I was in
the military many years ago, there were potato peeling machines in kitchens in the mess
halls. Their purpose was to do work on potatoes by removing the peel. Presumably a machine with
a high power rating could peel more potatoes per hour than one with a lower
power rating.

Automobile engines and horsepower

Automobile engines are often rated in terms of power using horsepower as the
units. At the drag-race track, contests are held to determine which vehicle can move
from point A to point B in the shortest amount of time.

Since work is measured as force multiplied by distance, and power is measured
as the work done per unit of time, everything else being equal, one would expect
that the vehicle with the highest power rating would be the winner in moving a
given distance in the shortest amount of time.

What about the units?

What are the units of power? We know that

Power = force * distance/seconds

We know that the units of force are

f = m*a = kg*m/s^2

We know that the units of time are seconds, and the units of distance are
meters. Therefore,

Power = f*d/time = (kg*m/s^2)*(m/s) = (kg*m^2)/(s^3), or

Power = kg*(m^2)*(s^(-3))

Plug the right-hand expression into the Google search box and you will learn
that

1 watt = 1 kg*(m^2)*(s^(-3)), or

1 watt = 1 N*m/s

Another viewpoint

As explained above,

Power = force*distance/time

We learned in earlier modules that velocity is equal to the ratio of
displacement and time. Therefore,

Power = force * velocity

Therefore, power is proportional to both force and velocity. A truck in a
load-pulling contest that moves rather slowly but with great force is powerful.

Similarly, a racing motorcycle that moves very fast with relatively little
force is also powerful.

And the great granddaddy of them all, a huge boulder that plows through a
house at great speed during a landslide is very powerful.

Sample calculations

A story of two cranes

One crane named A lifts a 1000 kg object to a height of 100 meters in 10
seconds. Another crane named B requires 100 seconds to do the same thing.

Which crane does the most work?

Which crane delivers the most power?

Solution:

Both cranes do the same amount of work by displacing the same object the same
distance against the force of gravity. The work done is equal to

(1000kg*9.8m/s^2)*100m = 980000 joules

Crane A delivers 980000 joules in 10 seconds. Therefore, crane A delivers

(980000 joules) / (10 seconds) = 98000 watts

Crane B delivers

	
(980000 joules) / (100 seconds) = 9800 watts

Therefore, crane A delivers the most power.

Another story about cranes

One crane named A lifts a 1000 kg object to a height of 100 meters in 10
seconds. Another crane named B lifts a 500 kg object to a height of 100 meters
in 5 seconds.

Which crane does the most work?

Which crane delivers the most power?

Solution:

The work done by crane A is

	 	
(1000 kg) * (9.8 (m / (s^2))) * (100 m) = 980000 joules

The work done by crane B is

(500 kg) * (9.8 (m / (s^2))) * (100 m) = 490000 joules

Therefore crane A does the most work.

Crane A delivers 980000 joules in 10 seconds. Therefore, crane A delivers

(980000 joules) / (10 seconds) = 98000 watts

Crane B delivers

	
(490000 joules) / (5 seconds) = 98000 watts

Therefore, both cranes deliver the same amount of power.

Your electric bill

An electric bill is often expressed in terms of kilowatt-hours (kwh). One
kilowatt-hour represents a power expenditure of 1000 watts in one hour.

How many joules of energy are represented by 100 kwh?

Solution:

1 kwh = 1000 watt * 1 hour * 3600 s/hour, or

1 kwh = 3.6*10^6 watt*s

1 watt = 1 N*m/s, therefore

1 kwh = 3.6*10^6 *(N*m/s) * s = 3.6*10^6 N*m

1 joule = 1 N*m, therefore

1 kwh = 3.6*10^6 joules, and

100 kwh = 3.6*10^8 joules

Do the

 calculations

I encourage you to repeat the calculations that I have presented in this lesson to confirm that you get the same results. Experiment with the scenarios, making changes, and observing the results of your changes. Make certain that you can explain why your changes behave as they do.

Resources

I will publish a module containing consolidated links to resources on my
Connexions web page and will update and add to the list as additional modules
in this collection are published.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Energy -- Power for Blind Students

	
File: Phy1200.htm

	
Keywords:

 	
physics

	
accessible

	
accessibility

	
blind

	
graph board

	
protractor

	
screen reader

	
refreshable Braille display

	
JavaScript

	
trigonometry

	
potential energy

	
work

	
gravitational potential energy

	
elastic potential energy

	
kinetic energy

	
mechanical energy

	
total mechanical energy

	
power

	
watt

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

-end-

Solutions

Chapter 3. Manual Creation of Tactile Graphics

Table of Contents

 	

Preface

 	

General

	

Prerequisites

	

Viewing tip

 	

Figures

		

	

Supplemental material

	

	

Discussion

 	

Scalable vector graphics

	

Download the svg file

	

The need for graphics in physics

	

A range of options

	

Manual embossing

	

Resources

	

Miscellaneous

Preface

General

This module is part of a collection of modules designed to make physics
concepts accessible to blind students.

See

http://cnx.org/content/col11294/latest/

 for the main page of the
collection and

http://cnx.org/content/col11294/latest/#cnx_sidebar_column

 for the table of
contents for the collection.

The collection is intended to supplement but not to
replace the textbook in an introductory course in high school or college
physics.

This module describes one of the ways for creating tactile graphics for the modules in this collection.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these modules:

 	
A graph board for plotting graphs and vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
A protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
An audio screen reader that is compatible with your operating system,
	such as the NonVisual Desktop Access program (NVDA), which is freely
	available at

	http://www.nvda-project.org/

.

	
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor
	(

http://www.userite.com/ecampus/lesson1/tools.php

).

	
A device to create Braille labels. Will be used to label graphs
	constructed on the graph board.

As you will see in this module, there are some additional requirements
	for creating and exploring tactile graphics.

The minimum prerequisites for understanding the material in these modules
	include:

 	
A good understanding of algebra.

	
An understanding of the use of a graph board for plotting graphs and
	vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
An understanding of the use of a protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
A basic understanding of the use of sine, cosine, and tangent from
	trigonometry (

http://www.clarku.edu/~djoyce/trig/

).

	
An introductory understanding of JavaScript programming (

http://www.dickbaldwin.com/tocjscript1.htm

 and

http://www.w3schools.com/js/default.asp

).

	
An understanding of all of the material covered in the earlier modules
	in this collection.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
while you are reading about them.

Figures

 	

Figure 1

. Mirror image from file 1.svg.

	

Figure 2

. Normal image from file 1.svg.

	

Figure 3

. Text values for Braille keys in file
	1.svg.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

Discussion

I will begin this discussion with a discussion of a type of graphics file
known as Scalable Vector Graphics file.

Scalable vector graphics

There are a variety of different formats for storing graphics information in
disk files. One of those formats, and the one that I have adopted for this
collection of modules, is called

Scalable
Vector Graphics

. Files containing Scalable Vector Graphics information
typically have an extension of svg, and are often referred to
simply as svg files.

You will find a good explanation of Scalable Vector Graphics in the Wikipedia
article titled

Scalable Vector Graphics

.

Can be scaled without corruption

For my purposes, the major advantage of using svg files is that they can be
enlarged or reduced in size without corrupting the image. For example, the images in the svg files
that I will provide are designed to be printed on 8.5x11 inch paper stock.
However, if you have access to a printer that can handle larger paper, you can
use a program such as the

free svg editing
program named Inkscape

 to enlarge the images without corrupting them. You
can then print the larger images on larger paper stock.

Download the svg file

You will need to download an svg graphics file named 1.svg to complete the work in
this module.

Click this link to download a zip file named
1004.zip

 containing the file named 1.svg.

The need for graphics in physics

It is very difficult to learn introductory physics without having access to a variety of
pictures, charts, and diagrams. Many of you are likely to need those materials
in tactile form. While we can transmit words, sounds, and
pictures via the Internet, we still don't have the ability to transmit tactile
graphics via the Internet.

This means that it will be necessary for you to use the svg files that I provide
and to make your own arrangements for having those files converted into tactile
graphics.

A range of options

Depending on the resources that you have available, you have a range of options for the
creation and exploration of tactile graphics.

My plan is to provide the necessary svg graphics files to produce tactile
graphics for a range of different resources.

Machine embossing of tactile graphics

One of the available options for creating (and exploring) machine-embossed tactile graphics
(on paper) is the

IVEO Hands on
Learning System

 from

ViewPlus Technologies

.
(See the

disclaimer

 below.)

The svg files that I will provide are intended to be compatible with
the IVEO Learning System.

The opposite end of the budgetary spectrum

At the opposite end of the budgetary spectrum is the student whose only
resource for tactile graphics is a human embosser using various tools from a

tactile graphics kit

 to manually emboss printed versions of the
svg files. The files (and the supplementary information that I will provide)
are designed to support manual embossing as well as machine embossing. (The
file that I will provide for this module is intended for manual
embossing only. Future modules will include the necessary files for machine
embossing.)

Steps

There are two steps involved in first creating and then using tactile graphics:

 	
Embossing a paper copy of the graphic

	
Exploring the embossed copy of the graphic using touch, and in some
	cases, sound.

Embossing the graphic

There are at least two ways to emboss the paper copy of the graphic:

 	
Manual embossing

	
Machine embossing using a graphics-compatible Braille
printer such as those
from

ViewPlus Technologies

.

Exploring the graphic

There are at least two
possibilities for exploring the graphic:

 	
Exploration using touch alone.

	
Exploration using the IVEO Hands on Learning System with a ViewPlus touchpad, which adds sound to the mix.

Several combinations available

Depending on available resources, individual students might find themselves
combining either of the two embossing methods with either of the two exploration
methods. The files that I will provide for many of the modules will be designed to satisfy all
four possible
combinations.

However, my guess is that most students will find themselves in a situation where they
are limited to manual embossing and exploration by touch only when they first begin
studying the modules in this collection. Therefore, I will limit the discussion
in this module to the use of the svg files for manual embossing. I will explain how to use the svg
files for the other three combinations in future modules

Manual embossing

If there is at least one
	sighted person who is willing to assist you, you should be able to use the
	svg files that I will provide to create manually-embossed tactile graphics for the images in this
	collection. I will refer to that sighted person as "your
	assistant" in the following discussion.

Description of the scenario

This scenario assumes that you don't have access to an embossing
	printer and you don't have access to the computer and touchpad resources
	necessary to support the IVEO system. Therefore, you will need to arrange
	for an assistant to manually emboss the images for you. You will also need to explore the
	embossed image by touch alone, using the supplementary information that I
	will provide in this module.

The file named 1.svg

For this scenario, you will need to extract and print the file named 1.svg from
the zip file mentioned

earlier

. You could use the
free IVEO Viewer software to print it on an ordinary non-embossing printer.
However, since this scenario has no IVEO involvement, it isn't
necessary to use the IVEO Viewer software to print it. A simple alternative
approach is to

 	
Ask the your assistant to open the file
named 1.svg in either Firefox 5 (or later) or Internet Explorer 9 (or later).

	
Set Page Setup on the File menu to Portrait or Landscape as appropriate.

	
Select Print Preview

	
Use the print scaling capabilities of the browser to make the image as large as will fit on
	a single page.

	
Print the file.

Another alternative

Another alternative, (which may do a better job of maintaining the
actual size of the graphic than either browser mentioned above), is to print the
file using a free svg drawing program named Inkscape (see

http://inkscape.org/download/

).

Inkscape can appear to be rather daunting when it first appears on the
screen. However, the process of opening a file in Inkscape and printing the file can all
be handled by making simple selections from the

File

 menu.

More importantly, as I mentioned earlier, if your printer can accommodate paper that is
wider than 8.5 inches, the Inkscape program can also be used to enlarge the image in
the svg file to provide you with a larger tactile graphic image.

A scaled version of the graphic

Figure 1

 shows a scaled version of the graphic contained in the file
	named 1.svg for the benefit of your assistant who will emboss the image.
	Note that this is a mirror image of the image that is to be presented to the
	student after embossing. Having a mirror image makes it possible for the
	assistant to emboss the image from the back of the paper, producing the
	correctly-oriented image on the front of the paper.

	

	

 [image: Missing image]

Figure 3.1.

Mirror image from file 1.svg.

Mirror image from file 1.svg.

Figure 2

 shows the same image in normal (not
	mirror image) orientation.

	

	

 [image: Missing image]

Figure 3.2.

Normal image from file 1.svg.

Normal image from file 1.svg.

The image

This image is provided as a test case to allow you and your assistant to
experiment and to determine what works best for you. Much of the information and
many of the objects in the image have to do with things that you haven't learned
yet, so you shouldn't expect to understand why they are there.

Your assistant will probably notice that all of the text is printed
backwards. This is because the svg file contains a mirror image of the actual
image. In effect, your assistant will emboss the image from the back side of the
paper. When
you turn it over and explore the front side using touch, you will be exploring
the image in the orientation that it is intended to be viewed.

Your assistant will also notice that there is a (reversed) letter in a small
oblique font to the right (from her viewpoint) of each of the major text
elements in the image, plus a few other letters in that same font scattered
throughout the image. These are key characters, which are to be embossed in
Braille. I will have more to say about this later.

Manual embossing

If your assistant has experience with manual embossing, the two of
you probably know more about manually embossing tactile graphics than I do.
However, manual embossing experience is not a requirement. Just about any
sighted person should be able to emboss the images with your help.

Mostly straight lines

Most of the lines for the images in these modules will either be straight lines
or gently curving lines that can be embossed using a
serrated tracing wheel. (Serrated tracing wheels can be purchased at fabric, hobby, or craft stores.
If there is a choice, ask your assistant to purchase the wheel with the sharpest serrations.)

Just ask your assistant to emboss narrow lines once
in the center of the line, and to emboss wide lines twice, once on each side of
the line. Very wide lines can be embossed three times, once on each side and
once in the center. The use of a straight edge as a guide works very well for straight
lines. If the line is not straight, your assistant should do her best to follow
the line with the tracing wheel on a freehand basis.

A backing pad is required

Don't attempt to emboss the image with the paper on a hard surface. You will
need to place it on a backing pad of some sort so that the serrations will
penetrate the paper. A block of Styrofoam works pretty well for this purpose, as
does a piece of corrugated cardboard from a cardboard packing box. Many

tactile graphics kits

 include a backing pad, but those kits are pretty
expensive and may be overkill for your needs.

You may be
able to identify another inexpensive material for a backing pad that works even better. If
you do, I would like to hear about it so that I can pass that information along
to other students.

Don't emboss the English text characters

The most difficult thing about manually embossing the image in

Figure 1

is the task of embossing the English text labels in a form that is accessible to
a blind student. Therefore, I don't intend for your assistant to emboss that text,
unless she elects to do so using Braille

as
described below

.

Key characters

The image in the file named 1.svg contains 19 strategically placed key
characters consisting of the characters from A through S. (Other images in other
modules will have different numbers of key characters.) As mentioned earlier,
the key characters are printed in a smaller oblique font to make them easily
distinguishable from the regular text. (They are also printed as a mirror image
of the actual English character.)

Emboss the lines and Braille the key characters

Your assistant should emboss all of the lines in the image, and should
replace the smaller, oblique key characters of "A" through "S" with corresponding Braille characters
using a slate and stylus. This may be the point where you will need to help. If
your assistant doesn't know Braille, have her place the Braille template over the
character and tell you what the character is so that you can emboss it yourself.

Alternatively, your assistant can find a visual chart showing Braille characters for the alphabet at
Wikipedia. (See

http://en.wikipedia.org/wiki/Braille#Letters_and_numbers

.)

Make sure the orientation is correct

Each Braille character should be embossed in reversed orientation relative to that
chart. For example, when you turn the paper over
and touch it, you should recognize the Braille character for an "A" where the key
value "A" appears (reversed) in English text on the printed mirror image.

In addition to the key characters, you or your assistant should emboss a
Braille label of your own choosing on each image so that you can identify it
later.

You may need a flag

Some of the key characters, such as the letter "A", with a small number of
dots may be difficult for you to locate on the embossed image. Therefore, you
and your assistant may need to emboss some sort of a flag near the Braille
character to alert you of its presence. One possibility would be to use the
tracing wheel to emboss a small X next to the Braille key character. If the two
of you come up with a flag that is both effective and easy to create, I would
like to hear about it so that I can pass the information along to other
students.

Key-value pairs

Figure 3

 contains the text values associated with each of the Braille key characters
shown in

Figure 1

.

	

A: Beam supported by a diagonal cable
B: V
C: H
D: M*g
E: T
F: Ty
G: Tx
H: 30 degrees
I: The large characters are 32 pt and these characters are 16 pt
J: Note: Vectors not drawn to scale
K: Wall supporting beam
L: Vertical support vector at wall
M: Horizontal support vector at wall
N: Beam
O: Weight vector for beam
P: Horizontal component of tension vector
Q: Tension vector
R: Vertical component of tension vector
S: Physical support cable

Figure 3.3.

Text values for Braille keys in file 1.svg.

Text values for Braille keys in file 1.svg.

The text values in the right-hand column in

Figure 3

 are the text values
	that you would read if all of the text on the image were embossed in
	Braille. However, embossing all of that text in Braille would make your
	assistant's job much more difficult. Therefore, in the interest of
	simplicity, my approach will be to present the text for an individual image
	as shown in

Figure 3,

 and to provide Braille key characters on the images
	that you can use to tie the text to the image.

On the other hand

If your assistant is good at manually embossing with Braille and can spare
the time to do so, there is no reason that she can't simply emboss Braille right
over the printed text. Then, except for keys that refer to objects such as the
key labeled "M" in

Figure 2

, you and your assistant
can simply ignore the keys.

The intended operational mode

The intended operational mode is for you to locate an object of
	interest on the embossed image, locate the Braille key associated with that
	object, and then come back to

Figure 3

 to read the text associated with that
	object.

A vector diagram

Once you begin exploring the embossed image from the file named 1.svg by touch, you will discover that
there are several objects on the image that consist of heavy straight lines with
arrow heads. Those objects are what we will refer to as vectors in subsequent
modules.

This diagram includes a vertical wall on the left side of the
image. A rectangular beam protrudes horizontally from the wall towards the right
a little below the vertical center of the image. A supporting cable is attached
to the right end of the beam at an angle of 30 degrees and attaches back to the
wall above the point where the beam is attached to the wall.

The image shows the vectors associated with various forces in the
wall-beam-cable configuration along with the beam and the cable in the
background. This will be a common theme throughout this collection. A picture of
something will be presented in the background and vectors will be shown in the
foreground.

Very light gray shading

Your assistant will note that I represented the wall and the beam with a very
light gray shading and a few widely-spaced dots along the edges. I also
represented the cable as a dashed line.

I'm not sure
of the best way to emboss the beam and the wall. One approach would be to
simply use the tracing wheel and emboss the outline of the beam and the wall.
However, I'm concerned that the addition of the horizontal and
vertical lines required to do that would make it more difficult for you to
discern the more important information, which is the
location and direction of each vector.

You and your assistant will probably need to discuss this issue and determine
what works best for you in terms of identifying the location and shape of the
beam and the wall. Ideally, you will come up with a solution that can be applied
to the background pictures in other images in future modules.

One option might be to print two copies of the file and ask your assistant to
emboss only the outer frame and the background picture in one, and to emboss
everything but the background picture in the other.

If you come up with a really good idea in this regard, I
would like to hear what it is so that I can pass it along to other
students.

Resources

I will publish a module containing consolidated links to resources on my
Connexions web page and will update and add to the list as additional modules
in this collection are published.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Manual Creation of Tactile Graphics

	
File: Phy1004.htm

	
Revised: 07/02/2011

	
Keywords:

 	
physics

	
accessible

	
accessibility

	
blind

	
graph board

	
protractor

	
screen reader

	
refreshable Braille display

	
JavaScript

	
trigonometry

	
tactile graphics

	
embossing

	
IVEO

Disclaimers:

IVEO Learning System

:
	I have made positive statements about software and equipment from ViewPlus Technologies in this
	and other modules. That information is provided on the basis of the suitability of the
	ViewPlus software and equipment for the task at hand. I have no business
	relationship and receive no compensation in any form from ViewPlus.

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

-end-

Solutions

Chapter 19. Force and Motion -- Momentum, Impulse, and Conservation of Momentum

Table of Contents

 	

Preface

 	

General

	

Prerequisites

	

Viewing tip

 	

Figures

	

Listings

		

	

Supplemental material

	

	

Discussion

 	

Newton's cradle

	

Momentum

	

Impulse

	

The physics of collisions

	

Action and reaction

	

Conservation of momentum

	

Center of mass

 	

Location of the center of mass

	

Motion of the center of mass

		

	

	

Example scenarios

 	

Momentum examples

 	

A sprinter

	

A truck

	

			

Change in momentum due to change in speed and direction

	

Change in momentum due to change in speed only

	

Change in momentum due to change in direction only

		

	

Impulse examples

 	

Pushing a wagon part 1

	

Pushing a wagon part 2

	

Pushing a wagon part 3

		

	

Action and reaction example

	

Conservation of momentum
		example

	

Center of mass examples

 	

Two objects

	

Three objects

		

	

	

Do the calculations

	

Resources

	

Miscellaneous

Preface

General

This module is part of a collection (see

http://cnx.org/content/col11294/latest/

) of modules designed to make physics
concepts accessible to blind students. The collection is intended to supplement but not to
replace the textbook in an introductory course in high school or college
physics.

This module explains momentum, impulse, and the conservation of momentum in a format that is accessible to blind students.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these modules:

 	
A graph board for plotting graphs and vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
A protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
An audio screen reader that is compatible with your operating system,
	such as the NonVisual Desktop Access program (NVDA), which is freely
	available at

	http://www.nvda-project.org/

.

	
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor
	(

http://www.userite.com/ecampus/lesson1/tools.php

).

	
A device to create Braille labels. Will be used to label graphs
	constructed on the graph board.

The minimum prerequisites for understanding the material in these modules
	include:

 	
A good understanding of algebra.

	
An understanding of the use of a graph board for plotting graphs and
	vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
An understanding of the use of a protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
A basic understanding of the use of sine, cosine, and tangent from
	trigonometry (

http://www.clarku.edu/~djoyce/trig/

).

	
An introductory understanding of JavaScript programming (

http://www.dickbaldwin.com/tocjscript1.htm

 and

http://www.w3schools.com/js/default.asp

).

	
An understanding of all of the material covered in the earlier modules
	in this collection.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. Solution results.

	

Figure 2

. Change in speed only.

	

Figure 3

. Change in direction only.

	

Figure 4

. Center of mass for two objects.

	

Figure 5

. Center of mass for three objects.

Listings

 	

Listing 1

. Solution script.

	

Listing 2

. Center of mass for two objects.

	

Listing 3

. Change to add a third object.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

Discussion

This module will describe and discuss some scenarios which, never having been
seen, may be hard for a blind student to imagine. Some of those scenarios can be difficult to
believe even when you can see them.

Newton's cradle

The behavior of Newton's cradle is somewhat difficult to believe even when
you see it in operation. Newton's cradle is a gadget that is often found in novelty shops. It
typically consists of an open wood or metal frame with about five steel balls
suspended by strings on parallel beams that run from one end to the other along
the top.

Several steel balls in a row

Each ball is suspended by two strings so that the ball forms the lower vertex
of a triangle and the two equal-length strings form the sides of the triangle.
Each string is attached at the upper end to a beam. The purpose of suspending
each ball by two strings instead of suspending them on a single string is to cause all of the balls
to swing back and forth along the same straight line.

A collision

When the system is in equilibrium, the balls are lined up in a row and each
ball barely touches the one next to it. If you pull one of the balls at the end
back and then release it, allowing it to swing down, it will strike its
neighbor on the downswing.

Only the ball on the other end appears to move

Surprisingly, the neighboring ball doesn't appear to move when struck, nor
does its neighbor, nor does that neighbor's neighbor. The only ball that appears to move is
the ball at the far end of the line. That ball will be sent off in an upswing.

The process is reversed

When that ball reaches the top of its upswing, it will reverse direction,
swing back down, and collide with its neighbor. This causes the ball that was
used to start the process to be sent off in an upswing.

The process continues

Left alone, this process will continue until all of the energy in the system
has been dissipated, which can be many minutes or even hours later.

Newton's
cradle illustrates the conservation of momentum. You will find an interesting
article that explains some of the technical details at

http://en.wikipedia.org/wiki/Newton%27s_cradle.

Momentum

You learned in an earlier module that momentum is the product of the mass of
an object and the velocity of the object. Because velocity is a vector quantity,
momentum is also a vector quantity. The direction of the momentum vector is the
same as the direction of the underlying velocity vector.

A common symbol for momentum is p

A common symbol for momentum is

p

. Momentum is a derived
item in the SI system of units. In the SI system, momentum is defined as kg*m/s.

In equation form

, therefore:

 	
momentum = mass * velocity, or

	
p = m * v in units of kg*m/s

Facts worth remembering -- Momentum

 	
momentum = mass * velocity, or

	
p = m * v

The units of momentum are kg*m/s

Mass in action

Momentum can also be thought of as "mass in motion." Since all objects have mass, if an object is moving,
its mass is in motion. Therefore, the object has momentum.

Proportional to both mass and velocity

From the above

equation

, it can be seen that
an object can have a large momentum if either its mass or its velocity is large. Both
variables are of equal importance in determining the momentum of an object.

A car and a tennis ball

Consider the case of a car and a tennis ball rolling down the street at the
same speed. Because the car has greater mass, it has more momentum than the
tennis ball. However, if the car stops and the tennis ball continues to roll,
the tennis ball then has the greater momentum.

Momentum is zero at rest

The momentum of any object at rest is zero. Objects at rest do not have
momentum because their mass is not in motion.

The quantity of momentum

The quantity of momentum possessed by an object depends on:

 	
How much mass is moving, and

	
How fast the mass is moving.

For example, a small mass moving very fast can have the same momentum as a
large mass moving slowly. You sometimes hear about the major damage that a
very small piece of space junk moving at a very high speed could do if it were
to strike the International Space Station.

A bullet shot from a firearm has a very small mass, but it has a very high
velocity. Consequently, it probably has more momentum than a baseball pitched
from second base to home plate, even though the baseball has much more mass.

What happened to the dinosaurs?

Similarly, you may have heard that an asteroid with a mass that was small
relative to the mass of the earth but with an extremely high velocity led to the
extinction of the dinosaurs about 160 million years ago when it collided with
the earth in the Gulf of Mexico.

Impulse

Momentum can be changed by a force

An object with momentum can be stopped if a force is applied against it for a
given amount of time. For example, when a car approaches a red traffic light,
the driver applies the brakes. The friction of the tires on the pavement applies a
force to the car, which eventually reduces the car's velocity to zero. When the
velocity goes to zero, the momentum also goes to zero.

Therefore, the momentum of an object can be changed by applying a force to the object
over a given period of time.

Unbalanced forces cause acceleration

As you learned in earlier modules, an unbalanced force always accelerates an
object, either causing the object to speed up or causing the object to slow
down. Either way, the application of an unbalanced force to an object will change the
velocity of the object. When the velocity of the object is changed, the momentum
of the object is changed as well.

The impulse

Let's use what we know from Newton's second law to derive a concept known as

impulse

.

The product of mass and acceleration

You learned in an earlier module that force is equal to the product of mass
and acceleration:

F = m * a

where

 	
F represents Force

	
m represents mass

	
a represents acceleration

The rate of change of velocity

You also learned that acceleration is the time rate of change of velocity, or

a = (v2 - v1)/t

where

 	
v2 - v1 indicates a change in velocity during a time interval given by
t.

Combine and rearrange equations

Therefore, by substitution we can write:

F = m * (v2 - v1)/t

Multiplying both sides by t gives

F * t = m * (v2 - v1), or

F*t = m*v2 - m*v1

where

 	
F*t represents impulse

	
m*v2 and m*v1 each represent momentum

	
m*v2 - m*v1 represents a change in momentum

A change in momentum

At this point, you should recognize that the product of mass and a change in
velocity is a change in momentum.

In physics, the product of force and time is given the name

impulse

.
It follows, therefore, that

impulse

 = F*t = change in momentum

This equation is often referred to as the

impulse-momentum change
equation

.

Facts worth remembering -- The

impulse-momentum change
equation

impulse

 = F*t = change in momentum

F*t = m*v2 - m*v1

where

 	
F*t represents impulse

	
m*v2 and m*v1 each represent momentum

	
m*v2 - m*v1 represents a change in momentum

The physics of collisions

One area of physics where momentum plays a large part is the physics
of collisions. Momentum and possible changes in momentum are involved in the interactions
among all moving objects, even when the changes in momentum are not visually
obvious.

For example, the passage of a moving iron object through the magnetic field
of a moving magnet will cause changes in the momentum of both the iron object
and the magnet, but the result may not be obvious.

Collisions may be more obvious

The type of interaction
that we call a collision may be the type of interaction that is the most
familiar to us. Collisions between objects happen all the time. This module will
discuss several examples that involve collisions.

Collisions in everyday life

I may be wrong, but I suspect that as a blind student, you may be more
attuned to collisions in everyday life than your fellow sighted students.
For example, each time the end of your cane touches an object, a collision has
occurred. Regardless of how light the touch, you probably recognize that collision and take appropriate action.

The impulse-momentum change equation

A law associated with the impulse-momentum change

equation

 may be expressed
in the following way (see

http://www.physicsclassroom.com/Class/momentum/U4l1b.cfm

):

In a collision, an object experiences a force for a specific amount of time
that results in a change in momentum. The result of the force acting for the
given amount of time is that the object's mass either speeds up or slows down
(or changes direction). The impulse experienced by the object equals the change
in momentum of the object.

In equation form,

F * t = m * (v2 - v1)

All objects in a collision experience an impulse

When a collision occurs, each object involved in the collision experiences an impulse. The impulse
is equal to the change in momentum.

A hypothetical collision with a punching bag

In gyms where students practice boxing, there is usually a large object called a punching
bag. Some punching bags are large cylindrical containers made of leather or
some other pliable material filled with something like sand. Typically, they
hang from the ceiling or from an overhead beam.

A void below the punching bag

Often, the punching bag is not attached to the floor and the bottom of
the punching bag is often several feet above the floor. This leaves a void between
the bottom of the punching bag and the floor.

A walk through the gym

Assume that you, as a blind student are walking through a gym that contains
a punching bag of the type described above. Because of the void, you may not detect the presence of the
punching bag with your cane and you might walk directly into the punching bag.

A force over a short period of time

Unlike a solid wall, the punching bag probably wouldn't stop your forward
progress instantly. Instead, there would probably be a period of time during
which the bag would exert a force on you and you would exert an equal but
opposite force on the bag.

Initially, both you and the heavy punching bag would probably move in the
direction that you are walking. Shortly thereafter, your forward
velocity would probably go to zero.

Then the punching bag would probably push you
backwards giving you a negative velocity as the bag swings like a pendulum. However the collision plays itself out, you would experience an impulse that
would change your momentum and the momentum of the punching bag as well.

An ideal assumption

If we assume (ideally) that the force exerted on you by the bag is
constant at ten newtons for a total of five seconds, the impulse would be equal
to 50*N*s.

(In reality, the force would vary during the time interval and the
computation of the impulse would be somewhat more complicated. For a
time-varying force, the impulse is the area under a graph of force versus time.
The average of the force over the given time interval cal also be used to
compute the impulse when the force is not constant.)

The effect of the time interval

The impulse, or the change in momentum, is equal to the product of the force
and the time. Therefore, a large force over a short period of time can produce
the same change in momentum as is produced by a smaller force over a longer
period of time.

The effect on the object experiencing the change in momentum can be quite
different for the two cases. This is particularly true when the human body
experiences a change in momentum. Among other things, air bags in cars are
designed to lengthen the time over which the change in momentum occurs for a
human body involved in a collision. In addition, the air bag can also spread the
force over a larger portion of the body, which can reduce the damage to the body
caused by the change in momentum.

Another representation of units

In any event, if we substitute the units for the newton in the above
expression, we get

50*N*s = 50*(kg*m/s^2)*s = 50*kg*m/s

Two ways to represent the units of an impulse

Therefore, we can represent the units for an impulse as either N*s or as
kg*m/s. You should recognize the latter as the product of mass and velocity,
which are the same units as momentum.

In a collision, the impulse experienced by an object is always equal to the
change in momentum experienced by the object.

A Super Ball

Consider the case of a

Super Ball

 bouncing off of a solid concrete floor.

(Super Ball is a brand name and registered trademark of Wham-O Incorporated.)

The main characteristic of a Super Ball is its ability to bounce almost as
high as the height from which it was released when dropped onto a solid surface.
As a result, when the Super Ball collides with the floor, it demonstrates a strong

rebound effect

. The greater the rebound
effect, the greater will be the acceleration, momentum change, and impulse in a
collision.

A rebound collision

A rebound collision involves a change in direction in addition to a change in
speed. Because the direction changes, there is a large velocity change even if
the magnitude of the velocity stays the same.

Elastic collision

Collisions in which objects rebound with the same speed (and thus, the same
momentum and kinetic energy) as they had prior to the collision are known as

elastic collisions

.

Stated differently, an elastic collision is a collision between two bodies in
which the total kinetic energy of the two bodies after the collision is equal to
their total kinetic energy before the collision. Elastic collisions occur only
if there is no net conversion of kinetic energy into other forms.

Facts worth remembering -- Elastic collision

An elastic collision is a collision between two bodies in which
			the total kinetic energy of the two bodies after the collision is
			equal to their total kinetic energy before the collision.

Energy conversion

A future module will explain kinetic energy and other forms of energy, such
as potential energy in detail. Briefly, kinetic energy is energy possessed by a
moving object simply because it is moving. For example, it hurts more to be hit
by a fast moving baseball than to be hit by a slow moving baseball, simply
because the collision with a fast moving baseball imparts more energy into your
body. In other words, the kinetic energy possessed by the fast-moving baseball
is converted into pain in your body.

Characteristics of an elastic collision

An elastic collision is typically characterized by a large velocity change, a
large momentum change, a large impulse, and a large force.

While the case of a Super Ball bouncing on a solid concrete floor isn't a
perfect elastic collision, it comes very close. The amount of kinetic energy
that is converted into other forms of energy during each bounce is very low, and
the ball will continue bouncing for a very long time with the height of each
bounce being almost as high as the height of the previous bounce.

Action and reaction

Two objects collide when they make contact while one or both are moving. As is
the case with all interactions involving two or more moving objects, a collision
results in a force being applied to all of the objects involved in the
collision. The behavior of such collisions is governed by Newton's laws of
motion.

Newton's third law

One paraphrased version of Newton's third law (see

http://www.physicsclassroom.com/Class/momentum/u4l2a.cfm

) reads:

... in every interaction, there is a pair of forces acting on the two
interacting objects. The size of the force on the first object equals the size
of the force on the second object. The direction of the force on the first
object is opposite to the direction of the force on the second object. Forces
always come in pairs - equal and opposite action-reaction force pairs.

According to Newton's third law, when two objects are involved in a
collision, the two objects experience forces that are equal in magnitude and
opposite in direction.

In most cases, the collision will cause one object to gain momentum and the
other object to lose momentum. This, in turn, will cause one object to speed up
and the other object to slow down.

Railroad cars

As a child, I grew up living next to a very large railroad yard. I was
accustomed to hearing the sounds of controlled collisions between railroad cars.

How railroad couples work

The devices that hold railroad cars together in a train are activated by a
controlled collision. While one railroad car is either standing still, or moving at a
slow speed, another railroad car purposely collides with the first car. When that
happens, the two railroad cars become fastened together (coupled).

The distribution of momentum

Prior to the collision, each car possesses a given amount of momentum, which
can be zero for a car at rest or non-zero for a car in motion. After the
collision, the momentum of each car will have changed.

The conservation of momentum -- a preview

As I will explain later,
(except for the conversion of some kinetic energy into other forms, such as sound
energy) the two cars coupled together will possess the total amount of momentum
that was possessed by the individual cars prior to the collision. This typically means
that one car speeds up and the other car slows down.

A change in momentum

During the time frame surrounding the instant of the collision, each car
experiences a change in momentum. With sufficiently accurate measuring devices,
you could measure and record the rate of change of momentum during that short
time frame.

Accelerations are not necessarily equal

Although the forces experienced by the objects are equal in magnitude, the
changes in velocity (accelerations) experienced by the two objects are not
necessarily equal.

The acceleration is equal to...

As we learned in an earlier module, the acceleration
experienced by an object is proportional to the applied force and inversely proportional
to the mass of the object. Therefore, different masses
experiencing the same magnitude of force will experience different magnitudes of
acceleration.

Kicking a lightweight aluminum can

Consider what happens when someone leaves an empty lightweight aluminum drink
can on the floor and you accidently kick it with your bare foot while walking
briskly across the room. The can exerts a force on your foot, which fortunately
doesn't hurt too much because of the small mass of the can. Your foot exerts an
equal and opposite
force on the can that probably sends it flying across the room.

The velocity of the can changes by a large amount, going from zero to a
velocity that sends it flying. Thus, the acceleration of the can is large.

The velocity of your foot, on the other hand, changes very little at the
moment of impact as a result of its large mass (although your muscular reaction
might be such as to slow the foot down shortly thereafter). Thus, the magnitude
of the acceleration of your foot due solely to the collision is small.

Kicking a heavy can

Now consider the same scenario except that this time, the can contains your brother's collection of rocks. In this case, the
acceleration of the can due to the collision with your foot would probably be quite small, and
the (negative) acceleration of your foot due to the collision might be much larger than
with the lightweight can.

The can of rocks probably wouldn't go flying across the room, but might
simply turn over, spilling the rocks on the floor.

The negative acceleration experienced by your foot might result in some
broken toes.

Once again, the forces would be equal in magnitude and opposite in direction,
but the acceleration of each object would be inversely proportional to the mass
of the object.

Equal and opposite forces

When you kick the can, your foot would exert a force on the can in the
direction of motion of your foot. The can would exert a force on your foot that
is equal in magnitude but opposite in direction.

The forward force on the can would cause it to gain velocity in the direction
that your foot is moving. The backward force on your foot would cause your foot to slow
down.

Equal acceleration

In the unlikely event that the mass of the can is exactly equal to
the mass of your foot, the negative acceleration experienced by your foot would
be equal to the positive acceleration exerted on the can. That is the one case
where not only the magnitudes of the forces, but also the magnitudes of the
accelerations would be equal.

For collisions between equal-mass objects, each object experiences the same
acceleration.

Conservation of momentum

When two objects interact in an

isolated system

, the total momentum
of the two objects before the interaction is equal to the total momentum of the
two objects after the interaction. The momentum lost by one
object is gained by the other object.

Facts worth remembering -- Isolated system

An isolated system is a system that is free from the influence of a net
external force that alters the momentum of the system.

The total momentum of a collection of objects in a system is conserved. The total amount of momentum is constant.

Many forms of interaction are possible

There are many ways that two objects can interact. For example, when a car
pulls away from a stoplight, it gains momentum by exerting frictional forces on
the surface of the earth. When that happens, the earth loses an equal amount of
momentum. (Fortunately, this represents a very small fraction of the earth's
momentum, so the loss of momentum isn't noticeable.)

When the driver applies the brakes and stops the car at the next stop light
(by exerting frictional forces on the surface of the earth), the car loses
all of its momentum and the earth gains an equal amount of momentum. (Once
again, this represents a very small fraction of the earth's momentum, so the
gain of momentum isn't noticeable.)

Railroad cars and controlled collisions

Earlier in this module, I described a process where controlled collisions
are used to couple railroad cars together.

While one railroad car is either standing still, or moving at a slow speed, another railroad car purposely collides with that car. When that happens, the two railroad cars become fastened together (coupled).

Distribution of momentum

Prior to the collision, each car possesses a given amount of momentum, which can be zero for a car at rest or non-zero for a car in motion. After the collision, the momentum of each car will have changed.

Except for the conversion of some kinetic energy into other forms, such as sound energy, the two cars coupled together will possess the total amount of momentum that was possessed by the individual cars prior to the collision.

This typically means that one car speeds up and the other car slows down.
During the time frame surrounding the instant of the collision, each car
experiences a change in momentum.

A logical proof of the conservation of momentum

We already know that when two objects interact, each object exerts a force on
the other object. The two forces are equal in magnitude and opposite in
direction.

We can probably agree that when two objects interact, the amount of time that
object-A interacts with object-B is the same as the amount of time that object-B
interacts with object-A.

Therefore, if the forces are equal and opposite, and the times are the same,
we can write

Fa*t = -Fb*t

where

 	
Fa and Fb represent forces exerted on objects A and B respectively.

	
t represents the time during which the objects interact.

Impulses acting on objects A and B

You should recognize these terms as the impulses acting on objects A and B.
Therefore, the impulses acting on the two objects are equal and opposite.

Impulses are equal and object

You learned earlier that the impulse acting on an object is equal to the
change in momentum of the object. If the impulses acting on the two objects are
equal and opposite, then the change in momentum experienced by the two objects
must be equal and opposite.

We can

express this in equation form

as

ma*(va2 - va1) = -mb*(vb2 - vb1)

where

 	
ma and mb are the masses of objects A and B respectively

	
(va2 - va1) is the change in velocity of object-A

	
(vb2 - vb1) is the change in velocity of object-B

The law of conservation of momentum

This equation is a statement of the law of conservation of momentum. The
change in momentum experienced by object-A is equal to and opposite of the
change in momentum experienced by object-B.

Stated differently, the momentum
lost by object-A is gained by object-B, or vice-versa.

That being the case, the
total momentum possessed by the system containing object-A and object-B remains
unchanged by the interaction of the two objects. The total momentum of the
system is conserved.

Facts worth remembering -- The law of conservation of momentum

For a collision occurring between object-A and object-B in an
			isolated system, the total momentum of the two objects before the
			collision is equal to the total momentum of the two objects after
			the collision. (By total
momentum we mean the vector sum of the individual momenta of the objects.)

Bowling ball and bowling pins

Bowling is a game where the players roll a heavy ball down a long smooth
wooden platform in an attempt to knock down ten heavy wooden objects (bowling
pins) arranged in
a triangle at the end of the platform. The bowling pins are shaped something
like a flower vase that is larger at the bottom than at the top. Thus, each
bowling pin has a low center of gravity.

When the ball strikes the cluster of bowling pins, there are eleven objects
involved in a conservation of momentum process. The momentum that is lost by the
bowling ball is distributed among the ten bowling pins, but the momentum is
probably not distributed evenly among the bowling pins. There is a lot of chaos
at the time of impact with the bowling ball colliding with the pins, pins
colliding with other pins, etc. Some of the energy is also converted to sound.

Center of mass

Interactions between parts of a system transfer momentum between the parts,
but do not change the total momentum of the system. We can define a
point called the center of mass that serves as an average location of a system
of parts.

The center of mass need not necessarily be at a location that is either in or on one of the
parts. For example, the center of mass of a pair of heavy rods connected at one
end so as to form a "V" shape is somewhere in space between the two rods.

Having determined the center of mass for a system, we can treat the mass of
the system as if it were all concentrated at the center of mass.

Location of the center of mass

For a system composed of two masses, the center of
mass lies somewhere on a line between the two masses. The center of mass is a weighted average of the positions of the two
masses.

Facts worth remembering -- Center of mass for two objects

For a pair of masses located at two points along the x-axis, we can write

xcm = (m1*x1/M) + (m2*x2/M)

where

 	
xcm is the x-coordinate of the center of mass

	
m1 and m2 are the values of the two masses

	
x1 and x2 are the locations of the two masses

	
M is the sum of m1 and m2

Multiple masses in three dimensions

When we have multiple masses in three dimensions, the definition of the
center of mass is somewhat more complicated.

Facts worth remembering -- Center of mass for many objects

Vector form:

rcm = sum over all i(mi*ri / M)

Component form:

xcm = sum over all i(mi*xi / M)

ycm = sum over all i(mi*yi / M)

zcm = sum over all i(mi*zi / M)

where

 	

Vector form

 	
rcm is a position vector describing the location of the
					center of mass

	
ri are position vectors describing the locations of all
					the masses

	
mi are masses for i=1, i=2, etc.

				

	

Component form

 	
xcm, ycm, and zcm are the locations of the center of mass
				along 3-dimensional axes.

	
mi are masses for i=1, i=2, etc.

	
xi, yi, and zi are the locations of the masses along
				3-dimensional axes for i=1, i=2, etc.

	
M is the sum of all of the masses

				

Motion of the center of mass

It can be shown that in an isolated system, the center of mass must move with constant
velocity regardless of the motions of the individual particles.

It can be shown that in a non-isolated system, if a net external force acts on a system, the
center of mass does not move
with constant velocity. Instead, it moves as if all the mass were concentrated there into
a fictitious point particle with all the external forces acting on that point.

Example scenarios

This section contains explanations and computations involving momentum,
impulse, action and reaction, and
the conservation of momentum.

Momentum examples

This section contains several examples involving momentum

A sprinter

Use the Google calculator to compute the momentum of a 70-kg sprinter running
30 m/s at 0 degrees.

Answer: 2100 kg*m/s at 0 degrees

A truck

Use the Google calculator to compute the momentum in kg*m/s of a 2205-lb
truck traveling 33.6 miles per hour at 0 degrees when the changes listed below
occur:

 	
Initial momentum

	
Momentum when velocity is doubled

	
Momentum at initial velocity when mass is doubled

	
Momentum when both velocity and mass are doubled

Answers:

1. Enter the following into the Google calculator and press Enter to produce
the results shown.

 	
convert 2205 lb to kg = 1000.17118 kilograms

	
convert 33.6 mph to m/s = 15.020544 meters / second

	
1000 kg*15 m/s = 15000 m kg / s

Therefore, the initial momentum = 15000*kg*m/s at 0 degrees

2. 1000 kg*30 m/s = 30000 m kg / s at 0 degrees

3. 2000 kg*15 m/s = 30000 m kg / s at 0 degrees

4. 2000 kg*30 m/s = 60000 m kg / s at 0 degrees

Change in momentum
due to change in speed and direction

A car with a weight of 10000 newtons is moving in a direction of 90 degrees at
40
m/s. After going around a curve in the road, the car is moving in a direction of
0 degrees at 20 m/s. What is the change in momentum of the car?

Solution:

While this problem could be solved using the Google calculator, because of
the number of steps involved, JavaScript is probably a better approach.

The solution script for this problem is shown in

Listing 1

.

Example 19.1.
 <!---------------- File JavaScript01.html --------------------->
<html><body>
<script language="JavaScript1.3">

//The purpose of this function is to receive the adjacent
// and opposite side values for a right triangle and to
// return the angle in degrees in the correct quadrant.
function getAngle(x,y){
 if((x == 0) && (y == 0)){
 //Angle is indeterminate. Just return zero.
 return 0;
 }else if((x == 0) && (y > 0)){
 //Avoid divide by zero denominator.
 return 90;
 }else if((x == 0) && (y < 0)){
 //Avoid divide by zero denominator.
 return -90;
 }else if((x < 0) && (y >= 0)){
 //Correct to second quadrant
 return Math.atan(y/x)*180/Math.PI + 180;
 }else if((x < 0) && (y <= 0)){
 //Correct to third quadrant
 return Math.atan(y/x)*180/Math.PI + 180;
 }else{
 //First and fourth quadrants. No correction required.
 return Math.atan(y/x)*180/Math.PI;
 }//end else
}//end function getAngle

document.write("Start Script </br>");

var weight = 10000//N
var g = 9.8// m/s^2
//Find the mass of the car
var mass = weight/g;// kg

var ang1 = 90;//initial angle in degrees
var ang2 = 0; //final angle in degrees

var speed1 = 40;//initial speed in m/s
var speed2 = 20;//final speed in m/s

var ang1r = ang1*Math.PI/180;//initial angle in radians
var ang2r = ang2*Math.PI/180;//final angle in radians

//Remember, momentum is a vector quantity and momenta must
// be added and subtracted using vector arithmetic.

//Compute the components of the change in momentum.
var P1x = mass * speed1 * Math.cos(ang1r);
var P1y = mass * speed1 * Math.sin(ang1r);
var P2x = mass * speed2 * Math.cos(ang2r);
var P2y = mass * speed2 * Math.sin(ang2r);
var deltaPx = P2x-P1x;//change in horizontal component
var deltaPy = P2y-P1y;//change in vertical component

//Compute the magnitude of the change in momentum using
// the Pythagorean theorem.
var deltaPm = Math.sqrt(deltaPx*deltaPx + deltaPy*deltaPy);

//Compute the angle of the change in momentum usiing
// trigonometry.
var deltaPa = getAngle(deltaPx,deltaPy);

document.write("The givens." + "</br>");
document.write("weight = " + weight.toFixed(0)
 + " kg</br>");
document.write("speed1 = " + speed1.toFixed(0)
 + " m/s</br>");
document.write("angle 1 = " + ang1.toFixed(0)
 + " degrees</br>");
document.write("speed2 = " + speed2.toFixed(0)
 + " m/s</br>");
document.write("angle 2 = " + ang2.toFixed(0)
 + " degrees</br>");

document.write("Computed mass." + "</br>");
document.write("mass = " + mass.toFixed(0) + " kg</br>");

document.write("Components of momentum vectors." + "</br>");
document.write("P1x = " + P1x.toFixed(0) + "</br>");
document.write("P1y = " + P1y.toFixed(0) + "</br>");
document.write("P2x = " + P2x.toFixed(0) + "</br>");
document.write("P2y = " + P2y.toFixed(0) + "</br>");

document.write("Components of momentum change vectors."
 + "</br>");
document.write("deltaPx = " + deltaPx.toFixed(0) + "</br>");
document.write("deltaPy = " + deltaPy.toFixed(0) + "</br>");

document.write("Magnitude and angle of change vector."
 + "</br>");
document.write("deltaPm = " + deltaPm.toFixed(0)
 + " m kg/s</br>");
document.write("deltaPa = " + deltaPa.toFixed(0)
 + " degrees</br>");

document.write("End Script");

</script>
</body></html>

The comments in

Listing 1

 explain the steps involved
in finding the solution.

The output produced by

Listing 1

 is shown in

Figure
1

 with the magnitude and angle of the vector that describes the change of
momentum at the end.

	

 Start Script
The givens.
weight = 10000 kg
speed1 = 40 m/s
angle 1 = 90 degrees
speed2 = 20 m/s
angle 2 = 0 degrees
Computed mass.
mass = 1020 kg
Components of momentum vectors.
P1x = 0
P1y = 40816
P2x = 20408
P2y = 0
Components of momentum change vectors.
deltaPx = 20408
deltaPy = -40816
Magnitude and angle of change vector.
deltaPm = 45634 m kg/s
deltaPa = -63 degrees
End Script

Figure 19.1.

Solution results.

Solution results.

I find it interesting that the magnitude of the change in momentum is
	greater than the magnitude of either the initial or final momentum.

Change in
	momentum due to change in speed only

What happens if the car in the previous example changes speed but doesn't
change direction.

Solution:

Change the given conditions in the script in Listing 1 to those shown at the
beginning of

Figure 2

.

	

 Start Script
The givens.
weight = 10000 kg
speed1 = 40 m/s
angle 1 = 90 degrees
speed2 = 20 m/s
angle 2 = 90 degrees
Computed mass.
mass = 1020 kg
Components of momentum vectors.
P1x = 0
P1y = 40816
P2x = 0
P2y = 20408
Components of momentum change vectors.
deltaPx = -0
deltaPy = -20408
Magnitude and angle of change vector.
deltaPm = 20408 m kg/s
deltaPa = 270 degrees
End Script

Figure 19.2.

Change in speed only.

Change in speed only.

This change causes the car to slow down, but to continue in the same
	direction. As a result, the angle of the change in momentum is an angle that
	is opposite to the direction that the car is moving. The magnitude of the
	change in momentum depends entirely on the initial and final speeds.

Change in
momentum due to change in direction only

What happens if the car in the previous example changes direction but doesn't
change speed?

Solution:

Change the given conditions in the script in

Listing 1

 to those shown at the
beginning of

Figure 3

. This scenario simulates the car
making a 10-degree turn to the right without changing speed.

	

 Start Script
The givens.
weight = 10000 kg
speed1 = 40 m/s
angle 1 = 90 degrees
speed2 = 40 m/s
angle 2 = 80 degrees
Computed mass.
mass = 1020 kg
Components of momentum vectors.
P1x = 0
P1y = 40816
P2x = 7088
P2y = 40196
Components of momentum change vectors.
deltaPx = 7088
deltaPy = -620
Magnitude and angle of change vector.
deltaPm = 7115 m kg/s
deltaPa = -5 degrees
End Script

Figure 19.3.

Change in direction only.

Change in direction only.

Impulse examples

This section contains several examples involving the impulse.

Pushing a wagon part 1

1. What is the impulse experienced by pushing a 10-kg wagon that was
initially at rest, with a constant force of 2 newtons for a period of 3 seconds?

Answer:

The impulse is given by the product of force and time. The mass of the wagon
is superfluous for this question.

impulse = 2 N * 3 s = 6*N*s

Pushing a wagon part 2

2. What is the acceleration of the wagon in question 1 above?

Answer:

Now we do need to know the mass.

The most straightforward solution comes from the fact that we know the mass
and that the force is uniform. Therefore,

F = m*a, or

a = F/m = 2N/10kg = 0.2 m/s^2

A more interesting solution comes from the fact that since

impulse = F*t, and

F = m*a, then

impulse = m*a*t, or

a = impulse/(m*t) = 6*N*s/(10*kg*3*s) = 0.2 m/s^2

Pushing a wagon part 3

3. What is the velocity at the end of the 3-second interval in question 1
above.

Answer:

The impulse is equal to the change in momentum, and the initial velocity is
0.

impulse = m*(v2 - v1) = m*v2, or

v2 = impulse/m = 6*N*s/(10*kg) = 0.6 m/s

We can check that answer by knowing that the acceleration is uniform at 0.3
m/s^2 for 3 s = 0.6 m/s.

Action and reaction example

A dip in the pool

You have a body mass of 70 kg. You are on your knees on an inflatable raft in
a swimming pool. The raft has a mass of 1
kg. Your outstretched hands are about two meters from a safety rope that is strung across the pool.

You decide to launch yourself from the raft to catch the rope, exerting a force
with a horizontal component of
5 newtons. (You assume that the vertical component of your launching force will
take care of the downward pull of gravity, allowing you to fly in a parabolic
arc to the rope.) Assuming uniform acceleration (which is unrealistic but we
will assume that anyway), how long will it take you to fly
through the air to reach the rope?

Answer:

The force that you exert on the raft will be equal and opposite to the force
that the raft exerts on you. Therefore,

F = my*ay = -mr*ar

where

 	
my and mr are the mass of you and the raft respectively

	
ay and ar are the accelerations experienced by you and the raft
	respectively

Therefore

ay = F/my = 5N/70kg = 0.07143 m/s^2 toward the rope

ar = -F/mr = -5N/1kg = -5.00000 m/s^2 away from the rope

We learned in an earlier module that given a constant acceleration, the
distance traveled versus time is:

d = v0t + 0.5*a*t^2

In this case, v0 is zero, so

d = 0.5*ay*t^2, or

t = sqrt(d/(0.5*ay)), or

t = sqrt(2m/(0.5*0.07143m/s^2)) = 7.48324 seconds

I doubt that you will stay in the air long enough to reach the rope.

During that time period, the raft will travel the following distance in the
opposite direction (assuming no resistance from the water).

d = 0.5*ar*t^2, or

d = 0.5*(-5m/s^2)*(7.48324s)^2 = -140 meters

Conservation of momentum example

Railroad cars

Getting back to my example of coupling railroad cars, when the collision has
been completed, the two masses have effectively been joined into a single mass
and they are moving at the same velocity.

In that case, we can write the above

equation

 as

ma*(v2 - va1) = -mb*(v2 - vb1)

ma*v2 +mb*v2 = ma*va1 +mb*vb1

v2 = (ma*va1 +mb*vb1)/(ma + mb)

where

 	
ma an mb represent the masses for Car-A and Car-B respectively

	
v2 is the velocity of the coupled cars after the collision

	
va1 and vb1 represent the initial velocities for Car-A and Car-B
	respectively

Then for any set of assumed mass values for the railroad cars and assumed
values for the initial velocities, we can calculate the final velocity of the
coupled pair of railroad cars.

Scenario #1: Assume that the two railroad cars are just alike and empty
giving them the same mass. Also assume that the initial velocity for Car-A is 10
m/s and the initial velocity for Car-b is 0.

Question: What would be the final velocity of the coupled railroad cars?

Answer: For this scenario, we have

v2 = (ma*va1 +mb*vb1)/(ma + mb), or

v2 = (ma*10)/2*ma = 5 m/s

The final velocity of the pair of coupled cars is half the initial velocity
of the car that was moving.

Scenario #2: Now assume that due to loading, Car-A has twice the mass of
Car-B, the initial velocity for Car-A is 10m/s and the initial velocity for
Car-B is 0.

Question: What would be the final velocity of the coupled railroad cars?

Answer: For this scenario, we have

v2 = (ma*va1 +mb*vb1)/(ma + mb), or

v2 = (ma*va1)/(ma + 0.5ma), or

v2 = ma*10/1.5*ma = 6.67 m/s

When the car at rest is less massive than the car in motion, the final
velocity is a little higher than when the two cars have the same mass.

Scenario #3: Finally, assume that due to loading, Car-A has twice the mass of
Car-B, the initial velocity for Car-A is 10m/s and the initial velocity for
Car-B is 5m/s.

Question: What would be the final velocity of each railroad car?

Answer: For this scenario, we have

v2 = (ma*va1 +mb*vb1)/(ma + mb), or

v2 = (ma*10 +0.5ma*5)/(1.5*ma), or

v2 = (10/1.5) + (0.5*5/1.5) = 8.33 m/s

When both cars are already moving in the same direction, the final velocity
in that direction is greater than when one of the cars is stationary.

Center of mass examples

This section contains solutions to problems involving the center of mass.

Two objects

Two objects are located on a flat lawn with the following mass values and
locations:

 	
obj1m = 15 kg

	
obj1x = 1 m

	
obj1y = 5 m

	
obj2m = 3 kg

	
obj2x = 4 m

	
obj2y = 2 m

What are the coordinates of the center of mass?

Solution:

A JavaScript script that will solve this problem is shown in

Listing 2

.

Example 19.2.
 <!---------------- File JavaScript02.html --------------------->
<html><body>
<script language="JavaScript1.3">

document.write("Start Script </br>");

//Create arrays for mass,xCoor, and yCoor values;
var mass = new Array(15,3);
var xCoor = new Array(1,4);
var yCoor = new Array(5,2);

//Declare a counter variable.
var cnt = 0;

//Use a loop to compute total mass by summing the individual
// mass values.
var massTotal = 0;
for(cnt = 0;cnt < mass.length;cnt++){
 massTotal += mass[cnt];
}//end for loop

//Use a loop to compute x-coordinate of the center of mass
// by summing the normalized sum of products.
var cmX = 0;
for(cnt = 0;cnt < mass.length;cnt++){
 cmX += mass[cnt]*xCoor[cnt]/massTotal
}//end for loop

//Use a loop to compute y-coordinate of the center of mass
// by summing the normalized sum of products.
var cmY = 0;
for(cnt = 0;cnt < mass.length;cnt++){
 cmY += mass[cnt]*yCoor[cnt]/massTotal
}//end for loop

//Display the results
document.write("massTotal = " + massTotal + " kg</br>");
document.write("cmX = " + cmX + " meters</br>");
document.write("cmY = " + cmY + " meters</br>");

document.write("End Script");

</script>
</body></html>

The comments describe how the problem is solved.

The output is shown in

Figure 4

.

	

 Start Script
massTotal = 18 kg
cmX = 1.5 meters
cmY = 4.5 meters
End Script

Figure 19.4.

Center of mass for two objects.

Center of mass for two objects.

The x-coordinate for the center of mass is 1.5 meters, and the
	y-coordinate for the center of mass is 4.5 meters.

Three objects

Three objects are located on a flat lawn with the following mass values and
locations:

 	
obj1m = 5 kg

	
obj1x = 1 m

	
obj1y = 1 m

	
obj2m = 5 kg

	
obj2x = 3 m

	
obj2y = 1 m

	
obj3m = 10 kg

	
obj3x = 2 m

	
obj3y = 3 m

What are the coordinates of the center of mass?

Use the code from

Listing 2

 but make the change
shown in

Listing 3

 in order to populate the world with
three objects having different mass values and different coordinates.

Example 19.3.
 //Create arrays for mass,xCoor, and yCoor values;
var mass = new Array(5,5,10);
var xCoor = new Array(1,3,2);
var yCoor = new Array(1,1,3);

The output is shown in

Figure 5

.

	

 Start Script
massTotal = 20 kg
cmX = 2 meters
cmY = 2 meters
End Script

Figure 19.5.

Center of mass for three objects.

Center of mass for three objects.

Do the calculations

I encourage you to repeat the calculations that I have presented in this lesson to confirm that you get the same results. Experiment with the scenarios, making changes, and observing the results of your changes. Make certain that you can explain why your changes behave as they do.

Resources

I will publish a module containing consolidated links to resources on my
Connexions web page and will update and add to the list as additional modules
in this collection are published.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Force and Motion -- Momentum, Impulse, and Conservation of Momentum for Blind Students

	
File: Phy1160.htm

	
Keywords:

 	
physics

	
accessible

	
accessibility

	
blind

	
graph board

	
protractor

	
screen reader

	
refreshable Braille display

	
JavaScript

	
trigonometry

	
conservation of momentum

	
momentum

	
Newton's cradle

	
impulse

	
action and reaction

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

-end-

Solutions

Chapter 31. Angular Momentum -- Rotational Kinetic Energy and Inertia

Table of Contents

 	

Preface

 	

General

	

Prerequisites

	

Viewing tip

 	

Facts worth remembering

		

	

Supplemental material

	

	

Discussion

 	

Introduction

	

Calculating
		rotational kinetic energy

	

The rotational inertia (I)

	

Mass is no longer absolute

	

The parallel axis theorem

	

Examples of rotational inertia

	

	

Example scenarios

 	

The 2x4 scenario

	

The dumbbell scenario

	

A pulley and two objects, part 1

	

A pulley and two objects,
		part 2

	

A pulley and two objects,
		part 3

	

A pulley and two objects,
		part 4

	

A pulley and two objects,
		part 5

	

An Atwood machine

	

A flywheel

	

	

What have we learned?

	

Work through the examples

	

Resources

	

Miscellaneous

Preface

General

This module is part of a collection (see

http://cnx.org/content/col11294/latest/

) of modules designed to make physics
concepts accessible to blind students. The collection is intended to supplement but not to
replace the textbook in an introductory course in high school or college
physics.

This module explains rotational kinetic energy and inertia in a format that
is accessible to blind students.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these modules:

 	
A graph board for plotting graphs and vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
A protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
An audio screen reader that is compatible with your operating system,
	such as the NonVisual Desktop Access program (NVDA), which is freely
	available at

	http://www.nvda-project.org/

.

	
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor
	(

http://www.userite.com/ecampus/lesson1/tools.php

).

	
A device to create Braille labels. Will be used to label graphs
	constructed on the graph board.

The minimum prerequisites for understanding the material in these modules
	include:

 	
A good understanding of algebra.

	
An understanding of the use of a graph board for plotting graphs and
	vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
An understanding of the use of a protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
A basic understanding of the use of sine, cosine, and tangent from
	trigonometry (

http://www.clarku.edu/~djoyce/trig/

).

	
An introductory understanding of JavaScript programming (

http://www.dickbaldwin.com/tocjscript1.htm

 and

http://www.w3schools.com/js/default.asp

).

	
An understanding of all of the material covered in the earlier modules
	in this collection.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the material
listed below while you are reading about it.

Facts worth remembering

 	

Rotational inertia

	

Translational and Rotational Kinetic Energy

	

Finding the rotational inertia

	

The parallel axis theorem

	

Examples of rotational inertia

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

Discussion

What do we mean by rotational kinetic energy and rotational inertia?

Introduction

In an earlier module, you learned of Newton's first law, which can be
paraphrased something like the following:

Newton's first law

Every body (that has mass) in a state of rest tends to remain at rest.
Similarly, every body (that has mass) in a state of motion tends to remain in
motion in a straight line. In both cases, the body tends to remain in its
current state unless compelled to change its state by external forces acting
upon it.

This law is sometimes referred to as the "Law of Inertia" -- objects that
have mass don't like to change their velocity.

Newton's second law

Newton's second implies (once again paraphrasing) that the tendency to remain
in the state of rest or motion depends on the amount of mass possessed by the
body.

The greater the mass, the greater must be the external force required to
cause the body to change its state by a given amount. You will recognize this as
being characterized by the equation that tells us that acceleration (change of
velocity) is proportional to the applied force and inversely proportional to the
amount of mass.

Rotating rigid bodies

Similar considerations also apply to the rotation of rigid bodies. In the
case of rigid-body rotation, however, it isn't simply the amount of mass that is
important. The geometrical distribution of that mass also has an impact on the
reluctance of a rotating body to change its state. We refer to this as

rotational inertia

, which is sometimes called the

moment of inertia

.

Rotational inertia or moment of inertia?

Rotational inertia and moment of inertia are simply two
				names that mean the same thing (some authors prefer one, other
				authors prefer the other)

I don't have a preference for either, but for consistency with the textbook
currently being used for introductory physics courses at the college where I
teach, I will use the term

rotational inertia

 instead of

moment of inertia

.

An example

For example, the same amount of mass can be used to create

 	
a tall solid
cylinder with a small radius or

	
a thin disk with a large radius or

	
a very thin disk with most of the mass concentrated around the outer
	circumference of the disk.

When rotated
about its central axis, either disk has a greater rotational inertia than the
cylinder, and the disk with most of its mass concentrated around the outer
circumference has a greater rotational inertia than the other two.

The rotational inertia increases as the mass is moved further from the axis
of rotation, and the effect is proportional to square of that distance.
As a result, given that the total mass is the same in all three cases, a greater external force is required to cause
either disk to change
its rotational state than is required to cause the cylinder to change its
rotational state.

Work and kinetic energy

You also learned in an earlier module that work must be done on an object to
cause it to have kinetic energy, and the kinetic energy possessed by an object
is proportional to one-half of the product of the object's mass and the square
of its velocity.

KE = (1/2)*m*v^2

where

 	
KE represents translational kinetic energy

	
m represents mass

	
v represents velocity

The rotational kinetic energy of a rotating body

When I was a youngster, I learned the hard way that a rotating rigid object
has rotational kinetic energy. I had my bicycle turned upside down resting on the seat and
the handle bars with the rear wheel turning very fast. I was using a long thin
triangular file to chip mud off of the bicycle. I accidentally allowed one
end of the file to come in contact with the tread on the spinning bicycle tire
and ended up with a file sticking in the palm of my hand. Although I didn't know
the technical term for rotational kinetic energy at the time, I did learn what
rotational kinetic energy can do.

Calculating rotational kinetic energy

In principle, at least, we could calculate the rotational kinetic energy
possessed by that spinning bicycle wheel by

 	
decomposing it into a very large number of small particles of mass,

	
computing the kinetic energy of each particle of mass, and

	
computing the sum of the kinetic energy values possessed by all of the
	particles of mass.

That would be a difficult computation. We need a simpler way to express the
rotational kinetic energy of a rotating rigid body.

A simpler way

There is a simpler way that
is based on the tangential speed of each particle of mass and the
angular velocity of the rotating object.

You should recall that when the angular
velocity is expressed in radians per second, the tangential speed of a point on
the circumference of a circle is given by

v = r * w

where

 	
v represents the tangential speed of the point in meters per second

	
r represents the radius of the circle in meters

	
w represents the angular velocity in radians per second

Thus, the tangential speed of our hypothetical particle of mass is equal to
the product of the distance of that particle from the center of rotation (the
axle on my upturned bicycle) and the angular velocity of the wheel.

Terminology

The convention is to use the Greek letter omega to represent angular
velocity, but I decided to use the "w" character because

 	
your Braille pad probably can't display the Greek letter omega

	
the Greek letter omega looks a lot like a lower case "w"

Back to the bicycle wheel

Therefore, if we consider the bicycle wheel to be made up of an extremely
large
number of particles of mass, each located at a fixed distance from the axle, the kinetic energy of each particle would be given by

KEr = (1/2)*m*v^2, or

KEr = (1/2)*m*(r*w)^2, or

KEr = (1/2)*m*(r^2)*(w^2)

where all of the terms in this equation were defined earlier except for

 	
KEr,
which represents rotational kinetic energy.

The total rotational kinetic energy of the bicycle wheel

Then the total rotational kinetic energy of the bicycle wheel would be

KErt

 = (1/2)*(sum from i=0 to i=N(mi*ri^2))*w^2

where

 	
KErt represents the total rotational kinetic energy of the wheel

	
mi represents the ith mass particle in a set of N mass particles

	
ri represents the distance of the ith mass particle from the axis of
	rotation

	
w represents angular velocity in radians per second

Summation

It is conventional to use the Greek letter sigma to represent the sum with
subscripts and superscripts providing the limits of the sum. However, since your
Braille display probably won't display the Greek letter sigma with subscripts
and superscripts, we will have to settle for something like

"sum from i=0 to i=N"

to mean the same thing.

Factoring out like terms

Note that then entire wheel rotates at the same angular velocity, so we can
(and did) factor the (1/2) and the w^2 out of the summation equation given above.

Integral calculus is the key

Regardless of how difficult it may seem to you to perform the summation given
above, when you complete a course in integral calculus, you will have learned
how to do that sort of thing for a variety of geometric shapes such as solid
cylinders, hollow cylinders, solid spheres, hollow spheres, squares, rectangles,
rods, etc. As a result, engineering and physics handbooks contain tables with
this sort of information for a variety of common geometrical shapes.

(There is also such a table at

http://en.wikipedia.org/wiki/List_of_moments_of_inertia

, but if you are a
blind student, your accessibility equipment may not be able to read it
reliably.)

The rotational inertia (I)

Getting back to the earlier equation for

rotational kinetic
energy

, the quantity in parentheses cannot change for a given geometric
shape. The distance between each mass particle and the axis of rotation stays
the same for a rigid body, and the mass of each mass particle doesn't change. It
is conventional to give the quantity in parentheses the symbol I (upper-case
"I") and refer to it as either the

rotational inertia

, or the

moment of inertia

.

Therefore, using the terminology from the earlier equation for

rotational kinetic energy

,

Facts worth remembering --

Rotational Inertia

I = sum from i=0 to i=N(mi*ri^2)

where

 	
I represents rotational inertia

	
SI units for rotational inertia are kg*m^2

	
mi represents the ith mass particle in a set of N mass
				particles

	
ri represents the distance of the ith mass particle from the
				axis of rotation

Translational versus rotational kinetic energy

Given that information, let's form an analogy between translational kinetic
energy from an earlier module and rotational kinetic energy from this module.

Facts worth remembering --
	

Translational and Rotational Kinetic
	Energy

Kt = (1/2)*m*v^2

Kr = (1/2)*I*w^2

where

 	
Kt represents translational kinetic energy

	
Kr represents rotational kinetic energy

	
m represents mass in kg

	
v represents translational velocity in m/s

	
I represents rotational inertia in kg*m^2

	
w^2 represents angular velocity in radians per second

Comparing the terms

When we compare the terms in the two expressions, we see that angular
	velocity in one case is analogous to translational velocity in the other
case.

We also see that the rotational inertia in one expression is analogous to the
mass in the other expression.

Mass is no longer absolute

As I explained earlier, mass is an absolute in
translational terms. The translational inertia depends directly on the amount of
mass.

However, mass is not an absolute in rotational terms. The rotational
inertia for rotation depends not only upon the amount of mass
involved, but also on how that mass is geometrically distributed within the object relative to the axis of
rotation.

A measure of inertia

In translational terms, mass is a measure of the inertia of an object, or how
difficult it is to cause the object to change its translational velocity.

In rotational terms, for a rigid rotating object, the rotational inertia (I
), is a measure of how hard it is to cause the object to change its
angular velocity.

Finding the rotational inertia

Here are a few tips on how you might go about finding the rotational inertia
of an object.

Facts worth remembering --
	

Finding the rotational inertia

 	
If the object consists of a small number of parts in an easily-handled
	geometric configuration, and you know the mass and position of each part,
	you may be able to estimate the rotational inertia by evaluating the
	expression given earlier for the

rotational
				inertia

.

	
For symmetrical objects with simple geometric shapes, you may be
			able to use calculus to perform the summation given earlier for the
				

rotational inertia

.

	
Because the rotational inertia is a sum, you may be able to decompose the
object into several parts, find the rotational inertia for each part, and then
				add them together.

	
You may be able to apply the

				parallel axis theorem

 in conjunction with item 3.

The rotational axis is very important

The rotational inertia for an object depends heavily on the location of the axis of rotation.
For example, some vehicles have doors on the back that are hinged on one side.
Other vehicles have doors on the back that are hinged at the top. Given a door
that has a rectangular shape, but which is not a square, the rotational inertia
when the door is
hinged on the side would be different from when the door is hinged at the top.

Assuming that both doors have the same mass, and are fastened to the vehicle
with the same orientation, the center of mass for one
arrangement would be further from the hinge than for the other arrangement. The
arrangement for which the center of mass is further from the hinge would have the
greater rotational inertia.

A simple experiment

Pick up an eight-foot piece of 2x4 lumber, grasp it near one end, and try
swinging it like a baseball bat. You should find that to be relatively difficult
because it has a large rotational inertia when rotated around its end. (It also
has a lot torque due to gravity when supported only at the end. Torque will be
the topic for a future module.)

Then grasp it in the center and rotate it as far as you can without hitting
your body. You should find that to be somewhat easier because it has a smaller
rotational inertia when rotated around its center than when rotated around its
end.

I will have more to say about this later in this module.

The parallel axis theorem

It is possible to determine the rotational inertia of an object about
any axis if we can determine the rotational inertia of that same object about a
parallel axis that goes through the center of mass of the object.

I will explain this in much more detail in the dumbbell scenario later in
this module.

Facts worth remembering --

The parallel axis theorem

The total rotational inertia of an object about a chosen axis is

 	
the
				rotational inertia about a parallel axis passing through the
				object's center of mass, plus

	
the
				rotational inertia of the center of mass, treated as a point
				mass, about the chosen axis.

We can express this theorem in equation form as

Itotal = M*D^2 + Icm

where

 	
Itotal is the total rotational inertia of the object

	
M is the mass of the object

	
D is the distance from the center of mass of the object to
				the chosen axis

	
Icm is the rotational inertia of the object through a
				parallel axis that passes through the object's center of mass

Examples of rotational inertia

In this section, I will attempt to describe some simple geometric shapes and
provide the formula for the rotational inertia for each shape. This information
is largely based on information gleaned from

http://en.wikipedia.org/wiki/List_of_moments_of_inertia

.

Terminology

Unless I specify otherwise, the axis of rotation will be the axis of
symmetry, such as at the center of a wheel. Also, unless I specify otherwise,

 	
r represents the radius

	
m represents the mass

Facts worth remembering --
	

Examples of rotational inertia

Thin hollow cylindrical shape or hoop

Think of a can of beans without the beans and without the end caps.

I = m*r^2

Solid cylinder or disk

I = (1/2)*m*r^2

Thick-walled cylindrical tube with open ends, of inner radius r1,
			and outer radius r2

I = (1/2)*m*(r1^2 + r2^2)

Thin rectangular plate of height h and width w with axis
			of rotation in the center, perpendicular to the plate

I = (1/12)*m*(h^2 + w^2)

Solid sphere

I = (2/5)*m*r^2

Then hollow spherical shell

I = (2/3)*m*r^2

Thin rod of length L

Axis of rotation is perpendicular to the end of the rod.

I = (1/3)*m*L^2

Thin rectangular plate of width L and height H

Axis of rotation is along the edge of the plate parallel to the H
			dimension and perpendicular to the width L.

I = (1/3)*m*L^2

Thin rod of length L

Axis of rotation is through the center of the rod.

I = (1/12)*m*L^2

Thin rectangular plate of width L and height H

Axis of rotation is along the center of the plate parallel to the
			H dimension perpendicular to the width L.

I = (1/12)*m*L^2

Example scenarios

I will apply some of what we have learned to several different scenarios in this section.

The 2x4 scenario

Returning to the earlier example, pick up an eight-foot piece of 2x4 lumber,
grasp it near one end, and try swinging it like a baseball bat.

Then grasp it in the center and rotate it as far as you can without hitting
your body.

How does the rotational inertia with the axis at the end compare with the rotational
inertia with the axis at the center? What is the ratio of the two?

Solution:

Although this may not be a good approximation, we will use the formulas for a
thin rectangular plate of height h and width z from

http://en.wikipedia.org/wiki/List_of_moments_of_inertia

. (A 2x4 isn't very
thin so this may not be a good approximation.)

When rotated around the end,

Iend = (1/3)*(m*h^2) + (1/12)*(m*z^2)

When rotated around the center,

Icen = (1/12)*(m*h^2 + m*z^2)

where

 	
Iend is the rotational inertia with the axis of rotation at the end

	
Icen is the rotational inertia with the axis of rotation at the center

	
m is the mass

	
h is the height

	
z is the width (I avoided the use of w because I have been using that
	character for angular velocity.)

Define the numeric values

Let h = 96 inches and z = 3.75 inches (a 2x4 really isn't 2 inches thick and
4 inches wide)

Let mass = 1kg. We don't know what the mass of a 2.4 is. However, it will
cancel out when we compute the ratio of the two cases. We can use any value so
long as we don't ascribe any credibility to the absolute rotational inertia
value.

Substitute numeric values for symbols

Iend = (1/3)*(1kg*(96inches)^2) + (1/12)*(1kg*(3.75 inches)^2)

Plugging this expression into the Google calculator gives us:

Iend = 1.98 m^2 kg

(Remember, however, that this isn't an accurate absolute value because we
aren't using the actual mass of a piece of 2x4 lumber.)

Icen = (1/12)*(1kg*(96inches)^2 + 1kg*(3.75inches)^2)

The Google calculator gives us

Icen = 0.496 m^2 kg

And the ratio is...

If I formulated the problem correctly before plugging the
expressions into the Google calculator, the ratio

Iend/Icen = (1.98 m^2 kg)/(0.496 m^2 kg) = 3.99

Therefore, it should have been about four times as difficult to swing the 2x4
like a baseball bat than to spin it at its center. (The downward torque caused
by gravity probably made it seem even worse that that.)

The dumbbell scenario

Among other things, this scenario illustrates the

parallel axis theorem

.

Consider a dumbbell, or a barbell, whichever you choose to call it. This
object consists of two identical solid spheres, each with mass M. The centers of
mass of the spheres are separated by a distance L. The radius of each sphere is R.

The spheres are connected by a thin rod with mass m of length d. Thus, the
length of the rod is L-2*R.

Find the rotational inertia of the dumbbell about an
axis at the center of and perpendicular to the rod.

Solution:

The total rotational inertia of the dumbbell about the chosen axis consists of the sum of three parts:

 	
The rotational inertia of one sphere about that axis.

	
The rotational inertia of the other sphere about that same axis.

	
The rotational inertia of the rod about that axis.

There are really five items in the sum

We learned from the

parallel axis
theorem

 that the first two items in the above list are each made up of the
sum of two items:

 	
The rotational inertia of a sphere about an axis passing through the
	sphere's center of mass

	
The moment of inertia of the center of mass of the sphere, treated as a point particle, about the chosen axis.
	

We learned from the earlier

Examples of rotational inertia

 that the rotational inertia of a solid sphere
about an axis through its center of mass is

Isphere = (2/5)*M*R^2

We learned in

Rotational inertia

 that the
rotational inertia of a point mass rotating about a chosen axis is

I = M*r^2, or in this case

I = M*(L/2)^2

Thus, the rotational inertia of each sphere about the chosen axis is the sum
of those two, or

Isphere_axis = (2/5)*M*R^2 + M*(L/2)^2

The total rotational inertia of the dumbbell will be twice this value plus
the rotational inertia of the rod about the chosen axis. We learned in

Examples of rotational inertia

that the rotational inertia about the chosen axis for the rod is

Irod = (1/12)*m*d^2

This, the total rotational inertia of the dumbbell about the chosen axis is

Itotal = Irod + 2*Isphere_axis, or

Itotal = (1/12)*m*d^2 + 2*((2/5)*M*R^2 + M*(L/2)^2)

Because the length of the rod, d is

d = L-2*R

We could substitute this expression for d giving us

Itotal = (1/12)*m*(L-2*R)^2 + 2*((2/5)*M*R^2 + M*(L/2)^2)

which reduces the expression down to include

 	
m represents the mass of the rod

	
L represents the distance between the centers of mass of the two spheres

	
R represents the radius of each sphere

	
M represents the mass of each sphere

I will leave it as an exercise for the student to assign typical numeric
values to each of those variables and to compute the rotational inertia of a
dumbbell.

Another good exercise for the student would be to replace the spheres with
disks having the same mass and compare the rotational inertia of the two
configurations.

A pulley and two objects, part 1

In this scenario, a friction-free pulley with a mass M and a rotational
inertia I is suspended from a beam. A cord is threaded around the pulley and two
objects with masses of m1 and m2 are fastened to the ends of the cord.

The cord will not stretch and will not slip on the surface of the pulley.

When the two objects are held at the same level with the cord taut and
released simultaneously, one may move up and the other may move down, depending
of the relative mass values of the two objects. Because the cord cannot stretch,
the magnitude of the velocity of each object must be the same.

Ignoring air resistance, write a general equation for the magnitude of the
velocity of each object after each object has moved a distance h.

Solution:

With no friction and no air resistance, all forces acting on the system are
conservative. Therefore, the mechanical energy of the system must be preserved.

deltaU + deltaK = 0

where

 	
deltaU is the change in potential energy

	
deltaK is the change in kinetic energy

Since the pulley mechanism is in equilibrium, the only potential energy
possessed by the system that can change is the gravitational potential energy of
the two objects. Therefore, when the objects move, the gravitational potential
energy of the two objects is converted into translational kinetic energy of the
objects and rotational kinetic energy of the pulley.

Changes in potential energy of the system

In order to keep our algebraic signs straight, we will assume that m1 is greater than
(or possibly equal to) m2. As a result, when the objects move, m1 will move down
and m2 will move up.

This will result in the following changes in the potential energy of the
system.

deltaU1 = -m1*g*h

deltaU2 = +m2*g*h

where

 	
deltaU1 and deltaU2 represent the changes in gravitational potential
	energy for m1 and m2 respectively.

	
g represents the acceleration of gravity.

	
h represents the magnitude of the change in height of each object.

The mechanical energy of the system

The mechanical energy of the system includes the translational kinetic energy
of each of the two objects plus the rotational kinetic energy of the pulley.

deltaK = (1/2)*(m1+m2)*v^2 + (1/2)*I*w^2

where

 	
m1 and m2 are the mass values for each object

	
v is the magnitude of the translational velocity of each object

	
I is the rotational inertia of the pulley

	
w is the angular velocity of the pulley

Translational speed versus tangential speed

Because the cord cannot slip on the pulley, the tangential speed of a
point on the edge of the pulley must be equal to the translational speed of the
objects.

This tangential speed at the edge of the pulley is related to the angular
velocity of the pulley as follows

v = w*R, or

w = v/R

Where

 	
v is the tangential speed of a point on the edge of the pulley, which is also the
	speed of the cord, which is also the speed of each object.

	
w is the angular velocity of the pulley.

	
R is the radius of the pulley.

Substitute, combine terms, and simplify

Substitution of v/R for w yields

deltaK = (1/2)*(m1+m2)*v^2 + (1/2)*I*(v/R)^2

Combining potential and kinetic energy yields

deltaU + deltaK = -m1*g*h + m2*g*h

+
(1/2)*(m1+m2)*v^2 + (1/2)*I*(v/R)^2 = 0

Simplification yields

(1/2)*(m1+m2)*v^2 + (1/2)*I*(1/R^2)*v^2 = (m1 - m2)*g*h

Solving for v^2 yields

v^2 = (2*(m1 - m2)*g*h)/((m1+m2) + I*(1/R^2)), or

The

general equation

 for velocity is

v = ((2*(m1 - m2)*g*h)/((m1+m2) + I*(1/R^2)))^(1/2)

A pulley and two objects, part 2

Make the following assumptions:

The pulley is a uniform disk with a mass, M, of 1 kg and a radius, R, of 1 meter.

m1 = 2 kg

m2 = 1 kg

h = 0.5 m

Find the velocity v.

Solution:

Referring back to

Examples of
rotational inertia

, and changing the notation to match that being used in
this scenario, we find that the rotational inertia for the pulley is

I = (1/2)*M*(R)^2

The rotational inertia

Let's begin by computing the rotational inertia of the pulley.

I = (1/2)*1kg*(1m)^2, or

I = 0.5*(m^2)*kg

Substitute values other than rotational inertia

Substituting values into

 the

general equation

yields

v = ((2*(2kg - 1kg)*(9.8m/s^2)*0.5m)/((2kg+1kg) + I*(1/(1m)^2)))^(1/2)

where we still have the rotational inertia as a variable.

We will use this equation again later in this module.

Substitute the value for rotational inertia

Substituting the value

 for rotational
inertia computed above gives us

v = ((2*(2kg - 1kg)*(9.8m/s^2)*0.5m)/((2kg+1kg) + (0.5*(m^2)*kg)*(1/(1m)^2)))^(1/2)

We will also use this equation again later in this module.

Assuming that I managed to get all of that done without making an error, the
velocity is

v = 1.67 m/s

A pulley and two objects, part 3

Assume the same conditions as in

part 2

, except that m2 = m1 = 2 kg, what is the velocity?

Solution:

Starting with the equation from

above

 and replacing each
occurrence of 1kg with 2kg yields

v = ((2*(2kg - 2kg)*(9.8m/s^2)*0.5m)/((2kg+2kg) + (0.5*(m^2)*kg)*(1/(1m)^2)))^(1/2)

Using the Google calculator to solve this equation tells us that

v = 0 m/s.

This is what we should expect for the two objects having the same mass. Each object has an equal desire to fall toward the earth,
so they balance one another, causing the
system to be in equilibrium.

A pulley and two objects, part 4

Go back to the conditions for

part
2

 except instead of assuming that the pulley is a uniform disk, assume that
the pulley approximates a

"thick-walled cylindrical tube with open ends, of inner
radius r1, and outer radius r2"

.

For this configuration, we can approximate the rotational inertia as

I = (1/2)*m*(r1^2 + r2^2) (see

Examples of rotational inertia

)

For example, think of a pulley that looks something like a bicycle wheel with very lightweight spokes connecting the outer rim to
the axle.

Let r1 = 0.9*r2 and let the mass be unchanged.

Find the velocity.

Solution:

Given that the inner radius is 0.9 times the outer radius and
the mass is unchanged, we can

approximate

 the rotational inertia
for this pulley with

I = (1/2)*M*((0.9*R)^2 + R^2)

The rotational inertia

Let's compute the rotational inertia for this pulley.

I = (1/2)*1kg*((0.9*1m)^2 + (1m)^2), or

I = 0.905 (m^2)*kg

As you can see, the rotational inertia for this configuration is almost
double the rotational inertia for the uniform disk configuration.

Start with the original equation

Go back and get the

original equation

that contains numeric values but still has the rotational inertia as a variable.

v = ((2*(2kg - 1kg)*(9.8m/s^2)*0.5m)/((2kg+1kg) + I*(1/(1m)^2)))^(1/2)

Substitute the rotational inertia

Replace the rotational inertia, I, with the

approximate

 rotational inertia for our new pulley.

v = ((2*(2kg - 1kg)*(9.8m/s^2)*0.5m)/((2kg+1kg) + (0.905 (m^2)*kg)*(1/(1m)^2)))^(1/2)

Once again, if I managed to get through all of that without making an error,
the velocity is

v = 1.58 m/s

Analysis

Comparing this value with the velocity from

part 2

, , we see that the velocity
was reduced from 1.67 m/s to 1.58 m/s due to the increase in the rotational
inertia of the pulley.

This is what we should expect. Increasing the rotational
inertia of the pulley causes it to take longer to accelerate given the same
external force that is causing it to change its angular velocity and acquire
rotational kinetic energy.

A pulley and two objects, part 5

Let's make one more adjustment to the geometry of the pulley and observe the
effect that it has on the system.

Keep all of the parameters the same as

part 4

 except let the radius of
the pulley, R, be 10m.

Find the velocity.

Solution:

Begin by computing the rotational inertia of the new pulley.

I = (1/2)*M*((0.9*R)^2 + R^2), or

I = (1/2)*1kg*((0.9*10m)^2 + (10m)^2), or

I = 90.5 (m^2)*kg

Note that the rotational inertia is proportional to the square of the radius.
Therefore, increasing the radius by a factor of 10 caused the rotational inertia
to be increased by a factor of 100.

Generally speaking, moving the concentration of mass further
from the axis of rotation will increase the rotational inertia.

Start with the original equation as before

Going back and getting the

original equation

that contains numeric values but still has the rotational inertia as a variable,
we have.

v = ((2*(2kg - 1kg)*(9.8m/s^2)*0.5m)/((2kg+1kg) + I*(1/(1m)^2)))^(1/2)

Substitute the new rotational inertia

Replacing the rotational inertia, I, with the rotational inertia for our new pulley
yields.

v = ((2*(2kg - 1kg)*(9.8m/s^2)*0.5m)/((2kg+1kg) + (90.5 (m^2)*kg)*(1/(1m)^2)))^(1/2)

Solving this equation with the Google calculator tells us that the new
velocity value is

v = 0.323 m/s

which is much lower than the velocity for either

part 2

 or

part 4

.

An Atwood machine

In case you want to learn more about this topic, the arrangement of the
pulley and the objects that we have been discussing is commonly called an Atwood
machine. The device was invented in 1784 by Rev. George Atwood as a laboratory experiment to verify the mechanical laws of motion.

A flywheel

A flywheel is a device that is commonly used to smooth out the irregularities
of angular velocity in rotational motion. For example, in the age of steam engines, the
rotational motion was powered only during a portion of each cycle, and was
coasting during the remainder of the cycle. Unless corrected, therefore, a
loaded steam engine output shaft would speed up and slow down once during each
rotation of the shaft.

The correction

Most steam engines employed a large flywheel that was turned by the output
shaft to cause the angular velocity to
remain relatively constant despite the fact that rotational power was applied
during only a portion of the cycle.

When rotational power was applied to the output shaft, the shaft turned the
flywheel. When rotational power was not applied to the output shaft, the
flywheel turned the shaft. Because the flywheel had a large rotational inertia,
it preferred to turn at a near constant angular velocity.

Physically, the flywheels were usually large
wheels with spokes and most of the mass distributed in a rim at the
circumference of the wheel. This configuration produced a large rotational
inertia for a given amount of mass and a given amount of available space.

What have we learned?

Perhaps the most important thing for you to take away from this module is
that

 	
although the rotational inertia of a rotating object is influenced by
	the mass of the object,

	
it is also very heavily influenced by the geometrical distribution of
	that mass.

Two rotating objects having exactly the same mass can have entirely different
rotational inertia values (moments of inertia).

For example, a flywheel with the bulk of its mass concentrated a large
distance from the axis of rotation is much more effective in smoothing out the
angular velocity of the device than would be a flywheel with the same mass
concentrated in a small radius near the axis of rotation.

Work through the examples

I encourage you to work through the examples that I have presented in this lesson to
confirm that you get the same results. Experiment with
the examples, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

Resources

I will publish a module containing consolidated links to resources on my
Connexions web page and will update and add to the list as additional modules
in this collection are published.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Angular Momentum -- Rotational Kinetic Energy and Inertia for Blind Students

	
File: Phy1300.htm

	
Keywords:

 	
physics

	
accessible

	
accessibility

	
blind

	
graph board

	
protractor

	
screen reader

	
refreshable Braille display

	
JavaScript

	
trigonometry

	
rotational kinetic energy

	
rotational inertia

	
moment of inertia

	
Atwood machine

	
flywheel

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

-end-

Solutions

Chapter 16. Force -- Center of Gravity

Table of Contents

 	

Preface

 	

General

	

Prerequisites

	

Viewing tip

 	

Figures

		

	

Supplemental material

	

	

General background information

	

Discussion and computations

 	

Creation of tactile graphics

	

Equilibrium: stable, unstable, and neutral

	

An exercise involving the tipping point

	

A real-world example

	

	

Do the computations

	

Resources

	

Miscellaneous

Preface

General

This module is part of a collection of modules designed to make physics
concepts accessible to blind students.

See

http://cnx.org/content/col11294/latest/

 for the main page of the
collection and

http://cnx.org/content/col11294/latest/#cnx_sidebar_column

 for the table of
contents for the collection.

The collection is intended to supplement but not to
replace the textbook in an introductory course in high school or college
physics.

This module explains force and center of gravity in a format that is accessible to blind students.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these modules:

 	
A graph board for plotting graphs and vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
A protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
An audio screen reader that is compatible with your operating system,
	such as the NonVisual Desktop Access program (NVDA), which is freely
	available at

	http://www.nvda-project.org/

.

	
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor
	(

http://www.userite.com/ecampus/lesson1/tools.php

).

	
A device to create Braille labels. Will be used to label graphs
	constructed on the graph board.

	
The ability to create tactile graphics as described at
	

	http://cnx.org/content/m38546/latest/

.

The minimum prerequisites for understanding the material in these modules
	include:

 	
A good understanding of algebra.

	
An understanding of the use of a graph board for plotting graphs and
	vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
An understanding of the use of a protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
A basic understanding of the use of sine, cosine, and tangent from
	trigonometry (

http://www.clarku.edu/~djoyce/trig/

).

	
An introductory understanding of JavaScript programming (

http://www.dickbaldwin.com/tocjscript1.htm

 and

http://www.w3schools.com/js/default.asp

).

	
An understanding of all of the material covered in the earlier modules
	in this collection.

	
An understanding of the creation and use of tactile graphics as
	described at

	http://cnx.org/content/m38546/latest/

.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
while you are reading about them.

Figures

 	

Figure 1

. Mirror image from the file named Phy1120a1.svg.

	

Figure 2

. Non-mirror-image version of the image from the file named Phy1120a1.svg.

	

Figure 3

. Key-value pairs for the image in the file named Phy1120a1.svg.

	

Figure 4

. Mirror image from the file named
	Phy1120b1.svg.

	

Figure 5

. Non-mirror-image version of the image
	from the file named Phy1120b1.svg.

	

Figure 6

. Key-value pairs for the image in the
	file named Phy1120b1.svg.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

General background
information

The gravitational constant

The gravitational constant, G, is a constant that is used in the calculation of the gravitational attraction between objects with mass.
The value of G is approximately:

G = 6.67 * 10^(-11) *m^3*kg^(-1)*s^(-2), or

G = 6.67 * 10^(-11) N*(m/kg)^2

According to the law of universal gravitation, the attractive force (F) between two bodies is proportional to the product of their masses (m1 and m2), and inversely proportional to the square of the distance (r) between them:

F = G*m1*m2/r^2

Newton's law of gravitation

Newton's law of gravitation proposes that every small element of matter, m,
attracts every other small element of matter, m' with a force that is
proportional to the product of the masses and inversely proportional to the
square of the distance between them, so that at the small element level,

F = G*m*m'/r^2

As a result, we tend to fall toward the earth unless we are supported by
upward forces, such as the floor that we are standing on.

An important simplification

It would be very difficult to deal with the attraction of gravity if we were
required to deal with every object (including the earth) in terms of the many
small elements of mass that make up the object.

Newton simplified that
process by proving mathematically that the earth regarded as a sphere attracts a
body as if the whole mass of the earth were concentrated at its center.

Almost parallel forces

The
attraction of the earth on the elements of our body produces forces on those
elements that are almost parallel. Those forces lie along lines that all end at
a point that is almost 4000 miles beneath the surface of the earth.

At that distance, each pair of force lines forms the sides of a triangle with
extremely long sides, an extremely small angle, and an extremely narrow base. As
a practical matter, therefore,
we can assume that those forces are parallel insofar as estimating the effect
that the sum of all of those elemental forces have on our bodies.

The center of gravity C.G.

It can be proved that:

The resultant of the weights of all the elements of a rigid body passes
through a certain fixed point commonly called its center of gravity, C.G., regardless
of the orientation of that body relative to the earth.

For purposes of computations involving statics, the mass of a rigid body may be considered as if
concentrated at it C.G., and its weight may be considered to center
at this same point.

(Recall that the weight of an object is the force required to cause the mass
of that object to fall toward the center of the earth with an acceleration of
approximately 32.2 ft/s^2 or 9.81 m/s^2.)

A plumb-bob or plummet

A plumb-bob or a plummet is a weight, usually with a pointed tip on the bottom, that is suspended from a string and used as a vertical reference line, or plumb-line.

When the string is attached to an object that is fixed relative to the surface
of the earth and the plummet is allowed to hang down, it will eventually (when
it stops swinging) point directly at the center of mass of the earth.

Common uses for a plummet

The plummet is most commonly used in construction projects to ensure that constructions are "plumb", or vertical.

It is also used in land surveying to set a surveying instrument exactly over
a fixed survey marker, or to transcribe positions onto the ground for placing a
marker.

Experimental verification of the C.G.

I'm aware that as a blind student, you probably can't perform this
experiment, but hopefully you can imagine it.

Make a hanger

Use a plummet to draw a vertical line on a flat, smooth, vertical surface
(such as a wall). Drive a finishing nail (a nail with a small head) into the
surface on the vertical line allowing a small portion of the nail to stick
out. Cause the nail to be as
horizontal as practical.

Make an irregular object

Cut an irregular shape out of a piece of flat cardboard and punch several
holes around the perimeter of the shape.

Perform the experiment

Using several holes in succession, including holes on all four sides of the
cardboard, hang the cardboard on the nail in such a way that the cardboard is
free to swing and settle into a stable orientation.

Once the cardboard stops swinging, mark the point on the bottom of the
cardboard that coincides with the vertical line that you drew on the vertical
surface.

After you have done this several times, draw lines from each hole to the
corresponding mark
that you made on the opposite edge of the cardboard. All of these lines should
cross at a single point. That point is the C.G. for that particular
irregular shape of cardboard.

Modify the experiment

Cut regular shapes of cardboard such as rectangles, triangles, hexagons,
octagons, etc, and repeat the experiment with those shapes. Observe the location
of the C.G. for those shapes.

Rectangular shapes

You should find that the C.G. for a rectangular piece of
cardboard is at the center of the rectangle. This should be the case for all
rectangles ranging from squares to long skinny rectangles (although it may
difficult to measure for long skinny rectangles.)

Triangular shapes

The C.G. for a triangular shape should be at the intersection of
its medians.

In case you have forgotten, the median of a triangle is a line segment from a vertex of the triangle to the midpoint of the side opposite that vertex. Because there are three vertices, there are
three medians. No matter what shape the triangle, all three medians intersect at a single point,
which is called the centroid of the triangle. That point would also be the C.G.
for a triangular-shaped piece of cardboard.

The doughnut hole

Cut a piece of cardboard in the general shape of a doughnut or tire with a
hole in the middle and
perform the experiment using that shape. Observe that the C.G. can
be located in the doughnut hole. The C.G. of an object doesn't have to be in a
solid part of the object.

A void in a 3D object

It is also possible for the C.G. to be located in a cavity in a
three-dimensional object. For example, the C.G. for a small section
of cylindrical pipe that is cut square on both ends would be in the center of
the void half way between the ends of the pipe.

Discussion and computations

Creation of tactile graphics

The module titled Manual Creation of Tactile Graphics at

http://cnx.org/content/m38546/latest/

 explained how to create tactile
graphics from svg files that I will provide.

If you are going to have an assistant create tactile graphics for this
module, you will need to

download the file named
Phy1120.zip

, which contains the svg files for this module. Extract the svg
files from the zip file and provide them to your assistant.

Also, if you are going to use tactile graphics, it probably won't be
necessary for you to perform the graph board exercises. However, you should
still walk through the graph board exercises in your mind because I will often
embed important physics concepts in the instructions for doing the graph board
exercises.

In each case where I am providing an svg file for the creation of tactile
graphics, I will identify the name of the appropriate svg file and display an
image of the contents of the file for the benefit of your assistant. As
explained at

http://cnx.org/content/m38546/latest/

, those images will be mirror images of
the actual images so that your assistant can emboss the image from the back of
the paper and you can explore it from the front.

I will also display a non-mirror-image version of the image so that your
assistant can easily read the text in the image.

Also in those cases, I will provide a table of key-value pairs that explain
how the Braille keys in the image relate to text or objects in the image.

Equilibrium: stable, unstable, and neutral

When a vertical line through the C.G. of a body falls within the area covered
by the supporting
base, the body can rest in equilibrium. A body in equilibrium can be further
qualified as being either stable, unstable, or neutral.

 	
Stable equilibrium: If a body at rest receives a small displacement and tends to return to its
former position, that body is said to be in stable equilibrium.

	
Unstable equilibrium: If that body
tends to move further away, then that body is said to be in unstable
equilibrium.

	
Neutral equilibrium: If it does neither, the body is said to be in neutral equilibrium.

A practical example

Consider the case of a round pencil, sharpened on one end and flat on
the other end. If you lay the pencil flat on the table and give it a very small
push, it will move and then stop. That pencil is said to be in

neutral

equilibrium. It doesn't tend to return to its original position, and except for
rolling a small distance as a result of inertia, it doesn't tend to move further
away.

Balance it on the flat end

If you balance the pencil on its flat end and give it a very small push at
the other end, it will tip slightly and then return to its original position.
This assumes that you don't push it beyond its tipping point, which we will
discuss in more detail later.

The pencil in this configuration is said to be in

stable

 equilibrium. The key
to success is
that you don't tip it so far that a vertical line through the C.G. moves outside
the circle that defines the area of the supporting base of the pencil.

Balance it on its point

Assume that you rub the pencil lead back and forth a few times to slightly
flatten the pointed end. If you were able to balance the pencil on that very
small flattened surface, and then blow on the pencil very lightly, it would
probably tip over and fall flat on the table. The smaller the flattened surface
supporting the pencil, the easier it would be to cause it to tip over. The
pencil in that state would be said to be in

unstable

equilibrium.

Stability is important

Stability is very important for many things such as boats and airplanes.
Usually, the lower the C.G., the
more stable will be the object.

A high-wire artist

For example, a high-wire artist at the circus may carry a long flexible pole,
perpendicular to the wire held near the center of the pole at about thigh height.
In this case, the supporting surface is the feet on the wire.

The flex in the pole allows the ends of the pole, and conceivably a large portion
of the pole to hang lower than the soles of the feet. This has the effect of
lowering the C.G. of the combination of the person and the pole considerably. If
the C.G. is below the supporting surface, which in this case is the soles of the
feet, the combination of the person and the pole will be very stable.

Cargo ships

The people that load cargo ships try to keep the C.G. of the loaded ship low
in the hull of the ship. Sometimes they add extra weight called ballast very low
in the hull to get the C.G. as low as possible.

Cargo aircraft

The people that load large military cargo aircraft are very careful how they
load the cargo in order to control the location of the C.G. of the aircraft to
maintain stability of the aircraft. The position of the C.G. relative to the
axis of the wings is very important.

Children's toys

When my children were young, they had toys with a round bottom and something
like a clown's head on the top. The toys had a heavy
weight inside and very close to the bottom. This caused the C.G. to be very low in the toy.
When the child pushed the toy over, it would return to an upright position. The
toy was very stable.

An exercise involving the
tipping point

Let's see if we can demonstrate stability or the lack thereof with a thought experiment.
Begin by drawing
two rectangles on your graph board side by side. Make each rectangle 2 units wide
and five units tall.

Two boxes

Pretend that these rectangles represent side views of two cardboard boxes
with dimensions of 2x2x5 ft. Assume that each box contains identical heavy
material at one
end and the remainder of the box is filled with very light packing material.
Assume that the heavy contents are at the bottom of the left box and at the
top of the right box. (The boxes and their contents are just alike, but one is
upside down relative to the other.)

Tactile graphics

The file named Phy1120a1.svg contains an image that represents this scenario.
The image shows two boxes, as described

above

, tipped over to

their tipping
points

.

Figure 1

 shows the mirror image that is contained in
that file for the benefit of your assistant who will create the tactile graphic
for this exercise.

 [image: Missing image]

Figure 16.1.

Mirror image from the file named Phy1120a1.svg.

Mirror image from the file named Phy1120a1.svg.

Figure 2

 shows a non-mirror-image version of the same
image.

 [image: Missing image]

Figure 16.2.

Non-mirror-image version of the image from the file named Phy1120a1.svg.

Non-mirror-image version of the image from the file named Phy1120a1.svg.

Figure 3

 shows the key-value pairs that go with the
image in the file named Phy1120a1.svg.

	

 m: An exercise involving the tipping point
n: Tipping point = 45 degrees
o: Tipping point = 14 degrees
p: Center of gravity
q: Center of gravity
r: 45 degrees
s: 76 degrees
t: W
u: W
v: File: Phy1120a1.svg
w: Floor
x: Box
y: Box

Figure 16.3.

Key-value pairs for the image in the file named Phy1120a1.svg.

Key-value pairs for the image in the file named Phy1120a1.svg.

Mark the C.G. of each box

Getting back to your drawing, assume that the C.G. of the left box is one foot up from the bottom and the
C.G. of the right box is one foot down from the top (4 feet up from the bottom).
In both cases, the C.G. is at the horizontal center of the box. Insert a pin at
the location of the C.G. for both boxes and label it C.G. in both cases.

The weight of each box

The downward force that is the weight of each box is on a vertical line that
goes through the C.G. and the total weight appears to be concentrated at the
C.G. Therefore, when the box is setting flat on the floor, the
weight vector for each box is on a line that is 1 ft. from either side of the box.

Vertical weight vectors

Begin at the C.G. for each box and draw a vertical line that extends 7 units
down from the C.G. for each box. Label each line as W. These are weight vectors.

Both boxes are in equilibrium

We know from experience that both of these boxes are in equilibrium. We have
also just learned that so long as the vertical weight vector that goes through the C.G. also
goes through the two-foot wide supporting base of the box, the box will be in
stable equilibrium.

What is the tipping point?

Label the bottom-right corner of each box as b. Pretend that you drive a nail
immediately to the right of point b and allow it to protrude up from the floor
so that when you push on the top-left corner of the box, it will rotate around
point b instead of sliding to the right.

How far can we tip each box in a clockwise direction around the bottom right
corner before we lose equilibrium?

Tactile graphics

The file named Phy1120b1.svg contains an image that shows the triangles
discussed

below

.

Figure 4

 shows the mirror image that is contained in
that file for the benefit of your assistant who will create the tactile graphic
for this exercise.

 [image: Missing image]

Figure 16.4.

Mirror image from the file named Phy1120b1.svg.

Mirror image from the file named Phy1120b1.svg.

Figure 5

 shows a non-mirror-image version of the same
image.

 [image: Missing image]

Figure 16.5.

Non-mirror-image version of the image from the file named Phy1120b1.svg.

Non-mirror-image version of the image from the file named Phy1120b1.svg.

Figure 6

 shows the key-value pairs that go with the
image in the file named Phy1120b1.svg.

	

 m: An exercise involving the tipping point, part 2
n: K1 = 1.414
o: K2 = 4.123
p: Z1 = 1
q: Z2 = 4
r: R = 1
s: R = 1
t: 45 degrees
u: 14 degrees
v: Center of gravity
w: Center of gravity
x: b
y: b
z: Floor
mm: W
mn: W
mo: File: Phy1120b1.svg

Figure 16.6.

Key-value pairs for the image in the file named Phy1120b1.svg.

Key-value pairs for the image in the file named Phy1120b1.svg.

The lines K1

, K2, Z1, Z2, and R

To answer this question, begin by drawing a line from the C.G. to point b for each box. Label this line K1
for the left box and K2 for the right box.

Label the line segment that extends from the C.G. to the bottom of the left
box as Z1 and label the line segment that extends from the C.G. to the bottom of
the right box as Z2. Label the line segment that is the right half of the bottom
of each box as R.

Right triangles

In the left box, the line segments K1, Z1, and R form a right triangle for
which the lengths of two line segments are:

 	
Z1 = 1

	
R = 1

In the right box, the line segments K2, Z2, and R form a right triangle for
which the lengths of two line segments are:

 	
Z2 = 4

	
R = 1

Compute the lengths of K1 and K2

Using the Pythagorean theorem and the Google calculator, we can compute the
following lengths:

K1 = sqrt(1^2 + 1^2) = 1.414

K2 = sqrt(1^2 + 4^2) = 4.123

The sides of the right triangles

Next, we will compute the interior angle for each triangle at the C.G.
vertex. Label the interior angle for the left box P1 and label the interior
angle for the right box P2.

We know the lengths of all three sides of each triangle. There are a couple
of ways that we can use trigonometry to find the interior angles. Considering the
triangle from the viewpoint of the interior angle at the C.G. for the left triangle:

 	
hypotenuse = K1 = 1.414

	
base = Z1 = 1

	
opposite side = R = 1

For the right triangle,

 	
hypotenuse = K2 = 4.123

	
base = Z2 = 4

	
opposite side = R = 1

Compute the interior angles at each C.G. vertex

Using the Google calculator, we can compute the interior angle at the C.G. for
each box as follows:

 	
P1 = arcsine(1/1.414)*180/PI = 45 degrees

	
P2 = arcsine(1/4.123)*180/PI = 14 degrees

Tilt each box

 and observe the angles at the C.G. vertices

Now pretend that you exert a force on the top-left corner of each box
causing it to rotate around the lower-right corner at point b. As you do that,
the weight vector would rotate around the C.G. in a counter-clockwise direction
(always pointing straight down) and the angle between the weight vector and the
line K1 or K2
would decrease.

The tipping point

When the angle between the weight vector and the line K1 or K2 goes to zero degrees
for either box, the tipping point for that box will have
been reached. (See the image in the file named Phy1120a1.svg, or

Figure 1

.)

At that exact point, the box will still be in equilibrium, but it will be in unstable
equilibrium. Exerting a little more force to the right will cause the box to turn all the way
over onto its side under its own weight. Relaxing the force a little when the
box is in that position will allow it to rotate
back towards its original position.

What are the tipping point angles?

The box on the left would need to rotate slightly more than 45 degrees
clockwise around point b before the direction of the weight vector through the C.G. would move
to the right of point b, causing the box to continue rotating under its own
weight.

However, the box on the right would only need to rotate slightly more than 14
degrees clockwise around point b before the direction of the weight vector through the C.G.
would move to the right of point b causing the box to continue rotating under its
own weight.

Conclusion

Therefore, the box on the left is more stable than the box on the right. If you want to
lessen the likelihood of an object tipping over, cause the C.G. of the object to be near the bottom
of the object.

An exercise for the student

I will leave it as an exercise for the student to compute moments about point
b to confirm the tipping angle for each box where the torque about point b
changes from counter-clockwise to clockwise.

A real-world example

Let me illustrate this situation with a real-world example that may seem
familiar to you. Assume that you put some flowers with long stems in a
lightweight plastic vase and set the vase on a table. The C.G. of the vase and
the flowers would be relatively high, and it wouldn't take much of a sideways
push to cause the vase to turn over.

Now assume that you add water to the vase until it is about half full. This
would cause the C.G. of the vase, the water, and the flowers to move down,
probably into the bottom half of the vase. This would make it more difficult to tip the vase over. Of course, when it does tip over, it would make a bigger
mess than would be the case without the water.

Do the computations

I encourage you to repeat the computations that I have performed in this
	module. Experiment with
the computations, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

Resources

I will publish a module containing consolidated links to resources on my
Connexions web page and will update and add to the list as additional modules
in this collection are published.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Force -- Center of Gravity

	
File: Phy1120.htm

	
Revised: 07/09/2011

	
Keywords:

 	
physics

	
accessible

	
blind

	
graph board

	
protractor

	
screen reader

	
refreshable Braille display

	
JavaScript

	
trigonometry

	
force

	
center of gravity

	
gravitational constant

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

-end-

Solutions

Chapter 30. Circular Motion -- The Mathematics of Circular Motion

Table of Contents

 	

Preface

;

 	

General

	

Prerequisites

	

Supplemental material

	

	

Discussion

 	

Angular
		displacement and angular velocity

 	

Angular displacement

	

Angular velocity

	

Radian measure

	

			Tangential displacement versus angular displacement

	

Tangential
			speed versus angular velocity

		

	

The relationship between period and frequency

	

The relationship between angular velocity and frequency

	

Radial (centripetal) acceleration

	

	

Example scenarios

 	

Circumference
		of the Earth at the equator

	

Speed of a point on the
		equator

 	

Solution A

	

Solution B

		

	

Period and frequency

	

Radial acceleration

	

	

Work through the examples

	

Resources

	

Miscellaneous

Preface

General

This module is part of a collection (see

http://cnx.org/content/col11294/latest/

) of modules designed to make physics
concepts accessible to blind students. The collection is intended to supplement but not to
replace the textbook in an introductory course in high school or college
physics.

This module explains the mathematics of circular motion in a format that is
accessible to blind students.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these modules:

 	
A graph board for plotting graphs and vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
A protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
An audio screen reader that is compatible with your operating system,
	such as the NonVisual Desktop Access program (NVDA), which is freely
	available at

	http://www.nvda-project.org/

.

	
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor
	(

http://www.userite.com/ecampus/lesson1/tools.php

).

	
A device to create Braille labels. Will be used to label graphs
	constructed on the graph board.

The minimum prerequisites for understanding the material in these modules
	include:

 	
A good understanding of algebra.

	
An understanding of the use of a graph board for plotting graphs and
	vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
An understanding of the use of a protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
A basic understanding of the use of sine, cosine, and tangent from
	trigonometry (

http://www.clarku.edu/~djoyce/trig/

).

	
An introductory understanding of JavaScript programming (

http://www.dickbaldwin.com/tocjscript1.htm

 and

http://www.w3schools.com/js/default.asp

).

	
An understanding of all of the material covered in the earlier modules
	in this collection.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

Discussion

Now that you have an idea of how circular motion behaves from a physical
viewpoint, let's take a look at the mathematics that describe circular motion.

Angular displacement and
angular velocity

We begin this module with two new terms:

angular displacement

 and

angular
velocity

.

Dealing with points can be awkward

Up until now in this series of modules on circular motion, we have dealt
mainly with the motion of points involved in uniform circular motion. However,
in some situations, that is awkward. Consider a wheel on a car, for example.
There are an infinite number of points on the wheel, and when the wheel is
spinning, every point is moving with a different velocity and/or acceleration.
It would be difficult for us to describe that motion in terms of the motions of
all the points.

This causes us to seek a more comprehensive description that will encompass the
motion of all of the points on the wheel. Two terms that accomplish that purpose
are angular displacement and angular velocity.

Angular displacement

Approaching the situation from this viewpoint, we concentrate on angles instead of distances. If a wheel
spins through one-fourth of a complete revolution, every point on the wheel
moves through the same 90-degree angle. (However, as you learned in
earlier modules, points at different radii move different distances.)

A set of new variables

We will define a set of variables involving angular motion that are analogous to displacement,
velocity, and acceleration in the realm of linear motion. However, we will use angular measurements instead of
linear distance measurements.

Angular displacement

Instead of linear displacement, for example, we will speak of angular
displacement.

Angular displacement

 is the angle through which a
rotating body turns based on some starting and stopping criteria.

A pie-shaped wedge

As you learned in an earlier module, a point on a wheel moves along the
	circumference of a circle as the wheel rotates. Viewing the rotating wheel
	from a vantage point that is perpendicular to the wheel, during a given time
	interval, we see that the point sweeps out a pie-shaped wedge with its point at the center of the wheel.

An arc of a circle

The motion of the point describes an arc
	of a circle directly opposite the point at the center of the circle. This pie-shaped
	wedge describes an angle, which is the

angular displacement

	during that episode of movement. (You should be able to simulate this on your
	graph board in order to get a better picture in your mind.)

Definition of angular displacement

dA = Af - Ai

where

 	
dA represents the angular displacement

	
Ai is the angle that a line through the point makes with the
				horizontal axis when the episode begins.

	
Af is the angle that a line through the point makes with the
				horizontal axis when the episode ends.

Physics books typically use Greek letters such as phi and theta
			to represent angles. However, it is unlikely that your Braille
			display can handle Greek characters, so I will stick with standard
			qwerty keyboard characters.

Angular displacement is a signed quantity

The direction of rotation is indicated by the algebraic sign of the
	angular displacement. It is conventional to consider a counter clockwise
	rotation to result in a positive angular displacement.

Units of angular displacement

The units of angular displacement are typically degrees or radians.

Angular velocity

That brings us to angular velocity, The

average angular velocity

is the average rate of change of angular displacement.

Definition of angular velocity

wAvg = dA/dT

where

 	
wAvg represents average angular velocity

	
dA represents the angular displacement in a given time
				interval

	
dT represents the time interval

It is customary in physics books to represent angular velocity
			with the Greek letter omega. In this module, I will use a lower-case
			"w" character to represent angular velocity where appropriate,
			simply because it looks a lot like a Greek omega character.

Reduce the time interval

If we allow the time interval dT to be come shorter and shorter, we are
	averaging over smaller and smaller time intervals. In the limit, as dT
	approaches zero, wAvg becomes w, which is the

instantaneous

 angular
	velocity.

Angular velocity is a signed quantity

Angular velocity is also a signed quantity with the sign indicating the
direction of rotation. By convention, counter clockwise rotation is viewed as
positive rotation. The sign of angular velocity is the same as the sign of the
angular displacement that forms the basis for the angular velocity.

Units of angular velocity

The units of angular velocity are typically degrees per second or radians per
second. You will learn later that radians is a dimensionless quantity.
Therefore, when angular velocity is measured in radians per second, it often
appears simply as

w = 10/sec

Radian measure

The most familiar measurement of angles, in the U.S. is in degrees.
However, in some situations, it is more convenient to measure angles in radians
than in degrees.

This becomes most apparent when we need to relate angular displacement or
angular velocity with the distance traveled or the tangential speed of a point on
a
rotating object.

Definition of a radian

One radian is an angular measurement, which is equal to an angle
			at the center of a circle whose arc is equal in length to the radius
			of the circle.

Simulate with a graph board

I recommend that you use your graph board to simulate an angle of one radian.

Using your graph board along with some string and pushpins, draw a
Cartesian coordinate system. Then draw a circle with a convenient radius with
its center at the origin of your coordinate system.

Make the arc match the radius

Cut a piece of string to the length of the radius of the circle. Then,
beginning at the intersection of the circle and the horizontal axis, lay the
string along the circumference of the circle moving in a counter clockwise
direction. Put a pushpin at the point where the string ends. Then stretch a
rubber band from that point back to the center of the circle.

Measure the angle

Using your protractor, measure the angle that the rubber band makes with the horizontal axis. That
angle should be about 57.3 degrees, which is one radian.

Measure the number of radians in 360 degrees

Now, using the string whose length is equal to the radius of the circle as a
measuring tool, determine how many strings of that length you can lay end-to-end
around the circumference of the circle.

You should find that about 6.28 (2*pi)
such strings are required to go all the way around the circumference of the
circle.

An angle in radians is a ratio of lengths

An angle measured in radians is a ratio of two values, each of which have
	units of length. Therefore, such an angle has no dimensions.

Measurement of an angle in radians

angle = s/r

where

 	
s is the length of an arc along the circumference of a
				circle

	
r is the radius of the circle

	
angle is the angle subtended by the arc length, s

An example measurement

Assume that the arc length is equal to one-half the circumference of the
	circle. This arc represents a subtended angle of 180 degrees. Then,

s = circumference/2 = pi * radius

angle = (pi * radius)/radius = pi

From this we can see that pi radians is equal to 180 degrees.

Earlier we saw that 2*pi radians equal 360 degrees.

Facts worth remembering

 	
One radian is equal to approximately 57.3 degrees

	
Pi radians is equal to 180 degrees

	
2*Pi radians are equal to 360 degrees

Tangential
displacement versus angular displacement

Consider the case of a 1.5-radian angular displacement of a wheel in a
	given time interval. What is the corresponding displacement of a
	point on the circumference of the wheel? Assume that the radius of the wheel
	is 0.5 meters.

angle = s/r, or

s = angle * r, or

s = 1.5 * 0.5m = 0.75m

A simple solution

Thus, we see that the tangential displacement of a point on the circumference of
a wheel due to a given angular displacement of the wheel in radians is simply
the product of the displacement and the radius of the wheel.

Solving for the
same result using angular displacement in degrees would be somewhat more
complicated.

Tangential speed versus
angular velocity

A similar simplification occurs when dealing with the angular velocity of a
wheel and the tangential speed of a point on the circumference of the wheel.

As in linear measurements, the average angular velocity of a wheel is equal
to the angular displacement of the wheel divided by the time interval during
which the displacement takes place.

Measurement of angular velocity in radians

w = dA/dT

By substitution,

w = (s/r)/dT = s/(r*dT)

where

 	
s is the length of an arc along the circumference of a
				circle

	
dA is an angular displacement in a given time interval

	
dT is the time interval

	
r is the radius of the circle

	
w is the angular velocity

Another example

Consider the case of a 1.5-radian/second angular velocity of a wheel.
	What is the corresponding tangential speed of a point on the circumference of
	the wheel? Assume that the radius of the wheel is 0.5 meters.

The tangential speed is equal to the tangential displacement, s, divided by the
time interval over which the displacement occurs. Given the above information,
we can write:

w = s/(r*dT)

Given that

v = s/dT

Substitution yields

v; = w*r, or

v = (1.5/s)*(0.5m) = 0.75 m/s

Another simple relationship

Once again, if you keep your units straight, the tangential speed of a point
on the circumference of the wheel is simply equal to the angular velocity in
radians per second multiplied by the radius of the wheel.

Facts worth remembering

tangential displacement = dA * r

tangential speed = w * r

where

 	
tangential displacement is the distance that a given point
				travels around the circumference of a circle as a function of an
				angular displacement in radians.

	
tangential speed is the speed at which a point travels around
				the circumference of a circle as a function of an angular
				velocity in radians.

	
w is the angular velocity in radians/second

	
dA represents angular displacement

	
r represents radius

The relationship between period and frequency

As you already know, when the speed of a point moving in a circle is constant, its motion is called uniform
circular motion.

As you also already know, even though the speed of the point is constant, the velocity is
not constant. The velocity is constantly changing because the direction of the
velocity vector is constantly changing.

The period

The amount of time required
for the point to travel completely around the circle is called the period of the motion.

The frequency

The frequency of the motion, which is the number of revolutions per unit time, is
defined as the reciprocal of the period. That is,

frequency in rev per sec = 1/(period in sec per rev), or

f = 1/T

where

 	
f represents frequency in revolutions per second

	
T represents period in seconds per revolution

The r

elationship between angular velocity and frequency

The speed of a point moving completely around the circle is equal to the distance
traveled divided by the time.

sT = 2*pi*r/T, or

sT = 2*pi*r*f

where

 	
sT is the tangential speed

	
r is the radius

	
T is the time required for the point to make one complete revolution

	
f is the reciprocal of T

We know from before that

sT = w * r, or

w = sT/r

Therefore, by substitution from above,

w = 2*pi*r*f/r = 2*pi*f, or

the angular velocity in radians per second is the product of 2*pi and the
frequency in revolutions per second.

where

 	
sT is tangential speed

	
w is angular velocity in radians per second

	
f is frequency in revolutions per second, or cycles per second, or hertz

The SI unit for frequency

The SI unit for frequency is hertz (Hz) where 1 Hz is equal to one revolution
per second or one cycle per second.

Facts worth remembering

w = 2*pi*f

where

 	
w is angular velocity in radians per second

	
f is frequency in revolutions per second, or cycles per second, or hertz
				

The SI unit for frequency is hertz (Hz) where 1 Hz is equal to one revolution per second or one cycle per second

Radial (centripetal) acceleration

In an earlier module, you learned how to subtract vectors and;
demonstrate that the acceleration vector of an object moving with uniform
circular motion always points toward the center of the circle. However, in that
lesson, we did not address the magnitude of the acceleration vector. We will do
that here.

A very difficult derivation

Deriving the magnitude of the acceleration vector depends very heavily on the
use of vector diagrams, complex assumptions, complicated equations.
Unfortunately, this is one of those times that I won't be able to present that
derivation in a format that is accessible for blind students. In this case,
blind students will simply have to accept the final results in equation form and
use those equations for the solution of problems in this area.

Facts worth remembering

Ar = v^2/r, or

Ar = (w^2)*r

where

 	
Ar is the magnitude of the radial acceleration

	
v is the magnitude of the tangential velocity of the object
				moving around the circle

	
r is the radius of the circle

	
w is the angular velocity of the object moving around the
				circle

Example scenarios

In this section, I will work through some examples that illustrate what you
learned in the earlier section along with what you have learned in earlier modules.

Circumference of the
Earth at the equator

The radius of the Earth at the equator is equal to approximately 6378km. What is the circumference of the earth at the equator.

Solution:

If you were to travel around the Earth at the equator, you would travel along
a circular arc that subtends an angle of 2*pi radians. We know how to compute
the length of the circular arc given the radius and the subtended angle:

arc length = (subtended angle) * radius, or

circumference = 2*pi*6378km = 40074 km

Speed of a point on the equator

The Earth rotates around its axis once each 24 hours. Therefore, a point on
the equator makes one full trip around a circle with the circumference of the
Earth each 24 hours.

Assume you are standing at a point on the equator. Ignoring all of the other
motions of the universe, what is the speed with which you are traveling around
that circle?

What is the angular velocity of the earth in radians per second.

Does the angular velocity of the Earth change when you drive North from the
equator?

Solution A

Speed

Since we already know the circumference of the Earth, we know that you will
travel 40074 km each 24 hours. Therefore,

speed = 40074km/24hr = 463.8 meters/second, or

speed = 1037 miles/hour

Did you know that you are constantly moving through space at a speed slightly
greater than 1000 miles per hour?

Angular velocity

We also know that the earth rotates around its axis by 2*pi radians each 24 hours. Therefore, the
angular velocity of the earth is

w = 2*pi radians/24 hours = 7.27 *10^(-5) radians / second

Differences in angular velocity

For purposes of this discussion, the Earth does not distort as it rotates.
Therefore, the angular velocity of every point on the surface of the Earth
rotates around the Earth's axis with the same angular velocity; namely 2*pi
radians every 24 hours.

However I did see on TV the other day that the angular velocity of the
Earth's core may be different from the angular velocity of the outer crust of
the Earth. Apparently this can happen because the core is not firmly attached to
the crust, but rather is suspended in a bath of molten rock.

Solution B

You learned earlier that the speed is equal to the product of the angular
velocity and the radius. Therefore,

speed = w * r, or

speed = (7.27 *10^(-5) radians / second) * 6378km, or

speed = 463.7 m/s

which agrees with Solution A above.

Note that w represents angular velocity and r represents radius in the above
calculations.

Period and frequency

A child's toy contains a round disk that rotates with a period of 0.628
seconds.

What is the frequency with which a spot on the edge of the disk passes a
fixed mark on the body of the toy.

What is the angular velocity of the toy?

Solution:

f = 1/T = 1/(0.628) = 1.59 Hz

w = 2*pi*f = 10 radian/second

where

 	
f represents frequency

	
T represents the period

	
w represents angular velocity

Radial acceleration

A student ties a 10 kg mass onto a fishing line with a breaking strength of 5
newtons, and then starts swinging the mass around over his head. The student
tries very hard to cause the path to be circular. The distance from the center
of the circle to the mass is 3 meters.

As time goes on, the student swings the mass faster and faster until the
fishing line breaks. What is the tangential velocity of the mass when the
fishing line breaks.

Solution:

Centripetal force = mass * (centripetal acceleration), or

f = m * Ar, or

f = m * v^2/r, or

v^2 = f*r/m, or

v = (f*r/m)^(1/2), or

v = (5 newtons * 3 meters/10 kg)^(1/2), or

v = 1.22 m/s

The magnitude of the tangential velocity of the mass when the fishing line
breaks is 1.22 meters/second

Check the solution using angular velocity, w

w = v / r, or

w = (1.22 m/s) / 3m = 0.407 radians/second

The angular velocity for a tangential velocity of 1.22 m/s is 0.407
radians/second

Ar = (w^2)*r, or

Ar = ((0.407 /second)^2)*3m, or

Ar = 0.5 m/s^2

The magnitude of the radial acceleration is 0.5 m/s^2

f = m * Ar, or

f = 10kg*(0.5 m/s^2), or

f = 5 newtons, or

the force equals 5 newtons, which matches the breaking strength of the
fishing line.

Work through the examples

I encourage you to work through the examples that I have presented in
	this module to
confirm that you get the same results. Experiment with
the scenarios, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

Resources

I will publish a module containing consolidated links to resources on my
Connexions web page and will update and add to the list as additional modules
in this collection are published.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Circular Motion -- The Mathematics of Circular Motion for Blind Students

	
File: Phy1260.htm

	
Keywords:

 	
physics

	
accessible

	
accessibility

	
blind

	
graph board

	
protractor

	
screen reader

	
refreshable Braille display

	
JavaScript

	
trigonometry

	
angular displacement

	
angular velocity

	
radian measure

	
tangential displacement

	
tangential speed

	
frequency

	
period

	
centripetal

	
centripetal acceleration

	
centripetal force

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

-end-

Solutions

Chapter 18. Force and Motion -- Units of Force

Table of Contents

 	

Preface

	

 	

General

	

Prerequisites

	

Viewing tip

 	

Figures

		

	

Supplemental material

	

	

Background information

 	

Creation of tactile graphics

	

Things can be confusing

	

SI units and the newton

	

A practical example
using the Google calculator

	

Other units

 	

poundal

	

dyne

		

	

Acceleration of gravity

 	

pound-force

	

gram-force

	

kilogram-force

		

	

Weight is a force

	

	

Sample problems

	

 	

A static scenario

	

First dynamic scenario

	

Second dynamic scenario

	

Third dynamic scenario

	

	

Do the calculations

	

Resources

	

Miscellaneous

Preface

General

This module is part of a collection (see

http://cnx.org/content/col11294/latest/

) of modules designed to make physics
concepts accessible to blind students. The collection is intended to supplement but not to
replace the textbook in an introductory course in high school or college
physics.

This module explains various units of force in a format that is accessible to blind students.

Prerequisites

In addition to an Internet connection and a browser, you will need the
following tools (as a minimum) to work through the exercises in these modules:

 	
A graph board for plotting graphs and vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
A protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
An audio screen reader that is compatible with your operating system,
	such as the NonVisual Desktop Access program (NVDA), which is freely
	available at

	http://www.nvda-project.org/

.

	
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor
	(

http://www.userite.com/ecampus/lesson1/tools.php

).

	
A device to create Braille labels. Will be used to label graphs
	constructed on the graph board.

	
The ability to create tactile graphics as described at
	

	http://cnx.org/content/m38546/latest/

.

The minimum prerequisites for understanding the material in these modules
	include:

 	
A good understanding of algebra.

	
An understanding of the use of a graph board for plotting graphs and
	vector diagrams (

http://www.youtube.com/watch?v=c8plj9UsJbg

).

	
An understanding of the use of a protractor for measuring angles (

http://www.youtube.com/watch?v=v-F06HgiUpw

).

	
A basic understanding of the use of sine, cosine, and tangent from
	trigonometry (

http://www.clarku.edu/~djoyce/trig/

).

	
An introductory understanding of JavaScript programming (

http://www.dickbaldwin.com/tocjscript1.htm

 and

http://www.w3schools.com/js/default.asp

).

	
An understanding of all of the material covered in the earlier modules
	in this collection.

	
An understanding of the creation and use of tactile graphics as
	described at

	http://cnx.org/content/m38546/latest/

.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures while you are reading about them.

Figures

 	

Figure 1

. SI base units.

	

Figure 2

. Examples of SI derived units.

	

Figure 3

. Mirror image of the image from the file named Phy1150a1.svg.

	

Figure 4

. Non-mirror image of the image from the file named Phy1150a1.svg.

	

Figure 5

. Key-value pairs for the image in the file named Phy1150a1.svg.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

Background
information

Creation of tactile graphics

The module titled Manual Creation of Tactile Graphics at

http://cnx.org/content/m38546/latest/

 explained how to create tactile
graphics from svg files that I will provide.

If you are going to have an assistant create tactile graphics for this
module, you will need to

download the file
named Phy1150.zip

, which contains the svg file for this module. Extract the
svg file from the zip file and provide them to your assistant.

Also, if you are going to use tactile graphics, it probably won't be
necessary for you to perform the graph board exercises. However, you should
still walk through the graph board exercises in your mind because I will often
embed important physics concepts in the instructions for doing the graph board
exercises.

In each case where I am providing an svg file for the creation of tactile
graphics, I will identify the name of the appropriate svg file and display an
image of the contents of the file for the benefit of your assistant. As
explained at

http://cnx.org/content/m38546/latest/

, those images will be mirror images of
the actual images so that your assistant can emboss the image from the back of
the paper and you can explore it from the front.

I will also display a non-mirror-image version of the image so that your
assistant can easily read the text in the image.

Also in those cases, I will provide a table of key-value pairs that explain
how the Braille keys in the image relate to text or objects in the image.

Things can be confusing

One of the more confusing things about physics textbooks can be their
treatment of the units in which force is measured and reported. Several
different units are often used including:

 	
newton

	
poundal

	
dyne

	
pound-force

	
gram-force

	
kilogram-force

The first three units in the above list are said to be

absolute units
of force

 because they are measured in fundamental units of mass,
length, and time. The last three units are tied directly to the gravitational
attraction between the earth and other objects.

The newton, which is an SI derived unit, is possibly the most universally
accepted unit of force in the year 2011.

Force equals the product of mass and acceleration

You learned in an earlier module that the force that is required to cause a
given mass to be accelerated by a given amount is proportional to the product of
the mass and the acceleration. If we specify mass and acceleration in consistent
units, we can write

f = m * a

where

 	
f is force

	
m is mass

	
a is acceleration

SI units and the newton

Many
physics books use a system of units called

SI units

. SI is an abbreviation for a
French name, which I am unable to pronounce, and
which is probably also not compatible with your screen reader and your Braille
display.

I won't attempt to explain much about SI units in this module. I provided
some information in an earlier module titled

Units and Dimensional Analysis

.
Also, you can probably find a good
explanation in your textbook, and if not, you can Google SI units and find
hundreds of web pages that explain the system in varying levels of detail.

Tables of SI units

Most of those references will probably also provide tables for the units, but
those tables may be partially incompatible with your screen reader and
Braille display due to the extensive use of superscripts. Therefore, I will provide tables
that should be accessible in

Figure 1

 and

Figure 2

.

Base units and derived units

When reading about SI units, you will find that they are often divided into base
units and derived units. I will put the base units in

Figure 1

 and some
sample derived
units in

Figure 2

.

	

 Base Quantity Name Symbol

length meter m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

Figure 18.1.

SI base units.

SI base units.

Note that the list of derived units in

Figure 2

 is only a sampling of
	different units that can be derived from the base units.

The exponentiation indicator

As is the case throughout these modules, the character "^" that you see used
extensively in

Figure 2

 indicates that the character
following the ^ is an exponent. Note also that when the exponent is negative, it
is enclosed along with its minus sign in parentheses for clarity.

	

force newton kg*m/s^2
area square meter m^2
volume cubic meter m^3
speed, velocity meter per second m/s
acceleration meter per second squared m/s^2
wave number reciprocal meter m^(-1)
mass density kilogram per cubic meter kg/m^3
specific volume cubic meter per kilogram m^3/kg
current density ampere per square meter A/m^2

Figure 18.2.

Examples of SI derived units.

Examples of SI derived units.

The newton

The first derived unit listed in

Figure 2

 is the newton, which is the product
of the base unit for mass (kg) and the base unit for acceleration (m/s^2). Thus,
the units for the newton are

kg*m/s^2

A newton is a unit of force that causes a mass of one kilogram to be
accelerated by one meter per second squared (1 m/s^2).

A practical example
using the Google calculator

When making physics calculations, It is extremely important that you
understand and keep track of the units that you are using. The Google search box
can serve your needs as a scientific calculator if you are careful how you use
it. For example, if you enter an expression such as
3+5 in the Google search box and press the Enter key, the result of evaluating that expression will be
displayed immediately below the search box.

A physics problem

A typical problem in a physics textbook states that a 2-kg mass is moving in a circular path
with a constant angular velocity of 5 radians per second and with a tangential velocity of 3 m/sec.
The objective is to find the centripetal force on the mass.

You will learn all that you need to know to solve this problem in future
modules. For now, just bear with me and concentrate on the use of the Google
search box as a scientific calculator.

As you will learn in a future module, a radian is a dimensionless quantity,
and the proper units for an angular velocity of 5 radians per second is simply 5/s.
(It also works to spell radians out, but abbreviations for radians may not
work in the Google calculator.)

The algebraic solution

Once you work through the algebra for this problem, you will have determined that the answer to the
problem is given by the following expression:

centripetal force = 2kg * (5/s) *(3m/s)

Let Google do the work

Enter the following expression into the Google search box and press the Enter
key:

2kg * (5/s) *(3m/s)

The following text should appear immediately below the search box.

2 kg * (5 / s) * (3 (m / s)) = 30 newtons

Note that in this case, I used the correct symbols for SI units.

Do it again with the units spelled differently

Enter the following expression into the search box and press the Enter key.

2 kilograms * (5 radians/second) * (3 meters/second)

The following text should appear immediately below the search box.

2 kilograms * ((5 radians) / second) * (3 (meters / second)) = 30 newtons

Do it one more time

Let's do it one more time, this time mixing metric and English units. Enter
the following expression into the search box and press the Enter key.

2 kilograms * (5 radians/second) * (9.8425197 feet/second)

The following output should appear below the search box:

2 kilograms * ((5 radians) / second) * (9.8425197 (feet / second)) = 30 newtons

The conclusion

Given an input with units in the correct format, the Google calculator
is not only able to deal with those units and perform the calculation correctly, it is also able to properly convert
the result to the correct value in derived units (newtons in this case).

Other units

When analyzing a physics problem, the safest approach is probably to convert
all of the given information into SI units and solve the problem in SI units,
converting the result back to some other system of units if required. However,
some textbooks and some physics professors may not allow that approach.
Therefore, you need to know something about the other units of force that you
may encounter.

poundal

As you learned in an earlier module, the

pound

 is a unit of mass.

There is a very handy online mass unit converter at

http://www.onlineconversion.com/weight_common.htm

. However, I don't know if
it is accessible for screen readers and Braille displays. According to that
converter,

1 pound = 0.45359237 kilograms

Can use Google for conversion

Even if that converter isn't accessible, you can use the Google calculator to make such conversions.
Enter the following in the Google search box and press the Enter key:

conversion pound to kilogram

The following text should appear immediately below the search box:

1 pound = 0.45359237 kilograms

The foot

A foot is a unit of length commonly used for measurements in the United
States.

1 foot = 0.3048 meters

The poundal unit of force

A poundal is a unit of force that causes a mass of one pound to accelerate at one foot per second squared (1 ft/s^2).

Because the poundal and the newton are both units of force, we can convert
from one to the other as follows:

1 poundal = 0.138254954 newton

dyne

The gram is another unit of mass and the centimeter is another unit of
length.

1 gram = 0.001 kilogram

1 centimeter = 0.01 meter

The dyne unit of force

A dyne is a unit for force that causes a mass of one gram to accelerate at
one centimeter per second squared (1 cm/s^2). Once again, we can convert back
and forth between dynes and newtons using the following relationship:

1 dyne = 0.00001 newton

Acceleration of gravity

The values for the next three units of force that I will explain depend on
the gravitational attraction between the earth and other objects.

The universal law of gravitation tells us that objects having mass are
attracted to one another by a force that is proportional to the product of
their masses and inversely proportional to the distance between them.

attractive force

 = G*m1*m2/d^2

where

 	
G is the gravitational constant 6.673*10^(-11)*m^3*kg^(-1)*s^(-2)

	
m1 and m2 are the masses involved

	
d is the distance between the masses

It is also true that for large spherical masses like the earth, the effect is
as if all of the mass is concentrated at a point located at the center of the
sphere.

Objects are attracted to the earth

Therefore, all objects on or near the surface of the earth are attracted
toward the center of the earth by an amount given by the above

equation

.

Neglecting friction such as air resistance,
objects near the surface at different points on earth fall with an acceleration somewhere
between about 9.78 m/s^2 and 9.82 m/s^2 depending on latitude.

pound-force

The unit of force named pound-force incorporates the gravitational pull of
the earth in its definition. One pound-force is the force required to cause a mass of one
standard pound to be accelerated by an amount equal to the standard acceleration
of gravity that exists near the surface of the earth.

In accordance with the

General Conference on Weights and Measures

, standard gravity is usually taken to be 9.80665 m/s^2 (32.174049 ft/s^2).

The acceleration of the standard gravitational field and the

international avoirdupois pound

 define the pound-force as:

 	
1 pound-force = 1 pound * 32.174049 ft/s^2

	
1 pound-force = 0.45359237kg * 9.80665 m/s^2

	
1 pound-force = 4.44822162 newton

gram-force

As with pound-force, the unit of force named gram-force also incorporates the
gravitational pull of the earth in its definition. One gram force is the force required to cause a one-gram mass to be
accelerated by 980.665 cm/s^2.

We can convert force back and forth between units of gram-force and units of
newton using the following relationship.

1 gram-force = 0.00980665 newton

kilogram-force

Finally, the unit of force named kilogram-force also incorporates the
gravitational pull of the earth in its definition. One kilogram-force is the force required to cause a one-kilogram mass to be
accelerated 9.80665 m/s^2.

Once again, we can convert between force units of kilogram-force and newton
using the following relationship.

1 kilogram-force = 9.80665 newton

Weight is a force

Despite the fact that scales in the grocery stores in the United States have
displays that read in pounds (which is a unit of mass), weight is not a measure
of mass. Weight is a measure of force.

What exactly is the weight of an object?

The measurement that we normally think of as the weight of an object with a
given mass is
the force exerted on that object at the surface of the earth by the
gravitational attraction between that object and the earth.

The weight of that same object on the surface of the moon would be the force
exerted on that object by the gravitational attraction between that object and
the moon.

Weighing a package of hamburger

Assume that you have a package that contains a one-pound mass of hamburger. You put it on a scale on the
surface of the earth and the display reads 1 pound.

Now assume that you take the
same scale and the same package of hamburger to the surface of the moon and place the
package on
the scale. The display would no longer read 1 pound.

The weight indicated by the scale would be different because the gravitational
attraction between the mass of the hamburger and the mass of the moon would be less than
the gravitational attraction between the mass of the hamburger and the mass of
the earth.

According to the calculator at

http://www.moonconnection.com/moon_gravity.phtml

,
the scale would read 0.2 pounds on the moon.

What does the output of the scale really mean?

When you see a scale with a display that reads pound, it should read
pound-force instead. If it reads kilogram, it should read kilogram-force
instead. Pound-force, kilogram-force, and gram-force are units that are tied
directly to the gravitational attraction between the earth and other objects.

Weightlessness

When astronauts go into space and speak of being weightless, they probably
aren't completely weightless. However, their weight is probably so low that it seems
to them to be zero.

The reduction in an astronaut's weight occurs because
the distance between the astronaut and any large massive object (such as the
earth or the moon) is so great that
the gravitational attraction between them is very small.

Sample problems

Let's work through several sample problems involving forces. The first
will be a statics problem and the last three will be dynamics problems.

A static scenario

It will probably help you to keep track of everything if you draw the
scenario on your graph board.

Draw a side view of two cubes
with different masses on the top of a flat level horizontal
friction-free table. Label them Mass C and Mass B. Mass C is on the left and
Mass B is on the right.

Mass B is close to the rightmost edge of the table and Mass C is to the
left of Mass B.

Label Mass C as 3 kg and label Mass B as 2 kg.

A mass hanging on a cord

Draw a strong but lightweight cord, connected to the right side of Mass B and
thread the cord over a very
light frictionless pulley that changes the orientation of the cord from
horizontal to vertical. The pulley is attached to the right edge of the table.

Draw a triangle-shaped mass connected to the cord that hangs down from the
pulley. Label this Mass A and label it as 5 kg.

Two additional cords

Draw a strong but lightweight cord connecting Mass B to
Mass C.

Draw another strong but lightweight cord connecting Mass C to a
vertical wall on the left side of Mass C. That cord prevents any of the masses from moving and keeps the entire
system in equilibrium with the 5-kg mass suspended from the cord that is
threaded over the pulley.

Everything should be lined up

The pulley, both masses, and all three horizontal segments of cord above the
tabletop should be in a
straight line. The attachment heights of the cords and the top of the pulley
should be
such that all of the cords above the tabletop are horizontal. In other words,
there should be no vertical components in any of the forces that act on the cords
above the tabletop.

Label the tension in each cord

Label the tension in the cord between Mass B and Mass A as P. Label the
tension in the cord between Mass C and Mass B as Q Label the tension in the cord
between the wall and Mass C as R.

Tactile graphics

The svg file that is required to create tactile graphics for this exercise is
named Phy1150a1.svg. You should have

downloaded

 that file earlier. This file contains an image that
represents the instructions given

above

.

Figure 3

 shows the mirror image that is contained in
that file for the benefit of your assistant who will create the tactile graphic
for this exercise.

 [image: Missing image]

Figure 18.3.

Mirror image of the image from the file named Phy1150a1.svg.

Mirror image of the image from the file named Phy1150a1.svg.

Figure 4

 shows a non-mirror-image version of the same image.

 [image: Missing image]

Figure 18.4.

Non-mirror image of the image from the file named Phy1150a1.svg.

Non-mirror image of the image from the file named Phy1150a1.svg.

Figure 5

 shows the key-value pairs that go with the image in the file named
Phy1150a1.svg

	

 m: R
n: Q
o: Friction free pulley
p: Friction free table
q: P
r: Mass A 5 kg
s: Mass C 3 kg
t: Mass B 2 kg
u: A static scenario
v: File: Phy1150a1.svg

Figure 18.5.

Key-value pairs for the image in the file named Phy1150a1.svg.

Key-value pairs for the image in the file named Phy1150a1.svg.

The question

What are the tensions P, Q, and R in the individual cord segments when the
system is in equilibrium and nothing is moving?

The answers

Mass A is in equilibrium because the upward force exerted by the cord
attached to the top of Mass A is equal to the downward force of gravity that is
exerted on Mass A.

Therefore, when the system is in equilibrium, the tension P is equal to the
weight of Mass A, which is equal to the product of its mass and the acceleration
of gravity.

P = 5*kg*9.81*m/s^2 = 49.05 newtons

The effect of the pulley

A single-wheel, frictionless, lightweight pulley as described here changes the direction of the cord, but does not
change the tension P in the cord. The tension in the cord is the same on both
sides of the pulley.

Support from the table

Mass B and Mass C are both in vertical equilibrium because their weight is
being supported by the table.

Horizontal equilibrium

Mass B is in horizontal equilibrium because the force exerted on one side of
the mass by tension Q is equal to the force exerted on the other side of the
mass by tension P, which is 49.05 newtons.

Mass C is in horizontal equilibrium because the force exerted on one side of
the mass by tension R is equal to the force exerted on the other side of the
mass by tension Q, which as explained above, is 49.05 newtons.

The wall exerts a force that is equal in magnitude and opposite
in direction to tension R in the cord that attaches Mass C to the wall.

Tensions are all the same

Therefore, the tensions in all three cords are the same and the force exerted by
the wall supports the weight of Mass A hanging by the cord on the other end of
the chain.

P = Q = R = 49.05 newtons

First dynamic scenario

Now assume that someone cuts the cord that attaches Mass A to Mass B. What
happens to the tension in each cord? Which, if any of the masses move, and if
they move, what is their acceleration?

We probably don't need to do any calculations to answer these questions. Life
experience tells us that the tension in each cord immediately goes to
zero when the cord holding up the weight is cut.

Movement

Mass B and Mass C remain in equilibrium with no horizontal forces acting on
them and their weights being supported by the table. They don't move.

Mass A immediately begins a free fall toward the floor with an acceleration
that is equal to the acceleration of gravity at 9.81 m/s^2. A short segment of
cord trails out behind Mass A like an unopened parachute.

Second dynamic scenario

Now assume that we start over with the original static scenario and someone cuts the cord that attaches
Mass A to Mass B. What
happens to the tension in each cord? Which, if any of the masses move, and if
they move, what is their acceleration?

This situation is a little more complicated and will probably require some
calculations to sort out.

It seem obvious that the tensions labeled Q and R immediately go to zero,
but the tension labeled P does not go to zero.

Movement

Mass C remains in equilibrium with no horizontal forces acting on
it and its weight being supported by the table. It does not move.

However, Mass A starts falling toward the floor, dragging Mass B horizontally
towards the pulley.

The driving force

The only force causing Mass A and Mass B to move is the weight of Mass A
(49.05 newtons), which has not changed. However, that force is now trying to
move a total of 7 kg instead of only 5 kg as in the first dynamic scenario above.

A
force of 49.05 newtons is not sufficient to cause a mass of 7 kg to accelerate
at 9.81 m/s^2. Instead, the acceleration of each mass is proportional to the
force and inversely proportional to the total mass.

a = f/m = (49.05*newtons)/(7*kg)

Entering the rightmost expression into the Google search box and pressing
Enter tells us that

 	
a = 7.0 m / s^2

 	
Thus, the acceleration of Mass A and Mass B is 7 m/s^2, a little less than the
acceleration of gravity.

What is the value of tension P?

Tension P is exerting a horizontal force on the right side of Mass B that is
causing that mass to accelerate at 7.0 m / s^2. The force required to achieve
that acceleration on a mass of 2 kg is

P = m*a = 2 kg*7.0 m / s^2

Once again using the Google calculator, we learn that

P = 14 newtons

Thus, although the tension at P did not go to zero when the cord was cut at
Q, the resulting tension in the cord at P was substantially reduced relative to
the tension at P while the system was in equilibrium.

Third dynamic scenario

Now assume that we start over with the original static scenario and someone cuts the cord that attaches
Mass C to the wall. What
happens to the tension in each cord? Which, if any of the masses move, and if
they move, what is their acceleration?

This situation is considerably more complicated and will definitely require some
calculations.

The tension labeled R goes to zero immediately, but the tensions labeled P and Q do not go to zero.

Movement

None of the masses remain in equilibrium. Mass A starts falling toward the floor, dragging
Mass B
and Mass C horizontally toward the pulley.

The driving force

Once again, the only force causing all three masses to move is the weight of
Mass A (49.05 newtons), which has not changed. However,
that force is now trying to move a total of 10 kg instead of only 5 kg or 7 kg
as in the two scenarios described above.

A force of 49.05 newtons is not sufficient to cause a mass of
10 kg to accelerate at 9.81 m/s^2. Instead, the acceleration of each mass is proportional to the force and inversely proportional to the total mass.

a = f/m = (49.05*newtons)/(10*kg)

Entering the rightmost expression into the Google search box and pressing Enter tells us that

a = 4.9 m / s^2

Half the acceleration of gravity

Note that this is half the acceleration of gravity. This makes sense, because
the force attributable to gravitational attraction acting on a mass of 5 kg is
being applied to 10 kg of mass. It follows, therefore, that the acceleration
that is achieved will be only half the acceleration of gravity.

What is the value of tension P?

Tension P is exerting a horizontal force on the right side of Mass B that is causing that
mass and Mass C to accelerate at 4.9 m / s^2. The force required to achieve that acceleration on a mass of
5 kg is

P = m*a = 5*kg*4.9 m / s^2

Once again using the Google calculator, we learn that

P = 24.5 newtons

Mass B and Mass C together represent 50-percent of the total mass, and
tension P is 50-percent of the force applied to the total mass.

What is the value of tension Q?

Tension Q is exerting a horizontal force on the right side of Mass C that is
causing Mass C to accelerate at 4.9 m / s^2. The force required to achieve that acceleration on a mass of
3 kg is

Q = m*a = 3*kg*4.9 m / s^2

Once again using the Google calculator, we learn that

Q = 14.7 newtons

Mass C is 30-percent of the total mass, and tension Q is 30-percent of the
force applied to the total mass.

Do the calculations

I encourage you to repeat the calculations that I have presented in this lesson to
confirm that you get the same results. Experiment with
the scenarios, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

Resources

I will publish a module containing consolidated links to resources on my
Connexions web page and will update and add to the list as additional modules
in this collection are published.

Miscellaneous

This section contains a variety of miscellaneous information.

Housekeeping material

 	
Module name: Force and Motion -- Units of Force

	
File: Phy1150.htm

	
Revised: 07/28/2011

	
Keywords:

 	
physics

	
accessible

	
accessibility

	
blind

	
graph board

	
protractor

	
screen reader

	
refreshable Braille display

	
JavaScript

	
trigonometry

	
newton

	
poundal

	
dyne

	
weight

	
weightlessness

Disclaimers:

Financial

: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.

I also want you to know that I receive no financial compensation from the Connexions website even if you purchase
	the PDF version of the module.

Affiliation

: I am a professor of Computer Information
	Technology at Austin Community College in Austin, TX.
	

-end-

Solutions

Accessible Physics Concepts for Blind Students
Table of Contents
	Chapter 1. Introduction to Accessible Physics Concepts	1.1. 	
Table of Contents

	

Preface

	

General

	

Impetus for this collection of modules

	

Prerequisite requirements

	

Supplemental material

	

Discussion

	

Algebra

	

Using a graph board

	

Using a protractor

	

JavaScript programming

	

Trigonometry

	

Pictures and diagrams

	

Greek characters

	

Resources

	

Miscellaneous

	Chapter 2. If You Can Imagine It, You Can Draw It using SVG	2.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

Discussion

	

Creation of tactile graphics

	

What is SVG

(Scalable Vector Graphics)

?

	

What does this mean to you?

	

Sample drawing

	

Two approaches

	

Writing raw SVG code

	

Using drawing tools

	

Sample program

	

Beginning of the program named Svg21a.java

	

Create a drawing canvas

	

Draw a rectangular border on the canvas

	

Draw the floor and the wall

	

Draw more rectangles

	

Draw a polygon

	

Draw the rectangular pulley support

	

Draw a circle

	

Draw more lines

	

Change line thicknesses

	

Draw text

	

Write the output file

	

The remaining Java code

	

The SVG graphics library

	

Another sample program

	

Writing, compiling, and running Java programs

	

Writing Java code

	

Preparing to compile and
run Java code

	

The java development kit

(JDK)

	

JDOM version 1.1.1

	

Compiling and running Java code

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 3. Manual Creation of Tactile Graphics	3.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Supplemental material

	

Discussion

	

Scalable vector graphics

	

Download the svg file

	

The need for graphics in physics

	

A range of options

	

Manual embossing

	

Resources

	

Miscellaneous

	Chapter 4. A small-scale demonstration of the IVEO Learning System	4.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

Discussion

	

Creation of tactile graphics

	

What is the IVEO
Hands-on-Learning System

?

	

A disclaimer

	

A description by the manufacturer

	

The component parts

	

Brief operational description

	

A program to create a drawing

	

Instructions

	

Acquire a USB digitizer tablet

	

Create the SVG file

	

Install Inkscape

	

Print a mirror image

	

Manually emboss the image

	

Load

 the SVG file into the IVEO
Viewer

	

Explore the image
with your fingers

	

Tactile, audio, and visual information

	

Resources

	

Complete program listings

	

Miscellaneous

	Chapter 5. JavaScript	5.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Discussion

	

Why I chose JavaScript

	

Facilities required

	

A minimal JavaScript script

	

Strings

	

Screen output

	

Structured programming

	

Functions

	

Arithmetic operators

	

Sequence

	

Selection

	

Relational and logical operators

	

Variables

	

The string concatenation
	operator

	

Repetition

	

Programming errors

	

Assistance using Google Chrome

	

Assistance using Firefox

	

Run the scripts

	

Resources

	

Miscellaneous

	Chapter 6. Brief Trigonometry Tutorial	6.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Discussion

	

Degrees versus radians

	

Sine, cosine, and tangent

	

The sine and arcsine of an angle

	

The cosine and arccosine of
an angle

	

The tangent and arctangent
of an angle

	

Dealing with different quadrants

	

Normal (non-mirror-image) graphics

	

Run the scripts

	

Resources

	

Miscellaneous

	Chapter 7. Scale Factors, Ratios, and Proportions	7.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Discussion

	

Scale factors

	

Ratios

	

Proportions

	

Run the scripts

	

Resources

	

Miscellaneous

	Chapter 8. Scientific Notation and Significant Figures	8.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Accuracy and precision

	

Scientific notation

	

Significant figures

	

Discussion and sample code

	

Run the scripts

	

Resources

	

Miscellaneous

	Chapter 9. Units and Dimensional Analysis	9.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Formatting mathematical
expressions

	

What do we mean by units?

	

SI units

	

Prefixes for powers of ten

	

Dimensional analysis

	

Discussion and sample code

	

Exercise on manually
converting units

	

Using JavaScript to convert
units

	

More substantive JavaScript examples

	

Free fall exercise

	

A plotting exercise

	

Non-mirror-image graphics

	

Run the scripts

	

Resources

	

Miscellaneous

	Chapter 10. Motion -- Displacement and Vectors	10.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Discussion and sample code

	

Creation of tactile graphics

	

Displacement

	

Addition and subtraction of vectors

	

Mathematical solutions

	

Using the Math.atan method

	

Mathematical solution to an earlier problem

	

Subtracting vectors

	

Adding more than two vectors

	

Non-mirror-image graphics

	

Run the scripts

	

Resources

	

Miscellaneous

	Chapter 11. Motion -- Uniform and Relative Velocity	11.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Discussion and sample code

	

Creation of tactile graphics

	

A simple exercise on uniform velocity

	

An exercise on average velocity

	

Multiple concurrent velocities

	

Exercise #1 for a man on a train

	

Exercise #2 for a man on a train

	

An exercise with three vectors in a plane

	

Non-mirror-image graphics

	

Run the scripts

	

Resources

	

Miscellaneous

	Chapter 12. Motion -- Variable Velocity and Acceleration	12.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Variable velocity

	

Acceleration

	

The acceleration of gravity

	

Discussion and sample code

	

Creation of tactile graphics

	

Variable velocity exercise #1

	

Variable velocity exercise #2

	

Acceleration of gravity exercise #1

	

Acceleration of gravity
exercise #2

	

Acceleration of gravity
exercise #3

	

Other useful equations

	

Exercise to find the velocity

	

Exercise to find the height

	

Run the scripts

	

Resources

	

Miscellaneous

	Chapter 13. Force -- Introduction to Statics, Equilibrium, and Forces	13.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Supplemental material

	

General background
information

	

A real-world example
of force and equilibrium

	

Other examples of force

	

Resources

	

Miscellaneous

	Chapter 14. Force -- Vector Solutions for Coplanar Forces Concurrent at a Point	14.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

General background
information

	

Creation of tactile graphics

	

The law of sines

	

The law of cosines

	

Discussion and sample code

	

Using the graph board

	

Parallelogram of forces

	

Triangle of forces

	

Trigonometric
solution to the triangle of forces

	

Using components to
analyze for equilibrium

	

Run the scripts

	

Resources

	

Miscellaneous

	Chapter 15. Force -- Moments, Torque, Couple, and Equilibrium	15.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Supplemental material

	

General background
information

	

Discussion and sample code

	

Conditions for equilibrium

	

Equilibrium for a
body with an arbitrary shape

	

A spring balance or spring scale

	

Exercise
relating pound-force to kilogram-force

	

Exercise involving a trapeze bar

	

A more general case of the trapeze bar

	

Apply the
weight at different locations on the trapeze

	

Hypothetical
replacement by a single upward force

	

Exercise
involving a bar supported at only one point

	

Couples

	

Complete the exercises

	

Resources

	

Miscellaneous

	Chapter 16. Force -- Center of Gravity	16.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Supplemental material

	

General background
information

	

Discussion and computations

	

Creation of tactile graphics

	

Equilibrium: stable, unstable, and neutral

	

An exercise involving the
tipping point

	

A real-world example

	

Do the computations

	

Resources

	

Miscellaneous

	Chapter 17. Force and Motion -- Introduction	17.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Supplemental material

	

Discussion

	

Aristotle's contribution,
or lack thereof

	

Galileo's contribution

	

Newton's contribution

	

Three laws of motion

	

Law 1

	

Law 2

	

Law 3

	

Mass, momentum, force, and acceleration

	

Resources

	

Miscellaneous

	Chapter 18. Force and Motion -- Units of Force	18.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Supplemental material

	

Background
information

	

Creation of tactile graphics

	

Things can be confusing

	

SI units and the newton

	

A practical example
using the Google calculator

	

Other units

	

poundal

	

dyne

	

Acceleration of gravity

	

pound-force

	

gram-force

	

kilogram-force

	

Weight is a force

	

Sample problems

	

A static scenario

	

First dynamic scenario

	

Second dynamic scenario

	

Third dynamic scenario

	

Do the calculations

	

Resources

	

Miscellaneous

	Chapter 19. Force and Motion -- Momentum, Impulse, and Conservation of Momentum	19.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

Discussion

	

Newton's cradle

	

Momentum

	

Impulse

	

The physics of collisions

	

Action and reaction

	

Conservation of momentum

	

Center of mass

	

Location of the center of mass

	

Motion of the center of mass

	

Example scenarios

	

Momentum examples

	

A sprinter

	

A truck

	

Change in momentum
due to change in speed and direction

	

Change in
	momentum due to change in speed only

	

Change in
momentum due to change in direction only

	

Impulse examples

	

Pushing a wagon part 1

	

Pushing a wagon part 2

	

Pushing a wagon part 3

	

Action and reaction example

	

Conservation of momentum example

	

Center of mass examples

	

Two objects

	

Three objects

	

Do the calculations

	

Resources

	

Miscellaneous

	Chapter 20. Energy -- Work	20.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Supplemental material

	

General background
information

	

An assumption of constant
velocity

	

Use your graph board for
sketches

	

Work in everyday life

	

Work in physics

	

Sample calculations

	

Single force on a body

	

Multiple forces on a body

	

Force parallel to a ramp

	

Do the calculations

	

Resources

	

Miscellaneous

	Chapter 21. Energy -- Potential Energy	21.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Supplemental material

	

General background
information

	

Graphic examples of potential
energy

	

Potential energy

	

Gravitational potential energy

	

Elastic potential energy

	

Summary

	

Sample

calculations

	

Do the calculations

	

Resources

	

Miscellaneous

	Chapter 22. Energy -- Kinetic and Mechanical Energy	22.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Supplemental material

	

General background
information

	

Kinetic energy

	

Mechanical energy

	

Total mechanical energy

	

Sample calculations

	

Kinetic energy

	

Mechanical energy

	

Do the calculations

	

Resources

	

Miscellaneous

	Chapter 23. Energy -- Power	23.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Supplemental material

	

General background
information

	

Sample calculations

	

Do the

 calculations

	

Resources

	

Miscellaneous

	Chapter 24. Energy -- Internal and External Forces	24.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Supplemental material

	

Discussion

	

Resources

	

Miscellaneous

	Chapter 25. Energy -- Elastic and Inelastic Collisions in Two Dimensions	25.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

Discussion

	

Example scenarios

	

One-dimensional scenarios

	

The rear end car crash

	

A perfectly inelastic car crash

	

Two-dimensional scenarios

	

Elastic
collision between two pucks on friction-free ice

	

	Perfectly inelastic collision between objects with odd angles

	

Rotating the axes for
simplification

	

Run the scripts

	

Resources

	

Miscellaneous

	Chapter 26. Relationships Among Kinematics, Newton's Laws, Vectors, 2D Motion, 2D Forces, Momentum, Work, Energy, and Power	26.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Supplemental material

	

Discussion

	

An ideal rocket example

	

Leg A

	

Leg B

	

Leg C

	

Leg D

	

Do the calculations

	

Resources

	

Miscellaneous

	Chapter 27. Vector Subtraction	27.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Listings

	

Supplemental material

	

Discussion

	

Examp

les of vector subtraction

	

The parallelogram method

	

Angles,
approaches, and vector naming convention

	

Trigonometric solutions

	

Orthogonal vectors

	

Graphical solution for Cs=B+A

	

Graphical solution for Dd=B-A

	

Trigonometric solution for Cs=B+A and Dd=B-A

	

Same magnitude, 45-degree angle

	

Graphical
solutions for sum and difference vectors

	

Sum and
difference for smaller and smaller angles

	

Run the script

	

Resources

	

Miscellaneous

	Chapter 28. Circular Motion -- Speed and Velocity	28.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Supplemental material

	

Discussion

	

Uniform circular motion

	

Average speed

	

Velocity

	

A thought experiment

	

Resources

	

Miscellaneous

	Chapter 29. Circular Motion -- Acceleration and Centripetal Force	29.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Supplemental material

	

Discussion

	

Subtraction of vectors

	

An old-fashioned merry-go-round

	

A weight on a string

	

Water in a bucket

	

The moon and the Earth

	

The work-energy explanation

	

Centripetal, not centrifugal

	

Summary

	

Example

scenarios

	

Scenario #1

	

Scenario #2

	

Scenario #3

	

Resources

	

Miscellaneous

	Chapter 30. Circular Motion -- The Mathematics of Circular Motion	30.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Supplemental material

	

Discussion

	

Angular displacement and
angular velocity

	

Angular displacement

	

Angular velocity

	

Radian measure

	

Tangential
displacement versus angular displacement

	

Tangential speed versus
angular velocity

	

The relationship between period and frequency

	
The r

elationship between angular velocity and frequency

	

Radial (centripetal) acceleration

	

Example scenarios

	

Circumference of the
Earth at the equator

	

Speed of a point on the equator

	

Solution A

	

Solution B

	

Period and frequency

	

Radial acceleration

	

Work through the examples

	

Resources

	

Miscellaneous

	Chapter 31. Angular Momentum -- Rotational Kinetic Energy and Inertia	31.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Facts worth remembering

	

Supplemental material

	

Discussion

	

Introduction

	

Calculating rotational kinetic energy

	

The rotational inertia (I)

	

Mass is no longer absolute

	

The parallel axis theorem

	

Examples of rotational inertia

	

Example scenarios

	

The 2x4 scenario

	

The dumbbell scenario

	

A pulley and two objects, part 1

	

A pulley and two objects, part 2

	

A pulley and two objects, part 3

	

A pulley and two objects, part 4

	

A pulley and two objects, part 5

	

An Atwood machine

	

A flywheel

	

What have we learned?

	

Work through the examples

	

Resources

	

Miscellaneous

	Chapter 32. Vector Multiplication	32.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Supplemental material

	

Discussion

	

Dot product, inner
product, or scalar product

	

Background

	

Create a vector diagram on your graph board

	

The dot product

	

The projection of A onto B

	

Compute the projection

	

Compute the angle between the vectors

	

Perpendicular or parallel
vectors

	

Summary for vector dot product

	

Cross product

	

Background

	

The right-hand rule

	

Create a vector
diagram on your graph board

	

The cross product

	

The area of the parallelogram

	

The direction of the
resultant vector

	

Perpendicular or parallel
vectors

	

Summary for vector cross product

	

Repeat the computations

	

Resources

	

Miscellaneous

	Chapter 33. Angular Momentum -- The Mathematics of Torque	33.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Supplemental material

	

Discussion

	

A review of rotational
kinematics

	

Torque from a mathematical
viewpoint

	

Torque from an anecdotal
viewpoint

	

A graph board exercise on
torque

	

Example scenarios

	

Net torque on the Lazy
Susan turntable

	

A door-closing scenario

	

Torque and the moment of inertia

	

Repeat the computations

	

Resources

	

Miscellaneous

	Chapter 34. Angular Momentum -- Torque, Work and Energy	34.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Supplemental material

	

Discussion

	

Constant torque

	

Variable torque

	

Example scenario

	

Part 1

	

Part 2

	

Do the computations

	

Resources

	

Miscellaneous

	Chapter 35. Angular Momentum -- Rotational Equilibrium	35.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Supplemental material

	

Discussion

	

Example scenarios

	

Weights hanging on a beam

	

Part 1

	

Part 2

	

Beam supported by a diagonal
cable

	

Part 1

	

Part 2

	

Part 3

	

A crane scenario

	

Part 1

	

Part 2

	

Part 3

	

Sliding a crate

	

Part 1

	

Part 2

	

Another crane scenario

	

Part 1

	

Part 2

	

Part 3

	

A ladder scenario

	

Part 1

	

Part 2

	

Repeat the computations

	

Resources

	

Miscellaneous

	Chapter 36. Angular Momentum -- The Physics of Rolling Objects	36.1. 	
Table of Contents

	

Preface

	

General

	

Prerequisites

	

Viewing tip

	

Figures

	

Supplemental material

	

Discussion

	

Rotational versus translational kinetic energy

	

Total kinetic energy

	

Acceleration of a rolling object

	

Example scenarios

	

Rolling cylinders

	

Part 1

	

Part 2

	

Acceleration of a rolling
cylinder

	

Work through the computations

	

Resources

	

Miscellaneous

	Index

