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Preface






 

 

General








 
This module is part of a collection (see





http://cnx.org/content/col11294/latest/



) of modules designed to make physics 
concepts accessible to blind students. The collection is intended to supplement but not to 
replace the textbook in an introductory course in high school or college 
physics. 


 
This module explains the mathematics of torque in a format that is accessible 
to blind students.




 

Prerequisites








 
In addition to an Internet connection and a browser, you will need the 
following tools (as a minimum) to work through the exercises in these modules:


 	 
A graph board for plotting graphs and vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
A protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
An audio screen reader that is compatible with your operating system, 
	such as the NonVisual Desktop Access program (NVDA), which is freely 
	available at 




	http://www.nvda-project.org/



.



	 
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor 
	(



http://www.userite.com/ecampus/lesson1/tools.php



).



	 
A device to create Braille labels. Will be used to label graphs 
	constructed on the graph board.





 
The minimum prerequisites for understanding the material in these modules 
	include:


 	 
A good understanding of algebra.



	 
An understanding of the use of a graph board for plotting graphs and 
	vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
An understanding of the use of a protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
A basic understanding of the use of sine, cosine, and tangent from 
	trigonometry (



http://www.clarku.edu/~djoyce/trig/



).



	 
An introductory understanding of JavaScript programming (



http://www.dickbaldwin.com/tocjscript1.htm



 and 



http://www.w3schools.com/js/default.asp



).



	 
An understanding of all of the material covered in the earlier modules 
	in this collection.







 

 

Viewing tip








 
 I recommend that you open another copy of this document in a separate 
browser window and use the following links to easily find and view the figures 
while you are reading about them.



 

 

Figures








 	 


Figure 1



. Tangential force, mass, radius, and angular acceleration.



	 


Figure 2



. Tangential force, radius, angular acceleration, and moment of inertia.



	 


Figure 3



. Torque, rotational inertia, and angular acceleration.



	 


Figure 4



. The torque vector.



	 


Figure 5



. A general equation for net torque.



	 


Figure 6



. The definition of torque.








 

 

Supplemental material








 
 I recommend that you also study the other lessons in my extensive collection 
of online programming tutorials. You will find a consolidated index at





www.DickBaldwin.com



.





 

 

Discussion








 
I will begin this discussion with a brief review of what we have learned 
about the rotation of rigid bodies and go from there into a discussion of 
torque.



 

A review of rotational 
kinematics








 
One of the objectives of this review is to summarize the angular kinematic variables that are used to describe 
rotational motion and relate them
to the translational kinematic variables that we already know about.


 
Given a system of particles, we can describe motion as having two components:


 	 
The motion of the center of mass.



	 
Motion relative to the center of mass.





 
 
Terminology



 
When an object rotates, it experiences an angular displacement, which I will 
refer to as theta in this review.


 
(Textbooks typically use the Greek letter theta for this purpose. However, 
your Braille display probably won't display the Greek letter theta. Therefore, I 
will spell it out when I use it in text, and will replace it by the character 
"Q" when I use it in an equation.)


 
The time rate of change of the angular 
displacement is the angular velocity, which I will refer to as omega in this 
review.


 
The time rate of change of the angular velocity is the angular 
acceleration, which I will refer to as alpha in this review.


 
 
Similarity to translational motion



 
These definitions are very similar to definitions from earlier modules having 
to do with translational motion. For example, when an object moves, it 
experiences a displacement. The time rate of change of the displacement is the 
velocity, and the time rate of change of the velocity is the acceleration.


 
This similarity derives from the fact that rotational motion can be described by a
single angular displacement, theta, just as linear motion can be described by a single spatial
displacement, x.


 
 
Constant angular acceleration



 
For constant angular acceleration, we can derive a set of equations that are 
analogous to corresponding equations for translational motion:


 
 

Q = Q0 + w0*t + (1/2)*a*t^2





 
w = w0 + a*t


 
w^2 = w0^2 + 2*a*(Q - Q0)


 
where


 	 
Q represents the angular displacement theta



	 
Q0 represents the initial angular displacement



	 
w represents the angular velocity omega



	 
w0 represents the initial angular velocity



	 
a represents the angular acceleration alpha



	 
t represents time in seconds





 
 
Corresponding translational equations


 


 
For reference, here are the three translational equations that correspond to the equations 
given 



above



. These equations were explained 
in an earlier module that involved the constant translational acceleration of gravity.


 
h = h0 v0*t + 0.5*g*t^2


 
v = v0 + g*t



 
v^2 = v0^2 + 2*g*(h-h0)


 
where


 	 
h represents the translational displacement



	 
h0 represents the initial translational displacement



	 
v represents the translational velocity



	 
v0 represents the initial translational velocity



	 
g represents the acceleration of gravity



	 
t represents time in seconds





 
 
Motion of a point that is a fixed distance from the rotational axis



 
It is customary to define counter clockwise rotation as the positive direction 
of rotation. That will be the case in this review.


 
Consider a rotating disk. Since all
points on the disk are rotating together, we can
determine the linear displacement, speed and
acceleration of any point on the disk in terms
of the corresponding angular parameters.


 
 
Parameters for a point on a rotating disk



 
Consider a point on the disk that is a distance R from the axis of rotation. 
Assume that the disk has rotated through an angle theta. The point will have 
moved through a distance, s, along the circumference of a circle of radius R. 
The distance s is equal to the product of the radius and the angular 
displacement measured in radians:


 
s = R * Q


 
where


 	 
s represents the distance traveled around the circumference of a circle 
	of radius R



	 
R represents the radius of the circle



	 
Q represents the displacement angle theta measured in radians





 
 
Relationship between speed and angular velocity



 
With a little calculus, we can find a relationship between the tangential speed of the 
point along its path around the circle and the angular velocity of the disk:


 
 

v = R*w





 
where


 	 
v represents the tangential speed of the point that is moving on the circumference 
	of the circle



	 
R represents the radius of the circle



	 
w represents the angular velocity omega





 
 
Relationship between tangential acceleration and angular acceleration



 
By using a little more calculus, we can find a relationship between the 
tangential acceleration of the point along its circular path and 
the angular acceleration of the disk:


 
 

y = R*a





 
where


 	 
y represents the tangential acceleration of the point along the circular 
	path



	 
R represents the radius



	 
a represents the angular acceleration alpha





 
 
 

Kinetic energy in rotation






 
Consider the hypothetical case of a rigid object made up of a set of point 
particles connected by rods with zero mass. In other words, ignore the mass of 
the mechanism that holds the point particles in a rigid geometry.


 
Assume that this object rotates about a fixed axis with a constant angular 
velocity, omega. Also assume that you know the mass of each particle and that you 
know the distance of each particle from the axis of rotation.


 
 
Kinetic energy of each individual particle



 
We know how to compute the




speed



 of each particle along its circular path.


 
The kinetic energy of each particle would be


 
 

Ki = (1/2)*mi*vi^2





 
where


 	 
Ki is the kinetic energy of the ith point particle



	 
mi is the mass of the ith point particle



	 
vi is the speed of the ith point particle





 
 
Kinetic energy for translational motion



 
Hopefully you recognize the above 



equation



 as 
being the same as the following equation that we saw in an earlier module 
involving the kinetic energy of an object in translational motion.


 
KE = 0.5*m*v^2





 
where 


 	 
KE represents the kinetic energy possessed by the object



	 
m represents the mass of the object



	 
vv represents the velocity of the object 





 
 
Kinetic energy for the object



 
The object described 



above



 is made up of a system of particles.


 
The total kinetic energy of the system is the sum of the kinetic energy 
values of each of its particles.


 
The kinetic energy for the system is


 
Ks = (1/2)*(sum from i=0 to i=N(mi*ri^2))*w^2


 
where


 	 
Ks represents the kinetic energy of the system



	 
((sum from i=0 to i=N(...)) represents the sum of the values resulting 
	from evaluating the expression in parentheses for each one of N+1 particles



	 
mi represents the mass of the ith point particle



	 
ri represents the distance of the ith point particle from the axis of 
	rotation



	 
w represents the angular velocity omega





 
 
 

Rotational inertia or moment of inertia






 
Define the rotational inertia, or the moment of inertia, whichever term you 
prefer as


 
I = sum from i=0 to i=N(mi*ri^2)


 
where


 	 
I represents the rotational inertia or the moment of inertia



	 
mi represents the mass of the ith point particle



	 
ri represents the distance of the ith point particle from the axis of 
	rotation





 
 
Rotational kinetic energy based on rotational inertia



 
From this, we can determine that 


 
Ks = (1/2)*I*w^2


 
where


 	 
Ks represents the kinetic energy for the system



	 
I represents the rotational inertia for the system



	 
w represents the angular velocity of the system





 
 
Similar to translational kinetic energy



 
Note the similarity between the kinetic energy of a rotating system and the 
kinetic energy an 
object undergoing translational motion:


 
Ke = (1/2)*I*w^2


 
Kt = (1/2)*m*v^2


 
where


 	 
Kr represents the kinetic energy for the rotating system



	 
I represents the rotational inertia for the rotating system



	 
w represents the angular velocity of the rotating system



	 
Kt represents translational kinetic energy



	 
m represents the mass of an object undergoing translational motion



	 
v represents the velocity speed of the object undergoing translational 
	motion





 
 
Similarities between rotational inertia and mass



 
The mass of an object tells us how its kinetic
energy is related to the square of its velocity.


 
The rotational inertia of a rotating object
tells us how its kinetic energy is related to the square of its angular velocity.


 
The rotational inertia plays the same role in rotational motion that mass plays in 
translational motion.


 
 
Differences between mass and rotational inertia



 
While mass and rotational inertia play similar roles, there are also major 
differences between the two including:


 	 
Rotational inertial depends not just on the total mass of an object, but also on 
	the geometric distribution of the mass within the object.



	 
Rotational inertia also depends on the
choice of the rotation axis, because distances are measured relative to that axis.







 

Torque from a mathematical 
viewpoint








 
Consider a point mass that is constrained to move in a circle. Let the mass 
be acted upon by an arbitrary force F. We learned earlier that in order for the 
mass to be moving in a circle, there must be a component of force, (the 
centripetal force), that is directed toward the center of the circle.


 
 
Tangential force, mass, radius, and angular acceleration



 
If we assume that the speed of the mass is changing, there must also be a 
component of the force that is tangential to the circle at the location of the 
point mass acting on the mass. This force is required to produce acceleration. Therefore, we can 
write:


 
Ft = m*y


 
From 



above



,


 
y = r*a


 
Substitution yields


 
Ft = m*r*a


	



 
Ft = m*r*a







 
where







 	 
Ft represents the tangential force



	 
m represents the mass



	 
y represents the tangential acceleration of the point mass along the circular 
	path



	 
r represents the radius



	 
a represents the angular acceleration alpha














Figure 33.1. 
 

Tangential force, mass, radius, and angular acceleration.

Tangential force, mass, radius, and angular acceleration.

 
 
Tangential force, radius, angular acceleration, and moment of inertia



 
We confirmed earlier that the rotational analog of mass is the




rotational inertia



. In 
the case of a single mass,


 
I = m*r^2


 
Substitution yields


 
Ft = m*r*a, or


 
Ft = (I/r^2)*r*a, or


 
Ft = (I/r)*a


 
Multiplying both side by r yields


 
 

r*Ft = I*a





	



 
r*Ft = I*a







 
where







 	 
Ft represents the tangential force



	 
r represents the radius



	 
I represents the rotational inertia or the moment of inertia, whichever 
	term you prefer



	 
a represents the angular acceleration alpha










 










Figure 33.2. 
 

Tangential force, radius, angular acceleration, and moment of inertia .

Tangential force, radius, angular acceleration, and moment of inertia .

 
 
Similar to Newton's second law



 
The 



equation



 in 



Figure 2



 looks a lot like Newton's second law 
for translational motion, which is often expressed as


 
Force = mass * acceleration


 
In this case, the rotational inertia, I, is analogous to mass and the 
rotational acceleration, a, is analogous to translational acceleration.


 
If this similarity holds, that 
must mean that the term on the 



left side



 is analogous 
to force in the tangential motion scenario.


 
 
Torque, rotational inertia, and angular acceleration



 
The term on the 



left



, consisting of the product of 
the force and the distance from the point of 
application of the force to the axis of rotation is commonly known as the torque. 
The common symbol for torque is the Greek letter tau, which I will replace with 
the character T in equations in this module.


 
T = r*Ft 

 

= I*a



, or


 
 

T = I*a





	

	

 
T = I*a







 
where







 	 
T represents torque



	 
r represents radius



	 
Ft represents the tangential component of force



	 
I represents rotational inertia or moment of inertia



	 
a represents angular acceleration














Figure 33.3. 
 

Torque, rotational inertia, and angular acceleration.

Torque, rotational inertia, and angular acceleration.

 
 
Torque produces angular acceleration



 
Thus, we have determined that a torque, which is the product of a tangential force and the distance
from the application point of this force to the axis of rotation, produces an angular acceleration.


 
This is beginning to look a lot like Newton's second law 
for rotation. We will refine it some more later to improve the analogy. To do 
that, we will need to define torque and angular acceleration 
as vector quantities. We will accomplish that using the cross product of two 
vectors that you learned about in an earlier module.


 
 
The convention for positive rotation



 
If you imagine a rotating object from a viewpoint in which the rotation axis 
is perpendicular to the page, it is conventional to define a counter clockwise 
rotation as the positive direction of rotation. That is the convention that I will use in this module.


 
You learned about the right-hand rule involving vectors in an earlier module. 
There is a similar right-hand rule that we use to describe rotating objects.


 
 
The right-hand rule for angular velocity



 
If you curl the fingers of your right hand in the
direction of rotation of the object, your thumb will
point in the direction of the angular velocity
vector of the object.


 
In other words, if some object
is spinning in the counter-clockwise direction in
the x-y plane, curling the fingers of your right
hand in this direction results in your thumb
pointing in the +z direction which we define to be
the direction of the angular velocity vector.


 
 
The rule for angular acceleration



 
If the magnitude of the angular velocity
increases in time, then the angular acceleration
vector has the same direction as that of the angular
velocity. If the magnitude of the angular velocity
decreases in time, then the angular acceleration
vector has the opposite direction as that of the
angular velocity.


 
 
Defining torque as a vector quantity



 
The magnitude of a torque is the product of two terms:


 	 
The
length of a line that connects the axis of rotation to the point where the force acts. 
	Refer to this line as r.



	 
The
component of the force, Ft, that is perpendicular to this line.





 
Define theta as the angle between the line and the force vector F (not the 
tangential component of the force vector but the force vector itself). Then the 
magnitude of the tangential force vector is given by


 
Ft = Fmag*sin(theta)


 
where


 	 
Ft represents the magnitude of the tangential force vector that is perpendicular to the 
	line r



	 
Fmag is the magnitude of the force vector



	 
theta is the angle between the line and the force vector





 
 
Define a vector R



 
Let R represent a vector that lies along the line from the axis of rotation to the point where the force 
acts with its tail at the axis of rotation. I will refer to 
the magnitude of this vector as Rmag


 
Doing a little algebra, we can write


 
T = r*Ft, or


 
 

Tvec = Rmag*Fmag*sin(theta)





 
where


 	 
Tvec represents the tangential force vector



	 
Rmag is the magnitude of the vector R



	 
Fmag is the magnitude of the vector F





 
 
The cross product



 
Why do I refer to Tvec as a vector in the 



above



 
equation?


 
You learned in an earlier module that the cross product of two vectors A and 
B is given by


 
 

AxB = Amag*Bmag*sin(angle between A and B)





 
where
    


 	 
AxB represents the cross product of the vectors
      named A and B



	 
Amag is the magnitude of vector A



	 
Bmag is the magnitude of vector B





 
 
The torque vector



 
Comparing the 



torque vector



 with the




cross product



, we determine that 


 
Tvec = RxF


	

	

 
Tvec = RxF







 
where







 	 
Tvec is a torque vector



	 
R is a vector that points from the axis of rotation to the point where 
	the vector force F is applied



	 
F is a force vector



	 
RxF is the vector cross product between the vector R and the vector F










 










Figure 33.4. 
 

The torque vector .

The torque vector .

 
 
The direction of the torque vector



 
Recall from the earlier module that the direction of Tvec is perpendicular to 
both R and F and obeys the right-hand rule in terms of its absolute direction.


 
 
The relationship of torque and rotational inertia



 
Combining this with what we learned earlier about the relationship among 
torque, rotational inertia, and rotational acceleration, we can write


 
 

Tvec



 = I*A


	

	

 
 

Tvec



 = I*A







 
where







 	 
Tvec is the torque vector whose direction obeys the right-hand rule



	 
I is the rotational inertia or the moment of inertia of the object about 
	the chosen axis of rotation



	 
A is the rotational acceleration treated as a vector whose direction 
	obeys the right-hand rule










 










Figure 33.5. 
 

A general equation for net torque.

A general equation for net torque.

 
 
A general equation for net torque



 
The equation shown in 



Figure 5



 is a general equation for net torque. The net 
torque about an axis of rotation is equal to the product of the rotational 
inertia about that axis and the angular acceleration.


 
 
Similar to Newton's second law



 
This equation is Newton's second law applied to a system of particles in 
rotation about a given axis. It makes no assumptions about constant rotational 
velocity.




 

Torque from an anecdotal 
viewpoint








 
One of the objectives of this module is to develop concepts involving rotational motion 
that are analogous to concepts from earlier modules that involve translational 
motion.


 
 
A Lazy Susan



 
On my dining room table, there is a device that is commonly called a Lazy 
Susan. In case you are unfamiliar with such devices, it is essentially a 
turntable. By a turntable, I mean a rather large disk mounted on bearings so 
that it is free to turn in a plane that is slightly above but parallel with the 
top of the dining room table.


 
 
The purpose of the Lazy Susan



 
The purpose of a Lazy Susan is to make it easier to serve food at the dining 
room table. Various dishes are placed on it . When someone wants a helping of 
carrots, for example, instead of saying "Please pass the carrots," they simply 
turn the Lazy Susan until they can reach the bowl of carrots and help 
themselves.


 
 
Not a module about carrots



 
However, we won't be discussing how to serve carrots in this module. In this 
module, I will use the Lazy Susan, in its empty state between meals, to discuss 
various aspects of rotating rigid objects.


 
To make it easier to type the material under discussion, I will refer to the 
Lazy Susan as a turntable. (For some reason, I can type turntable much more 
quickly than I can type Lazy Susan.)


 
 
Low angular acceleration when coasting



 
My turntable has pretty good bearings. It is also rather heavy for its size and therefore 
has a relatively large rotational inertia or moment of inertia, whichever term you 
prefer.


 
If you give it a good spin, it will spin for quite a while before all of 
its rotational energy is dissipated through friction in the bearings and air 
resistance. By default, therefore, its angular acceleration is low. In other 
words, the rate of change of its angular velocity is small.


 
 
A perpetual motion machine



 
If we could find a way to eliminate all of the frictional forces acting on 
the turntable, including air resistance, then it would spin forever. In that 
case, we would 
have invented what has been called a perpetual motion machine. The 
rate of change of angular velocity would be zero, meaning that its angular 
acceleration would also be zero.


 
 
Similar to Newton's first law



 
This reminds us of a moving body that satisfies Newton's first law, which can 
be paraphrased something like the following:


 	 
a body in motion, being acted upon by no net 
forces, will continue moving forever in a straight line.





 
In other words, that 
law tells us that absent a force to the contrary, a moving body will continue to 
move with no change in velocity.


 
If we could eliminate all of the frictional forces acting on my turntable 
(which is a rotating body), we might like to say that


 	 
absent any net forces 
acting on the body, a rotating body with a constant rotational inertia will 
continue rotating with the same angular velocity forever.





 
However, that would not be a true statement. 


 
 
Houston, we have a problem



 
Assume that you do the following to our hypothetical frictionless turntable 
while it is spinning. Using one finger from each hand, press on opposite sides 
of the turntable, applying an equal force directed towards the center of the 
turntable on each side of the turntable.


 
 
No net force



 
In this case, the turntable would not 
experience any net forces. Assuming that you are facing north when you do this, 
and that you press on the east and west sides of the turntable, the frictional 
forces generated by your fingers would be directed in opposite directions.


 
If 
the turntable were spinning counter clockwise (when viewed from the top), the 
frictional force created by your finger on the east side would be directed 
toward the south. The frictional force created by your finger on the west side 
of the turntable would be directed toward the north.


 
From a translational viewpoint, at least, there would be no net force 
applied to the turntable. The force that points to the north would be cancelled 
by the force that points to the south. The force that points to the east would 
be cancelled by the force that points to the west. Therefore, the turntable 
would be in translational equilibrium.


 
 
Acceleration would no longer be zero



 
Despite that, the velocity would be decreased meaning 
that the acceleration would no longer be zero. From this we might conclude that 
just because a rotating object is in translational equilibrium, it is not 
necessarily in rotational equilibrium.


 
 
The world of torque



 
We have just entered the world of torque with this hypothetical experiment. Torque is a quantity that plays 
a role in rotation that is analogous to the role that force plays in translation.


 
However, torque is not 
separate from force. It is not possible to exert a torque without exerting a 
force.


 
 
Torque is a measure...



 
In anecdotal terms, torque is a measure of how effective a force is at 
changing the angular velocity of an object. Stated differently, torque is a 
measure of how effective a force is at causing an object to have a non-zero 
angular acceleration.


 
 
Angular acceleration can be either positive or negative



 
For an object that is rotating about a fixed axis (or is capable of rotating 
about a fixed axis), such as my turntable, 
torque can either increase or decrease the angular velocity of the object.


 
 
Net translational force was zero



 
When you pressed your fingers on my turntable as described earlier, the net 
translational force applied to the turntable was zero. Therefore, the turntable remained in 
translational equilibrium, meaning that it didn't go sliding towards the edge of 
the table. 


 
 
Net torque was not zero



 
However, the net torque was not zero, so it was not in angular 
equilibrium. The kinetic frictional forces generated on each side of the 
turntable resulted in the same algebraic sign of non-zero angular acceleration.


 
Each force caused the angular velocity to decrease. The two torques created by 
the kinetic friction forces were not only equal, they had the same algebraic sign. 
Therefore, the turntable experienced a non-zero net torque.


 
 
How are force and torque related?



 
To begin with, torque is proportional to the magnitude of the applied force, 
but that is not the end of the story. The rest of the story involves 
exactly where and in what direction the force is applied.


 
 
Create a torque to close a door


 


 
For example, consider applying a force for the purpose of creating a torque 
to close an open door. Initially, the door has zero angular velocity.


 
You could apply a force 
in any direction at any point on either side or the edge of the door that you 
are tall enough to reach. However, with regard to the objective of closing the 
door, it would matter very much where and in what direction you applied the 
force.


 
 
A very intuitive topic



 
The interesting thing about this topic is that you already know all about it 
from a practical and intuitive viewpoint. You would already know intuitively 
where and in what direction to push on the door to cause it to close with a 
minimum expenditure of energy.


 
 
You probably wouldn't push on the edge of the door



 
If you pushed on the edge of door, directing your force directly at 
the hinges (the axis of rotation), the door wouldn't move. While this might prove to be a good form of 
isometric exercise, it would not be an effective way to close the door.


 
 
A force in any other direction



 
A force that is applied to the door, (even on the edge of the door) acting in 
any direction other than directly toward the hinges could be decomposed into two components:


 	 
A radial component acting directly towards the axis or rotation or the 
	hinges.



	 
A perpendicular component acting perpendicular to the surface of the 
	door.





 
 
The radial component is wasted effort



 
The radial component would make no contribution to the development of the torque 
required to change the angular velocity of the door and cause the door to close. 
Only the perpendicular component would contribute to the development of such a 
torque.


 
 
Could develop torque at any point on the door



 
So now you know that you could apply a force at any point on the door, and so 
long as that force has a component that is perpendicular to the surface of the 
door, the perpendicular component would contribute to the development of torque.


 
 
Location, location, and location



 
However, it is also important where you push on the door to apply the force. 
If you push on what we normally consider to be the inside surface of the 
door, it might create a torque, but that torque may have the wrong sign or 
direction to cause the door to close. In fact, that would cause the door to open 
even further.


 
Once you realize that you must push on what we would call the outside surface 
of the door, it would still be important where you push and apply the force. 
Suppose for example that you were to push at a point that is only one inch away 
from the hinge. You know intuitively that even for a lightweight door, you might 
have to apply a very strong force to cause the door to close by applying the 
force at that location.


 
 
Where would you push?



 
You would 
probably push on the door at a point somewhere between the center of the door 
and the outer edge of the door.


 
If the door happened to be a really heavy door, 
you would probably push on the door at a point as close to the outer edge as 
possible. This would make it possible for you to cause the door to close with 
the minimum effort on your part.


 
 
The magnitude of the torque



 
In an attempt to codify your intuition, your instinctive knowledge, or 
perhaps your acquired knowledge into something more mathematical, we will define 
the magnitude of the torque as


 
torque = r*F


 
The conventional symbol for torque is the Greek letter tau. However, your 
Braille display probably won't display that Greek letter, so in this module, I 
will represent torque with the letter T as shown in 



Figure 6



.


 
 
The sign convention for torque



 
In this module, I will use a sign convention such that a force whose 
perpendicular component, when acting alone, would cause the object to rotate in 
a counter clockwise direction as a positive torque.


 
If that torque is the only torque acting, it would cause a positive angular 
acceleration.


 
 
A definition of torque



 
You saw a mathematical definition of torque 



earlier



. 




Figure 6



 shows a somewhat less mathematical definition of torque.


	

	

 

	
    	T = r*F







 
where 






						

 	 
T represents torque



	 
r is the shortest distance from the axis of rotation to the point of application of the applied force



	 
F is the component of the applied force that is 
							perpendicular to a line from the axis of rotation to 
							the point of the applied force








						

 
The SI unit for torque is newton meters or N*m.
						











Figure 33.6. 
 

The definition of  	torque.

The definition of  	torque.

 
 
The units can be confusing



 
The units for torque can be confusing because the SI unit for work or energy in joules is 
also N*m. However, even though torque and energy have the same units, they have 
entirely different meanings. Torque is not a form of energy.




 

A graph board exercise on 
torque








 
Imagine a puck sliding in a circular groove that has been cut in the ice at 
an ice rink. A cross section of the grove is rectangular so that the puck just 
fits from side to side and sets level on the bottom of the groove. When a puck 
slides inside the groove, it will move in a large circle.


 
 
Apply a force to the puck



 
If you apply a force to the puck in (almost) any direction, a component of that force 
will directed toward or away from the center of the circle. For any case where 
the direction of the force doesn't lie on a line from the puck to the center of 
the circle, there will also be a component of the force that is perpendicular to 
that line, which will make it tangential to the circle.


 
 
Construct a graph board simulation



 
Use your graph board and create a Cartesian coordinate system with the 
origin near the lower-left corner of the graph board. Use pushpins and pipe 
cleaners to draw a quarter of a circle, with the center of the circle at the 
origin. Make the radius approximately one-half of the 
smallest dimension of the graph board. This circle should include the entire 
upper-right quadrant of your Cartesian coordinate system.


 
 
Identify the location of the puck



 
Now insert a pushpin at a point somewhere on the circle about mid way between 
the intersection of the circle and the x and y axes of the coordinate system.


 
Imagine that this is the puck mentioned above 
that is constrained to move in a circle. Label this point P.


 
 
A radial line from the center



 
Use a pipe cleaner or a rubber band to draw a line from the puck to the 
center of the circle. Label this line r.


 
 
Create a force vector



 
Make a little loop at one end of a pipe cleaner that is about half the radius 
of your circle and place the loop around the pushpin that represents the puck at 
P.


 
Leave it loose enough that it can be rotated around the pin. Imagine that 
this is a vector that describes a force being applied to the puck with the tail 
of the vector at the puck.


 
 
Point the force vector at the center



 
Begin by pointing the force vector directly at the center of the circle. You 
will probably be able to imagine that since the puck is not free to move 
directly to the center, a force in this direction will not cause the puck to 
move.


 
The technical reason that it won't cause the puck to move is because the 
force doesn't have a component that is tangent to the circle at the location 
of the puck.


 
 
Rotate the force vector



 
Now rotate the force vector clockwise by about 30 or 40 degrees and pin it down so 
that it won't move. Label the tip of the force vector F.


 
 
Draw the tangential component of the force vector



 
This may be the most difficult part of this exercise for a blind student. Use your protractor 
(or some other method that you know about) to find a point on the line labeled r such that a line 
through that point and 
perpendicular to r goes through the tip of the force vector. Mark that point 
with a pushpin and label it Q.


 
 
Draw a line from Q to F



 
Use a pipe cleaner to draw a line from Q to F. That line represents the 
component of the force vector that is tangent to the circle at the location 
of the puck. (Actually it is parallel to the tangential component of the force 
vector, but that is OK. It is still the correct length and points in the correct 
direction.) The direction of that tangential force component is from Q to F.


 
This is the component of the force vector that causes the puck to move. Label 
this vector Ft for tangential force.


 
 
The radial component of force



 
Use a pipe cleaner to draw a line from P to Q. This is the component of the 
force vector that points directly from the puck to the center of the circle. This 
component won't cause the puck to move.


 
 
A right triangle



 
If you examine your vector diagram at this point, you can determine that the 
points labeled P, Q, and F represent the vertices of a right triangle, with the 
right angle at the point Q.


 
 
The length of the tangential force vector



 
Label the interior angle at P with an A. Now you should be able to determine that the length 
of the tangential vector named Ft is equal to the product of the force F and the 
sine of the angle A.


 
Ft = F*sin(A)


 
where


 	 
F is the force vector.



	 
Ft is the component of the force vector that is tangent to the circle at 
	the location of the puck. This force is also perpendicular to the line from 
	the puck to the center of the circle.



	 
A is the angle that the force vector makes with the line r.





 
 
The torque



 
Referring back to 



Figure 6



, we find that the torque produced by this force is 
equal to the product of the distance from the center to P and the tangential or 
perpendicular component of the force vector.


 
Therefore,


 
T = Ft*r, or


 
T = F*sin(A)*r


 
where


 	 
T represents torque



	 
Ft represents the tangential component of the force vector



	 
r represents the distance from the puck to the center of the circle



	 
F represents the force vector



	 
A represents the angle between the force vector and the line from the 
	puck to the center of the circle








 

 

Example scenarios








 
This section contains several example scenarios involving torque.



 

Net torque on the Lazy 
Susan turntable








 
The turntable discussed earlier, which has a radius of 24 cm, is spinning 
clockwise. You press your fingers on the east and west sides of the turntable with equal 
forces of 6.67 N. The coefficient of friction between the turntable and your 
fingers is 0.75. What is the net torque on the wheel?


 
Solution:


 
The 13.3 N force on each side of the table creates a tangential kinetic 
friction force on each side of the table equal to


 
Ft = 6.67 N * 0.75


 
Each force is in the opposite direction of the direction of rotation.


 
The net torque is equal to the sum of the torques.


 
Each torque is equal to the product of the force and the distance from the 
center of the turntable to the point at which the force is applied.


 
T = 2 * Ft * r, or


 
T = 2 * 6.67 newtons * 0.75 * 24 cm


 
Entering this expression into the Google calculator gives us


 
T = 2.4 joules


 
However, this is one case where the Google calculator gives us a misleading 
answer. We know that torque is not measured in joules. Instead, torque is 
measured in N*m. Therefore, the net torque on the turntable is


 
T = 2.4 N*m




 

A door-closing scenario








 
When viewed from above, the scenario is a door that is open. From above, the wall to which the door is attached can be represented by a horizontal 
line that runs from west to east. The door can be represented by a line segment at an angle of about 45 degrees 
south of east. The line segment (door) is attached to the wall at the upper-left end of the 
line segment. That is the point where the door is hinged, and that point is the axis of 
rotation for the door.


 
Assume that the axis of rotation extends out of the page towards you.


 
The door will need to rotate 
about 45 degrees counter clockwise to become flush with the wall and be closed.


 
A person is standing on the north side of the wall pulling on a rope that is 
attached to the door. The rope is attached 11.5 cm from the hinge and makes a 45 
degree angle with the surface of the door. That person pulls on the rope with a 
force of 51 N.


 
Using the door hinges as the axis of rotation, find the magnitude of the 
torque that is exerted on the door. What is the sign of the torque.


 
Solution:


 
This solution is based on the cross product from 



Figure 4



.


 
The magnitude of the torque is given by


 
T = r * F * sin(angle), or


 
T = 11.5 cm * 51 newtons * sin(45 degrees)


 
Entering this expression into the Google calculator gives us


 
T = 4.15 N*m


 
The torque will cause the door to rotate in a counter clockwise 
direction. Therefore, the torque has a positive sign.




 

Torque and the moment of inertia








 
Three objects are rotating about their centers. All three objects have a mass 
of 10 kg. The three objects have the following 
shapes:


 
A. A solid disk with a moment of inertia given by 


 
I = (1/2)*m*r^2



 
where


 	 
r = 2m





 
B. A disk with a round hole in the center with a moment of inertia given by


 
I = (1/2)*m*(r1^2 + r2^2)


 
where


 	 
r1 = 1m



	 
r2 = 2m





 
C. A square plate with a moment of inertia given by


 
I = (1/12)*m*(h^2 + w^2)


 
where


 	 
h = w = 3.54m





 
Find the net torque required to cause each object to accelerate at a rate of 
10 radians/sec^2. 


 
Solution:


 
All three solutions are based on the general equation for torque given in 




Figure 5



.


 
A. T = I * A, or


 
T = (1/2)*m*r^2 * A, or


 
T = (1/2)*10kg*(2m)^2 * 10 radians/second^2


 
Entering this expression into the Google calculator gives us


 
T = 200 N*m


 

 
B. T = I * A, or


 
T = (1/2)*m*(r1^2 + r2^2) * A, or


 
T = (1/2)*10kg*((1m)^2 + (2m)^2) * 10 radians/second^2, or


 
T = 250 N*m


 
Note that because more of the mass is located close to the outer edge of the 
disk, the moment of inertia is higher and more torque is required to achieve the 
same acceleration for the same mass.


 

 
C. T = I * A, or


 
T = (1/12)*m*(h^2 + w^2) * A, or


 
T = (1/12)*10kg*((3.54m)^2 + (3.54m)^2) * 10 radians/second^2, or


 
T = 2.09 N*m


 
Note that the square in part C was designed to have the same surface area as 
the disk in part A. The mass in both cases was uniformly distributed throughout 
the entire surface. Under those conditions, a square has a slightly higher 
moment of inertia than a disk and thus requires a slightly greater torque to 
achieve the same acceleration.





 

Repeat the computations








 
I encourage you to repeat the computations that I have presented in this lesson to 
confirm that you get the same results. Experiment with 
the scenarios, making changes, and observing the results of your changes. Make 
certain that you can explain why your changes behave as they do. 




 

Resources








 
I will publish a module containing consolidated links to resources on my 
Connexions web page and will update and add to the list as additional modules 
in this collection are published. 




 

Miscellaneous








 
This section contains a variety of miscellaneous information.



 
Housekeeping material

 	 
Module name: Angular Momentum -- The Mathematics of Torque for Blind Students



	 
File: Phy1320.htm




	 
Keywords:


 	 
physics



	 
accessible



	 
accessibility



	 
blind



	 
graph board



	 
protractor



	 
screen reader



	 
refreshable Braille display



	 
JavaScript



	 
trigonometry



	 
torque



	 
force



	 
mass



	 
angular acceleration



	 
moment of inertia



	 
rotational inertia



	 
vector

















 
Disclaimers:

 
 
Financial


: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.


 
I also want you to know that I receive no financial compensation from the Connexions website even if you purchase 
	the PDF version of the module.


 
 
Affiliation


: I am a professor of Computer Information 
	Technology at Austin Community College in Austin, TX.
	




 
-end- 
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Preface






 

 

General








 
This module is part of a collection of modules designed to make physics 
concepts accessible to blind students.


 
See 




http://cnx.org/content/col11294/latest/



 for the main page of the collection 
and 




http://cnx.org/content/col11294/latest/#cnx_sidebar_column



 for the table of 
contents for the collection.


 
The collection is intended to supplement but not to replace the textbook in 
an introductory course in high school or college physics.


 
The purpose of this module is to explain the use of scientific notation and 
significant figures in a format that is accessible to blind students.




 

Prerequisites








 
In addition to an Internet connection and a browser, you will need the 
following tools (as a minimum) to work through the exercises in these modules:


 	 
A graph board for plotting graphs and vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
A protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
An audio screen reader that is compatible with your operating system, 
	such as the NonVisual Desktop Access program (NVDA), which is freely 
	available at 




	http://www.nvda-project.org/



.



	 
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor 
	(



http://www.userite.com/ecampus/lesson1/tools.php



).



	 
The ability to create tactile graphics as described at
	




	http://cnx.org/content/m38546/latest/



.





 
The minimum prerequisites for understanding the material in these modules 
	include:


 	 
A good understanding of algebra.



	 
An understanding of the use of a graph board for plotting graphs and 
	vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
An understanding of the use of a protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
A basic understanding of the use of sine, cosine, and tangent from 
	trigonometry (



http://www.clarku.edu/~djoyce/trig/



).



	 
An introductory understanding of JavaScript programming (



http://www.dickbaldwin.com/tocjscript1.htm



 and 



http://www.w3schools.com/js/default.asp



).



	 
An understanding of all of the material covered in the earlier modules 
	in this collection.



	 
An understanding of the creation and use of tactile graphics as 
	described at 




	http://cnx.org/content/m38546/latest/



.







 

 

Viewing tip








 
 I recommend that you open another copy of this document in a separate 
browser window and use the following links to easily find and view the figures 
and listings while you are reading about them.



 

 

Figures








 	 


Figure 1



. Examples of significant figures. 



	 


Figure 2



. Screen output from Listing #1. 



	 


Figure 3



. Screen output from Listing #2. 



	 


Figure 4



. Behavior of the toPrecision method.



	 


Figure 5



. Screen output from Listing #3. 







 

 

Listings








 	 


Listing 1



. An exercise involving addition. 



	 


Listing 2



. An exercise involving 
	multiplication. 



	 


Listing 3



. An exercise involving combined operations. 








 

 

Supplemental material








 
 I recommend that you also study the other lessons in my extensive collection 
of online programming tutorials. You will find a consolidated index at





www.DickBaldwin.com



.





 

 

General background 
information








 
This section will contain a discussion of accuracy, precision, 
scientific notation, and significant figures.



 

Accuracy and precision








 
Let's begin with a brief discussion of accuracy and precision. These two 
terms are often confused in everyday conversation, but they have very different 
meanings in the world of science and engineering.


 
 
Accuracy



 
In science and engineering, the accuracy of a measurement system is the degree of 
closeness of measurements of a quantity to its actual (true) value.


 
 
Precision



 
The precision of a measurement system (also called reproducibility or 
repeatability) is the degree to which repeated measurements under unchanged 
conditions show the same result.


 
 
Four possibilities



 
A measurement system can be:


 	 
Both accurate and precise.



	 
Accurate but not precise.



	 
Precise but not accurate.



	 
Neither accurate nor precise.





 
 
A hypothetical experiment



 
Consider an experiment where a firearm is clamped into a fixture, very 
carefully aimed at a bulls eye on a downrange target, and fired six times. 
(Although you may never have seen or touched a firearm, you probably have a 
pretty good idea of how they behave.)


 
If the six holes produced by the bullets in the target fall in a tight 
cluster in the bulls eye, the system can be considered to be both accurate and 
precise.


 
If all of the holes fall in the general area of the bulls eye but the cluster 
is not very tight, the system can be considered to be accurate but not precise.


 
If all of the holes fall in a tight cluster but the cluster is some distance 
from the bulls eye, the system can be considered to be precise but not accurate.


 
If the holes are scattered across a wide area of the target, the system can 
be considered to be neither accurate nor precise.


 
 
Another use of the word precision



 
Another use of the word precision, which will be important in this module, is 
based on the concept that the precision of a measurement describes the units 
that you use to measure something.


 
 
How tall are you?



 
For example, if you tell someone that you are about five feet tall, that 
wouldn't be very precise. If you told someone that you are 62 inches tall, that 
would be more precise. If you told someone that you are 62.3 inches tall, that 
would be even more precise, and if you told someone that you are 62.37 inches 
tall, that would be very precise for a measurement of that nature.


 
 
The smaller the unit...



 
The smaller the unit you use to measure with, the more precise the 
measurement can be. For example, assume that you measure someone's height with a 
tactile measuring stick that is longer than the person is tall. Assume also that 
the measuring stick is graduated only in feet. In that case, the best that you 
could hope for would be to get the measurement correct to the nearest foot and 
perhaps estimate a second digit to the nearest tenth of a foot.


 
 
One-inch graduations



 
On the other hand, if the measuring stick is graduated in inches and you are 
careful, you should be able to get the measurement correct to the nearest inch 
and perhaps estimate another digit to the nearest tenth of an inch. The second 
measurement using the one-inch graduations would be more precise than the first 
using the one-foot graduations.


 
 
Diminishing returns



 
If the measuring stick were graduated in tenth-inch units, however, 
that may or may not lead to a more precise measurement. That would be 
approaching the point of diminishing returns where your inability to take full 
advantage of the more precise graduations and the inability of the subject to 
always stand with the same degree of rigidity might come into play.




 

Scientific notation








 
According to 




Wikipedia



, scientific notation is a way of writing numbers that accommodates values too large or small to be conveniently written in standard decimal notation. 
The notation has a number of useful properties and is commonly used by scientists and engineers. 
A variation of scientific notation is also used internally by computers.


 
 
Scientific notation format



 
Numbers in scientific notation are written using the following format:


 
x * 10^y


 
which can be read as the value 

 
x


 multiplied by ten raised to 
the 

 
y


 power where 

 
y


 is an integer and 

 

x


 is any real number. (Constraints are placed on the value of 

 
x


 when 
using the 

 
normalized


 form of scientific notation which I will explain below.)


 
The values for 

 
x


 and 

 
y


 can be either 
positive or negative.


 
The term referred to as 

 
x


 is often called the 

 

significand


 or the 

 
mantissa


 (not to be confused with 
the term mantissa used with common logarithms).


 
 
The computer display version of scientific notation



 
Because of difficulties involved in displaying superscripts in the output of 
computer programs, a typical display of a number in scientific notation by a 
computer program might look something like the following example:


 
-3.141592653589793e+1


 
where


 	 
Either numeric value can be positive, negative, or zero.



	 
The number of digits in the numeric value to the left of the 

 
e


 (the 
	mantissa) may range 
	from a few to many.



	 
The 

 
e


 may be either upper-case or lower-case depending on the computer 
	and the program.





 
 
A power of ten is understood



 
In this format, it is understood that the number consists of the value to the 
left of the 

 
e


 (the mantissa) multiplied by ten raised to a power given by the value to the 
right of the 

 
e


 (the exponent).


 
For example, in JavaScript exponential format, the value -10*Math.PI is 
displayed as


 
-3.141592653589793e+1


 
The value Math.PI/10 is displayed as


 
3.141592653589793e-1


 
The value Math.PI is displayed as


 
3.141592653589793e+0


 
The value 0 is displayed as


 
0e+0


 
 
The normalized form of scientific notation



 
Using general scientific notation, the number -65700 could be written 
in several different ways including the following:


 	 
-6.57 * 10^4



	 
-65.7 * 10^3



	 
-657 * 10^2





 
In normalized scientific notation, the exponent is chosen such that the absolute value of 
the mantissa is at least one but less than ten. For example, -65700 is written:


 
-6.57 * 10^4


 
In normalized notation the exponent is negative for a number with absolute value between 0 and 1. 
For example, the value 0.00657 would be written:


 
6.57 * 10^(-3)


 
The 10 and the exponent are usually omitted when the exponent is 0.




 

Significant figures








 
According to 




Wikipedia



, The significant figures of a number are those digits that carry meaning contributing to its precision. This includes all digits except:


 	 
Leading zeros where they serve merely as placeholders to indicate the scale of the number 
	(.00356 for example).



	 
Spurious digits introduced, for example, by calculations carried out to greater accuracy than that of the original data, or measurements reported to a greater precision than the equipment supports.





 
A popular physics textbook provides a more complete set of rules for identifying the 
significant figures in a number:


 	 
Nonzero digits are always significant.



	 
Final or ending zeros written to the right of the decimal point are significant.



	 
Zeros written to the right of the decimal point for the purpose of spacing the
decimal point are not significant.



	 
Zeros written to the left of the decimal point may be significant, or they may
only be there to space the decimal point. For example, 200 cm could have one,
two, or three significant figures; it's not clear whether the distance was measured
to the nearest 1 cm, to the nearest 10 cm, or to the nearest 100 cm. On
the other hand, 200.0 cm has four significant figures (see rule 5). Rewriting the
number in scientific notation is one way to remove the ambiguity.



	 
Zeros written between significant figures are significant.





 
 
Ambiguity of the last digit in scientific notation



 
Again, according to




Wikipedia



, it is customary in scientific measurements to record all the significant digits from the measurements, and to guess one additional digit if there is any information at all available to the observer to make a guess. The resulting number is considered more valuable than it would be without that extra digit, and it is considered a significant digit because it contains some information leading to greater precision in measurements and in aggregations of measurements (adding them or multiplying them together).


 
 
Examples of significant digits



 
Referring back to the physics textbook mentioned earlier, 



Figure 1



 shows:


 	 
Four different numbers



	 
The number of significant figures in each number.



	 
The default JavaScript exponential representation of each number.





	



 
1.  409.8         4          4.098e+2
2.  0.058700      5          5.87e-2
3.  9500          ambiguous  9.5e+3
4.  950.0 * 10^1  4          9.5e+3










Figure 8.1. 
 

Examples of significant figures.

Examples of significant figures.

 
Note that the default JavaScript exponential representation fails to 
	display the significant trailing zeros for the numbers on row 2 and row 5. I 
	will show you some ways that you may be able to deal with this issue 
	later but you may not find them to be very straightforward.





 

 

Discussion and sample code








 
Beyond knowing about scientific notation and significant figures from a 
formatting viewpoint, you need to know how to perform arithmetic while 
satisfying the rules for scientific notation and significant figures.


 
Performing arithmetic involves 

 

three main rules



:


 	 
For addition and subtraction, the final result should be rounded so as 
	to have the same number of decimal places as the number that was included in 
	the sum that has the smallest number of decimal places. In accordance with 
	the discussion early in this module, this is the least precise number.



	 
For multiplication and division, the final result should be rounded to 
	have the same number of significant figures as the number that was included 
	in the product with the smallest number of significant figures.



	 
The two rules listed above should not be applied to intermediate 
	calculations. For intermediate calculations, keep as many digits as 
	practical. Round to the correct number of significant figures or the correct 
	number of decimal places in the final result.





 
 
An exercise involving addition



 
Please copy the JavaScript code shown in  



Listing 1



 into an html file and open 
the file in your browser.


Example 8.1. 
 <!-- File JavaScript01.html -->
<html><body>
<script language="JavaScript1.3">

//Compute and display the sum of three
// numbers
var a = 169.01
var b = 0.00356
var c = 385.293
var sum = a + b + c
document.write("sum = " + sum + "</br>")

//Round the sum to the correct number
// of digits to the right of the decimal
// point.
var round = sum.toFixed(2)
document.write("round = " + round + "</br>")

//Display a final line as a hedge against
// unidentified coding errors.
document.write("The End")

</script>
</body></html>



 
 
Screen output



 
When you open the html file in your browser, the text shown in 



Figure 2



 
	should appear in your browser.


	



 sum = 554.30656
round = 554.31
The End 









Figure 8.2. 
 

Screen output from Listing #1.

Screen output from Listing #1.

 
The code in  



Listing 1



 begins by declaring three variables named 

 
a


,
	

 
b


, and 

 
c


, adding them together, and 
	displaying the sum in the JavaScript default format in the browser window.


 
 
Too many decimal digits



 
As you can see from the first line in 



Figure 2



, the result is computed and 
displayed with eight decimal digits, five of which are to the right of the 
decimal point. We know, however, from 



rule #1



, 
that we should present the result rounded to a precision of two digits to the 
right of the decimal point in order to match the least precise of the numbers 
included in the sum. In this case, the value stored in the variable named


 
a


 is the least precise.


 
 
Correct the problem



 
The code in  



Listing 1



 calls a method named 

 
toFixed


 on the 
value stored in the variable 

 
sum


 passing a value of 2 as a 
parameter to the method. This method returns the value from 

 
sum


 
rounded to two decimal digits. The returned value is stored in the variable 
named 

 
round


. Then the script displays that value as the second line of 
text in 



Figure 2



.


 
 
The output text that reads "The End"



 
There is a downside to using JavaScript (as opposed to other programming 
languages such as Java). By default, if there is a coding 
error in your script, there is no indication of the error in the output in the 
main browser window. 
Instead, the browser simply refuses to display some or all of the output that 
you are expecting to see. (Remember, I told you that JavaScript is not my favorite 
programming language, but it is probably the most accessible for blind students 
who have no programming experience.)


 
 
Put a marker at the end



 
Writing the script in such a way that a known line of text, such as "The End" 
will appear following all of the other output won't solve coding errors. 
However, if it doesn't appear, you will know that there is a coding error and 
some or all of the output text may be missing.


 
 
JavaScript and error consoles



 
I explained how you can open a JavaScript console in the Google Chrome 
browser or an error console in the Firefox browser in an earlier module titled




JavaScript 
for Blind Students



. While the diagnostic information provided in those 
consoles is limited, it will usually indicate the line number in the source code 
where the programming error was detected. Knowing the line number will help you 
examine the code and fix the error.


 
 
An exercise involving multiplication



 
Please copy the code shown in  



Listing 2



 into an html file and open it in 
	your browser.


Example 8.2. 
 <!-- File JavaScript02.html -->
<html><body>
<script language="JavaScript1.3">

//Compute and display the product of three
// numbers, each having a different number
// of significant figures.
var a = 169.01
var b = 0.00356
var c = 386.253
var product = a * b * c
document.write("product = " + product + "</br>")

//Round the product to the correct number
// of significant figures
var rounded = product.toPrecision(5)
document.write("rounded = " + rounded + "</br>")

//Display a final line as a hedge against
// unidentified coding errors.
document.write("The End")

</script>
</body></html>



 
 
The screen output



 
When you open your html file in your browser, the text shown in 



Figure 3



 
should appear in your browser window.


	



 product = 232.39900552679998
rounded = 232.40
The End 









Figure 8.3. 
 

Screen output from Listing #2.

Screen output from Listing #2.

 

 
The code in  



Listing 2



 begins by declaring three variables named 

 
a


,
	

 
b


, and 

 
c


, multiplying them together, and 
	displaying the product in the browser window. Each of the factors in the 
	product have a different number of significant figures, with the factor of 
	value 169.01 having the least number (5) of significant figures. We know 
	from 



rule #2



, therefore, that we need to 
	present the result rounded to five significant figures.


 
 
The toPrecision method



 
 



Listing 2



 calls a method named 

 
toPrecision


 on the variable 
named 

 
product


, passing the desired number of significant 
figures (5) as a parameter. The method rounds the value stored in 

 

product


 to the desired number of digits and returns the result, which 
is stored in the variable named 

 
rounded


. Then the contents of 
the variable named 

 
rounded


 are displayed, producing the second 
line of text in 



Figure 3



.


 
 
What about other parameter values



 
Note that the method named 

 
toPrecision


 knows nothing about 
significant figures. It was up to me to figure out the desired number of 
significant figures in advance and to pass that value as a parameter to the 
method.


 
Although this has nothing to do with significant figures, it may be 
instructive to examine the behavior of the method named 

 
toPrecision


 
for several different parameter values.


 


Figure 4



 shows the result of replacing the parameter value of 5 in the 
	call to the 

 
toPrecision


 method with the values in the first 
	column of 



Figure 4



 and displaying the value returned by the method.


	



 
1  rounded = 2e+2
2  rounded = 2.3e+2
3  rounded = 232
4  rounded = 232.4
5  rounded = 232.40
6  rounded = 232.399
7  rounded = 232.3990
10 rounded = 232.3990055
15 rounded = 232.399005526800
20 rounded = 232.39900552679998214 










Figure 8.4. 
 

Behavior of the toPrecision method.

Behavior of the toPrecision method.

 
 
And the point is...



 
The point to this is to emphasize that the method named 

 

	toPrecision


 is not a method that knows how to compute and display 
	the required number of significant figures. Instead, according to the 
	JavaScript documentation:


 
"The toPrecision() method formats a number to a specified length. A decimal point and nulls are added (if needed), to create the specified length."


 
It is up to you, the author of the script, to determine what that length 
	should be and to provide that information as a parameter to the 

 

	toPrecision


 method.


 
 
Combined operations



 
This is where things become a little hazy. I have been unable to find 
	definitive information as to how to treat the precision and the number of 
	significant figures when doing computations that combine addition and/or 
	subtraction with multiplication and/or division.


 
 
Two contradictory procedures



 
I have found two procedures documented on the web that seem to be somewhat 
contradictory. Both sources seem to say that you should perform the addition 
and/or subtraction first and that you should apply 



rule #1



 to the 
results. However, they differ with regard to how stringently you apply that rule 
before moving on to the multiplication and/or division.


 
 
 

The more stringent procedure






 
One source seems to suggest that you should round the results of 
the addition and/or subtraction according to 



rule #1



 
and replace the addition or subtraction expression in your overall expression 
with the rounded result. Using that approach, you simply create one the factors 
that will be used later in the multiplication and/or division. That factor has a 
well-defined number of significant figures.


 
Then you proceed with the multiplication and/or division and adjust the 
number of significant figures in the final result according to




rule #2



.


 
 
The less stringent procedure



 
The other source seems to suggest that you mentally round the results of the 
addition and/or subtraction according to 



rule #1



 and 
make a note of the number of significant figures that would result if you were 
to actually round the result. However, you should not actually round the result at that point in time. In other words, you 
should use the raw result of the addition and/or subtraction as a factor in the 
upcoming multiplication and/or division knowing that you may be carrying excess 
precision according to




rule #1



.


 
Then you proceed with the multiplication and/or division and adjust the 
number of significant figures in the final result according to




rule #2



. However, when you adjust the number of 
significant figures, you should include the number of significant figures from 
your note in the decision process. If that is the smallest number of significant figures 
of all the factors, you should use it as the number of significant figures for 
the final result.


 
 
Consult with your instructor



 
Before accepting either of these procedures as the correct procedure, I 
recommend that you consult with your physics instructor to confirm which, if 
either of the procedures is correct for combined operations.


 
 
An exercise involving combined operations



 
Evaluate the following expression and display the final result with the 
correct number of significant figures.


 
(169.01 + 3294.6372) * (0.00365 - 29.333)


 
Please copy the code from  



Listing 3



 into an html file and open it in your 
browser.


Example 8.3. 
 <!-- File JavaScript03.html -->
<html><body>
<script language="JavaScript1.3">

//Compute, fix the number of decimal places,
// and display the sum of two numbers. 
var a1 = 169.01
var a2 = 3294.6372
var aSum = (a1 + a2).toFixed(2)
document.write("aSum = " + aSum + "</br>")

//Compute, fix the number of decimal places,
// and display the difference between two
// other numbers.
var b1 = 0.00356
var b2 = 29.333
var bDiff = (b1 - b2).toFixed(3)
document.write("bDiff = " + bDiff + "</br>")

//Compute and display the product of the
// sum and the difference.
var product = aSum * bDiff
document.write("product = " + product + "</br>")

//Round the product to the correct number
// of significant figures based on the least
// number of significant figures in the 
// factors.
var final = product.toPrecision(5)
document.write("final = " + final + "</br>")

//Display a final line as a hedge against
// unidentified coding errors.
document.write("The End")

</script>
</body></html>



 
When you open your html file in your browser, the text shown in 



Figure 5



 
should appear in the browser window.


	



 aSum = 3463.65
bDiff = -29.329
product = -101585.39085000001
final = -1.0159e+5
The End 









Figure 8.5. 
 

Screen output from Listing #3.

Screen output from Listing #3.

 
 
The more stringent procedure



 
The code in  



Listing 3



 implements the
	



more stringent procedure



, not 
	because it is necessarily the correct one. Rather, it is simpler to 
	implement in a script.


 
 
Do addition and subtraction first



 
 



Listing 3



 begins by adding two numbers, adjusting the precision to the least 
precise of the two numbers, and saving the result in the variable named 

 

aSum


.


 
Then  



Listing 3



 subtracts one number from another number, adjusts the 
precision to the least precise of the two numbers, and saves the result in the 
variable named 

 
bDiff


.


 
 
Display to get information on significant figures



 
Both results are displayed immediately after they are obtained. This is 
necessary for me to know which one has the least number of significant figures. 
I need to know that to be able to properly adjust the number of 
significant figures in the final product.


 
In other words, it was necessary for me to write and execute the 
addition/subtraction portion of the script in order to get the information 
required to write the remainder of the script.


 
 
Do the multiplication



 
Then  



Listing 3



 multiplies the sum and difference values and displays the 
result in the default format with far too many significant figures as shown by 
the third line of text in 



Figure 5



.


 
Finally  



Listing 3



 adjusts the number of significant figures in the product 
based on the number of significant figures in 

 
bDiff


 and 
displays the final result with five significant figures in normalized scientific 
(exponential) notation.




 

Run the scripts








 
I encourage you to run the scripts that I have presented in this lesson to 
confirm that you get the same results. Copy the code for each script into a 
	text file with an extension of html. Then open that file in your browser. Experiment with 
the code, making changes, and observing the results of your changes. Make 
certain that you can explain why your changes behave as they do. 




 

Resources








 
I will publish a module containing consolidated links to resources on my 
Connexions web page and will update and add to the list as additional modules 
in this collection are published.




 

Miscellaneous








 
This section contains a variety of miscellaneous information.



 
Housekeeping material

 	 
Module name: Scientific Notation and Significant Figures



	 
File: Phy1040.htm




	 
Revised 06/19/2011



	 
Keywords:


 	 
physics



	 
accessible



	 
blind



	 
screen reader



	 
Braille display



	 
JavaScript



	 
scientific notation



	 
significant figures



	 
accuracy



	 
precision

















 
Disclaimers:

 
 
Financial


: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.


 
I also want you to know that I receive no financial compensation from the Connexions website even if you purchase 
	the PDF version of the module.


 
 
Affiliation


: I am a professor of Computer Information 
	Technology at Austin Community College in Austin, TX.
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Preface






 

 

General








 
This module is part of a collection of modules designed to make physics 
concepts accessible to blind students.


 
See





http://cnx.org/content/col11294/latest/



 for the main page of the 
collection and





http://cnx.org/content/col11294/latest/#cnx_sidebar_column



 for the table of 
contents for the collection.


 
The collection is intended to supplement but not to 
replace the textbook in an introductory course in high school or college 
physics.


 
The study of physics is replete with requirements to create and analyze 
technical drawings. This is obviously more difficult for blind students than for 
sighted students. However, blind students can draw technical diagrams and the 
purpose of this module is to show you how. If you can imagine it, you can draw 
it using SVG.




 

Prerequisites








 
In addition to an Internet connection and a browser, you will need the 
following tools 

 
(as a minimum)


 to work through the exercises in these modules:


 	 
A graph board for plotting graphs and vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
A protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
An audio screen reader that is compatible with your operating system, 
	such as the NonVisual Desktop Access program (NVDA), which is freely 
	available at 




	http://www.nvda-project.org/



.



	 
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor 
	(



http://www.userite.com/ecampus/lesson1/tools.php



).



	 
A device to create Braille labels. Will be used to label graphs 
	constructed on the graph board.



	 
The ability to create tactile graphics as described at
	




	http://cnx.org/content/m38546/latest/



.





 
The minimum prerequisites for understanding the material in these modules 
	include:


 	 
A good understanding of algebra.



	 
An understanding of the use of a graph board for plotting graphs and 
	vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
An understanding of the use of a protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
A basic understanding of the use of sine, cosine, and tangent from 
	trigonometry (



http://www.clarku.edu/~djoyce/trig/



).



	 
An introductory understanding of JavaScript programming (



http://www.dickbaldwin.com/tocjscript1.htm



 and 



http://www.w3schools.com/js/default.asp



).



	 
An understanding of all of the material covered in the earlier modules 
	in this collection.



	 
An understanding of the creation and use of tactile graphics as 
	described at 




	http://cnx.org/content/m38546/latest/



.







 

 

Viewing tip








 
 I recommend that you open another copy of this document in a separate 
browser window and use the following links to easily find and view the figures 
and listings while you are reading about them.



 

 

Figures








 	 


Figure 1



. Mirror image from the file named Svg21a1r.svg. 



	 


Figure 2



. Non-mirror-image version of the image from the file named Svg21a1r.svg.







 

 

Listings








 	 


Listing 1



. Raw SVG code for Figure 2.



	 


Listing 2



. Beginning of the program named Svg21a.java. 



	 


Listing 3



. Create a drawing canvas. 



	 


Listing 4



. SVG code to create a canvas. 



	 


Listing 5



. Draw a rectangular border on the canvas. 



	 


Listing 6



. SVG code to draw a rectangle. 



	 


Listing 7



. Draw the floor and the wall.



	 


Listing 8



. SVG code to draw a line.



	 


Listing 9



. Draw more rectangles.



	 


Listing 10



. SVG code to draw more rectangles. 



	 


Listing 11



. Draw a polygon.



	 


Listing 12



. SVG code to draw a polygon.



	 


Listing 13



. Draw the rectangular pulley support.



	 


Listing 14



. Draw a circle.



	 


Listing 15



. SVG code to draw a circle.



	 


Listing 16



. Draw more lines. 



	 


Listing 17



. SVG code to draw more lines.



	 


Listing 18



. Set the stroke-width attribute value. 



	 


Listing 19



. Modified stroke-width attribute value.



	 


Listing 20



. Draw text.



	 


Listing 21



. SVG code to draw text.



	 


Listing 22



. Write the output file.



	 


Listing 23



. The remaining Java code.



	 


Listing 24



. Windows batch file.



	 


Listing 25



. The program named Svg21a.java.



	 


Listing 26



. The program named SvgLib21.java.



	 


Listing 27



. The program named Svg21.java.








 

 

Supplemental material








 
 I recommend that you also study the other lessons in my extensive collection 
of online programming tutorials. You will find a consolidated index at





www.DickBaldwin.com



.





 

 

Discussion









 

Creation of tactile graphics








 
The module titled 

 
Manual Creation of Tactile Graphics


 at





http://cnx.org/content/m38546/latest/



 explains how to create tactile 
graphics from svg files that I will provide.


 
If you are going to have an assistant create tactile graphics for this 
module, 

 

you will need to



 



download the file named 
Phy1002.zip



, which contains the svg files for this module. Extract the svg 
files from the zip file and provide them to your assistant.


 
In each case where I am providing an svg file for the creation of tactile 
graphics, I will identify the name of the appropriate svg file and display an 
image of the contents of the file for the benefit of your assistant. As 
explained at 




http://cnx.org/content/m38546/latest/



, those images will be mirror images of 
the actual images so that your assistant can emboss the image from the back of 
the paper and you can explore it from the front.


 
I will also display a non-mirror-image version of the image so that your 
assistant can easily read the text in the image.




 

What is SVG 

 
(Scalable Vector Graphics)


?








 
The shortest answer that I can come up with is that SVG is a technology that 
makes it possible for a blind student to create technical drawings. If the 
student can imagine it, the student can draw it using SVG and drawing tools 
that I will provide in this module.


 
 
According to 




Wikipedia






 
 
"Scalable Vector Graphics (SVG) is a family of specifications of an XML-based file format for describing two-dimensional vector graphics, both static and dynamic (i.e. interactive or animated).



 
 
The SVG specification is an open standard that has been under development by the World Wide Web Consortium (W3C) since 1999.

SVG images and their behaviors are defined in XML text files. This means that they can be searched, indexed, scripted and, if required, compressed.



 
 
 

Since they are XML files



, SVG images can be created and edited with any text editor, but it is often more convenient to create these types of images with drawing programs such as 






 
Inkscape





 
.



 
 
All major modern web browsers have at least some degree of support and 
render SVG markup directly, including Mozilla Firefox, Internet Explorer 9, 
Google Chrome and Safari. However, no earlier versions of Microsoft Internet 
Explorer (IE) support SVG natively."



 
 
The SVG home page



 
The SVG home page is located at 




http://www.w3.org/TR/SVG/



 


 
That is where you will find technical specifications for the many 
capabilities that SVG has to offer. Those capabilities are vast. In this module, 
you will learn to create SVG files to draw the following 

 

basic shapes



 
along with text:


 	 
line



	 
rectangle



	 
circle



	 
ellipse



	 
polyline



	 
polygon





 
You will also learn how to manipulate certain aspects of the following


 

attributes



 on those shapes and on the text that you 
create:


 	 
stroke



	 
stroke-width



	 
stroke-opacity



	 
fill



	 
fill-opacity



	 
font-style



	 
font-weight





 
While this barely scratches the surface in terms of overall SVG capability, 
it does provide a set of tools that will put you in good stead relative to creating 
drawings for your science, technology, engineering, and mathematics courses.




 

What does this mean to you?








 
Let me 



refer back



 to the most 
important statement so far in this document:


 
"

 
Since they are XML files, SVG images can be created and edited with any 
text editor


"


 
What this means is that if you can imagine a technical drawing in terms of 
objects created from the 



basic shapes



 listed above 
along with their 



attributes



, and you can mentally 
organize the sizes and positions of those objects in a drawing, you can use a 
text editor to create an SVG file, which, in turn can be used to render the 
drawing on the screen or on paper.


 
 
Using the SVG file



 
Once the drawing exists in the form of an SVG file, it can be printed and 
submitted as part of an assignment. Also, if you have access to the necessary 
equipment or assistance, it can be turned into a tactile drawing for you and 
other blind students to explore by touch.


 
You can also use the file format converter at





http://www.online-utility.org/image_converter.jsp



 to convert the file to 
other formats such as 

 

png and jpeg



. This makes it possible for you to use 
the drawing for other purposes, such as conversion to sound using software that 
is available at 




http://www.seeingwithsound.com/winvoice.htm



. 


 
And last but not least, if you happen to have access to the




IVEO learning 
system



, the SVG files that you create can be used with that system to be 
explored by touch and sound.


 
Even though you may be blind or visually impaired and you may never have drawn 
anything in your life, don't let that stop you. If you can imagine it, you can 
draw it using SVG. My purpose in publishing this module is to help you develop 
that skill.




 

Sample drawing








 
Before going any further, I am going to provide the SVG files for a sample 
drawing that I will discuss in detail later. Hopefully, you can ask your 
assistant to print the file named 

 
Svg21a1r.svg


 and create a tactile version of the drawing as 
described at 




http://cnx.org/content/m38546/latest/



 


 
 
Tactile graphics



 
The file named 

 
Svg21a1r.svg


 contains a mirror image of the 
image that I created for this discussion. You should have downloaded that file 




earlier



. 



Figure 1



 shows the mirror image that is contained in that file for the benefit of your assistant who will create the tactile graphic for this 
discussion.


 [image: Missing image]

Figure 2.1. 
 

Mirror image from the file  			named Svg21a1r.svg.

Mirror image from the file  			named Svg21a1r.svg.

 


Figure 2



 shows a 
non-mirror-image version of the same image.


 [image: Missing image]

Figure 2.2. 
 

Non-mirror-image version of  			the image from the file named Svg21a1r.svg.

Non-mirror-image version of  			the image from the file named Svg21a1r.svg.

 
This image contains only one line of text. It reads 

 
"Friction free table"


 and appears on the 
side of a table. Therefore, I didn't provide a key-value table as described at





http://cnx.org/content/m38546/latest/



 


 
 
 

What does the image show



?



 
Just in case you were unable to get a tactile version of the image, I will 
describe it to you. It isn't very complicated.


 
There are three objects connected together with a cord. Two of the objects, 
each of which has a square shape, are setting on top of a table. The left end of 
the table is attached to a 
wall. The right end of the table is supported by a table leg.


 
The leftmost object on the table is tied to the wall. The 
two objects on the table are tied to one another.


 
The third object is shaped like a triangle. It is connected to the 
rightmost square object with a cord, but it is not setting on the table. 
Instead, there is a pulley wheel connected to the rightmost corner of the table. 
The triangular object is hanging from the cord, which threads up and over the 
pulley wheel and connects to the rightmost square object, which is to the left 
of the pulley wheel.


 
A label on the table reads 

 
"Friction free table."



 
 
Straight lines, rectangles, circles, and polygons



 
As you may have observed from the description, this drawing is made up entirely of straight lines, 
rectangles, a polygon for the triangle, and a circle for the pulley wheel. This 
is representative of many of the drawing used to illustrate physics concepts.


 
This drawing uses all of the basic shapes described 




earlier



 except for the ellipse and the polyline. Different line thicknesses 
were used to visually differentiate the objects from one another.


 
 
Processing an SVG file



 
An SVG file can be processed using an SVG processor, such as IE 9 or Firefox 
5 to convert the commands contained in the SVG file into a drawing. If you are 
using a browser as your SVG processor, the drawing will appear in the browser 
window, from which it can be viewed and/or printed.


 
In addition, some products, such as 



Inkscape



 
and the 




IVEO learning system



 can read the SVG file directly and use it to provide additional 
benefits such as converting text labels and shapes into spoken words and displaying the 
drawing in tactile form using an embossing graphic printer. 


 
Also, as mentioned 



earlier



, you can convert the 
SVG file to other formats, such as png and jpeg for use with other programs such 
as 



The vOICe Learning 
Edition



.




 

Two approaches








 
There are at least two approaches for using SVG to create a drawing like 
this:


 	 
writing raw SVG code



	 
using drawing tools






 

Writing raw SVG code








 
As mentioned earlier, the contents of an SVG file are plain text. That text can 
be produced using any plain text editor, such as Windows Notepad.


 
If you are willing to study the specifications at




http://www.w3.org/TR/SVG/



, you can use 
your text editor to create raw SVG code and accomplish everything that is 
possible using SVG. However, that can be a daunting task.


 


Listing 1



 shows the raw SVG code that produced the image shown in 



Figure 2



. 
You might conclude that you don't want to spend your time writing text like that 
when you should be studying physics concepts instead.


Example 2.1. 
 
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" 
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns="http://www.w3.org/2000/svg" version="1.1" 
 width="990" height="765">
  <title>Document Title</title>
  <rect fill="none" stroke="black" stroke-width="3" 
   x="1" y="1" width="987" height="762">
    <title>rectangle</title>
  </rect>
  <line stroke="black" stroke-width="9" 
   x1="45" y1="720" x2="945" y2="720">
    <title>line</title>
  </line>
  <line stroke="black" stroke-width="9" 
   x1="90" y1="720" x2="90" y2="90">
    <title>line</title>
  </line>
  <rect fill="none" stroke="black" stroke-width="3" 
   x="90" y="405" width="630" height="90">
    <title>rectangle</title>
  </rect>
  <rect fill="none" stroke="black" stroke-width="3" 
   x="585" y="495" width="45" height="225">
    <title>rectangle</title>
  </rect>
  <rect fill="none" stroke="black" stroke-width="5" 
   x="180" y="225" width="180" height="180">
    <title>rectangle</title>
  </rect>
  <rect fill="none" stroke="black" stroke-width="5" 
   x="450" y="225" width="180" height="180">
    <title>rectangle</title>
  </rect>
  <polygon stroke="black" stroke-width="5" fill="none" 
   points="675 675 855 675 765 540 ">
    <title>polygon</title>
  </polygon>
  <rect fill="none" stroke="black" stroke-width="5" 
   x="709" y="346" width="35" height="95">
    <title>rectangle</title>
  </rect>
  <circle fill="none" stroke="black" stroke-width="5" 
   cx="725" cy="355" r="41">
    <title>circle</title>
  </circle>
  <line stroke="black" stroke-width="3" 
   x1="90" y1="315" x2="180" y2="315">
    <title>line</title>
  </line>
  <line stroke="black" stroke-width="3" 
   x1="360" y1="315" x2="450" y2="315">
    <title>line</title>
  </line>
  <line stroke="black" stroke-width="3" 
   x1="630" y1="315" x2="725" y2="315">
    <title>line</title>
  </line>
  <line stroke="black" stroke-width="3" 
   x1="765" y1="360" x2="765" y2="540">
    <title>line</title>
  </line>
  <text fill="black" stroke="black" 
   x="225" y="468" font-size="32" font-family="arial">
    Friction free table.
  </text>
</svg>



 
Although the concepts involved in manually writing SVG code aren't complicated, the 
process is very tedious and you are very likely to make errors in the coding 
process.




 

Using drawing tools








 
Fortunately for sighted students, drawing tools are readily available that 
make the creation of SVG drawings relatively easy. One of the best is the free 
open source SVG graphics editor named 



Inkscape



. Sighted students are able to use 
that editor with the mouse and the keyboard to create drawings in a visual drawing 
environment.


 
I use 



Inkscape



 all of the time to create SVG files for the drawings that I 
need. However, I don't know of any blind students that have attempted to use 



Inkscape



. 
It doesn't look to me like it would be very accessible for blind students. 
However, it is free, so you should give it a try just so you will know for sure.


 
 
SVG drawing editors for blind students



 
I am unaware of any SVG drawing editors that are designed for use by blind 
students who are unable to use a mouse. 

 
(If you know of any, please let me 
know.)


 Therefore, I will provide an SVG graphics library that I have 
designed specifically for blind students in this module. It isn't 



Inkscape



; far 
from it. However, it does not require the use of a mouse and it works well. It is my hope that the 
use of my library 
will make it possible for you to use SVG to draw the diagrams that you need to 
successfully pursue your coursework in physics and other technical areas.


 
 
Seeking improvements in the interface



 
There are a large number of excellent blind programmers scattered around the 
world. It is my hope that one or more of those programmers will pick up the challenge 
and develop an improved interface for the library that will make it even easier for blind 
students to draw 
using SVG.


 
I would like to see a JavaScript version of an SVG drawing editor designed 
for use by blind students. That's not because JavaScript is my favorite 
programming language, which it isn't. That is because JavaScript has the lowest 
barrier to entry of any programming environment that I am aware of. 

 
(See my 
JavaScript module at 


 






 
http://cnx.org/content/m37433/latest/




)


 
 
How does it work?


 


 
Basically what I will provide in this module is an SVG graphics library 
written in the Java programming language along with a template and instructions 
for you to use in writing Java programs to produce the drawings that you need.


 
I don't have a fancy interface to go with the graphics library. 
Instead, I will provide a template that you can use to write a new Java program 
for each new drawing. The procedure will be to write a program that encapsulates 
the drawing that you have in your mind. When you run the program, it will 
produce the SVG file that describes your drawing.


 
If you determine that there are errors in your drawing, you can make 
corrections to your program code and run it again to get a new version of the SVG 
file.


 
 
Raw SVG code versus my SVG graphics library



 
Only you can decide whether you prefer to write raw SVG code or you prefer to 
use the graphics library. I will present examples of both in this module.


 
I will 
point out one major advantage of using the library, however. Once you learn how to write Java programs that incorporate the library to 
create drawings, there is nothing to prevent you from expanding those programs 
to also solve physics problem and draw graphs of the results.


 
For example, suppose you have a physics assignment to compute and draw the 
trajectory of a projectile. Using raw SVG code, you would first need to compute 
and save the coordinates of the projectile as a set of incremental data points. Then you could write raw SVG code incorporating that data to draw the 
trajectory.


 
Using the library, you could write a program that would compute and also draw the trajectory 
in a single operation. In my 
opinion, that would be a much cleaner solution to the assignment.





 

Sample program








 
A complete listing of the program named 

 
Svg21a.java


, that was used to produce 
the drawing shown in 



Figure 2



 is provided in 



Listing 25



 near the end of the 
module.


 
This program requires access to the SVG graphics library in the file 
named 

 
SvgLib21.java


. A complete listing of this 
program is shown in 



Listing 26



 near the end of the module.


 
This program also requires access to the 
free 




Java 
Development Kit



, version 6 or 
later, which I will also discuss later.


 
Finally, this program also requires access to 



JDOM 1.1.1



, which 
is free, and which I will also 
discuss later.


 
 
Purpose of the program



 
The primary purpose of this program is to demonstrate the use of my SVG 
graphics library in the file named 

 
SvgLib21


. It uses that library to draw an 
abbreviated version of a mass-pulley system shown in the module at




http://cnx.org/content/m38211/latest/#Figure_4





 
The drawing in that module contains several lines of text. However, this 
program draws only one line of text. Otherwise,
the drawing produced by this program is the same as
the drawing used in
that module titled 



Force and Motion -- Units of Force



.


 
I created the original drawing using 



Inkscape



. I 
created this drawing using 
my SVG graphics library and the program that I am about to discuss.


 
This program was tested using J2SE 6, JDOM 1.1.1, and Firefox 5
running under Windows Vista Home Premium Edition.



 

Beginning of the program named Svg21a.java








 
I will explain this program in fragments and explain how you can write 
similar programs to create the SVG drawing files that you need. The first 
fragment, which shows the beginning of the program, is shown in 



Listing 2



.


 
 
(Note that complete listings are provided in 




Listing 25



, 



Listing 26



, and 




Listing 27



. That code is ready to copy into your editor, save as Java source 
code files, compile, and run as explained under 








 
Writing, compiling, 
and running Java programs





 
.)



Example 2.2. 
 
import java.io.*;
import org.jdom.*;

public class Svg21a{
  public static void main(String[] args){

    //DO NOT MODIFY ANY OF THE CODE ABOVE THIS LINE.
    //##################################################//



 
 
Java comments



 
Whenever you see the following character sequence, //, in a Java program, the 
text that follows to the end of the line is a comment. That is to say, that text 
is meant to provide information to a human reader and is ignored by the 
computer.


 


Listing 2



 contains two comments. I will use many 
more comments in subsequent listings to help explain the code.


 
 
Java program files



 
Java programs are simply text files with the file name of your choice and an 
extension of .java. You can create those files using any plain text editor. I will explain later how you 
can "compile" 
those files to create 
executable programs.


 
If this were a module on computer programming, I would explain what is meant 
by the program code in 



Listing 2



. However, since this is not a module on 
computer program, I will simply tell you to replicate the text shown in 



Listing 2



 at the beginning of your Java program file with one exception. That 
exception has to do with the name of the program and the name of the file.


 
 
The name of the program



 
The name of this program is 

 
Svg21a


. You can see that name on the line 
following the word class in 



Listing 2



. You can use just about any name you want 
as long as the first character is a letter and the remainder of the name 
contains only letters and numbers. However, the name of the program, as shown in 




Listing 2



, must match the name of the file containing that program except that 
the file name must have an extension of .java.


 
For example, this program named 

 
Svg21a


 is stored in a file named 


 
Svg21a.java


.


 
Also be aware that everything in Java, including program names and file names, 
is case sensitive. By that I mean that Joe is not the same as jOe, which is not 
the same as joE.




 

Create a drawing canvas








 
The next code fragment is shown at the top of 



Listing 3



. This fragment contains two Java 
programming statements.


 
 
(Usually Java program statements end with a semicolon.)



 
These must be the first two statements in your Java 
program and they must appear only once.


 
The first statement, down to the semicolon, creates the canvas on which the 
drawing will appear. You may modify this statement as explained below.


 
The second statement at the bottom of 



Listing 3



 is a housekeeping statement and must not be modified.


Example 2.3. 
 
    //ONLY THE CODE BELOW THIS LINE CAN BE MODIFIED
    
    //CREATE A DRAWING CANVAS
    //This must be the first statement that you write in
    // the program and it must appear only once.
    //The following statement creates a canvas that is
    // 8.5x11 inches in size in a landscape layout.
    Element svg = SvgLib21.makeSvg(ns,
                                   "Document Title",
                                   11,  //width
                                   8.5  //height
                                   );
                                          

    //DO NOT MODIFY THE FOLLOWING STATEMENT
    //This statement must immediately follow the call to
    // the makeSvg method above and this statement MUST
    // NOT BE MODIFIED.
    Document doc = new Document(svg,docType);



 
 
What does this code mean?



 
    The first statement shown in 



Listing 3



 creates a canvas that is
    8.5 x 11 inches in size in a landscape layout. In other words, the canvas has 
a width of 11 inches and a height of 8.5 inches. When you print the drawing 
produced on this canvas, it should fit perfectly on 8.5x11 inch paper provided 
that you tell the printer to print in landscape 

 
(as opposed to portrait)


 mode.


 
    If your printer uses 8.5 x 11 inch paper, the only modification that you 
will want to make to this statement is to sometimes reverse the order of the 
width and height values 

 
(see the comments)


 to cause the canvas to accommodate portrait mode.


 
    If your printer uses larger paper, you might want to modify the width and 
height values to accommodate the actual size of your printer paper.


 
    When modifying the width and height values in the first statement, be 
careful not to delete the comma and DON'T MAKE ANY OTHER CHANGES to the 
statement with the possible exception of the 

 
"Document Title"


 parameter 
discussed below.


 
    

 
 

The Document Title






 
    The 

 
makeSvg


 method, and most of the other 

 

makeZzz


 methods discussed below have a parameter that adds a title to 
the SVG element. These parameters have default values in this program such as 
"Document Title", "line", "rectangle", "circle", "ellipse", "polyline", and 
"polygon".


 
    The purpose of these parameters is to provide compatibility with the 
speaking capability of the




IVEO viewer



.


 
    If the output SVG file is opened in the




IVEO viewer



, 
the title for the 

 
svg 


element is spoken when the user opens the 
file.


 
    The titles for the individual shapes are spoken by the




IVEO viewer



 
when the user touches a corresponding shape on the touchpad or clicks on that 
shape on the screen.


 
    If the SVG file won't be used with the




IVEO viewer



, 
just leave the title strings unchanged. If the SVG file will be used with the 
the 



IVEO 
viewer



, you can modify those strings to cause the viewer to speak whatever 
titles you choose. 

 
(Don't remove the quotation marks if you modify the title 
string.)



 
    You can read more about this capability under




The SVG graphics library



.


 
 
SVG code to create a canvas



 
If you were to delete all of the remaining code in 



Listing 25



 down to but not 
including the statement that writes the output SVG file, the resulting SVG code 
would be that shown in 



Listing 4



.


Example 2.4. 
 
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" 
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns="http://www.w3.org/2000/svg" version="1.1" 
 width="990" height="765">
  <title>Document Title</title>



 
 
The width and the height of the canvas



 
The first three lines of text in 



Listing 4



 constitute housekeeping 
information that you needn't worry about. It will always be the same. 


 
The fourth and fifth lines of text in 



Listing 4



 define the width and height 
of the canvas.


 
As you can see, the width is set to a value of 990 and the height is set to a 
value of 765.


 
The last line of text in 



Listing 4



 is the 

 

title


 element discussed 



earlier



.


 
 
SVG units



 
SVG doesn't inherently deal with dimensions in inches 

 
(although it is 
possible to specify inches when you define the value for a size attribute.)


. Instead, it deals with 
dimensions in something that I will refer to as "SVG units", and for reasons 
that I am unable to explain, there appear to be 90 SVG units per inch or 35.43 
SVG units per centimeter.


 
Thus, a width of 990 

 
(as shown in 


 




 
Listing 4




) corresponds to a width of 11 inches and a height of 765 
corresponds to a height of 8.5 inches.


 
If you elect to write raw SVG code for you drawings, you will need to think 
in terms of SVG units instead of inches 

 
(or write all of the size attribute 
values something like "8.5in")


. However, I designed my SVG graphics library 
so that you can think in terms of inches instead of SVG units without having to 
remember to specify the units for every size value.




 

Draw a rectangular border on the canvas








 
The Java code in 



Listing 5



 draws a rectangular border on the canvas by creating an 
SVG element of type 

 
rect


 

 
(for rectangle)


.


Example 2.5. 
 
    //Draw a rectangular border on the canvas.
    Element border = SvgLib21.makeRect(svg,
            ns,
            "rectangle",//title
            0.015,/lower-left x-coordinate in inches
            0.015,//lower-left y-coordinate in inches
            10.97,//width in inches
            8.47  //height in inches
            );




 
 
What are you allowed to change?



 
There are only six things that you are allowed to change in the code in 




Listing 5



 

 
(pay attention to the comments)


:


 	 
The name of the 

 
rect


 element, which is 

 
border


 in 
	



Listing 5



. 

 
(Later on, I will refer to this as an 
	object instead of an element.)




	 
The title for the element, which is 

 
"rectangle"


 in 
	



Listing 5



.



	 
The x-coordinate of the lower-left corner of the rectangle, which is 
	0.015 inches in 



Listing 5



.



	 
The y-coordinate of the lower-left corner of the rectangle, which is 
	0.015 inches in 



Listing 5



.



	 
The width of the rectangle, which is 10.97 inches in 



Listing 5



.



	 
The height of the rectangle, which is 8.47 inches in 



Listing 5



.





 
 
Multiple rect elements



 
You can replicate this code to define as many 

 
rect


 elements as you need in your 
drawing so long as you provide a unique name for each element 

 
(object)


.


 
 
The size of the rectangle



 
If you carefully examine the values that I specified for the coordinates of 
the lower-left corner, the width, and the height, you will see that I made the 
rectangle slightly smaller than the size of the paper so that it will fit just 
inside the edges of the paper.


 
 
SVG code to draw a rectangle



 
The use of the Java code in 



Listing 5



 to draw a rectangle results in the 
SVG code shown in 



Listing 6



.


Example 2.6. 
 
  <rect fill="none" stroke="black" stroke-width="1" 
   x="1" y="1" width="987" height="762">
    <title>rectangle</title>
  </rect>



 
In order 
to force the SVG code to fit in this publication format, it was necessary for me 
to insert a line break following the "1". Those two lines were originally a 
single line in the SVG code.


 
 
View my tutorials



 
SVG is simply one flavor of something called XML. I have 
published hundreds of online tutorials on Java programming, XML, and SVG. If you 
are interested in reading what I have to say in those tutorials, just Google the 
following keywords:


 	 
Richard Baldwin Java



	 
Richard Baldwin XML



	 
Richard Baldwin SVG





 
 
The rect element



 
The four lines in 



Listing 6



 that begin with an angle 
bracket followed by 

 
rect


 and end with /> constitute what is called 
an XML element named 

 
rect


.


 
The 

 
rect


 element has a 

 
title


 element as its 
content. The 

 
title


 element has the word 

 
rectangle


 
as its content.


 
 
The attributes of the rect element



 
The following items are known as the 

 
attributes


 of the


 
rect


 element:


 	 
fill



	 
stroke



	 
stroke-width



	 
x



	 
y



	 
width



	 
height





 
 
The attribute values



 
The text that appears in quotation marks, such as "762" are known as the 
values of the attribute to which they are joined by an equals character "=".


 
 
How does it all work?



 
When an SVG processor, such as the one incorporated into Firefox 5, sees an 
SVG/XML element named 

 
rect


 in an SVG file, it knows that 
it needs to draw a rectangle. It then looks to the attributes and their values 
to determine other aspects of that rectangle.


 
For example, in this case, the SVG processor is told to draw a rectangle 
consisting of an outline only

 
 (fill="none")


.


 
The color of the outline is to be black 

 
(stroke="black")


.


 
The thickness of the outline is to be a single SVG unit 

 
(stroke-width="1")


.


 
The lower-left corner of the outline is to be very close to the origin when 
described in SVG units 

 
(x="1" and y="1")


.


 
The width of the rectangle is to be 987 SVG units 

 
(width="987")


, and the 
height of the rectangle is to be 762 SVG units 

 
(height="762")


.


 
If you were to run the program at this point, open the output SVG file in Firefox 
5, and print the result, you would have a blank sheet of paper with a black 
outline barely inside the edges of the paper. 

 
(Note, however, that on my 
system, there is a margin of approximately one-half inch at the bottom of the 
paper.)





 

Draw the floor and the wall








 
In the image shown in 



Figure 2



, the floor consists of a line parallel to the 
horizontal axis near the bottom of the drawing. The wall consists of a line 
parallel to the vertical axis near the left side of the drawing. The Java code 
in 



Listing 7



 causes those two lines to be drawn.


 
 
(All coordinate values and dimensions given in this and the following Java 
code are in inches, so I will stop mentioning that at this point.)



Example 2.7. 
 
    //Draw the floor.
    Element floor = SvgLib21.makeLine(svg,
            ns,
            "line",//title
            0.5, //x-coordinate of one end of line
            0.5, //y-coordinate of one end of line
            10.5,//x-coordinate of other end of line
            0.5  //y-coordinate of other end of line
            );

    //Draw the wall.
    Element wall = SvgLib21.makeLine(svg,
                                      ns,
                                      "line",
                                      1.0,
                                      0.5,
                                      1.0,
                                      7.5
                                      );



 
 
Two SVG elements of type line



 
Each of the Java statements in 



Listing 7



 causes a new SVG element of type 
line to be created. The first element is named 

 
floor


 in the Java code. 

 
(

 

I 
will have more to say about element names later



.)


 The second element is 
named 

 
wall


. 

 
(See 


 




 
Listing 8





 
 later.)



 
 
What can you change?



 
As before, there are only six things that you are allowed to change in each 
of the Java statements in 



Listing 7



:


 	 
The names of the line elements 

 
(floor and wall in 


 




	

 
Listing 7





 
.)




	 
The values of the titles 

 
("line" in 


 




	

 
Listing 7





 
.)




	 
The x and y coordinate values for one end of each line.



	 
The x and y coordinate values for the other end of each line.





 
If you examine the x and y coordinate values for one end of the line named 
floor in 



Listing 7



 

 
(0.5, 0.5)


, you will see that one end of the line is near 
the origin at the lower-left corner of the drawing.


 
If you examine the x and y coordinate values for the other end of the line 
named 

 
floor


 

 
(10.5, 0.5)


, you will see that the other end of the line is near the 
lower-right corner of the drawing. Furthermore, both y-coordinate values are 
0.5, meaning that the line is parallel to the horizontal axis as desired.


 
A similar analysis of the line named 

 
wall


 will reveal that it intersects the 
floor near the left end at 

 
(1.0, 0.5)


 and is parallel to the vertical axis.


 
 
SVG code to draw a line



 


Listing 8



 shows the two 

 
line


 elements created by the Java 
code shown in 



Listing 7



.


Example 2.8. 
 
  <line stroke="black" stroke-width="1" 
   x1="45" y1="720" x2="945" y2="720">
    <title>line</title>
  </line>
  
  <line stroke="black" stroke-width="1" 
   x1="90" y1="720" x2="90" y2="90">
    <title>line</title>
  </line>



 
 
An explanation of element names



 
I promised 




earlier



 that I would have more to say about element names later. That time 
has come.


 
SVG elements don't have names, other than the name that defines the 
type of element such as 

 
rect


 

 
(





 
Listing 6




) and 

 
line


 


 
(





 
Listing 8




). Names such as 

 
border


 


 
(





 
Listing 5




), 

 
floor


 
and 

 
wall


 
 (





 
Listing 7




) are purely Java mechanisms for keeping 
track of the different elements in the drawing.


 
 
(I should have been referring border, floor, and wall as objects instead of elements in the Java 
code earlier, but I didn't want to make things even more confusing than they may already 
be.)



 
 
The names disappear



 
By the time the Java code is converted into SVG code, those identifying names 
have disappeared and the SVG code consists of 


 	 
elements of specific types 



	 
having attributes with
	


 	 
specific names 



	 
and specific values.








	





 
 
(There is also something in the SVG code called content, which is 
represented by the title element in 


 




 
Listing 8





 
.)



 
 
The line elements



 
The first SVG element named 

 
line


 in 



Listing 8



 corresponds to 
the Java object named 

 
floor


 in 



Listing 7



. The second SVG 
element named 

 
line


 in 



Listing 8



 corresponds to the Java object 
named 

 
wall


 in 



Listing 7



.


 
 
Attributes of the line elements



 
The stroke and stroke-width attributes in 



Listing 8



 should already be 
familiar to you as should the coordinate attributes named x1, y1, x2, and y2.


 
Unlike the SVG code for the rect element in 



Listing 6



, where there 
was only one pair of coordinate attributes named x and y, a line element as 
shown in 



Listing 8



 requires two sets of coordinate 
attributes. Therefore, the two sets are distinguished from one another by 
appending a 1 and a 2 to the basic attribute names of x and y 

 
(x1, y1, x2, 
and y2)


.


 
If you compare the coordinate attributes in 



Listing 8



 with the coordinate 
values in the Java code in 



Listing 7



, and convert from inches to SVG 
units, you should find that they match.




 

Draw more rectangles








 
The Java code in 



Listing 9



 causes four more rectangles to be drawn that represent 
the following objects in the drawing:


 	 
The top of the table on which two rectangular masses are setting.



	 
The table leg that supports the rightmost end of the table. 

 
(The 
	leftmost end is 
	attached to the wall.) 


 



	 
One of the rectangular masses, referred to as Mass C. 

 
(This mass sets on 
	top of the table closest to the wall on the left end of the table.)




	 
The other rectangular mass referred to as Mass B. 

 
(This mass sets on top 
	of the table closest to the rightmost end of the table away from the wall.)






Example 2.9. 
 
    //Draw the table top.
    Element tableTop = SvgLib21.makeRect(svg,
                                      ns,
                                      "rectangle",
                                      1.0,
                                      3.0,
                                      7.0,
                                      1.0
                                      );


    //Draw the table leg.
    Element tableLeg = SvgLib21.makeRect(svg,
                                      ns,
                                      "rectangle",
                                      6.5,
                                      0.5,
                                      0.5,
                                      2.5
                                      );
    
    
    //Draw Mass C
    Element massC = SvgLib21.makeRect(svg,
                                      ns,
                                      "rectangle",
                                      2.0,
                                      4.0,
                                      2.0,
                                      2.0
                                      );  
    
    
    //Draw Mass B
    Element massB = SvgLib21.makeRect(svg,
                                      ns,
                                      "rectangle",
                                      5.0,
                                      4.0,
                                      2.0,
                                      2.0
                                      );



 
 
The corresponding SVG code



 
The Java code in 



Listing 9



 causes the four 

 
rect


 
elements shown in 



Listing 10



 to be created in the 
output SVG code.


Example 2.10. 
 
  <rect fill="none" stroke="black" stroke-width="1" 
   x="90" y="405" width="630" height="90">
    <title>rectangle</title>
  </rect>
  
  <rect fill="none" stroke="black" stroke-width="1" 
   x="585" y="495" width="45" height="225">
    <title>rectangle</title>
  </rect>
  
  <rect fill="none" stroke="black" stroke-width="1" 
   x="180" y="225" width="180" height="180">
    <title>rectangle</title>
  </rect>
  
  <rect fill="none" stroke="black" stroke-width="1" 
   x="450" y="225" width="180" height="180">
    <title>rectangle</title>
  </rect>



 
You already know all about drawing rectangles, so no further explanation of 
the code in 



Listing 9



 and 



Listing 10



 should be needed.




 

Draw a polygon








 
The next task is to draw a triangular object that represents Mass C in the 
drawing. This is accomplished by the Java code in 



Listing 11



 that causes a polygon, 
in the shape of a triangle, to be drawn.


Example 2.11. 
 
    //Draw Mass A
    Element massA = SvgLib21.makePolygon(
               svg,
               ns,
               "polygon",
               new double[]{
                 7.5, 1.0,//x-y coordinate pair
                 9.5, 1.0,//x-y coordinate pair
                 8.5, 2.5 //x-y coordinate pair
               });



 
 
What can you modify?



 
You can modify the following items in the Java code shown in 



Listing 11



.


 	 
The name of the object 

 
(

 
massA


 in 


 




 
Listing 11




).



	 
The title 

 
(

 
"polygon"


 in 



Listing 11



).




	 
The number of x-y coordinate pairs in the list of x-y coordinate pairs 
	along with the values of the coordinates.





 
 
What is a polygon?



 
In SVG terminology, a polygon is a drawing that consists of a series of 
points in two-dimensional space connected by line segments. An additional line 
segment is automatically drawn 
from the last point to the first point. For example, triangles, pentagons, 
and hexagons are polygons.


 
 
What is a polyline?



 
In SVG terminology, a polyline is exactly like a polygon except that a line 
segment is not automatically drawn to connect the last point to the first point. 



 
There are no polyline elements in this example drawing, but there is one in the 
program for a different drawing shown in 



Listing 27



. The  
Java code for drawing a polyline is the same as the Java code for drawing a 
polygon. The difference between the two occurs when the SVG processor draws the 
shapes and either does, or does not automatically connect the last point to the 
first point.


 
 
The most versatile shape



 
    The polyline is the most versatile of all of the basic shapes. With enough patience, it can be used to draw any
    shape that can be drawn with curved lines. To
    draw a curved line using polyline elements, approximate it using a large
    number of short line segments. For example, polyline elements provide an 
ideal mechanism for drawing the kind of shapes that are commonly referred to as 
"curves" in math, physics, and engineering courses. By this, I mean a drawing 
that shows how a dependent variable behaves relative to an independent variable.


 
    

 
Drawing the polygon 

 
(or the polyline)




 
    Getting back to the Java code in 



Listing 11



, you can insert any number 


 
(two or more)


 of x-y coordinate-pairs inside
    the curly brackets 

 
(but you must insert them in pairs)


. Line segments will 
be drawn from the first coordinate location to the second, from the second to 
the third, and so on. 

 
(Of course there need to be two or more coordinate pairs 
in order for things to make sense.)



 
    If you examine the coordinate values shown in 



Listing 11



, you will see 
that they define the vertices of a triangle whose base is parallel to the 
horizontal axis. Since this is a polygon, it will be drawn as a closed triangle 
with lines for all three sides. If it were a polyline, it would not be drawn as 
a closed triangle. Instead, only two lines would be drawn and the third side of 
the triangle would be open.


 
 
SVG code to draw a polygon



 


Listing 12



 shows the SVG code produced by the Java code in 



Listing 11



.


Example 2.12. 
 
  <polygon stroke="black" stroke-width="1" fill="none" 
   points="675 675 855 675 765 540 ">
    <title>polygon</title>
  </polygon>


 
 
The attribute named points



 
The polygon element in 



Listing 12



 contains a new attribute name that you 
haven't seen before: 

 
points


.


 
As you have probably figured out by now, the value of the attribute 
named points is a 
series of numeric values, separated by spaces, that represent the x-y coordinate pairs in 



Listing 11



, 
converted from inches to SVG units.


 
Hopefully by now you are beginning to see patterns that relate the Java code 
to the resulting SVG code.




 

Draw the rectangular pulley support








 
The drawing in 



Figure 2



 shows a pulley connected to the rightmost end of the 
table. The drawing of the pulley consists of a rectangle as the support member 
and a circle as the pulley wheel. The Java code to draw the pulley support is 
shown in 



Listing 13



.


Example 2.13. 
     //Draw pulley support
    Element pullySupport = SvgLib21.makeRect(svg,
                                             ns,
                                             "rectangle",
                                             7.883,
                                             3.595,
                                             0.392,
                                             1.06
                                             );


 
The Java code in 



Listing 13



 simply draws another rectangle, so it shouldn't need 
further explanation.




 

Draw a circle








 
The Java code in 



Listing 14



 draws a circle to serve as the pulley wheel in the 
drawing.


Example 2.14. 
 
    //Draw the pulley wheel.
    Element pulleyWheel = SvgLib21.makeCircle(
               svg,
               ns,
               "circle",
               8.05, //x-coordinate of center of circle
               4.56, //y-coordinate of center of circle
               0.45  //radius of circle
               );




 
 
What are you allowed to change?



 
There are only four things that you are allowed to change in the code in 




Listing 14



:


 	 
The name of the 

 
circle


 object, which is 

 

	pulleyWheel


 in 



Listing 14



.



	 
The title 

 
(

 
"circle"


 in 



Listing 14



)


.



	 
The value of the x-coordinate of the center of the circle.



	 
The value of the y-coordinate of the center of the circle.



	 
The radius of the circle.





 
You will need to examine the coordinate values for the center of the circle 
along with the radius of the circle and imagine how the position and size of the 
circle relates to the right end of the table top in 



Figure 2



. 


 
(Or hopefully, get 
a tactile version of the drawing and explore it by touch.)



 
 
SVG code to draw a circle



 


Listing 15



 shows the SVG code produced by the Java code in 



Listing 14



.


Example 2.15. 
 
  <circle fill="none" stroke="black" stroke-width="1" 
   cx="725" cy="355" r="41">
    <title>circle</title>
  </circle>



 
By now, you should see the pattern and there should be no need to explain the 
relationship between the attributes of the circle element and the parameter 
values in the call to the 

 
makeCircle


 method in 



Listing 14



.




 

Draw more lines








 
The earlier section titled 



What does the 
image show



 describes how three cords are used to tie the masses to one 
another and to tie the leftmost mass to the wall. This is accomplished using the four 
calls to the Java 

 
makeLine


 method shown in 



Listing 16



.


Example 2.16. 
 
    //Draw cord from wall to Mass C
    Element cordR = SvgLib21.makeLine(svg,
                                      ns,
                                      "line",
                                      1.0,
                                      5.0,
                                      2,
                                      5.0
                                      );


    //Draw cord from Mass C to Mass B
    Element cordQ = SvgLib21.makeLine(svg,
                                      ns,
                                      "line",
                                      4.0,
                                      5.0,
                                      5.0,
                                      5.0
                                      );


    //Draw cord from Mass B to the top of the pulley.
    Element cordP1 = SvgLib21.makeLine(svg,
                                       ns,
                                      "line",
                                       7.0,
                                       5.0,
                                       8.05,
                                       5.0
                                       );


    //Draw the cord from the right side of the pulley to
    // Mass A
    Element cordP2 = SvgLib21.makeLine(svg,
                                       ns,
                                      "line",
                                       8.5,
                                       4.5,
                                       8.5,
                                       2.5
                                       );




 
There is nothing new in 



Listing 16



.


 
 
SVG code to draw more lines



 
The Java code in 



Listing 16



 produces 
the SVG code shown in 



Listing 17



.


Example 2.17. 
 
  <line stroke="black" stroke-width="1" 
   x1="90" y1="315" x2="180" y2="315">
    <title>line</title>
  </line>
  
  <line stroke="black" stroke-width="1" 
   x1="360" y1="315" x2="450" y2="315">
    <title>line</title>
  </line>
  
  <line stroke="black" stroke-width="1" 
   x1="630" y1="315" x2="725" y2="315">
    <title>line</title>
  </line>
  
  <line stroke="black" stroke-width="1" 
   x1="765" y1="360" x2="765" y2="540">
    <title>line</title>
  </line>



 
There is also nothing new in 



Listing 17



.




 

Change line thicknesses








 
With the exception of text to be discussed shortly, we have now created an 
element for every object that we need in our drawing. 


 
As you may have noticed, the value of the 

 
stroke-width


 
attribute for every element created so far has been "1". That is the default 
value. We may not be satisfied with that default value in all cases. We may prefer that 
some of the lines that describe the geometrical objects be thicker than lines 
that describe other geometrical objects.


 
My SVG graphics library provides a method named 

 
setStrokeWidth


 
that we can use to adjust the stroke-width attribute values for an element 
before the final output SVG file is written. 

 
(As you will see if you examine



 





 
Listing 27





 
, the library provides methods that let you adjust other attribute 
values as well.)



 
 
Set the stroke-width



 
The line thickness is controlled by the value of the 

 
stroke-width


 attribute 
in the SVG element that causes the geometrical object to be drawn.


 


Listing 18



 contains a series of Java statements that set new values for the 
stroke-width attribute for each of a variety of objects. Since the statements are all 
essentially the same, I will discuss only the first one.


Example 2.18. 
 
    SvgLib21.setStrokeWidth(
         border,//name of the object of interest
         0.03   //new value for the stroke-width attribute
         );
    
    SvgLib21.setStrokeWidth(floor,0.1);
    SvgLib21.setStrokeWidth(wall,0.1);
    SvgLib21.setStrokeWidth(tableTop,0.03);
    SvgLib21.setStrokeWidth(tableLeg,0.03);
    SvgLib21.setStrokeWidth(massC,0.05); 
    SvgLib21.setStrokeWidth(massB,0.05);
    SvgLib21.setStrokeWidth(massA,0.05);
    SvgLib21.setStrokeWidth(pullySupport,0.05);
    SvgLib21.setStrokeWidth(pulleyWheel,0.05);
    SvgLib21.setStrokeWidth(cordR,0.03);
    SvgLib21.setStrokeWidth(cordQ,0.03);
    SvgLib21.setStrokeWidth(cordP1,0.03);
    SvgLib21.setStrokeWidth(cordP2,0.03);




 
 
What are you allowed to change?



 
There are only two things that you can change in a call to the 

 
setStrokeWidth


 
method as shown in 



Listing 18



:


 	 
The name of the Java object of interest 

 
(


 
 
border



 
 for the first call in
	


 
	




 
Listing 18




).



	 
The new value for the 

 
stroke-width


 attribute in the SVG element that 
	corresponds to the specified Java object 

 
(0.03 for the first call in Listing 
	18)


.





 
Recall that 

 
border


 is the name of the Java object that is used to draw a 
rectangular border on the canvas 

 
(see 


 




 
Listing 5




).


 
Recall also that the initial default value of the stroke-width attribute for 
the rect element was equal to "1" 

 
(see 


 






 
Listing 6




).


 
To see the effect of the first call to the 

 
setStrokeWidth


 method in 



Listing 18



, go back and take a look at the final SVG output code in 



Listing 1



. Pay 
particular attention to the first 

 
rect


 element.


 
 
Modified stroke-width attribute value



 
I have reproduced that 

 
rect


 element in 



Listing 19



 for convenient 
viewing.


Example 2.19. 
 
  <rect fill="none" stroke="black" stroke-width="3" 
   x="1" y="1" width="987" height="762">
    <title>rectangle</title>
  </rect>



 
As mentioned earlier, the default value for the stroke-width attribute of the 
rect element shown in 



Listing 6



 was "1". However, after I added the first call 
to the 

 
setStrokeWidth


 method in 



Listing 18



 and re-ran the program, the attribute 
value was changed to "3" corresponding approximately to a line thickness of 0.03 
inch.


 
If you compare the parameter values to the remaining calls to the 


 
setStrokeWidth


 method in 



Listing 18



 with the final values of the stroke-width 
attribute values in 



Listing 1



, they should all correspond accordingly.




 

Draw text








 
All that we have left to do in this program is to draw some text and write 
the output SVG file. 


 
The Java code in 



Listing 20



 can be used to draw one line of text.


Example 2.20. 
 
    //Draw text
    Element textA = SvgLib21.makeText(
        svg,    
        ns,
        2.5,    //x-coordinate of beginning of text
        3.3,    //y-coordinate of beginning of text
        "arial",//font-family (optionally "")
        32,     //font size in points
        "Friction free table." //text to be drawn
        );



 
 
Usage



 
Begin by setting the name of the Java object 

 
(


 
 
textA



 
 in



 




 
Listing 20





 
) 


to the 
name that you prefer.


 
Then set the x and y coordinate values for the location in the drawing where 
the text will be drawn. 
This specifies the location of the lower-left corner of the first character in 
the text string.


 
Then set the name of the font family 

 
("


 
 
arial



 
" in



 




 
Listing 20




) or 
optionally leave that name blank. If no name is set

 
 
("")


 or an invalid name is set, a default font family will be used.


 
Then set the font size to the desired font size in points 

 
(


 
 
32



 
 in



 




 
Listing 20




).


 
Finally, set the last parameter to the string of text that is to be drawn.


 
Make sure that you include the quotation marks in both cases where they are 
used in 



Listing 20



.


 
Don't make any other changes to the code shown in 



Listing 20



.


 
 
Setting the font style and font weight



 
By default the text is 

 
normal


 

 
(not bold, not italic, etc.)


. My SVG graphics 
library provides methods by which you can change the weight and style of the 
text, such as making it bold and italic. 

 
(See usage instructions for those 
methods in 


 




 
Listing 27





 
.)



 
 
SVG code to draw text



 


Listing 21



 shows the SVG code produced by the Java code in 



Listing 20



.


Example 2.21. 
 
  <text fill="black" stroke="black" x="225" y="468" 
    font-size="32" font-family="arial">
      Friction free table.
  </text>



 
You should be able to recognize all of the attributes and their values shown 
in 



Listing 21



.


 
 
The content of an element



 
There is something in 



Listing 21



 that was not previously discussed in 
any detail -- content. 
The actual text, 

 
Friction free table


, is not an attribute. Instead, it is what 
is called 

 
content


 in XML/SVG. 


 
In addition, many of the earlier SVG code fragments had elements whose 
content consisted of a 

 
title


 element, which in turn had text 
content with words like 

 
line


, 

 
polygon


, etc.


 
This isn't particularly important to you as a user 
of my SVG graphics library. However, if you elect to create drawings by writing 
raw SVG code, this is something that you will need to study a little more 
deeply.




 

Write the output file








 
If you elect to create your drawings by writing raw SVG code in a text 
editor, all you need to do to write the output file is to save the text file 
from inside the editor.


 
However, if you elect to use my SVG graphics library and create your drawings 
by writing Java code, you need to include the code shown in 



Listing 22



 to cause 
the final output SVG file to be written.


 
 
(Don't include the .svg extension in the file name that you specify. It 
is added automatically.)



Example 2.22. 
 
    //WRITE OUTPUT FILE
    SvgLib21.writePrettyFile("Svg21a",doc);




 
    This must be the last statement that you write in your program. Otherwise, you will get an incomplete file.


 
    Set the value inside the quotation marks to the desired path and filename 
for the file.


 
 
(Don't include the .svg extension in the file name that you specify. It 
is added automatically.)



 
    Don't make any other changes to the code in 



Listing 22



.


 
    The Java code in 



Listing 22



 writes the output file with the name 


 
Svg21.svg


 in the folder from which the
    program is being executed 

 
(the current folder)


. Because it is being written 
into the current folder, it isn't necessary to provide a path.




 

The remaining Java code








 
The remaining code that you will need to include in your Java program file is 
shown in 



Listing 23



.


 
Simply copy this code, without modifications, and paste it at the end of your 
file.


Example 2.23. 
 
    //ONLY THE CODE ABOVE THIS LINE CAN BE MODIFIED
    //##################################################//
    //DO NOT MODIFY ANY OF THE FOLLOWING CODE.    
  }//end main
  //----------------------------------------------------//

  //Create a String variable containing the namespace
  // URI to reduce the amount of typing that is required
  // later. Note that the variable name is short and
  // easy to type.
  static String ns = "http://www.w3.org/2000/svg";
  
  //For clarity, create strings containing the name of
  // the element that is constrained by the DTD (the
  // root element), the Public ID of the DTD, and the
  // System ID of the DTD.
  static String dtdConstrainedElement = "svg";
  static String dtdPublicID = "-//W3C//DTD SVG 1.1//EN";
  static String dtdSystemID = 
     "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd";
     
  
  static DocType docType = new DocType(
         dtdConstrainedElement,dtdPublicID,dtdSystemID);

}//end class 






 

The SVG graphics library








 
The Java code for my SVG graphics library is provided in 



Listing 26



. All you need 
to do is copy this code into a file named 

 
SvgLib21.java


 and place that file in 
the same folder with your program code. I will explain later what you need to do 
after that.









The graphics library in Listing 26 was updated on 08/11/11 to add new features. 
However, the text in this module has not been updated to illustrate the use of 
those new features. The downloadable documentation has been updated to include 
those features.




 
 
IVEO compatibility



 
Note that the library was revised on 08/07/11 to add a 

 
title


 element to each shape
element and to the 

 
svg


 element. As a result, when the output SVG file is
opened in the 



IVEO 
viewer



 and you click on a shape, information about that shape is spoken by IVEO. When you open the file in the 



IVEO 
viewer



, the text content of the 

 
title


 element belonging to 
the 

 
svg


 element is spoken.


 
Note that you 
must be careful about the order in which you add the
shapes to the drawing. For example, a rectangle that
is added after a line is added can cover the line
and prevent the information about the line from being
spoken by IVEO even though the rectangle may be transparent. 
Therefore, for IVEO compatibility, you must not allow
one shape object to cover another shape object.


 
 
Graphics library documentation



 
Click 



here



 to download a zip file named


 
SvgLib21Docs.zip


 containing standard Java documentation for the 
graphics library.


 
To view the documentation, YOU MUST EXTRACT the contents of the zip file into 
an empty folder. 

 
(Forgive me for shouting, but my students are constantly 
forgetting to extract material from a zip file before they try to use that 
material.)


 Then open the file named 

 
index.html


 in your 
browser. If you are unfamiliar with the format of the documentation, the 
explanation at 




http://www.apl.jhu.edu/~hall/java/beginner/api.html



 might be helpful.




 

Another sample program








 
Another sample program that produces a different drawing is provided in 




Listing 27



. This program contains extensive usage instructions in the form of 
comments for all of the capabilities of my SVG graphics library. If you 
encounter any difficulties using the library, you should consult the 
instructions in that program.





 


Writing, compiling, and running Java programs









 

Writing Java code








 
Fortunately, writing Java code is straightforward. You can write Java code 
using any plain text editor. You simply need to cause the output file to have 
an extension of .java.


 
There are a number of high-level Integrated Development Environments 

 
(IDEs)


 
available, such as Eclipse and NetBeans, but they tend to be overkill for the relatively simple Java programs 
described in this module.


 
There are also some low-level IDEs available, such as JCreator and DrJava, 
which are very useful for sighted students. However, I don't know anything about 
their level of accessibility. I normally use a free version of JCreator, mainly 
because it contains a color-coded editor, but that feature wouldn't be useful 
for a blind student.


 
So, just find an editor that you are happy with and use it to write your Java 
code.




 

Preparing to compile and 
run Java code








 
Perhaps the most complicated thing is to get your computer set up for 
compiling and running Java code in the first place.



 

The java development kit 

 
(JDK)









 
You will need to download and install the free Java JDK from





http://www.oracle.com/technetwork/java/javase/downloads/index.html





 
I notice that Java SE 7 has been released very recently. However, my SVG 
graphics library was tested using Java SE 6 Update 26, and that is what I would 
recommend. Also there is a 64-bit version, but my library has not been tested 
with the 64-bit version. If your operating system will accommodate it, I 
recommend that you stick with the 32 bit version just in case the 64-bit version 
is not compatible with my library.


 
You will find installation instructions on the download page shown above.




 

JDOM version 1.1.1








 
You will also need to download and install a class library named JDOM 1.1.1 
at 



http://www.jdom.org/



 


 
When you do that download, you will receive a zip file that also contains 
some installation instructions. However, my experience is that those 
installation instructions are overkill, at least that is the case on a Windows 
machine.


 
All you need to do is to extract the file named 

 
jdom.jar


 from the zip file 


 
(look for it in the build directory in the zip file)


, store it somewhere on your 
disk, and put it on the classpath at compile time and runtime. 

 
(I will explain 
the bit about the classpath a little later.)



 
In my case, I'm running Windows Vista Premium Home Edition and I elected to 
store the 

 
jdom.jar


 file in the 

 

following folder



:


 
C:\Program Files (x86)\Java\jdom-1.1.1\build\jdom.jar


 
It doesn't really matter where you store it as long as you know how to 
specify that location in the classpath later.





 

Compiling and running Java code








 
There are a variety of ways to compile and run Java code. The way that I will 
describe here is the most basic and, in my opinion, the most reliable. These instructions 
apply to a Windows operating system. If you are using a different operating 
system, you will need to translate the instructions to your operating system.


 
 
Write your Java program



 
Begin by writing your Java program into a text file with an extension of 
.java. Save it in a folder somewhere on your disk. Make sure that you adhere to 
the earlier instructions regarding the name of the class and the name of the 
file, and remember that everything is case sensitive.


 
Create a file named 

 
SvgLib21.java


 that contains an exact replica of the Java 
code in 



Listing 26



. Store that file in the same folder as your Java program.


 
Create a batch file 

 
(or whatever the equivalent is for your operating system)


 
containing the text shown in 



Listing 24



.


 
Then execute the batch file.


 
If everything is successful, a Firefox window should open showing your 
drawing ready to be printed.


Example 2.24. 
 
cls

del *.class
del Svg21a.svg
javac -cp ".;C:\Program Files (x86)\Java\jdom-1.1.1\build\jdom.jar" SvgLib21.java
javac -cp ".;C:\Program Files (x86)\Java\jdom-1.1.1\build\jdom.jar" Svg21a.java
java -cp ".;C:\Program Files (x86)\Java\jdom-1.1.1\build\jdom.jar"  Svg21a
start Firefox.exe Svg21a.svg
pause



 
 
Comments regarding the batch file



 
Note that the text inside the quotation marks is the same as the location 
where I 



stored the file



 named 

 
jdom.jar


. In fact, 
it is identical except that ".;" appears before that location in 




Listing 24



. You need to cause your batch file to identify the location of the 
file named 

 
jdom.jar


 on your system just like I did in 



Listing 24



.


 
Do not modify the text that reads 

 
"SvgLib21.java"


 in 



Listing 24



.


 
Replace the text that reads 

 
"Svg21a"


 in all three locations in 



Listing 24



 
with the name of your program. Note, however, that the first time it appears, it 
is specifying the name of the output SVG file. In case you elected to give your 
output SVG file a different name than the name of your program, you need to 
insert that name in place of 

 
Svg21a.svg


.


 
 
Starting the browser automatically



 


Listing 24



 also assumes that you have Firefox 5 or later installed on your 
system and starts it running automatically

 
. (It will probably also work with 
earlier versions of Firefox. However, I 
have been unable to cause either Google Chrome or IE 9 to start automatically 
using this approach.)



 
In any event, the last line of text before the pause can be deleted from 




Listing 24



 with no harmful effects. It simply won't 
start the browser 
automatically if you delete that text. In that case, you will have to manually open the output SVG file in the 
browser 

 
(or in some other SVG processor program)


 in order to print it.


 
(Opening the SVG file manually seems to work in Firefox 5, IE 9, and Google 
Chrome 12.)



 
 
Don't delete the pause command



 
The 

 
pause


 command causes the command-line window to stay on the 
screen. You will need to examine the contents of the window if there are errors 
when you attempt to compile and run your program, so don't delete the pause 
command.


 
 
Translate to other operating systems



 
Remember, the format of the batch file in 



Listing 24



 is a Windows format. If 
you are using a different operating system, you will need to translate the 
information in 



Listing 24



 into the correct format for your operating system.





 

Resources








 
I will publish a module containing consolidated links to resources on my 
Connexions web page and will update and add to the list as additional modules 
in this collection are published. 




 

Complete program listings








 
Complete listings of the three programs discussed in this module are provided 
in 



Listing 25



, 



Listing 26



, and 




Listing 27



.


Example 2.25. 
 
/*File Svg21a.java,
Copyright 2011, R.G.Baldwin

Revised 08/07/11 to support the addition of a title 
parameter to each element for IVEO compatibility. If the
output SVG file is opened in IVEO, the title for the svg
element is spoken when the user opens the file, and the
titles for the individual elements are spoken when the
user touches a corresponding shape on the touchpad or
clicks on that shape on the screen. If the SVG file won't
be used with IVEO, just leave the title strings unchanged.

This program requires access to the file 
named SvgLib21.java

This is a demonstration program.

This program uses JDOM 1.1.1 and an SVG graphics library 
class of my own design named SvgLib21 to draw an 
abbreviated version of the mass-pulley system shown in 
http://cnx.org/content/m38211/latest/#Figure_4

Only one line of text is drawn by this program. Otherwise,
the drawing produced by this program is the same as
the drawing in the file named Phy1150a1.svg used in
that module titled Force and Motion -- Units of Force. The
original drawing was produced by a sighten person using
Inkscape. This drawing was produced by a sighted person
using Baldwin's svg drawing library.

Tested using J2SE 6, JDOM 1.1.1, and Firefox 5
running under Windows Vist Home Premium Edition.
*********************************************************/
import java.io.*;
import org.jdom.*;

public class Svg21a{
  public static void main(String[] args){

    //DO NOT MODIFY ANY OF THE CODE ABOVE THIS LINE.
    //##################################################//
    //ONLY THE CODE BELOW THIS LINE CAN BE MODIFIED
    
    //CREATE A DRAWING CANVAS
    //This must be the first statement that you write in
    // the program and it must appear only once.
    //The following statement creates a canvas that is
    // 8.5x11 inches in size in a landscape layout.
    Element svg = SvgLib21.makeSvg(ns,
                                   "Document Title",
                                   11,//width
                                   8.5  //height
                                   );
                                          

    //DO NOT MODIFY THE FOLLOWING STATEMENT
    //This statement must immediately follow the call to
    // the makeSvg method above and this statement MUST
    // NOT BE MODIFIED.
    Document doc = new Document(svg,docType);

    //Draw a rectangular border on the canvas.
    Element border = SvgLib21.makeRect(svg,
                                      ns,
                                      "rectangle",
                                      0.015,
                                      0.015,
                                      10.97,
                                      8.47
                                      );
    
    //Draw the floor.
    Element floor = SvgLib21.makeLine(svg,
                                      ns,
                                      "line",
                                      0.5,
                                      0.5,
                                      10.5,
                                      0.5
                                      );

    //Draw the wall.
    Element wall = SvgLib21.makeLine(svg,
                                      ns,
                                      "line",
                                      1.0,
                                      0.5,
                                      1.0,
                                      7.5
                                      );

    //Draw the table top.
    Element tableTop = SvgLib21.makeRect(svg,
                                      ns,
                                      "rectangle",
                                      1.0,
                                      3.0,
                                      7.0,
                                      1.0
                                      );


    //Draw the table leg.
    Element tableLeg = SvgLib21.makeRect(svg,
                                      ns,
                                      "rectangle",
                                      6.5,
                                      0.5,
                                      0.5,
                                      2.5
                                      );
    
    
    //Draw Mass C
    Element massC = SvgLib21.makeRect(svg,
                                      ns,
                                      "rectangle",
                                      2.0,
                                      4.0,
                                      2.0,
                                      2.0
                                      );  
    
    
    //Draw Mass B
    Element massB = SvgLib21.makeRect(svg,
                                      ns,
                                      "rectangle",
                                      5.0,
                                      4.0,
                                      2.0,
                                      2.0
                                      );


    //Draw Mass A
    Element massA = SvgLib21.makePolygon(svg,
                                         ns,
                                         "polygon",
                                         new double[]{
                                           7.5,1.0,
                                           9.5,1.0,
                                           8.5,2.5
                                         });

    //Draw pully support
    Element pullySupport = SvgLib21.makeRect(svg,
                                             ns,
                                             "rectangle",
                                             7.883,
                                             3.595,
                                             0.392,
                                             1.06
                                             );

    //Draw the pulley wheel.
    Element pulleyWheel = SvgLib21.makeCircle(svg,
                                              ns,
                                              "circle",
                                              8.05,
                                              4.56,
                                              0.45
                                              );

    //Draw cord from wall to Mass C
    Element cordR = SvgLib21.makeLine(svg,
                                      ns,
                                      "line",
                                      1.0,
                                      5.0,
                                      2,
                                      5.0
                                      );


    //Draw cord from Mass C to Mass B
    Element cordQ = SvgLib21.makeLine(svg,
                                      ns,
                                      "line",
                                      4.0,
                                      5.0,
                                      5.0,
                                      5.0
                                      );


    //Draw cord from Mass B to the top of the pulley.
    Element cordP1 = SvgLib21.makeLine(svg,
                                      ns,
                                      "line",
                                      7.0,
                                      5.0,
                                      8.05,
                                      5.0
                                      );


    //Draw the cord from the right side of the pulley to
    // Mass A
    Element cordP2 = SvgLib21.makeLine(svg,
                                      ns,
                                      "line",
                                      8.5,
                                      4.5,
                                      8.5,
                                      2.5
                                      );
                                      
    //Set the line thicknesses for various objects.
    SvgLib21.setStrokeWidth(border,0.03);
    SvgLib21.setStrokeWidth(floor,0.1);
    SvgLib21.setStrokeWidth(wall,0.1);
    SvgLib21.setStrokeWidth(tableTop,0.03);
    SvgLib21.setStrokeWidth(tableLeg,0.03);
    SvgLib21.setStrokeWidth(massC,0.05); 
    SvgLib21.setStrokeWidth(massB,0.05);
    SvgLib21.setStrokeWidth(massA,0.05);
    SvgLib21.setStrokeWidth(pullySupport,0.05);
    SvgLib21.setStrokeWidth(pulleyWheel,0.05);
    SvgLib21.setStrokeWidth(cordR,0.03);
    SvgLib21.setStrokeWidth(cordQ,0.03);
    SvgLib21.setStrokeWidth(cordP1,0.03);
    SvgLib21.setStrokeWidth(cordP2,0.03);

    //Draw text
    Element textA = SvgLib21.makeText(
                                    svg,
                                    ns,
                                    2.5,
                                    3.3,
                                    "arial",
                                    32,
                                    "Friction free table."
                                    );

    //WRITE OUTPUT FILE
    //Don't include extension in output file name.
    SvgLib21.writePrettyFile("Svg21a",doc);
    
    //ONLY THE CODE ABOVE THIS LINE CAN BE MODIFIED
    //##################################################//
    //DO NOT MODIFY ANY OF THE FOLLOWING CODE.    
  }//end main
  //----------------------------------------------------//

  //Create a String variable containing the namespace
  // URI to reduce the amount of typing that is required
  // later. Note that the variable name is short and
  // easy to type.
  static String ns = "http://www.w3.org/2000/svg";
  
  //For clarity, create strings containing the name of
  // the element that is constrained by the DTD (the
  // root element), the Public ID of the DTD, and the
  // System ID of the DTD.
  static String dtdConstrainedElement = "svg";
  static String dtdPublicID = "-//W3C//DTD SVG 1.1//EN";
  static String dtdSystemID = 
     "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd";
     
  
  static DocType docType = new DocType(
         dtdConstrainedElement,dtdPublicID,dtdSystemID);

}//end class Svg21a



 
Note that the strange comments in 



Listing 26



 were 
placed there so that the program named 

 
javadoc


 could be used to 
produce 



standard Java documentation



 for the 
graphic library.


Example 2.26. 
 
import java.io.*;
import org.jdom.*;
import org.jdom.output.XMLOutputter;
import org.jdom.output.Format;

/**
File SvgLib21.java
<p>
Copyright 2011, R.G.Baldwin
<p>
Revised 08/11/11 to add a method named setDescription
that can be called to add a <desc> element to any other
element. The description can be spoken in IVEO by first
selecting the element an pressing Ctrl+d.
<p>
Revised 08/07/11 to add a parameter for the title to
allow the user to pass in a string for the title element.
<p>
Revised 08/06/11 to add a title element to each shape
element. As a result, when the SVG file is
opened in IVEO and you click on the shape, the name of
the shape is spoken by IVEO. Note, however, that you 
must be careful about the order in which you add the
shapes to the drawing. For example, a rectangle that
is added after a line is added can cover the line
and prevent the information about the line from being
spoken even though the rectangle may be transparent. 
Therefore, for IVEO compatibility, you must not allow
one shape object to cover another shape object.
<p>
DESCRIPTION
<p>
This is a graphics library that is designed to eliminate
much of the pain involved in writing JDOM code to
create SVG output. The library contains individual
static methods that are used to construct and return
all of the SVG basic shape elements, text elements,
description elements and comment elements.
<p>
In addition there are methods to set various attributes
on shape elements and text elements.

This library provides methods to instantiate, return,
and manipulate the following types of SVG elements:
<ul>
<li>line</li>
<li>rect</li>
<li>circle</li>
<li>ellipse</li>
<li>polyline</li>
<li>polygon</li>
<li>desc</li>
<li>comment</li>
<li>text</li>
</ul>
<p>
Methods that return elements set the stroke attribute
value to black and set the stroke-width attribute 
value to 1.
<p>
All of the methods that accept coordinate values or
dimensions as input require those values to be in
inches or fractions thereof. They are then converted 
to svg units using a scale factor of 90 svg units 
per inch.
<p>
All incoming vertical coordinate values are modified
to cause the origin to be at the lower-left corner. 
Positive x is to the right and positive y is up the 
page. Therefore, the user can think in terms of a
typical graphing assignment with the origin at the 
lower-left corner.
<p>
One svg unit equals approximately 0.011 inch. An svg 
unit is not necessarily the same size as a pixel on a
monitor or a printer. However, dimensions specified in 
inches should be very close when you print the image.
<p>
In addition to the methods mentioned above, this library
provides two different methods for writing the final
SVG/XML out to a file. One is named writePrettyFile and
the other is named writeCompactFile.
<p>
Tested using J2SE 6.0, JDOM 1.1.1, Firefox 5, running 
under Windows Vista Home Premius Edition.
<p>
author: Richard G. Baldwin
*/
public class SvgLib21{
  
/*The following instance variable is used to cause the
origin to be at the bottom left corner of the 
drawing.
*/
  private static double svgHeight = 11.0;
  
  //----------------------------------------------------//
  
  /**This method constructs and returns a circle node for
   *a given parent in a given namespace.  By default,the
   *stroke is black, the stroke-width is 1, and the fill
   *is none. Other methods can be called to change these
   *default values later.
   *
   * @param parent the SVG parent element
   * @param namespace the SVG namespace
   * @param elementTitle the title for IVEO compatibility
   * @param cx the x-coordinate of the center in inches
   * @param cy the y-coordinate of the center in inches
   * @param r the radius of the circle in inches
   *
   * @return A reference to an object that represents an
   *SVG circle element
   */
  public static Element makeCircle(
                  Element parent,
                  String namespace,
                  String elementTitle,
                  double cx,//Center coordinate in inches
                  double cy,//Center coordinate in inches
                  double r  //Radius in inches
                  ){
    Element circle = new Element("circle",namespace);
    parent.addContent(circle);
    
    //Set default attribute vales
    circle.setAttribute("fill","none");
    circle.setAttribute("stroke","black");
    circle.setAttribute("stroke-width","1");
    
    //Set user specified attribute values.
    int cxInPix = (int)(Math.round(cx*90));
    int cyInPix = 
               (int)(Math.round((svgHeight-cy)*90));
    int rInPix = (int)(Math.round(r*90));

    circle.setAttribute("cx",""+cxInPix);
    circle.setAttribute("cy",""+cyInPix);
    circle.setAttribute("r",""+rInPix);
    
    //Add a title element for IVEO compatibility
    Element title = new Element("title",namespace);
    title.addContent(elementTitle);
    circle.addContent(title);
    
    return circle;
  }//end makeCircle
  //----------------------------------------------------//
  
  /**This method constructs and returns a comment node
   *for a given given parent.
   *
   * @param parent the SVG parent element
   * @param text the text content for this comment element
   *
   *@return A reference to an object that represents an
   *SVG comment element.
  */
  public static Comment makeComment(
              Element parent,//The parent of this element.
              String text//Text content for this element.
              ){
    Comment comment = new Comment(text);
    parent.addContent(comment);

    return comment;
  }//end makeComment
  //----------------------------------------------------//
  
  /**
   *DEPRECATED This method has been deprecated Use the
   *method named setDescription instead.
   *
   *This method constructs and returns a description node
   *for a given namespace and a given parent.
   *
   * @param parent the SVG parent element
   * @param nameSpace the SVG namespace
   * @param text the text content for this desc element
   *
   *@return A reference to an object that represents an
   *SVG desc element.
   */
  public static Element makeDescription(
              Element parent,//The parent of this element.
              String nameSpace,//The namespace.
              String text//Text content for this element.
              ){
    Element desc = new Element("desc",nameSpace);
    parent.addContent(desc);
    desc.setText(text);

    return desc;
  }//end makeDescription
  //----------------------------------------------------//

  /**This method constructs and returns an ellipse node
   *for a given parent in a given namespace. By default,
   *the stroke is black, the stroke-width is 1, and the
   *fill is none.
   *
   * @param parent the SVG parent element
   * @param namespace the SVG namespace
   * @param elementTitle the title for IVEO compatibility
   * @param cx the x-coordinate of the center in inches
   * @param cy the y-coordinate of the center in inches
   * @param rx the horizontal radius of the ellipse
   * in inches
   * @param ry the vertical radius of the ellipse
   * in inches
   *
   * @return A reference to an object that represents an
   *SVG ellipse element
   */
  public static Element makeEllipse(
                  Element parent,
                  String namespace,
                  String elementTitle,
                  double cx,//Center coordinate in inches
                  double cy,//Center coordinate in inches
                  double rx,//Horizontal radius in inches
                  double ry //Vertical radius in inches
                  ){
    Element ellipse = new Element("ellipse",namespace);
    parent.addContent(ellipse);
    
    //Set default attribute vales
    ellipse.setAttribute("fill","none");
    ellipse.setAttribute("stroke","black");
    ellipse.setAttribute("stroke-width","1");
    
    //Set user specified attribute values.
    int cxInPix = (int)(Math.round(cx*90));
    int cyInPix = 
                (int)(Math.round((svgHeight-cy)*90));
    int rxInPix = (int)(Math.round(rx*90));
    int ryInPix = (int)(Math.round(ry*90));

    ellipse.setAttribute("cx",""+cxInPix);
    ellipse.setAttribute("cy",""+cyInPix);
    ellipse.setAttribute("rx",""+rxInPix);
    ellipse.setAttribute("ry",""+ryInPix);
    
    //Add a title element for IVEO compatibility
    Element title = new Element("title",namespace);
    title.addContent(elementTitle);
    ellipse.addContent(title);
    
    return ellipse;
  }//end makeEllipse
  //----------------------------------------------------//
  
  /**This method constructs and returns a line node for a
   *given parent in a given namespace.  By default, the
   *stroke is black and the stroke-width is 1.
   *
   * @param parent the SVG parent element
   * @param namespace the SVG namespace
   * @param elementTitle the title for IVEO compatibility
   * @param x1 start x-coordinate in inches
   * @param y1 start y-coordinate in inches
   * @param x2 end x-coordinate in inches
   * @param y2 end y-coordinate in inches
   *
   * @return A reference to an object that represents an
   *SVG line element
   */
  public static Element makeLine(
                  Element parent,
                  String namespace,
                  String elementTitle,
                  double x1,//Start coordinate in inches
                  double y1,//Start coordinate in inches
                  double x2,//End coordinate in inches
                  double y2 //End coordinate in inches
                                ){
    Element line = new Element("line",namespace);
    parent.addContent(line);
    
    //Set default attribute vales
    line.setAttribute("stroke","black");
    line.setAttribute("stroke-width","1");
    
    //Set user specified attribute values.
    int x1InPix = (int)(Math.round(x1*90));
    int y1InPix = 
                (int)(Math.round((svgHeight-y1)*90));
    int x2InPix = (int)(Math.round(x2*90));
    int y2InPix = 
                (int)(Math.round((svgHeight-y2)*90));

    line.setAttribute("x1",""+x1InPix);
    line.setAttribute("y1",""+y1InPix);
    line.setAttribute("x2",""+x2InPix);
    line.setAttribute("y2",""+y2InPix);
    
    //Add a title element for IVEO compatibility
    Element title = new Element("title",namespace);
    title.addContent(elementTitle);
    line.addContent(title);
    
    return line;
  }//end makeLine
  //----------------------------------------------------//
  
  /**This method constructs and returns a polygon node for
   *a given parent in a given namespace.
   *<p>
   *The array of type double[], which contains the
   *coordinates for each point in the polygon, must
   *contain an even number of values for the polygon
   *to be drawn correctly. Otherwise, it simply won't be
   *drawn.
   *<p>
   *The values are extracted from the array, converted
   *to svg units as type int, and treated as coordinate
   *values x1,y1, x2,y2, x3,y3 ... etc.
   *<p>
   *The stroke is set to black one pixel wide with no
   *fill.
   *<p>
   *The main difference between a polygon and a polyline
   *is that a polygon is automatically closed by 
   *connecting the last point to the first point.
   *
   * @param parent the SVG parent element
   * @param namespace the SVG namespace
   * @param elementTitle the title for IVEO compatibility
   * @param points an array of x-y coordinate pairs in
   * inches that define the locations of the vertices of
   * the polygon.
   *
   * @return A reference to an object that represents an
   *SVG polygon element
   */
  public static Element makePolygon(Element parent,
                             String namespace,
                             String elementTitle,
                             double[] points){
    Element polygon = new Element("polygon",namespace);
    parent.addContent(polygon);
    
    //Set default attributes.
    polygon.setAttribute("stroke","black");
    polygon.setAttribute("stroke-width","1");
    polygon.setAttribute("fill","none");
    
    //Set user specified attributes.
    String dataPoints = "";
    for(int cnt=0;cnt<points.length;cnt++){
      //Correct all of the y coordinates to place the
      // origin at the bottom left.
      if(cnt%2==0){
        //even values
        dataPoints += "" + 
             (int)(Math.round(points[cnt]*90)) + " ";
      }else{
        //odd values
        dataPoints += "" + 
             (int)(Math.round((svgHeight-points[cnt])
                                         *90)) + " ";
      }//end else
    }//end for loop
    
    polygon.setAttribute("points",dataPoints);
    
    //Add a title element for IVEO compatibility
    Element title = new Element("title",namespace);
    title.addContent(elementTitle);
    polygon.addContent(title);

    return polygon;
  }//end makePolygon
  //----------------------------------------------------//

  /**This method constructs and returns a polyline node
   *for a given parent in a given namespace.
   *<p>
   *The array of type double[], which contains the
   *coordinates for each point in the polyline, must
   *contain an even number of values for the polyline
   *to be drawn correctly. Otherwise, it simply won't be
   *drawn.
   *<p>
   *The values are extracted from the array, converted
   *to svg units as type int, and treated as coordinate
   *values x1,y1, x2,y2, x3,y3 ... etc.
   *<p>
   *The stroke is set to black one pixel wide with no
   *fill.
   *<p>
   *The main difference between a polyline and a polygon
   *is that a polygon is automatically closed by 
   *connecting the last point to the first point.
   *
   * @param parent the SVG parent element
   * @param namespace the SVG namespace
   * @param elementTitle the title for IVEO compatibility
   * @param points an array of x-y coordinate pairs in
   * inches that define the locations of the end points
   * and the vertices of the polyline.
   *
   * @return A reference to an object that represents an
   *SVG polyline element
   */
  public static Element makePolyline(Element parent,
                              String namespace,
                              String elementTitle,
                              double[] points){
    Element polyline = new Element("polyline",namespace);
    parent.addContent(polyline);

    //Set default attributes
    polyline.setAttribute("stroke","black");
    polyline.setAttribute("stroke-width","1");
    polyline.setAttribute("fill","none");
    
    //Set user specified attributes.
    String dataPoints = "";
    for(int cnt=0;cnt<points.length;cnt++){
      //Correct all of the y coordinates to place the
      // origin at the bottom left.
      if(cnt%2==0){
        //even values
        dataPoints += "" + 
             (int)(Math.round(points[cnt]*90)) + " ";
      }else{
        //odd values
        dataPoints += "" + 
            (int)(Math.round((svgHeight-points[cnt])
                                         *90)) + " ";
      }//end else
    }//end for loop
    
    polyline.setAttribute("points",dataPoints);
    
    //Add a title element for IVEO compatibility
    Element title = new Element("title",namespace);
    title.addContent(elementTitle);
    polyline.addContent(title);
    
    return polyline;
  }//end makePolyline
  //----------------------------------------------------//

  /**This method constructs and returns a rect node for a
   *given parent in a given namespace.  By default,the
   *stroke is black, the stroke-width is 1, and the fill
   *is none.
   *
   * @param parent the SVG parent element
   * @param namespace the SVG namespace
   * @param elementTitle the title for IVEO compatibility
   * @param x x-coordinate of lower left corner in inches
   * @param y y-coordinate of lower left corner in inches
   * @param width width in inches
   * @param height height in inches
   *
   * @return A reference to an object that represents an
   *SVG rect element
   */
  public static Element makeRect(
                  Element parent,
                  String namespace,
                  String elementTitle,
                  double x,//Lower-left corner in inches.
                  double y,//Lower-left corner in inches.
                  double width,//in inches
                  double height//in inches
                  ){
    Element rect = new Element("rect",namespace);
    parent.addContent(rect);
    
    //Set default attribute values.
    rect.setAttribute("fill","none");
    rect.setAttribute("stroke","black");
    rect.setAttribute("stroke-width","1");
    
    //Set user specified attribute values.
    int xInPix = (int)(Math.round(x*90));
    int yInPix = 
          (int)(Math.round((svgHeight-y-height)*90));
    int widthInPix = (int)(Math.round(width*90));
    int heightInPix = (int)(Math.round(height*90));

    rect.setAttribute("x",""+xInPix);
    rect.setAttribute("y",""+yInPix);
    rect.setAttribute("width",""+widthInPix);
    rect.setAttribute("height",""+heightInPix);
    
    //Add a title element for IVEO compatibility
    Element title = new Element("title",namespace);
    title.addContent(elementTitle);
    rect.addContent(title);
    
    return rect;
  }//end makeRect
  //----------------------------------------------------//
 
  /**This method constructs and returns a reference to an
   *SVG root element node named svg.
   *
   *The svg element represents the canvas on which
   *various shapes can be drawn. The width and height
   *attribute values of the svg element establish the
   *physical size of the canvas on the screen and on
   *the printer.
   *
   *The preserveAspectRatio defaults to none.
   *
   * @param ns the SVG namespace URI
   * @param documentTitle the title for IVEO compatibility
   * @param dWidth the width of the canvas in inches
   * @param dHeight the height of the canvas in inches
   *
   * @return A reference to an SVG element object
   */
  public static Element makeSvg(
                      String ns,//namespace URI
                      String documentTitle,
                      double dWidth,
                      double dHeight
                      ){
    Element svg = new Element("svg",ns);
    
    //Save the height of the canvas. This is used later
    // to make corrections to y-coordinate values to put
    // the origin at the lower-left corner of the canvas.
    svgHeight = dHeight;
    
    int width = (int)(Math.round(dWidth*90));
    int height = (int)(Math.round(dHeight*90));
    
    //Set default attribute values.
    svg.setAttribute("version","1.1");
    svg.setAttribute("width",""+width);
    svg.setAttribute("height",""+height);
    
    //Add a title element for IVEO compatibility
    Element title = new Element("title",ns);
    title.addContent(documentTitle);
    svg.addContent(title);
    
    return svg;
  }//end makeSvg
  //----------------------------------------------------//

  /**This method constructs and returns a text node for a
   *given parent in a given namespace.  By default,the
   *stroke is black, and the fill is none.
   *
   * @param parent the SVG parent element
   * @param namespace the SVG namespace
   * @param x x-coordinate of lower left corner of first
   * character in inches
   * @param y y-coordinate of lower left corner of first
   * character in inches
   * @param fontFamily font family such as arial
   * @param fontSize font size in points such as 32
   * @param textIn the text to be displayed
   *
   * @return A reference to an object that represents an
   *SVG text element
   */
  public static Element makeText(
              Element parent,
              String namespace,
              double x,//Beginning coordinate in inches
              double y,//Beginning coordinate in inches
              String fontFamily,  //Font face
              int fontSize, //font size in points
              String textIn //text to be displayed
              ){
    Element text = new Element("text",namespace);
    parent.addContent(text);
    
    //Set default attribute values
    text.setAttribute("fill","black");
    text.setAttribute("stroke","black");
    
    //Set user specified attribute values.
    int xInPix = (int)(Math.round(x*90));
    int yInPix = (int)(Math.round((svgHeight-y)*90));
    
    text.setAttribute("x",""+xInPix);
    text.setAttribute("y",""+yInPix);
    text.addContent(textIn);
    text.setAttribute("font-size","" +fontSize);
    text.setAttribute("font-family",fontFamily);
    
    return text;
  }//end makeText
  //----------------------------------------------------//

  /**This method can be used to set the fill color for
   *closed shapes such as rectangles, circles, ellipses,
   *and polygons. It can also be applied to polylines,
   *but the results may not be what you expect.
   *<p>
   *The fill color can be set to "none" or to any of the
   *color names at
   *<p>
<a href="http://www.w3.org/TR/SVG/types.html#ColorKeywords">
http://www.w3.org/TR/SVG/types.html#ColorKeywords</a>
   *<p>
   *There may be other possibilities as well.
   *
   *@param element the element for which the fill will be
   *set
   *@param fillColor the new color for the fill
   */
  public static void setFill(Element element,
                             String fillColor){
    element.setAttribute("fill",fillColor);
  }//end setFill
  //----------------------------------------------------//
  
  /**This method can be used to set the fill opacity for
   *all closed shapes such as rectangles, circles,
   *ellipses, and polygons.
   *<p>
   *The fill opacity can be set to any value between 
   *0,0 and 1.0 inclusive, where 0.0 is totally
   *transparent and 1.0 is totally opaque.
   *
   *@param element the element for which the opacity
   *will be set
   *@param opacity the numeric opacity value
   */
  public static void setFillOpacity(Element element,
                                    double opacity){
    element.setAttribute("fill-opacity","" + opacity);
  }//end setFillOpacity
  //----------------------------------------------------//

  /**This method can be used to set the font style
   *for text.
   *<p>
   *The font-style can be set to
   *<p>
   *normal | italic | oblique
   *
   *@param element the text element for which the font
   *style will be set
   *@param fontStyle the new font style
   */
  public static void setFontStyle(Element element,
                                  String fontStyle){
    element.setAttribute("font-style","" + fontStyle);
  }//end setFontStyle
  //----------------------------------------------------//

  /**This method can be used to set the font weight
   *for text.
   *<p>
   *The font-weight can be set to
   *<p>
   *normal | bold | bolder | lighter | 100 | 200 | 300| 
   *400 | 500 | 600 | 700 | 800 | 900 |
   *
   *@param element the text element for which the font
   *weight will be set
   *@param fontWeight the new font weight
   */
  public static void setFontWeight(Element element,
                                   String fontWeight){
    element.setAttribute("font-weight","" + fontWeight);
  }//end setFontWeight
  //----------------------------------------------------//

  /**This method can be used to set the stroke color for
   *all shapes.
   *<p>
   *The stroke color can be set to "none" or any of the
   *color names at 
   *<p>
<a href="http://www.w3.org/TR/SVG/types.html#ColorKeywords">
http://www.w3.org/TR/SVG/types.html#ColorKeywords</a>
   *<p>
   *There may be other possibilities as well.
   *
   *@param element the element for which the stroke color
   *will be set
   *@param strokeColor the new stroke color
   */
  public static void setStroke(Element element,
                               String strokeColor){
    element.setAttribute("stroke",strokeColor);
  }//end setStroke
  //----------------------------------------------------//

  /**This method can be used to set the stroke opacity
   *for all shapes.
   *<p>
   *The stroke opacity can be set to any value between
   *0,0 and 1.0 inclusive, where 0.0 is totally
   *transparent and 1.0 is totally opaque.
   *
   *@param element the element for which the stroke color
   *will be set
   *@param opacity the numeric opacity value
   */
  public static void setStrokeOpacity(Element element,
                                      double opacity){
    element.setAttribute("stroke-opacity","" + opacity);
  }//end setStrokeOpacity
  //----------------------------------------------------//
  
  /**This method can be used to set the stroke width 
   *for rectangles, circles, ellipses, lines, polylines,
   *and polygons.
   *
   *@param element the element for which the stroke color
   *will be set
   *@param widthInInches the new stroke width in inches
   *or parts thereof
   */
  public static void setStrokeWidth(Element element,
                                    double widthInInches){
    //Scale and round the double width value to an 
    // int value in svg units where there are 90 svg
    // units per inch.
    int widthInPix = 
                 (int)(Math.round(widthInInches*90));
    element.setAttribute("stroke-width","" + widthInPix);
  }//end setStrokeWidth
  //----------------------------------------------------//
  
  /**This method can be used to add a description <desc>
   *element to any other element
   *
   * @param parent the element to which the description
   *will be added
   * @param namespace the SVG namespace
   *@param description the text for the new description.
   */
  public static void setDescription(Element parent,
                                    String namespace,
                                    String description){
    Element desc = new Element("desc",namespace);
    parent.addContent(desc);
    desc.addContent(description);
  }//end setStrokeWidth
  //----------------------------------------------------//
  
  /**This method writes the SVG code into an output file
   *in whitespace-normalized format, which is more
   *efficient than the prettyPrint format.
   *@param fname path and name of output SVG file
   *including the .svg filename extension
   *@param doc a reference to an object of type Document
   *which was instantiated as
   *<p>
   *new Document(svg,docType)
   *<p>
   *where svg is the root element of the SVG document
   *<p>
   *and docType was instantiated as
   *<p>
   *DocType docType = new DocType( 
   * dtdConstrainedElement,dtdPublicID,dtdSystemID);
   */
  public static void writeCompactFile(
                              String fname, Document doc){
    try{
      FileOutputStream out = new FileOutputStream(fname);

      XMLOutputter xmlOut = 
              new XMLOutputter(Format.getCompactFormat());
      xmlOut.output(doc,out);

      out.flush();
      out.close();
    }catch (IOException e){
      System.err.println(e);
    }//end catch
  }//end writePrettyFile
  //----------------------------------------------------//

  /**This method writes the SVG code into an output file
   *in pretty-print format. The pretty-print format
   *is less efficient than the compact format, but it
   *is very useful during test and debugging because
   *you can view source in your browser and the XML
   *code will be reasonably well formatted.
   *<p>
   *Note that the extension is automatically appended to
   *the output file name, so it should not be included
   *in the file name input parameter.
   *
   *@param fname path and name of output SVG file
   *excluding the .svg filename extension
   *@param doc a reference to an object of type Document
   *which was instantiated as
   *<p>
   *new Document(svg,docType)
   *<p>
   *where svg is the root element of the SVG document
   *<p>
   *and docType was instantiated as
   *<p>
   *DocType docType = new DocType( 
   * dtdConstrainedElement,dtdPublicID,dtdSystemID);
   */
  public static void writePrettyFile(
                              String fname, Document doc){
    try{
      FileOutputStream out = 
                     new FileOutputStream(fname + ".svg");

      XMLOutputter xmlOut = 
               new XMLOutputter(Format.getPrettyFormat());
      xmlOut.output(doc,out);

      out.flush();
      out.close();
    }catch (IOException e){
      System.err.println(e);
    }//end catch
  }//end writePrettyFile
  //----------------------------------------------------//
  
}//end class SvgLib21




 
-----


Example 2.27. 
 
/*File Svg21.java,
Copyright 2011, R.G.Baldwin

Revised 08/07/11 to support the addition of a title 
parameter to each element for IVEO compatibility. If the
output SVG file is opened in IVEO, the title for the svg
element is spoken when the user opens the file, and the
titles for the individual elements are spoken when the
user touches a corresponding shape on the touchpad or
clicks on that shape on the screen. If the SVG file won't
be used with IVEO, just leave the title strings unchanged.

This program requires access to the file 
named SvgLib21.java

This is a demonstration program.

This program uses JDOM 1.1.1 and an SVG graphics library 
class of my own design named SvgLib21 to create an XML 
file named Svg21.svg that draws at least one of each of 
the following six basic SVG shapes when rendered in an 
SVG graphics engine such as Firefox 5.

    * rectangle
    * circle
    * ellipse
    * line
    * polyline
    * polygon

In addition, the program illustrates the creation of the
following two types of elements in the output SVG file.

    * description
    * comment

The main purpose is to demonstrate how to create an SVG 
file using the JDOM SVG graphics library that can be
displayed using Firefox 5 or IE 9. The file can also
be opened in other programs such as InkScape and IVEO.

All coordinate values are in inches and fractions of
inches.

One svg unit equals approximately 0.011 inch. An svg
unit is not necessarily the same size as a pixel on your
monitor or your printer. However, dimensions specified
in inches should be very close when you print the image.

By default, all lines that define the geometric shapes 
are black and are one pixel wide. This can be changed
by calling appropriate methods to change attribute values.

By default, the fill attribute for all geometric shapes
is "none". This can be changed by calling appropriate 
methods to change attribute values.

This program creates a canvas that is 8.5x11 inch in 
a portrait orientation.

The origin is at the lower-left corner. Positive x is
to the right and positive y is up the page.

Tested using J2SE 6, JDOM 1.1.1, and Firefox 5
running under Windows Vist Home Premium Edition.
*********************************************************/
import java.io.*;
import org.jdom.*;

public class Svg21{
  public static void main(String[] args){

    //DO NOT MODIFY ANY OF THE CODE ABOVE THIS LINE.
    //##################################################//
    //ONLY THE CODE BELOW THIS LINE CAN BE MODIFIED
    
    //CREATE A DRAWING CANVAS
    //This must be the first statement that you write in
    // the program and it must appear only once.
    //The following statement creates a canvas that is
    // 8.5x11 inches in size in a portrait layout. The
    // size of the canvas can be changed by changing the
    // width and height parameters in the method call.
    Element svg = SvgLib21.makeSvg(ns,
                                   "Document Title",
                                   8.5,//width
                                   11  //height
                                   );
                                          

    //DO NOT MODIFY THE FOLLOWING STATEMENT
    //This statement must immediately follow the call to
    // the makeSvg method above and this statement MUST
    // NOT BE MODIFIED.
    Document doc = new Document(svg,docType);
    
    //DESCRIPTION ELEMENT
    //The following code can be used to add a <desc>
    // element to the svg file if you want one. Replace
    // the text in quotation marks with your description.
    // Don't make any other changes to the code.
    SvgLib21.makeDescription(svg,
                             ns,
                             "The basic SVG shapes."
                             );
      
    //XML/SVG COMMENT
    //The following code can be used to insert a comment
    // into the svg file if you want one. Replace the
    // text in quotatin marks with your comment text.
    // Don't make any other changes to the code. You can
    // insert as many statements of this type as you
    // need, one for each comment. A comment will be
    // inserted into the svg file each time you insert a
    // makeComment statement.
    SvgLib21.makeComment(svg,
                         "Show outline of canvas."
                         );

    //Create some geometrical shapes.
    
    //LINE SEGMENT
    //The following code can be used to draw a line
    // segment.
    //Set the values of the first two parameters
    // following ns to specify the x and y coordinates of
    // one end of the line segment.
    //Set the final two parameters to specify the other
    // end of the line segment.
    //By default the line segment (the stroke) is one
    // pixel wide and black.
    //You can insert as many statements of this type as
    // you need, one for each line segment.
    //Give each line segment a unique name such as lineA,
    // lineB, lineC, etc.
    //Don't make any other changes to the code, and in
    // particular, don't delete the commas.
    //The line segment drawn by the following statement
    // extends from the lower-left to the upper-right
    // corner of the canvas.
    Element lineA = SvgLib21.makeLine(svg,
                                      ns,
                                      "line",
                                      0,
                                      0,
                                      8.5,
                                      11.0
                                      );

    //RECTANGLE
    //The following code can be used to draw a
    // rectangle whose sides are parallel to the
    // horizontal and vertical axes.
    //Set the values of the first two parameters
    // following ns to specify the x and y coordinates of
    // the lower-left corner of the rectangle.
    //Set the final two parameters to specify the width
    // and height of the rectangle. 
    //By default the outline of the rectangle (the stroke)
    // is one pixel wide and black.
    //You can insert as many statements of this type as
    // you need, one for each rectangle.
    //Give each rectangle a unique name such as rectA,
    // rectB, rectC, etc.
    //Don't make any other changes to the code.
    //The rectangle drawn by this statement barely fits
    // inside the 8.5x11 inch canvas with a portrait
    // layout.
    Element rectA = SvgLib21.makeRect(svg,
                                      ns,
                                      "rectangle",
                                      0.05,
                                      0.05,
                                      8.4,
                                      10.9
                                      );

    //CIRCLE
    //The following code can be used to draw a circle.
    //Set the first two parameters following ns to
    // specify the x and y coordinates of the center of
    // the circle. 
    //Set the third parameter to specify the radius of
    // the circle.
    //By default the outline of the circle (the stroke)
    // is one pixel wide and black.
    //You can insert as many statements of this type as
    // you need, one for each circle.
    //Give each circle a unique name such as circleA,
    // circleB, circleC, etc.
    //Don't make any other changes to the code.
    // The circle drawn by this statement is centered in
    // the canvas. The radius is slightly less than half
    // the width of the canvas.
    Element circleA = SvgLib21.makeCircle(svg,
                                          ns,
                                          "circle",
                                          4.25,
                                          5.5,
                                          4.15
                                          );

    //ELLIPSE
    //The following code can be used to draw an ellipse
    // whose major and minor axes are parallel to the
    // horizontal and vertical axes.
    //Set the first two parameters following ns to
    // specify the x and y coordinates of the center of
    // the ellipse. 
    //Set the third parameter to specify the horizontal
    // radius of the ellipse.
    //Set the fourth parameter to specify the vertical
    // radius. 
    //By default the outline of the ellipse (the stroke)
    // is one pixel wide and black.
    //You can insert as many statements of this type as
    // you need, one for each ellipse.
    //Give each ellipse a unique name such as ellipseA,
    // ellipseB, ellipseC, etc.
    //Don't make any other changes to the code.
    //The ellipse drawn by this statement is centered in
    // the canvas. It is two inches wide and one inch
    // high.
    Element ellipseA = SvgLib21.makeEllipse(svg,
                                            ns,
                                            "ellipse",
                                            4.25,
                                            5.5,
                                            1.0,
                                            0.5
                                            );
    
    //POLYLINE
    //The following code can be used to draw a polyline,
    // which is a line constructed from a set of line
    // segments that extend from one set of x,y
    // coordinate values to the next set of x,y
    // coordinate values.
    //This is the most versatile of all of the shapes.
    // With enough patience, it can be used to draw any
    // shape that can be drawn with curved lines. To
    // draw a curved line, approximate it using a large
    // number of short line segments.
    //Insert any number of x,y coordinate-pairs inside
    // the curly brackets.
    //By default, the polyline is black with a line width
    // (thickness) of one pixel.
    //You can insert as many statements of this type as
    // you need, one for each polyline.
    //Give each polyline a unique name such as polylineA,
    // polylineB, polylineC, etc.
    //Don't make any other changes to the code.
    //The polyline drawn by the coordinate values used
    // here consists of two line segments that form two
    // sides of a triangle with the third or top side
    // missing.
    Element polylineA = SvgLib21.makePolyline(
                                            svg,
                                            ns,
                                            "polyline",
                                            new double[]{
                                              3.25,4.02,
                                              4.25,3.01,
                                              5.25,4.02
                                            });

    //POLYGON
    //The following code can be used to draw a polygon,
    // which is like a polyline except that an extra line
    // is automatically drawn to connect the last point
    // to the first point. You can use a polygon to draw
    // any closed shape.
    //For example, you could use a polygon to draw a
    // rectangle whose sides are not parallel to the
    // horizontal and vertical axes, or an ellipse whose
    // axes are not parallel to the horizontal and
    // vertical axes.
    //Insert any number of x,y coordinate-pairs inside
    // the curly brackets.
    //By default, the polygon is black with a line
    // thickness of one pixel.
    //You can insert as many statements of this type as
    // you need, one for each polygon.
    //Give each polygon a unique name such as polygonA,
    // polygonB, polygonC, etc.
    //Don't make any other changes to the code.
    //The polygon drawn by the coordinate values used
    // here draws two line segments that form two sides of
    // a triangle with the third or top side being
    // automatically drawn.
    Element polygonA = SvgLib21.makePolygon(svg,
                                            ns,
                                            "polygon",
                                            new double[]{
                                              3.25,8.02,
                                              4.25,7.01,
                                              5.25,8.02
                                            });


    //TEXT
    //The following code can be used to add one line of
    // text to the drawing.
    //Set the values of the first two parameters
    // following ns to specify the x and y coordinates of
    // the bottom left corner of the first letter in the
    // line of text.
    //Set the third parameter following ns to the name of
    // the font family. If no name or an invalid name is
    // entered between the quotation marks, a default
    // font family will be used.
    //Set the fourth parameter following ns to the
    // desired size of the text in points.
    //Set the last parameter to the string of text that
    // is to be drawn.
    //By default the text is normal (not bold, not
    // italic, etc.).
    //You can insert as many statements of this type as
    // you need, one for each line of text.
    //Give each line of text a unique name such as textA,
    // textB, textC, etc.
    //Don't make any other changes to the code.
    //The line of text drawn by the following statement
    // is positioned 2.125 inches from the left edge of
    // the canvas one inch up from the bottom.
    //The bold italic decoration will be applied later.
    Element textA = SvgLib21.makeText(
                        svg,
                        ns,
                        2.125,
                        1.00,
                        "arial",
                        36,
                        "Here is some bold italic text."
                        );
    
    //Decorate the objects in the drawing.
    
    //FONT STYLE
    //The following code can be used to set the font
    // style to normal | italic | oblique where
    // the | character means you must specify one of the
    // choices as a parameter.
    //Set the value of the first parameter to the name of
    // the line of text being modified.
    //Set the value of the second parameter to one of the
    // available choices.
    //Each time you call this method, you must pass a
    // reference to an existing text object as the first
    // parameter.
    //Don't make any other changes to the code.
    //The following statement changes the style of textA
    // from normal to italic.
    SvgLib21.setFontStyle(textA,
                          "italic"
                          );
    
    //FONT WEIGHT
    //The following code can be used to set the font
    // weight to normal | bold | bolder | lighter | 100 |
    // 200 | 300| 400 | 500 | 600 | 700 | 800 | 900
    // where the | character means you must specify one
    // of the choices as a parameter.
    //Set the value of the first parameter to the name of
    // the line of text being modified.
    //Set the value of the second parameter to one of the
    // available choices.
    //Each time you call this method, you must pass a
    // reference to an existing text object as the first
    // parameter.
    //Don't make any other changes to the code.
    //The following statement statement changes the
    // weight of textA from its previous weight to bold.
    SvgLib21.setFontWeight(textA,
                           "bold"
                           );


    //LINE WIDTH
    //The following code can be used to specify the
    // stroke (line) width for rectangles, circles,
    // ellipses, lines, polylines, and polygons.
    //Set the value of the first parameter to the name of
    // the object whose line width is being modified.
    //Set the second parameter to the value of the
    // desired line width in inches.
    //Each time you call the method, you must pass a
    // reference to an existing object as the first
    // parameter
    //Don't make any other changes to the code.
    //Note that when you increase the thickness of a line,
    // the original one-pixel line remains in the center
    // of the new thicker line. In other words, the
    // thickness of the line increases on both sides of
    // the original line.
    
    // The following statement changes the line width of
    // the rectangle to 0.1 inch.
    SvgLib21.setStrokeWidth(rectA,0.1);

    // The following statement changes the line width of
    // the ellipse to 0.25 inch.
    SvgLib21.setStrokeWidth(ellipseA,0.25);

    // The following statement changes the line width of
    // the polyline to 0.15 inch.
    SvgLib21.setStrokeWidth(polylineA,0.15);

    // The following statement changes the line width of
    // the polygon to 0.15 inch.
    SvgLib21.setStrokeWidth(polygonA,0.15);

    // The following statement changes the line width of
    // the line to 0.1 inch.
    SvgLib21.setStrokeWidth(lineA,0.1);

    // The following statement changes the line width of
    // the circle to 0.1 inch.
    SvgLib21.setStrokeWidth(circleA,0.1); 
    
    //With the exception of the code to write the output
    // file, the following code may not be of interest
    // to blind students. However, it may be of interest
    // to students with low vision, so I am including it
    // for completeness.
    
    //STROKE OPACITY
    //The following code can be used to specify the
    // stroke opacity for rectangles, circles, ellipses,
    // lines, polylines, and polygons.
    //Set the value of the first parameter to the name of
    // the object whose stroke opacity is being modified.
    //Set the second parameter to the value of the
    // desired opacity level. A value of 0.0 causes the
    // stroke to be totally transparent. A value of 1.0 
    // causes the stroke to be completely opaque. Values
    // between 0.0 and 1.0 result in a proportional
    // opacity level.
    //Each time you call the method, you must pass a
    // reference to an existing object as the first
    // parameter
    //Don't make any other changes to the code.
    //The following statement changes the line to be 
    //40-percent opaque, or 60-percent transparent,
    // whichever you prefer.
    SvgLib21.setStrokeOpacity(lineA,0.4);   

    //FILL COLOR
    //The following code can be used to specify the fill
    // color for closed shapes such as rectangles,
    // circles, ellipses, and polygons. It can also be
    // applied to polylines, but the results may not be
    // what you expect.
    //Set the value of the first parameter to the name of
    // the object whose fill color is being modified.
    //Set the second parameter to the name of the desired
    // color.  The fill color can be set to "none" or to
    // the name of any of the colors at 
    // http://www.w3.org/TR/SVG/types.html#ColorKeywords,
    // and possibly some other values as well.
    //Each time you call the method, you must pass a
    // reference to an existing object as the first
    // parameter
    //Don't make any other changes to the code.
    //The following statement changes the fill color for
    // the polygon from its previous fill color to dark
    // blue.
    SvgLib21.setFill(polygonA,"blue");

    //FILL OPACITY
    //The following code can be used to specify the fill
    // opacity for rectangles, circles, ellipses,
    // polylines, and polygons. (As with fill color, it
    // might not work as expected with polylines.)
    //Set the value of the first parameter to the name of
    // the object whose fill opacity is being modified.
    //Set the second parameter to the value of the
    // desired opacity level (see the discussion regarding
    // opacity values above).
    // Each time you call the method, you must pass a
    // reference to an existing object as the first
    // parameter
    //Don't make any other changes to the code.
    //The following statement changes the dark blue fill
    // for the polygon to become only 30-percent opaque.
    // Because the background underneath the fill is
    // white, this causes the visible color of the fill
    // to change to a light blue.
    SvgLib21.setFillOpacity(polygonA,0.3);

    //STROKE COLOR
    //The following code can be used to specify the
    // stroke color for rectangles, circles, ellipses,
    // lines, polylines, and polygons.
    //Set the value of the first parameter to the name of
    // the object whose stroke color is being modified.
    //Set the second parameter to the name of the desired
    // color.  (See the discussion of available colors
    // above.)
    //Each time you call the method, you must pass a
    // reference to an existing object as the first
    // parameter.
    //Don't make any other changes to the code.
    //The following statement changes the stroke color
    // for the polygon from its previous color to red.
    SvgLib21.setStroke(polygonA,"red");

    //WRITE OUTPUT FILE
    //The following code can be used to write an output
    // file containing the instructions needed by an svg
    // processor (such as a browser) to display the
    // drawing.
    //This must be the last statement that you write in
    // your program. Otherwise, you will get an
    // incomplete file.
    //Set the value of the first parameter to the desired
    // path and name for the file. Always specify the
    // extension to be svg.
    //Don't make any other changes to the code.
    //The following code writes the output file with the
    // name Svg21.svg in the folder from which the
    // program is being executed (the current folder).
    //Don't include extension in output file name.
    SvgLib21.writePrettyFile("Svg21",doc);
    
    //ONLY THE CODE ABOVE THIS LINE CAN BE MODIFIED
    //##################################################//
    //DO NOT MODIFY ANY OF THE FOLLOWING CODE.    
  }//end main
  //----------------------------------------------------//

  //Create a String variable containing the namespace
  // URI to reduce the amount of typing that is required
  // later. Note that the variable name is short and
  // easy to type.
  static String ns = "http://www.w3.org/2000/svg";
  
  //For clarity, create strings containing the name of
  // the element that is constrained by the DTD (the
  // root element), the Public ID of the DTD, and the
  // System ID of the DTD.
  static String dtdConstrainedElement = "svg";
  static String dtdPublicID = "-//W3C//DTD SVG 1.1//EN";
  static String dtdSystemID = 
     "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd";
   
  static DocType docType = new DocType(
         dtdConstrainedElement,dtdPublicID,dtdSystemID);
}//end class Svg21
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Housekeeping material

 	 
Module name: If You Can Imagine It, You Can Draw It using SVG



	 
File: Phy1002.htm




	 
Revised 08/09/11 to add javadocs for the graphic library



	 
Keywords:
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Disclaimers:

 
 
Financial


: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.


 
I also want you to know that I receive no financial compensation from the Connexions website even if you purchase 
	the PDF version of the module.


 
 
Affiliation


: I am a professor of Computer Information 
	Technology at Austin Community College in Austin, TX.
	




 
-end- 
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Preface






 

 

General








 
This module is part of a collection of modules designed to make physics 
concepts accessible to blind students.


 
See





http://cnx.org/content/col11294/latest/



 for the main page of the 
collection and





http://cnx.org/content/col11294/latest/#cnx_sidebar_column



 for the table of 
contents for the collection.


 
The collection is intended to supplement but not to 
replace the textbook in an introductory course in high school or college 
physics. 


 
Many of the computational requirements for an introductory 

physics course involve trigonometry. This module provides a brief 

tutorial on trigonometry fundamentals that is designed to be accessible to blind 

students.




 

Prerequisites








 
In addition to an Internet connection and a browser, you will need the 
following tools (as a minimum) to work through the exercises in these modules:


 	 
A graph board for plotting graphs and vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
A protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
An audio screen reader that is compatible with your operating system, 
	such as the NonVisual Desktop Access program (NVDA), which is freely 
	available at 




	http://www.nvda-project.org/



.



	 
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer 
	screen 
	(



http://www.userite.com/ecampus/lesson1/tools.php



).



	 
The ability to manually create tactile graphics as described at
	




	http://cnx.org/content/m38546/latest/



.





 
The minimum prerequisites for understanding the material in these modules 
	include:


 	 
A good understanding of algebra.



	 
An understanding of the use of a graph board for plotting graphs and 
	vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
An understanding of the use of a protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
A basic understanding of the use of sine, cosine, and tangent from 
	trigonometry (



http://www.clarku.edu/~djoyce/trig/



). 
	

 
(The purpose of this module is to help you to gain such an understanding.)




	 
An introductory understanding of JavaScript programming (



http://www.dickbaldwin.com/tocjscript1.htm



 and 



http://www.w3schools.com/js/default.asp



).



	 
An understanding of all of the material covered in the earlier modules 
	in this collection.



	 
An understanding of the manual creation and use of tactile graphics as 
	described at 




	http://cnx.org/content/m38546/latest/



.







 

 

Viewing tip








 
 I recommend that you open another copy of this document in a separate 
browser window and use the following links to easily find and view the figures 
and listings while you are reading about them.
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. Output for script in Listing 1.
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. Mirror image from file Phy1020b1.svg. 
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. Page Setup for file Phy1020b1.svg.  
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Supplemental material








 
 I recommend that you also study the other lessons in my extensive collection 
of online programming tutorials. You will find a consolidated index at





www.DickBaldwin.com



.





 

 

General background 
information








 
Many of the computational requirements for an introductory physics course involve trigonometry. This module provides a brief tutorial on trigonometry fundamentals that is 
designed to be accessible to blind students.



 
 
Sine, cosine, and tangent



 
There are many topics, such as identities, that are covered in an 
introductory trigonometry course that won't be covered in this module. Instead, 
this module will concentrate mainly on performing computations on right angles 
using the sine, cosine, and tangent of an angle.


 
If I find it necessary to deal with identities in a later module, I will come 
back and update this module accordingly.




 

 

Discussion








 
 
 

Download files






 
You will need to download two svg graphics files to complete the work in 
this module. 



Click this link to download a zip file named 
Phy1020.zip



 containing those svg files.


 
If you don't already have it, you may also need to download and install the 
free IVEO Viewer software. As of this writing, the Viewer is available for 
downloading at





http://www.viewplus.com/products/software/hands-on-learning/



.


 
 
Graph board and protractor



 
Unless you can create tactile graphics on paper, you will need your graph board and your protractor to perform the exercises 
in this module. Please prepare your graph board with perpendicular horizontal 
and vertical axes with the origin located near the center of the graph board.



 

Degrees versus radians








 
The most common unit of angular measurement used by the general public is the degree. As 
you are probably aware, there are 360 degrees in a circle.


 
The most common unit of angular measurement used by scientists and engineers is 
the 
radian.


 
(If you would like more background on radians, go to 




http://www.clarku.edu/~djoyce/trig/



.)


 
 
Conversions between radians and degrees



 
You may or may not be aware that one radian is equal to approximately 
57.3 degrees. It is easier to remember, however, that 180 degrees is equal to PI 
radians where PI is the mathematical constant having an approximate value of 
3.14159. We will use this latter relationship extensively to convert from 
degrees to radians and to convert from radians to degrees while working through 
the exercises in these modules.


 
 
An exercise involving degrees and radians



 
Let's do a short exercise involving degrees and radians. Please create an 
html file containing the code shown in 



Listing 1



 and open it in your browser.


Example 6.1. 
 <!-- File JavaScript01.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
  return degrees*Math.PI/180
}//end function toRadians
//============================================//

function toDegrees(radians){
  return radians*180/Math.PI
}//end function toDegrees
//============================================//

var degrees = 90
var radians = toRadians(degrees)
document.write("degrees = " + degrees + 
               " : radians = " + radians + "</br>")
radians = 1
degrees = toDegrees(radians)
document.write("radians = " + radians + 
               " : degrees = " + degrees + "</br>")

radians = Math.PI
degrees = toDegrees(radians)
document.write("radians = " + radians + 
               " : degrees = " + degrees)

</script>
</body></html>



 
 
Output for script in Listing 1



 
When you open the file in your browser, the text shown in 



Figure 1



 should be 
displayed in the browser window.


	



 degrees = 90 : radians = 1.5707963267948965
radians = 1 : degrees = 57.29577951308232
radians = 3.141592653589793 : degrees = 180









Figure 6.1. 
 

Output for script in Listing 1.

Output for script in Listing 1.

 
 
The toRadians and toDegrees functions



 
Because it will frequently be necessary for us to convert between degrees and 
radians, I decided to write two functions that we will use to make those conversions. That 
will eliminate the need for us to stop 
and think about the conversion (and possibly get it backwards) when writing 
code. We will simply call the function that performs the conversion in the 
required direction.


 
The 

 
toRadians


 
function expects to receive an input parameter describing an angle in degrees 
	and returns the value for that same angle in radians.


 
The 

 
toDegrees


 
function expects to receive an input parameter describing an angle in radians 
	and returns the value for that same angle in degrees.


 
 
Global variables named degrees and radians



 
The code in 



Listing 1



 begins by declaring global variables named 

 

degrees


 and 

 
radians


. The variable named 

 

degrees


 is initialized to 90 degrees.


 
The 

 
toRadians


 function is called to convert that value of degrees to radians. The returned 
value in radians is stored in the variable named 

 
radians


.


 
 
Display contents of both variables



 
Then the 

 
document.write


 method is called to display the values 
contained in both variables, producing the first line of output text shown in 




Figure 1



.


 
 
Modify variable contents, convert, and display again



 
Following that, a value of 1 is assigned to the variable named 

 

radians


. The 

 
toDegrees


 function is called to convert 
that value to degrees, and the result is stored in the variable named 

 

degrees


.


 
Once again, the 

 
document.write


 method is called to display the 
current contents of both variables, producing the second line of output text 
shown in 



Figure 1



.


 
 
One more time



 
Finally, the mathematical constant, PI, is stored in the variable named


 
radians


. Then that value is converted to degrees and stored in the 
variable named 

 
degrees


. The current values in both 
variables are displayed, producing the last line of output text shown in Figure 
1.


 
 
And the results were...



 
As you can see from 



Figure 1



, 


 	 
Ninety degrees is equal to 1.57 radians



	 
One radian is equal to 57.296 degrees



	 
3.14 (PI) radians is equal to 180 degrees





 
 
A template



 
You might want to save your html file as a template for use with future 
exercises that require conversions between radians and degrees. This will be 
particularly useful when we write scripts that use JavaScript's built-in 
trigonometric methods. Those methods deal with angles almost exclusively in 
radians while we tend to think of angles in degrees. We will 
use these two functions to perform conversions between degrees and radians when 
required.




 

Sine, cosine, and tangent








 
 
An exercise involving a right triangle



 
For the next exercise, I would like for you to create a right triangle on 
your graph board by placing pushpins at the following coordinates:


 	 
The origin



	 
x=3, y=0



	 
x=3, y=4





 
(If you are able to use the svg file mentioned 




below



 to create tactile graphics, it probably won't be necessary for you to 
do the graph-board exercise. You can explore the tactile graphics instead.)


 
 
The vertices of a right triangle



 
Each pushpin represents a vertex of a right triangle. If you enclose all 
three pushpins with a rubber band, you will have "drawn" a right triangle with 
its base on the horizontal axis.


 
The base of the triangle will have a length of three units. Another side of 
the triangle will have a length of four units. The hypotenuse of the triangle will have still another length.


 
 
The angle at the origin



 
The base and the hypotenuse will form an angle 
at the origin opening outward to the right. As mentioned before, the base will be on the horizontal 
axis. The side that connects the base and 
the far end of the hypotenuse will be parallel to the vertical axis.


 
 
Names for the three sides of the right triangle



 
Lets establish some names for the three sides of the right triangle when 
located on the graph board in this manner.


 
We will continue to refer to the hypotenuse as the hypotenuse and abbreviate it 

 
hyp


. We will 
refer to the base as the 

 
adjacent


 side relative to the angle at the origin and 
abbreviate it 

 
adj


. We will refer to the third side as the 


 
opposite


 side relative to the angle at the origin and abbreviate it 

 
opp


.


 
 
 

Tactile graphics



 -- the file named Phy1020b1.svg



 
Much of the material in the next several paragraphs will only make sense to 
you if you are very familiar with the module named Manual Creation of Tactile Graphics 
at 




http://cnx.org/content/m38546/latest/



.


 
When you downloaded the zip file named Phy1020.zip using the link given




above



, you should 
have found that the zip file contains a file named Phy1020b1.svg.


 
The purpose of this file is to make it possible for you to create 
tactile graphics for the right triangle. The procedure for creating the tactile 
graphics is explained in the earlier module named 
Manual Creation of Tactile 
Graphics at 




http://cnx.org/content/m38546/latest/



.


 
 
Image from file Phy1020b1.svg



 
For the benefit of any sighted persons that may be assisting you,




Figure 2



 shows a reduced version of the graphic 
contained in the file named Phy1020b1.svg. This is a mirror image of the image 
that is to be presented to the student after embossing. A non-mirror-image 
version is presented in 



Figure 19



.


 [image: Missing image]

Figure 6.2. 
 

Mirror image from file Phy1020b1.svg.

Mirror image from file Phy1020b1.svg.

 
 
Page Setup information



 
If you use the IVEO Viewer software to print this svg file, you will need to 
set up the page by selecting Page Setup on the IVEO File menu. The Page Setup information for this file is shown in 



Figure 3



. These are the 
default settings for Letter (Portrait) in IVEO.


	



 Paper List: Letter (Portrait)
Paper Width: 8.5 inch
Paper Height: 11.0 inch
Orientation: portrait
Left Margin: 0.75 inch
Right Margin: 0.3 inch
Top Margin: 0.75 inch
Bottom Margin: 0.3 inch









Figure 6.3. 
 

Page Setup for file Phy1020b1.svg.

Page Setup for file Phy1020b1.svg.

 
 
Braille keys



 
Note that the file named Phy1020b1.svg and 



Figure 2



 contain keys using the characters from 
"m" through "z" and "A" that can be used to create 
Braille characters during manual embossing. The key characters are shown in an 
oblique font that is smaller than the normal text. The purpose of these keys is 
explained in the earlier module titled Manual Creation of Tactile Graphics at





http://cnx.org/content/m38546/latest/



. 


 
 
Key-value pairs



 


Figure 4



 contains the text values associated with each of the Braille 
	keys.


	



 
m: A 3-4-5 Triangle
n: 4
o: Vertical axis
p: 0
q: 0
r: Adjacent side
s: 53.13 Degrees
t: adj
u: 3
v: opp
w: Opposite side
x: hyp
y: Hypotenuse
z: Horizontal axis
A: Not drawn to scale










Figure 6.4. 
 

Text values for Braille keys in file  Phy1020b2svg.

Text values for Braille keys in file  Phy1020b2svg.

 
 
The length of the hypotenuse



 
Now that you have your right triangle on the graph board, or you have access 
to tactile graphics created from the svg file, and you know the 
lengths of the adjacent and opposite sides, do you remember how to calculate the 
length of the hypotenuse?


 
 
The Pythagorean theorem



 
Hopefully you know that for a right triangle, the 
square of the hypotenuse is equal to the sum of the squares of the two other 
sides. Thus, the length of the hypotenuse is equal to the square root of the sum 
of the squares of the other two sides.


 
In this case we can do the arithmetic in our heads to compute the length of 
the hypotenuse. (I planned it that way.)


 
The square of the adjacent side is 9. The square of the opposite side is 16. 
The sum of the squares is 25, and the square root of 25 is 
5. Thus, the length of the hypotenuse is 5.


 
 
A 3-4-5 triangle



 
You have created a rather unique triangle. You have created a right triangle 
in which the sides are either equal to, or proportional to the integer 
values 3, 4, and 5.


 
I chose this triangle on purpose for its simplicity. We will use it to 
investigate some aspects of trigonometry.



 

The sine and arcsine of an angle








 
You will often hear people talk about the sine of an angle or the cosine of 
an angle. Just what is the sine of an angle anyway?


 
Although the sine of an angle is based on very specific geometric 
considerations involving circles (see





http://www.clarku.edu/~djoyce/trig/



), for our purposes, the sine of an angle 
is simply a ratio between the lengths of two different sides of a right 
triangle.


 
 
A ratio of two sides



 
For our purposes, we will say that the sine of an angle is equal to the ratio of the opposite 
side and the hypotenuse. Therefore, in the case of the 3-4-5 triangle that you 
have on your graph board, the 

 

sine of the angle



 at the origin is equal to 4/5 or 
0.8.


 
If we know the lengths of the hypotenuse and the opposite side, we can 
compute the sine and use it to determine the value 
of the angle. (We will do this later using the arcsine.)


 
Conversely, if we know the value of the angle but don't know the lengths of the 
hypotenuse and/or the opposite side, we can obtain the value of the sine of the 
angle using a scientific 
calculator (such as the Google calculator) or lookup table.



 
 
The sine of an angle -- sample computation



 
Enter the following into the Google search box:


 
sin(53.13010235415598 degrees)


 
The following will appear immediately below the search box:


 
sin(53.13010235415598 degrees) = 0.8


 
This matches the value that we computed 



above



 
as the ratio of the opposite side and the hypotenuse.




 
 
The arcsine (inverse sine) of an angle



 
The arcsine of an angle is the value of the angle having a given sine value. 
In other words, if you know the value of the sine of an unknown angle, you can 
use a scientific calculator or lookup table to find the value of the angle.


 
For 
example, we know that the sine of the angle at the origin on your graph board is 
4/5. From that, we can determine the value of the angle. However, we probably can't 
do this calculation in our heads so we will use the Google calculator to compute 
the value of the angle.



 
 
The arcsine of an angle -- sample computation



 
Enter the following into the Google search box:


 
arcsin(4/5) in degrees


 
The following will appear immediately below the search box:


 
arcsin(4/5) = 53.1301024 degrees


 
This is the angle that corresponds to a ratio of the opposite side to the 
hypotenuse of 4/5.




 
We can also write a JavaScript script to perform 
	the calculation, which we will do shortly.


 
 
Getting the angle for a known sine value



 
Please use your protractor to measure and record the angle at the origin on 
your graph board, or measure it on your tactile graphic. Then create an html file containing the code shown in




Listing 
2



 and open it in your browser.


Example 6.2. 
 <!-- File JavaScript02.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
  return degrees*Math.PI/180
}//end function toRadians
//============================================//

function toDegrees(radians){
  return radians*180/Math.PI
}//end function toDegrees
//============================================//

var opp = 4
var hyp = 5
var ratio = opp/hyp
var angRad = Math.asin(ratio)
var angDeg = toDegrees(angRad)

document.write("radians = " + angRad + "</br>")
document.write("degrees = " + angDeg)

</script>
</body></html>



 
 
The output for the angle



 
When you open your html file in your browser, the output shown in 



Figure 5



 
should appear in the browser window.


	



 radians = 0.9272952180016123
degrees = 53.13010235415598 









Figure 6.5. 
 

Output for script in Listing 2.

Output for script in Listing 2.

 
Did you measure the angle to be 53 degrees with your protractor. If so, 
	congratulations. If not, you should probably take another look at it.


 
 
Define conversion functions



 
The code in 



Listing 2



 begins by defining the functions named 

 

toRadians


 and 

 
toDegrees


 that we developed earlier 
in 



Listing 1



. (In this case, we will only need the function named 

 

toDegrees


 so I could have omitted the code for the function named


 
toRadians


.)


 
 
Declare and initialize variables



 
Then the code in 



Listing 2



 declares and initializes variables to 
	represent the lengths of the opposite side and the hypotenuse for the 
	triangle on your graph board (

 
opp


 and 

 
hyp


). 
	Then it computes and saves the ratio of the two. (We learned earlier that 
	the ratio is the value of the sine of the angle at the origin even though we 
	don't know the value of the angle.)


 
 
The built-in Math.asin method



 
JavaScript has a built-in method named 

 
Math.asin


 that 
	receives the sine value for an unknown angle and returns the value of the 
	corresponding angle in radians. (The 

 
Math.asin


 method has 
	the same purpose at the word arcsin in the Google calculator.)


 
The returned value is an angle between -PI/2 and PI/2 radians. (I will 
	have more to say about this later.)


 


Listing 2



 calls the 

 
Math.asin


 method, passing the ratio (sine 
	of the angle) as a parameter, and stores the returned value in a variable 
	named 

 
angRad


.


 
Then 



Listing 2



 calls the 

 
toDegrees


 method, passing the 
	value of 

 
angRad


 as a parameter and stores the returned 
	value in a variable named 

 
angDeg


.


 
Finally, 



Listing 2



 calls the 

 

	document.write


 method twice in success 
to display the angle values shown in 



Figure 5



.


 
 
Another exercise with a different viewpoint



 
Now let's approach things from a different viewpoint. Assume that


 	 
You know the value of the angle in degrees.



	 
You know the length of the hypotenuse.



	 
You need to find the length of the opposite side.





 
Assume also that for some reason you can't simply measure the length of the 
opposite side. Therefore, you must calculate it. This is a common situation in 
physics, so let's see if we can write a script that will perform that 
calculation for us.


 
Please create an html file containing the code shown in 



Listing 3



 and open 
the file in your browser.


Example 6.3. 
 <!-- File JavaScript03.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
  return degrees*Math.PI/180
}//end function toRadians
//============================================//

function toDegrees(radians){
  return radians*180/Math.PI
}//end function toDegrees
//============================================//

var hyp = 5
var angDeg = 53.13
var angRad = toRadians(angDeg)
var sine = Math.sin(angRad)

var opp = hyp * sine

document.write("opposite = " + opp + "</br>")

hyp = opp/sine

document.write("hypotenuse = " + hyp + "</br>")

</script>
</body></html>



 
 
The output for the opposite side



 
When you open your html file in your browser, the output shown in Figure 
3 should appear in your browser window.


	



 
opposite = 3.999994640742543
hypotenuse = 5










Figure 6.6. 
 

Output for script in Listing 3.

Output for script in Listing 3.

 
 
Computing length of opposite side with the Google calculator



 
We could also compute the length of the opposite side using the Google 
calculator.



 
 
The length of the opposite side -- sample computation



 
Enter the following into the Google search box:


 
5*sin(53.1301024 degrees)


 
The following will appear immediately below the search box:


 
5 * sin(53.1301024 degrees) = 4


 
This is the length of the opposite side for the given angle and the given 
length of the hypotenuse.




 
 
Interesting equations



 
We learned earlier that the sine of the angle is equal to the ratio of 
	the opposite side and the hypotenuse. We also learned that the angle is the 
	arcsine of that ratio.


 
If we know any two of those values (

 
angle


, 

 
opp


,


 
hyp


), we 
	can find the third (with a little algebraic manipulation) as shown in 



Figure 7



.


	



 
sine(angle) = opp/hyp

angle = arcsine(opp/hyp)
opp = hyp * sine(angle)
hyp = opp/sine(angle)










Figure 6.7. 
 

Interesting sine equations.

Interesting sine equations.

 
 
Getting back to Listing 3



 
After defining the radian/degree conversion functions, 



Listing 3



 declares 
	and initializes variables representing the length of the hypotenuse and the 
	angle in degrees. (Note that the angle in degrees was truncated to four 
	significant digits, which may introduce a slight inaccuracy into the 
	computations.)


 
 
Get and use the sine of the angle



 
That angle is converted to radians and passed as a parameter to the
	

 
Math.sin


 method, which returns the value of the sine of the 
	angle.


 
The value for the sine of the angle is then used in an algebraic equation 
	to compute the length of the opposite side, which is displayed in 



Figure 6



. 
	(This equation is one of the equations shown in 



Figure 7



.)


 
 
Looks very close to me



 
As you can see, the computed value for the opposite side shown in 
	



Figure 6



 is extremely close to the known value 
	of 4 units.


 
 
Re-compute the length of the hypotenuse



 
After that, the value of the hypotenuse is re-computed (as though it were the 
unknown in the problem) using the value of the sine and the recently computed 
value of the opposite side. (Once again, one of the equations from




Figure 7



 is used to perform the computation.) The output length for the hypotenuse is shown in 



Figure 6



, and it matches the 
known value.


 
 
Example usage of Math.asin and Math.sin methods



 


Listing 2



 and 



Listing 3



 provide examples of how to use the JavaScript 

 

Math.asin


 and 

 
Math.sin


 methods to find the angle, the 
opposite side, or the hypotenuse of a right triangle when the other two are 
known as shown by the equations in 



Figure 7



.




 

The cosine and arccosine of 
an angle








 
You are going to find the discussion in this section to be very similar to the 
discussion in the previous section on the sine and the arcsine of an angle.


 
Once again, although the cosine of an angle is based on very specific 
geometric considerations involving circles (see





http://www.clarku.edu/~djoyce/trig/



), for our purposes, the cosine of an 
angle is simply a ratio between the lengths of two different sides of a right 
triangle.


 
 
A ratio of two sides



 
For our purposes, we will say that the cosine of an angle is equal to the 
ratio of the adjacent side and the hypotenuse. Therefore, in the case of the 
3-4-5 triangle that you have on your graph board, the cosine of the angle at the 
origin is equal to 3/5 or 0.6.


 
As before, if we know the lengths of the hypotenuse and the adjacent side, we 
can compute the cosine and use it to determine the value of the angle. (We will 
do this later.)


 
Conversely, if we know the value of the angle but don't know the lengths of 
the hypotenuse and/or the adjacent side, we can obtain the cosine value (the 
ratio of the adjacent side and the hypotenuse) using a 
scientific calculator or lookup table and use it for other purposes later.



 
 
The cosine of an angle -- sample computation



 
Enter the following into the Google search box:


 
cos(53.13010235415598 degrees)


 
The following will appear immediately below the search box:


 
cos(53.13010235415598 degrees) = 0.6


 
This matches the ratio of the adjacent side to the hypotenuse for a 3-4-5 
triangle.




 
 
The arccosine (inverse cosine) of an angle



 
The arccosine of an angle is the value of the angle having a given cosine 
value. In other words, if you know the value of the cosine of an unknown angle, 
you can use a scientific calculator or lookup table to find the value of the 
angle.


 
 
Getting the angle for a known cosine value



 
For example, we know that the cosine of the angle at the origin on your graph 
board is 0.6. From that, we can determine the value of the angle using either 
the Google calculator or JavaScript.



 
 
The arccosine of an angle -- sample computation



 
Enter the following into the Google search box:


 
arccos(3/5) in degrees


 
The following will appear immediately below the search box:


 
arccos(3/5) = 53.1301024 degrees


 
This is the angle that corresponds to a ratio of the adjacent side to the 
hypotenuse of 3/5.




 
As you should expect. the computed angle is the same as before. We didn't 
change the angle, we simply computed it using a different approach.


 
 
Getting the angle using JavaScript



 
Please create an html file containing the code shown in 



Listing 4



 and open it 
in your browser.


Example 6.4. 
 <!-- File JavaScript04.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
  return degrees*Math.PI/180
}//end function toRadians
//============================================//

function toDegrees(radians){
  return radians*180/Math.PI
}//end function toDegrees
//============================================//

var adj = 3
var hyp = 5
var ratio = adj/hyp
var angRad = Math.acos(ratio)
var angDeg = toDegrees(angRad)

document.write("radians = " + angRad + "</br>")
document.write("degrees = " + angDeg)

</script>
</body></html>



 
 
Similar to a previous script



 
If you examine the code in 



Listing 4



 carefully, you will see that it is very similar to 
the code in 



Listing 2



 with a couple of exceptions:


 	 
The variable 

 
opp


 having a value of 4 was replaced by 
	the variable 

 
adj


 having a value of 3.



	 
The call to the 

 
Math.asin


 method was replaced by a call to 
	the 

 
Math.acos


 method.





 
 
The output



 
When you load your html file into your browser, it should produce the output 
shown earlier in 



Figure 5



. In other words, we know that the angle at the origin 
didn't change. What changed was the manner in which we computed the value of 
that angle.


 
 
Different approaches to the same solution



 
In 



Listing 2



, we used the length of the hypotenuse and the length of the 
opposite side, along with the arcsine method to compute the angle.


 
In 



Listing 4



, we used the length of the hypotenuse and the length of the 
adjacent side, along with the arccosine method to compute the angle.


 
 
Which approach should you use?



 
As would be expected, since the angle didn't change, both approaches produced 
the same result. Deciding which approach to use often depends on 
the values that are available to use in the computation.


 
Sometimes you only have 
the lengths of the hypotenuse and the opposite side available, in which case 
you could use the arcsine. Sometimes you only have 
the lengths of the hypotenuse and the adjacent side available, in which case you 
could use the arccosine. Sometimes you have the 
lengths of both the opposite side and the adjacent side in addition to the 
length of the hypotenuse, in which case you can 
use either approach.


 
 
Both approaches use the length of the hypotenuse



 
It is important to note however that both of these approaches require you to 
have the length of the hypotenuse. Later in this module we will discuss the 
tangent and arctangent for an angle, which allows us to work with the opposite 
side and the adjacent side devoid of the length of the hypotenuse. (Of course, if 
you have the lengths of the opposite side and the adjacent side, you can always 
find the length of the hypotenuse using the Pythagorean theorem.)


 
 
Interesting cosine equations



 
The equations in 



Figure 8



 are similar to equations in 



Figure 7



. The 
difference is that the equations in 



Figure 7



 are based on the use of the sine of 
the angle and the opposite side whereas the equations in 



Figure 8



 are based on the use of the cosine 
of the angle and the adjacent side.


 
As you can see in 



Figure 8



, if you know any two of the values for 

 
angle


, 


 
adj


, and 

 
hyp


, you can find 
the other value. This is illustrated in the script shown in 



Listing 5



, which 
produces the output shown in 



Figure 9



.


	



 
cosine(angle) = adj/hyp

angle = arccosine(adj/hyp)
adj = hyp * cosine(angle)
hyp = adj/cosine(angle)









Figure 6.8. 
 

Interesting cosine equations.

Interesting cosine equations.

 
 
Finding the length of the adjacent side



 
The code in 



Listing 5



 is very similar to the code in 



Listing 2



. The main 
difference is that 



Listing 2



 is based on the use of the sine of the angle and 
the length of the opposite side whereas 



Listing 5



 is based on the use of the 
cosine of the angle and the length of the adjacent side.


Example 6.5. 
 <!-- File JavaScript05.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
  return degrees*Math.PI/180
}//end function toRadians
//============================================//

function toDegrees(radians){
  return radians*180/Math.PI
}//end function toDegrees
//============================================//

var hyp = 5
var angDeg = 53.13
var angRad = toRadians(angDeg)
var cosine = Math.cos(angRad)

var adj = hyp * cosine

document.write("adjacent = " + adj + "</br>")

hyp = adj/cosine

document.write("hypotenuse = " + hyp + "</br>")

</script>
</body></html>



 
 
No further explanation needed



 
Because of the similarity of 



Listing 5



 and 



Listing 2



, no further explanation 
of the code in 



Listing 5



 should be needed. As you can see from 



Figure 9



, the 
output values match the known lengths for the hypotenuse and the adjacent side 
for the triangle on your plot board.


	



 
adjacent = 3.0000071456633126
hypotenuse = 5










Figure 6.9. 
 

Output for script in Listing 5.

Output for script in Listing 5.

 
 
Computing length of adjacent side with the Google calculator



 
We could also compute the length of the adjacent side using the Google 
calculator.



 
 
The length of the adjacent side -- sample computation



 
Enter the following into the Google search box:


 
5*cos(53.1301024 degrees)


 
The following will appear immediately below the search box:


 
5 * cos(53.1301024 degrees) = 3


 
This is the length of the adjacent side for the given angle and the given 
length of the hypotenuse.




 
 
Two very important equations



 
From an introductory physics viewpoint, two of the most important 
	and perhaps most frequently used equations from 



Figure 7



 and 



Figure 8



 are 
	shown in 



Figure 10



.


	



 
opp = hyp * sine(angle)
adj = hyp * cosine(angle)









Figure 6.10. 
 

Two very important equations.

Two very important equations.

 
These two equations are so important that it might be worth your while to 
	memorize them. Of course, you will occasionally need most of the equations 
	in 



Figure 7



 and 



Figure 8



, so you should try to remember them, 
	or at least know where to find them when you need them.


 
 
Vectors



 
As you will see later in the module that deals with vectors, 
you are often presented with something that resembles the hypotenuse of a right 
triangle whose adjacent side is on the horizontal axis and whose opposite side 
is parallel to the vertical axis.


 
The thing that looks like the hypotenuse of a right triangle is called a 


 
vector


. It has a length and it has a direction. Typically, the direction is 
stated as the angle between the vector and the horizontal axis. Thus, the 
direction is analogous to the angle at the origin in the triangle on your graph 
board.


 
 
Horizontal and vertical components



 
For reasons that I won't explain until we get to that module, you will often 
need to compute the horizontal and vertical components of the vector. 
The horizontal component is essentially the adjacent side of our current right 
triangle. Thus, the value of the horizontal component can be computed using the 
second equation in 



Figure 10



.


 
The vertical component is essentially the opposite side of our current right 
triangle, and its value can be computed using the first equation in 



Figure 10



.




 

The tangent and arctangent 
of an angle








 
Once again, although the tangent of an angle is based on very specific 
	geometric considerations involving circles (see
	




	http://www.clarku.edu/~djoyce/trig/



), for our purposes, the tangent of an 
angle is simply a ratio between the lengths of two different sides of a right 
triangle.


 
 
A ratio of two sides



 
For our purposes, we will say that the tangent of an angle is equal to the 
ratio of the opposite side and the adjacent side. Therefore, in the case of the 
3-4-5 triangle that you have on your graph board, the 


 

tangent of the angle at 
the origin is equal to



 4/3 or 1.333.


 
 
Not limited to 1.0



 
Note that the absolute value for the sine and the cosine of an angle is 
limited to a maximum value of 1.0. However, the tangent of an angle is not so 
limited. In fact, the tangent of 45 degrees is 1.0 and the tangent of 90 degrees 
is infinity. This results from the length of the adjacent side, which is the 
denominator in the ratio, going to zero at 90 degrees.


 
Dividing by zero in a script is usually not a good thing. This is a pitfall that you must watch out for when working with tangents. 
I will provide code later on that shows you how deal with this issue.


 
 
Computing the tangent



 
If we know the lengths of the opposite side and the adjacent side, we can 
compute the tangent and use it for other purposes later without having to know 
the value of the angle.


 
Conversely, if we know the value of the angle but don't know the lengths of 
the adjacent side and/or the opposite side, we can obtain the tangent value 
using a scientific calculator or lookup table and use it for other purposes 
later.



 
 
The tangent of an angle -- sample computation



 
Enter the following into the Google search box:


 
tan(53.13010235415598 degrees)


 
The following will appear immediately below the search box:


 
	
tan(53.13010235415598 degrees) = 1.33333333


 
	
This agrees with the ratio that we computed




earlier



.




 
 
The arctangent (inverse tangent) of an angle



 
The arctangent of an angle is the value of the angle having a given tangent 
value. (For example, as mentioned above, the arctangent of infinity is 90 
degrees and the arctangent of 1.0 is 45 degrees.) In other words, if you know the value of the tangent of an unknown angle, 
you can use a scientific calculator or lookup table to find the value of the 
angle.


 
For example, we know that the tangent of the angle at the origin on your 
graph board is 1.333. From that, we can determine the value of the angle.



 
 
The arctangent of an angle -- sample computation



 
Enter the following into the Google search box:


 
arctan(4/3) in degrees


 
The following will appear immediately below the search box:


 
arctan(4/3) = 53.1301024 degrees




 
We can also write a JavaScript script to perform the calculation.


 
 
Getting the angle for a known tangent value using JavaScript



 
Please create an html file containing the code shown in 



Listing 6



 and open it 
in your browser.


Example 6.6. 
 <!-- File JavaScript06.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
  return degrees*Math.PI/180
}//end function toRadians
//============================================//

function toDegrees(radians){
  return radians*180/Math.PI
}//end function toDegrees
//============================================//

var opp = 4
var adj = 3
var ratio = opp/adj
var angRad = Math.atan(ratio)
var angDeg = toDegrees(angRad)

document.write("radians = " + angRad + "</br>")
document.write("degrees = " + angDeg)

</script>
</body></html>



 
 
The output from the script



 
Once again, when you open this file in your browser, the output shown in 




Figure 5



 should appear in your browser window.


 
The code in 



Listing 6



 is very similar to the code in 



Listing 2



. They both 
describe the same right triangle, so the output should be the 
same in both cases.


 
The code in 



Listing 2



 uses the opposite side and the hypotenuse along with 
the arcsine to compute the angle. The code in 



Listing 6



 uses the opposite side 
and the adjacent side along with the arctangent to compute the angle. Otherwise, 
no further explanation should be required.


 
 
Interesting tangent equations



 
In the spirit of 



Figure 7



 and 



Figure 8



, 



Figure 11



 provides some interesting 
equations that deal with the angle, the opposite side, and the adjacent side. 
Given any two, you can find the third using either the tangent or arctangent.


	



 
tangent(angle) = opp/adj

angle = arctangent(opp/adj)
opp = tangent(angle) * adj
adj = opp/tangent(angle)









Figure 6.11. 
 

Interesting tangent equations.

Interesting tangent equations.

 
 
An exercise involving the tangent



 
Please copy the code from 



Listing 7



 into an html file and open it in your 
browser.


Example 6.7. 
 <!-- File JavaScript07.html -->
<html><body>
<script language="JavaScript1.3">

function toRadians(degrees){
  return degrees*Math.PI/180
}//end function toRadians
//============================================//

function toDegrees(radians){
  return radians*180/Math.PI
}//end function toDegrees
//============================================//

var adj = 3
var angDeg = 53.13
var angRad = toRadians(angDeg)
var tangent = Math.tan(angRad)

var opp = adj * tangent

document.write("opposite = " + opp + "</br>")

adj = opp/tangent

document.write("adjacent = " + adj + "</br>")

</script>
</body></html>



 
When you open your html file in your browser, the output shown in 



Figure 12



 
should appear in your browser window. We can see that the values in 



Figure 12



 are 
correct for our 3-4-5 triangle.


	



 opposite = 3.9999851132269173
adjacent = 3










Figure 6.12. 
 

Output for script in Listing 7.

Output for script in Listing 7.

 
 
Very similar code



 
The code in 



Listing 7



 is very similar to the code in 



Listing 3



 and 
	



Listing 5



. The essential differences are that 


 	 


Listing 3



 uses the sine along with the opposite side and the hypotenuse.



	 


Listing 5



 uses the cosine along with the adjacent side and the 
	hypotenuse.



	 


Listing 7



 uses the tangent along with the opposite side and the adjacent 
	side.





 
You should be able to work through those differences without further 
	explanation from me.


 
 
The cotangent of an angle



 
There is also something called the cotangent of an angle, which is simply the 
ratio of the adjacent side to the opposite side. If you know how to work with 
the tangent, you don't ordinarily need to use the cotangent, so I won't discuss 
it further.


 
 
Computing length of opposite side with the Google calculator



 
We could also compute the length of the opposite side using the Google 
calculator.



 
 
The length of the opposite side -- sample computation



 
Enter the following into the Google search box:


 
3*tan(53.1301024 degrees)


 
The following will appear immediately below the search box:


 
3 * tan(53.1301024 degrees) = 4.00000001







 

Dealing with different quadrants








 
Up to this point, we have dealt exclusively with angles in the range of 0 
	to 90 degrees (the first quadrant). As long as you stay in the first 
	quadrant, things are relatively straightforward.


 
As you are probably aware, however, angles can range anywhere from 0 to 360 
degrees (or more). Once you begin working with angles that are greater then 90 degrees, 
things become a little less straightforward.


 
 
Another svg file



 
When you downloaded the zip file named Phy1020.zip using the link given




above



, you should also have found that 
the zip file contains a file named Phy1020a1.svg.


 
The purpose of this file is to make it possible for you to create tactile 
graphics for sine and cosine curves using the procedure explained in the earlier 
module named Manual Creation of Tactile Graphics at





http://cnx.org/content/m38546/latest/



.


 
If you have the ability to create tactile graphics, you don't need to 
perform the work in the following graph board exercise. However, you should 
read about it anyway because that will probably help you to better understand 
the sine and the cosine of an angle.


 
I will get back to tactile graphics after I describe the graph board 
exercise.


 
 
Another graph board exercise



 
In this graph board exercise, we will plot a graph of the 
amplitude of the sine of an angle on the vertical axis versus the angle itself on 
the horizontal.


 
We will also do the same thing for the cosine. It would be very good if you 
could plot one curve on the top half of your graph board and the other curve on 
the bottom half of your graph board so that you can easily compare the two.


 
 
Interpreting gridline values



 
Since I don't know how many tactile grid lines there are on your graph board, 
I can't tell you exactly how to interpret the grid lines so as to make maximum 
use of the space on the board. All that I can tell you is that the vertical 
amplitude values for each curve will range from -1.0 to +1.0. We would like to 
plot values from -360 degrees to + 360 degrees on the horizontal. You should 
interpret the values of the gridlines on your graph board accordingly.


 
 
Sinusoidal amplitude versus angle



 
Please copy the code from 



Listing 8



 into an html file and open the file in 
your browser.


Example 6.8. 
 <;!-- File JavaScriptZZ.html -->
<;html><;body>
<;script language="JavaScript1.3">

function toRadians(degrees){
  return degrees*Math.PI/180
}//end function toRadians
//============================================//

function toDegrees(radians){
  return radians*180/Math.PI
}//end function toDegrees
//============================================//

var angInc = 90
var angStart = -360
var ang = angStart
var angEnd = 360
var sine
var cosine

while(ang <;= angEnd){
  //Compute sine and cosine of angle
  sine = Math.sin(toRadians(ang))
  cosine = Math.cos(toRadians(ang))
  
  //Reduce the number of digits in the output
  sine = (Math.round(100*sine))/100
  cosine = (Math.round(100*cosine))/100
  
  //Display the results
  document.write("Angle: " + ang + 
                 " Sine: " + sine + 
                 " Cosine: " + cosine +
                 "<;/br>")
                 
  //Increase the angle for next iteration
  ang = ang + angInc
}//end while loop

<;/script>
<;/body><;/html>



 
 
Output from the script



 
When you open your html file in your browser, the output shown in 



Figure 13



 
should appear in your browser window.


	



 Angle: -360 Sine: 0 Cosine: 1
Angle: -270 Sine: 1 Cosine: 0
Angle: -180 Sine: 0 Cosine: -1
Angle: -90 Sine: -1 Cosine: 0
Angle: 0 Sine: 0 Cosine: 1
Angle: 90 Sine: 1 Cosine: 0
Angle: 180 Sine: 0 Cosine: -1
Angle: 270 Sine: -1 Cosine: 0
Angle: 360 Sine: 0 Cosine: 1










Figure 6.13. 
 

Sinusoidal values at 90-degree increments.

Sinusoidal values at 90-degree increments.

 


Figure 13



 contains the data for two different curves. One is a sine curve 
	and the other is a cosine curve.


 
 
Plot the points using pushpins



 
You should be able to plots these data values as two separate curves on your 
graph board by inserting pushpins at the coordinate values shown and then 
connecting the pushpins with rubber bands, pipe cleaners, yarn, flexible wire, 
or something similar. (Rubber bands might not work if you are using a homemade 
plot board constructed from Styrofoam, because the pins pull too easily.)


 
Remember, the angle values from -360 
degrees (-2*PI radians) to +360 degrees (+2*PI radians) are horizontal coordinates while the corresponding 
values for the sine and cosine are vertical coordinates.


 
 
Saw tooth curves



 
Once you have plotted the points, you should be able to discern two curves, 
each of which is a saw tooth.


 
The two curves have exactly the same shape, but one is shifted horizontally 
relative to the other. For example, the sine curve has a value of zero at an 
angle of zero (the origin) and it is asymmetric about the vertical axis.


 
The cosine curve, on the other hand has a value of 1 at an angle of zero and 
it is symmetric about the vertical axis.


 
 
Periodic curves



 
These are periodic curves. For example, the shape of the sine curve between 
-360 and 0 is the same as the shape of the sine curve between 0 and +360. Each 
of those ranges represents one 

 
cycle


 of the periodic curve.


 
We only computed the values from -360 to +360. However, if we had computed 
the values from -3600 to + 3600, the overall shape of the curve would not differ 
from what we have here. The shape of each cycle of the curve would be identical to the 
shape of the cycle to the left and the cycle to the right.


 
 
Not really a saw tooth



 
The sine and cosine curves don't really have a saw tooth shape. That is an 
	artifact of the fact that we didn't compute enough points to reliably 
	describe the shape of the curves. Let's improve on that.


 
 
Modify the script



 
Modify the code in 
	your script to initialize the value of the variable named 

 
angInc


 
	to 45 degrees instead of 90 degrees and then load the revised version into your browser. This will cause the 
	script to fill in data points 
	between the points that we already have producing the output shown in 




Figure 
	16



.


	



 Angle: -360 Sine: 0 Cosine: 1
Angle: -315 Sine: 0.71 Cosine: 0.71
Angle: -270 Sine: 1 Cosine: 0
Angle: -225 Sine: 0.71 Cosine: -0.71
Angle: -180 Sine: 0 Cosine: -1
Angle: -135 Sine: -0.71 Cosine: -0.71
Angle: -90 Sine: -1 Cosine: 0
Angle: -45 Sine: -0.71 Cosine: 0.71
Angle: 0 Sine: 0 Cosine: 1
Angle: 45 Sine: 0.71 Cosine: 0.71
Angle: 90 Sine: 1 Cosine: 0
Angle: 135 Sine: 0.71 Cosine: -0.71
Angle: 180 Sine: 0 Cosine: -1
Angle: 225 Sine: -0.71 Cosine: -0.71
Angle: 270 Sine: -1 Cosine: 0
Angle: 315 Sine: -0.71 Cosine: 0.71
Angle: 360 Sine: 0 Cosine: 1










Figure 6.14. 
 

Sinusoidal values at 45-degree increments.

Sinusoidal values at 45-degree increments.

 
 
Plot the new points



 
Every other line of text in 



Figure 14



 should contain sine and cosine values for 
	angles that are half way between the points that you already have plotted. 
	Use pushpins to plot the new points and connect all of the points in each 
curve using rubber bands, pipe cleaners, or whatever you find most useful for 
this purpose.


 
 
Same shape but shifted horizontally



 
The two curves still have the same shape, although shifted horizontally 
relative to one another and they are still periodic. However, they no longer 
have a saw tooth shape. They tend to be a little more rounded near the peaks and 
they are beginning to provide a better representation of the actual shapes of 
the sine and cosine curves.


 
 
Let's do it again 



 
Change the value of the variable named 

 
angInc


 from 45 
	degrees to 
	22.5 degrees and load the new version of the html file into your browser. Now the 
	output should look like 



Figure 15



.


	



 Angle: -360 Sine: 0 Cosine: 1
Angle: -337.5 Sine: 0.38 Cosine: 0.92
Angle: -315 Sine: 0.71 Cosine: 0.71
Angle: -292.5 Sine: 0.92 Cosine: 0.38
Angle: -270 Sine: 1 Cosine: 0
Angle: -247.5 Sine: 0.92 Cosine: -0.38
Angle: -225 Sine: 0.71 Cosine: -0.71
Angle: -202.5 Sine: 0.38 Cosine: -0.92
Angle: -180 Sine: 0 Cosine: -1
Angle: -157.5 Sine: -0.38 Cosine: -0.92
Angle: -135 Sine: -0.71 Cosine: -0.71
Angle: -112.5 Sine: -0.92 Cosine: -0.38
Angle: -90 Sine: -1 Cosine: 0
Angle: -67.5 Sine: -0.92 Cosine: 0.38
Angle: -45 Sine: -0.71 Cosine: 0.71
Angle: -22.5 Sine: -0.38 Cosine: 0.92
Angle: 0 Sine: 0 Cosine: 1
Angle: 22.5 Sine: 0.38 Cosine: 0.92
Angle: 45 Sine: 0.71 Cosine: 0.71
Angle: 67.5 Sine: 0.92 Cosine: 0.38
Angle: 90 Sine: 1 Cosine: 0
Angle: 112.5 Sine: 0.92 Cosine: -0.38
Angle: 135 Sine: 0.71 Cosine: -0.71
Angle: 157.5 Sine: 0.38 Cosine: -0.92
Angle: 180 Sine: 0 Cosine: -1
Angle: 202.5 Sine: -0.38 Cosine: -0.92
Angle: 225 Sine: -0.71 Cosine: -0.71
Angle: 247.5 Sine: -0.92 Cosine: -0.38
Angle: 270 Sine: -1 Cosine: 0
Angle: 292.5 Sine: -0.92 Cosine: 0.38
Angle: 315 Sine: -0.71 Cosine: 0.71
Angle: 337.5 Sine: -0.38 Cosine: 0.92
Angle: 360 Sine: 0 Cosine: 1










Figure 6.15. 
 

Sinusoidal values at 22.5-degree increments.

Sinusoidal values at 22.5-degree increments.

 
 
A lot of data points



 
Once again, every other line of text in 



Figure 15



 contains new sine and cosine 
	values for angles that you don't have plotted yet.


 
Plotting all of these point is going to require a lot of pushpins and a lot 
of effort. Before you do that, let's think about it.


 
 
Two full cycles



 
You should have been able to discern by now that your plots for the sine 
and cosine graphs each contain two full cycles. An important thing about 
periodic functions is that once you know the shape of the curve for any one 
cycle, you know the shape of the curve for every cycle from minus infinity to infinity. The 
shape of every cycle is exactly the same as the shape of every other cycle.


 
 
Saving pushpins and effort



 
If you are running out of pushpins or running out of patience, you might consider 
updating your plots for only one cycle.


 
You should be able to discern that your curves no 
longer have a saw tooth shape. Each time we have run the script, we have sampled 
the amplitude values of each curve at twice as many points as before. Therefore, 
the curves should be taking on a smoother rounded shape that is better 
representation of the actual shape of the curves.


 
 
Continue the process



 
You can continue this process of improving the curves for as long as you have the graph board space, 
pushpins, and patience to do so. Just divide the value of the variable named


 
angInc


 by a factor of two and rerun the script. That will 
produce twice as many data points that are only half as far apart on the 
horizontal axis.


 
If you choose to do so, you can plot only the new points in one-half of a cycle 
to get an idea of the shape. By now you should have discerned that each half of a cycle has the same shape, only one 
half is above the horizontal axis and the other half is a mirror image below the axis.


 
 
Plot of cosine and sine curves



 
Getting back to tactile graphics, for the benefit of any sighted person that 
may be assisting you, 



Figure 16



 shows a cosine curve plotted above a sine 
curve very similar to the curves that you have plotted on your graph board. 
(



Figure 16



 shows a mirror image of the actual curves because the file named 
Phy1020a1.svg is intended to be used for manual embossing from the back of the 
paper.) A non-mirror-image version is shown in 



Figure 20



.


 [image: missing image]

Figure 6.16. 
 

Mirror image plot of cosine and sine curves from the file named Phy1020a1svg.

Mirror image plot of cosine and sine curves from the file named Phy1020a1svg.

 
This image contains lines that aren't straight, but with a little care, 
your assistant should be able to do a reasonably good job of embossing them when 
the image is printed as the full 8.5x11 inch version.


 
 
Page setup



 
If you use the IVEO Viewer to print the file named Phy1020a1.svg, you should 
use the default Page Setup selection for Letter (Landscape).


 
 
Grid lines



 
The image in 



Figure 16



 contains 7 vertical grid lines. The vertical grid line 
in the center represents an angle of zero degrees. The space between each grid 
line on either side of the center represents an angle of 90 degrees or PI/2 
radians.


 
There are two horizontal grid lines. One is one-fourth of the way down from 
the top. The other is one-fourth of the way up from the bottom.


 
 
The curves



 
A cosine curve is plotted with vertical values relative to the top grid line. 
It extends from -360 degrees on the left to +360 degrees on the right.


 
A sine curve is plotted with vertical values relative to the bottom grid 
line. It also extends from -360 degrees on the left to +360 degrees on the 
right. (Note once again that 



Figure 16



 was flipped 
horizontally to crate a mirror image.)


 
 
Return values for the Math.asin, Math.acos, and Math.atan methods



 
I told you earlier that the 

 
Math.asin


 method returns a value 
between -PI/2 and PI/2. However, I didn't tell you that the 

 

Math.acos


 
method returns a value between 0 and PI, or that the 

 
Math.atan


 
method returns a value between -PI/2 and PI/2. You now have enough information 
to understand why this is true.


 
 
Smooth curves



 
If you examine the two curves that you have just plotted, you can surmise 
that the sine and cosine functions are smooth curves whose values range between 
-1 and +1 inclusive. For every possible value between -1 and +1, there is an 
angle in the range -PI/2 and PI/2 whose sine value matches that value. There is 
also an angle in the range 0 and PI whose cosine value matches that value.


 
(Although you haven't plotted the curve for the tangent, a similar situation 
holds there also.)


 
 
An infinite number of angles



 
Therefore, given a specific numeric value between -1 and +1, 
there are an infinite number of angles whose sine and cosine values match that 
numeric value and the method has no way of distinguishing between them. 
Therefore, the 

 
Math.asin


 method returns the matching angle that is 
closest to zero and the

 
 Math.acos


 method returns the matching 
positive angle that is closest to zero.

 
 



 
 
What can we learn from this?



 
One important thing that we can learn is there is no difference between 
	the sine or cosine of an angle and the sine or cosine of a different angle 
	that differs from the original angle by 360 degrees. Thus, the 

 

	Math.asin


 and 
	

 
Math.acos


 methods cannot be used to distinguish between angles that differ 
	by 360 degrees. (As you learned above, the situation involving the 

 

	Math.asin


 and 
	

 
Math.acos


 methods is even more stringent than that.)


 
 
One-quarter cycle contains all of the information



 
Another thing that we can learn is that once you know the shape of the cosine 
curve from 0 degrees to 90 degrees, you have enough information to construct the 
entire cosine curve and the entire sine curve across any range of angles. Every 
possible value or the negative of every possible value that can occur in a sine 
or cosine curve occurs in the cosine curve between 0 degrees and 90 degrees. 
Furthermore, the order of those values is also well defined.


 
 
Think about these relationships



 
You should think about these kinds of relationships. As I mentioned earlier, 
as long as we are working with angles between 0 and 90 degrees, everything is 
relatively straightforward. However, once we start working with angles between 
90 degrees and 360 degrees (or greater), things become a little less 
straightforward.


 
If you have a good picture in your mind of the shape of the two 
curves between -360 degrees and +360 degrees, you may be able to avoid errors once you start working on physics problems that involve angles outside 
the range of 0 to 90 degrees.


 
 
Quadrants



 
We often think of a two-dimensional space with horizontal and vertical axes 
and the origin at the center in quadrants. Each quadrant is bounded by 
half the horizontal axis and half the vertical axis.


 
It is common practice to number the 
quadrants in counter-clockwise order with the upper-right quadrant being 
quadrant 1, the upper-left quadrant being quadrant 2, the bottom-left quadrant 
being quadrant 3, and the bottom-right quadrant being quadrant 4.


 
 
Angles fall in quadrants



 
If you measure the angle between the positive horizontal axis and a line 
segment that 
emanates from the origin, quadrant 1 contains angles between 0 and PI/2, 
quadrant 2 contains the angles between PI/2 and PI, quadrant 3 contains the 
angles between PI and 3*PI/2, and quadrant 4 contains the angles between 3*PI/2 
and 2*PI (or zero). (Note that I didn't attempt to reconcile the inclusion of 
each axis in the two quadrants on either side of the axis.)


 
 
Algebraic signs versus quadrant number



 
It is sometimes useful to consider how the algebraic sign of the sine, 
cosine, and tangent values varies among the four quadrants. 



Figure 17



 contains a 
table that shows the sign of the sine, cosine, and tangent values for each of 
the four quadrants


	



 
        1 2 3 4
sine    + + - -
cosine  + - - +
tangent + - + -









Figure 6.17. 
 

Algebraic signs versus quadrants.

Algebraic signs versus quadrants.

 
 
Working with arctangents is more difficult than arcsine or 
	arccosine



 
Working with arctangent is somewhat more difficult than working with arcsine 
or arccosine, if for no other reason than the possibility of dividing by zero 
when working with the arctangent.


 


Listing 9



 shows a JavaScript function named getAngle that deals with this issue.


Example 6.9. 
 <!---------------- File JavaScript09.html --------------------->
<html><body>
<script language="JavaScript1.3">

document.write("Start Script </br>");

//The purpose of this function is to receive the adjacent
// and opposite side values for a right triangle and to
// return the angle in degrees in the correct quadrant.
function getAngle(adjacent,opposite){
  if((adjacent == 0) && (opposite == 0)){
    //Angle is indeterminate. Just return zero.
    return 0;
  }else if((adjacent == 0) && (opposite > 0)){
    //Avoid divide by zero denominator.
    return 90;
  }else if((adjacent == 0) && (opposite < 0)){
    //Avoid divide by zero denominator.
    return -90;
  }else if((adjacent < 0) && (opposite >= 0)){
    //Correct to second quadrant
    return Math.atan(opposite/adjacent)*180/Math.PI + 180;
  }else if((adjacent < 0) && (opposite <= 0)){
    //Correct to third quadrant
    return Math.atan(opposite/adjacent)*180/Math.PI + 180;
  }else{
    //First and fourth quadrants. No correction required.
    return Math.atan(opposite/adjacent)*180/Math.PI;
  }//end else
}//end function getAngle


//Modify these values and run for different cases.
var adj = 3;
var opp = 4;

document.write("adj = " + adj.toFixed(2) +
" opp = " + opp.toFixed(2) + " units</br>");

document.write("angle = " + getAngle(adj,opp).toFixed(2) 
  + " units</br>");

var adj = -3;
var opp = 4;

document.write("adj = " + adj.toFixed(2) +
" opp = " + opp.toFixed(2) + " units</br>");

document.write("angle = " + getAngle(adj,opp).toFixed(2) 
  + " units</br>");

var adj = -3;
var opp = -4;

document.write("adj = " + adj.toFixed(2) +
" opp = " + opp.toFixed(2) + " units</br>");

document.write("angle = " + getAngle(adj,opp).toFixed(2) 
  + " units</br>");
  
var adj = 3;
var opp = -4;

document.write("adj = " + adj.toFixed(2) +
" opp = " + opp.toFixed(2) + " units</br>");

document.write("angle = " + getAngle(adj,opp).toFixed(2) 
  + " units</br>");

</script>
</body></html>


 
The code in 



Listing 9



 begins by defining a function named getAngle that 
accepts the signed values of the adjacent side and the opposite side of the right 
triangle and returns the angle that the hypotenuse makes with the positive 
horizontal axis.


 
Then the code in 



Listing 9



 tests the result for four different triangles 
situated in each of the four quadrants.


 


Figure 18



 shows the output produced by this script.


	



 Start Script
adj = 3.00 opp = 4.00 units
angle = 53.13 units
adj = -3.00 opp = 4.00 units
angle = 126.87 units
adj = -3.00 opp = -4.00 units
angle = 233.13 units
adj = 3.00 opp = -4.00 units
angle = -53.13 units









Figure 6.18. 
 

Output from the code in Listing 9.

Output from the code in Listing 9.

 
This is an issue that will become important when we reach the module that 
	deals with vectors in all four quadrants.


 
 
Structure of the script



 
The script shown in 



Listing 9



 begins by defining a function named 

 

getAngle


. The purpose of this function is to return an angle in degrees 
in the correct quadrant based on the lengths of the adjacent and opposite sides 
of an enclosing right triangle. As mentioned above, the returned angle is the 
angle that the hypotenuse makes with the positive horizontal axis.


 
 
An indeterminate result



 
The getAngle function calls the Math.atan method to compute the angle whose 
tangent is the ratio of the opposite side to the adjacent side of a right 
triangle. 


 
If the lengths of both the opposite and adjacent sides are zero, the ratio opposite/adjacent is 
indeterminate and the value of the angle cannot be computed. In fact there is no 
angle corresponding to the ratio 0/0. However, the function must either return 
the value of an angle, or must return some sort of flag indicating that 
computation of the angle is not possible.


 
In this case, the function simply returns the value zero for the angle.


 
 
Avoiding division by zero



 
If the length of adjacent side is zero and the length of opposite side is not zero, the 
ratio opposite/adjacent is infinite. Therefore, the value of the angle cannot be 
computed. However, in this case, the angle is known to be 90 degrees (for 
opposite greater than zero) or 270 degrees (-90 degrees, for opposite less than 
zero). The getAngle function traps both of those cases and returns the correct 
angle in each case.


 
 
Correcting for the quadrant



 
The Math.atan method receives one parameter and it is either a positive or 
negative value. If the value is positive, the method returns an angle between 0 
and 90 degrees. If the value is negative, the method returns an angle between 0 
and -90 degrees. Thus, the angles returned by the Math.atan method always lie in 
the first or fourth quadrants.


 
(Actually, as I mentioned earlier, +90 degrees and -90 degrees are not 
possible because the tangent of +90 degrees or -90 degrees is an infinitely 
large positive or negative value. However, the method can handle angles that are 
very close to +90 or -90 degrees.)


 
 
A negative opposite/adjacent ratio



 
If the opposite/adjacent ratio is negative, this doesn't necessarily mean 
that the angle lies in the fourth quadrant. That negative ratio could result 
from a positive value for opposite and a negative value for adjacent. In that 
case, the angle would lie in the second quadrant between 90 degrees and 180 
degrees.


 
The getAngle function tests the signs of the values for opposite and 
adjacent. If the signs indicate that the angle lies in the second quadrant, the 
value returned from the Math.atan method is corrected to place the angle in the 
second quadrant. The corrected angle is returned by the getAngle function.


 
 
A positive opposite/adjacent ratio



 
Similarly, if the opposite/adjacent ratio is positive, this doesn't 
necessarily mean that the angle lies in the first quadrant. That positive ratio 
could result from a negative opposite value and a negative adjacent value. In 
that case, the angle would lie in the third quadrant between 180 degrees and 270 
degrees.


 
Again, the getAngle function tests the signs of the values for opposite and 
adjacent. If both values are negative, the value returned from the Math.atan 
method is corrected to place the angle in the third quadrant.


 
 
No corrections required...



 
Finally, if no corrections are required for the quadrant, the getAngle 
function returns the value returned by the Math.atan method. Note however, that 
in all cases, the Math.atan method returns the angle in radians. That value is 
converted to degrees by the getAngle function and the returned value is in 
degrees.


 
 
Positive and negative angles



 
As you can see from the results of the test shown in 



Figure 18



, angles in the 
first, second, and third quadrants are returned as positive angles in degrees. 
However, angles in the fourth quadrant are returned as negative angles in 
degrees.




 

Normal (non-mirror-image) graphics








 


Figure 2



 and 



Figure 16



 show the actual mirror image versions of the images 
contained in the svg files. 



Figure 19



 and 




Figure 20



 show the same images in 
their non-mirror-image orientation.
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Figure 6.19. 
 

Normal image from file Phy1020b1.svg.

Normal image from file Phy1020b1.svg.
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Figure 6.20. 
 

Normal image plot of cosine and sine curves from the file named Phy1020a1svg.

Normal image plot of cosine and sine curves from the file named Phy1020a1svg.




 

Run the scripts








 
I encourage you to run the scripts that I have presented in this lesson to 
confirm that you get the same results. Copy the code for each script into a 
	text file with an extension of html. Then open that file in your browser. Experiment with 
the code, making changes, and observing the results of your changes. Make 
certain that you can explain why your changes behave as they do. 




 

Resources








 
I will publish a module containing consolidated links to resources on my 
Connexions web page and will update and add to the list as additional modules 
in this collection are published.




 

Miscellaneous








 
This section contains a variety of miscellaneous information.



 
Housekeeping material

 	 
Module name: Brief Trigonometry Tutorial



	 
Revised: 07/02/2011



	 
File: Phy1020.htm




	 
Keywords:


 	 
physics



	 
accessible



	 
blind



	 
graph board



	 
protractor



	 
screen reader



	 
refreshable Braille display



	 
JavaScript



	 
trigonometry



	 
angle



	 
sine



	 
cosine



	 
tangent



	 
arcsine



	 
arccosine



	 
arctangent



	 
quadrant

















 
Disclaimers:

 
 
Financial


: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.


 
I also want you to know that I receive no financial compensation from the Connexions website even if you purchase 
	the PDF version of the module.


 
 
Affiliation


: I am a professor of Computer Information 
	Technology at Austin Community College in Austin, TX.
	




 
-end- 
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Preface






 

 

General








 
This module is part of a collection (see





http://cnx.org/content/col11294/latest/



) of modules designed to make physics 
concepts accessible to blind students. The collection is intended to supplement but not to 
replace the textbook in an introductory course in high school or college 
physics. 


 
This module explains torque, work and energy in a format that is accessible 
to blind students.




 

Prerequisites








 
In addition to an Internet connection and a browser, you will need the 
following tools (as a minimum) to work through the exercises in these modules:


 	 
A graph board for plotting graphs and vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
A protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
An audio screen reader that is compatible with your operating system, 
	such as the NonVisual Desktop Access program (NVDA), which is freely 
	available at 




	http://www.nvda-project.org/



.



	 
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor 
	(



http://www.userite.com/ecampus/lesson1/tools.php



).



	 
A device to create Braille labels. Will be used to label graphs 
	constructed on the graph board.





 
The minimum prerequisites for understanding the material in these modules 
	include:


 	 
A good understanding of algebra.



	 
An understanding of the use of a graph board for plotting graphs and 
	vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
An understanding of the use of a protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
A basic understanding of the use of sine, cosine, and tangent from 
	trigonometry (



http://www.clarku.edu/~djoyce/trig/



).



	 
An introductory understanding of JavaScript programming (



http://www.dickbaldwin.com/tocjscript1.htm



 and 



http://www.w3schools.com/js/default.asp



).



	 
An understanding of all of the material covered in the earlier modules 
	in this collection.







 

 

Viewing tip








 
 I recommend that you open another copy of this document in a separate 
browser window and use the following links to easily find and view the figures 
while you are reading about them.



 

 

Figures








 	 


Figure 1



. Work done by perpendicular component of force. 



	 


Figure 2



. Work done by constant torque. 



	 


Figure 3



. Power generated or consumed by a constant torque.








 

 

Supplemental material








 
 I recommend that you also study the other lessons in my extensive collection 
of online programming tutorials. You will find a consolidated index at





www.DickBaldwin.com



.





 

 

Discussion








 
This section will begin by developing the equations from which you can 
compute the work done by a constant torque that causes a known displacement. Then it will provide a brief 
discussion of the situation where the torque is not constant.



 

Constant torque








 
One of the textbooks that I have read uses a very familiar example to 
illustrate that torque can do work. The example is that of a person pulling on 
the rope on a power mower or outboard engine to try to get it started. 


 
If you are unfamiliar with that scenario, many small internal combustion 
engines use a rope wrapped around a pulley to start the engine. When the user 
pulls the rope, a torque is created on the pulley by the rope. The torque causes 
an angular displacement of the pulley, which in turn causes certain parts inside 
the engine to move. If you are lucky and everything is working properly, the 
engine starts.


 
 
The machine fights back



 
However, the machine 
fights back and the compression in the cylinders creates a resistive torque. If 
the user pulls hard enough, the torque created by the user overcomes the 
resistive torque, the pulley 
turns, the parts inside the engine move appropriately, and hopefully the engine starts running.


 
 
When the engine refuses to start...



 
Clearly when the engine refuses to start, it becomes apparent very quickly that 
torque can do work on a human. A few dozen pulls on the rope will cause even the most 
physically fit user to become exhausted.


 
 
The force does the work



 
The textbook point out that it is actually the force and not the torque that 
does the work. However, torque and force are related in a very definitive way, 
and the textbook points out that it is often easer to calculate the amount of 
work done on the basis of torque rather than making the calculation on the basis 
of force.


 
 
Review -- what is work?



 
You learned in an earlier module on translational motion that the work done 
by a constant force is the product of the force and the displacement caused by 
that force. In other words,


 
Wt = Ft * d


 
where


 	 
Wt represents translational work in joules or newton-meters



	 
Ft represents translational force in newtons



	 
d represents the displacement in meters





 
 
A rotational analogy



 
Similarly, work done by a constant torque can be calculated as the product of 
the constant torque and the displacement caused by that torque.


 
 
A constant torque



 
It is important 
to note that the entire remaining discussion in this section applies only to the 
application of a constant torque. I will have a few words about a variable 
torque in the 



next section



.


 
 
Power



 
The power generated or consumed by the application of a constant torque can be calculated 
as the product of the constant torque and the angular velocity.


 
 
A wheel scenario



 
Imagine a force being applied to a point on the outer edge of a wheel to cause 
an angular displacement of the wheel. As you will recall from an earlier module, 
the torque produced by the force is equal to the product of


 	 
the distance from the center of the wheel to the point 
	where the force is applied and 



	 
 

the component of the force



 that 
	is perpendicular to a line drawn from that point to the center of the wheel.





 
 
The point moves through a circular arc



 
When the force causes an angular displacement of the wheel, the point at 
which the point is applied moves through a 
circular arc. The length of that circular, often referred to by s, can be 
measured. The work done is equal to the product of 


 	 
the length of the circular 
arc and 



	 
the perpendicular component of applied force.





 
The work resulting from the application of the perpendicular force is given 
by the equation shown in 



Figure 1



.


	



 
W = Fp * s







 
where







 	 
W represents the work done by the perpendicular force



	 
Fp is the perpendicular component of force described
	



above






	 
s is the length of the circular arc through which the point moves














Figure 34.1. 
 

Work done by perpendicular component of force.

Work done by perpendicular component of force.

 
 
Work as a function of torque



 
Now that we have the work as a function of the perpendicular force and the 
length of the arc, let's rewrite it in terms of torque and displacement.


 
 
Torque



 
We know that torque is equal to


 
T = r * Fp


 
where


 	 
T represents torque



	 
r represents the distance from the center of the wheel to the point 
	where the perpendicular force is applied



	 
Fp represents the perpendicular force





 
 
Arc length



 
We also know that the arc length is given by


 
s = r * A


 
where


 	 
s represents the arc length



	 
r represents the distance from the center of the wheel to the point 
	where the perpendicular force is applied as before



	 
A represents the angle of displacement measured in radians





 
Through substitution


 
W = Fp * s, or


 
W = (T/r)*r*A, or


 
The work done by a constant torque is given by the equation shown in Figure 
2.


	



 
 

W = T*A










 
where







 	 
W represents the work done by a constant torque



	 
T represents the constant torque



	 
A represents the angle of displacement measured in radians resulting 
	from the application of the constant torque










 
Work can be either positive or negative. If the 
torque and the angular displacement have the same sign, the work is positive. 
Otherwise, the work is negative.











Figure 34.2. 
 

Work done by constant torque.

Work done by constant torque.

 
 
Power



 
As in the translational case, power is a measure of the work done per unit of 
time. If we divide both sides of the above 



equation



 by time, 
we get


 
(W/t) = T*(A/t)


 
where


 	 
W/t = work per second or power



	 
A is the angular displacement in radians



	 
t is time in seconds



	 
A/t is the displacement in radians per second, which we recognize as 
	angular velocity





 
Thus, the power generated or consumed by applying a constant torque is given by 
the equation shown in 



Figure 3



.


	



 
P = T*w







 
where







 	 
P represents power in watts (joules per second or newton-meters per 
	second)



	 
T represents torque in newton meters



	 
w represents angular velocity in radians per second














Figure 34.3. 
 

Power generated or consumed by a constant  	torque.

Power generated or consumed by a constant  	torque.



 

Variable torque








 
A torque doesn't have to be constant to do work. In fact, the torque 
generated by the user with the starter rope on the power mower discussed in the 
previous section probably isn't constant.


 
However, if the torque is not constant, you cannot use the equations 
developed in the 



previous section



 to compute the work 
done by the torque.


 
 
Maybe you can use calculus



 
If the torque as a function of time can be described by a function that you 
can integrate using integral calculus, you can use calculus to compute the work 
done by the torque. However, in the real word, this is probably rarely the case.


 
 
Maybe you can use a computer



 
If you are in the business of computing work done by a variable torque, the 
most likely case is that you will have equipment that allows you to sample the 
torque and displacement values at uniform intervals of time and to save the 
values of the samples for digital processing. Then you can use any one of 
several digital methods to approximately integrate the product of the torque 
function and the displacement function.





 

 

Example scenario








 
I once visited a factory where mirrors were made. At one of the stations on 
the manufacturing line, a person used a large horizontal grinding wheel to grind 
a bevel on the edge of the mirror.


 
Assume that the grinding wheel is a uniform disk with:


 	 
A moment of inertia, I, equal to (1/2)*M*R^2



	 
M = mass = 80 kg



	 
R = radius = 0.0.5 meters






 

Part 1








 
Find the amount of work that must be done to bring the wheel from rest to 
an angular velocity of 8.38 radians/sec


 
Solution:


 
Recall from a previous module that the rotational kinetic energy for a 
rotating object is given by


 
 

Ks = (1/2)*I*w^2








 	 
where


Ks represents the kinetic energy for the system

 




	 
I represents the rotational inertia for the system

 




	 
w represents the angular velocity of the system 





 
We could rewrite this equation as


 
deltaKs = (1/2)*I*(w0 - wf)^2


 
where


 	 
deltaKs represents the change in kinetic energy



	 
w0 represents the initial kinetic energy



	 
wf represents the final kinetic energy





 
However, since the initial kinetic energy value is zero, that would simply 
complicate the algebra. Therefore, we will stick with the original




equation



.


 
We either have, or can calculate values for all of the terms in this 
equation. Substituting the values given above gives us


 
 

Ks = (1/2)*I*w^2



 , or


 
 

Ks = (1/2)*((1/2)*M*R^2)*w^2



, or


 
 

Ks = (1/2)*((1/2)*80kg*(0.5m)^2)*(8.38 radians/sec)^2





 
Entering this expression into the Google calculator gives us


 
Ks = 351 joules


 
This is the amount of work that must be done to bring the wheel from rest to 
an angular velocity of 8.38 radians/sec




 

Part 2








 
If the motor that drives the wheel delivers a constant torque of 10 N*m during this time, how many 
revolutions does the wheel turn in coming up to speed.


 
Solution:


 
We know how to relate the displacement angle and the work for a constant 
torque using the equation in 



Figure 2



.


 
 

W = T*A





 
where


 	 
W represents the work done by a constant torque



	 
T represents the constant torque



	 
A represents the angle of displacement measured in radians resulting 
	from the application of the constant torque





 
In this case, we know the amount of work and the value of the torque and need 
to find the angle. Therefore,


 
A = W*joules/T*n*m


 
However, this gives us the angular displacement in radians. We need to scale 
to convert it to revolutions.


 
A = (W*joules/T*n*m)/2*pi, or


 
A = (351joules/10newton meters)/(2*pi), or


 
A = 5.59 revolutions


 
This is the number of revolutions that the wheel turns in coming up to speed.





 

Do the computations








 
I encourage you to repeat the computations that I have presented in this lesson to 
confirm that you get the same results. Experiment with 
the scenarios, making changes, and observing the results of your changes. Make 
certain that you can explain why your changes behave as they do. 




 

Resources








 
I will publish a module containing consolidated links to resources on my 
Connexions web page and will update and add to the list as additional modules 
in this collection are published. 




 

Miscellaneous








 
This section contains a variety of miscellaneous information.



 
Housekeeping material

 	 
Module name: Angular Momentum -- Torque, Work and Energy for Blind Students



	 
File: Phy1330.htm




	 
Keywords:


 	 
physics



	 
accessible



	 
accessibility



	 
blind



	 
graph board



	 
protractor



	 
screen reader



	 
refreshable Braille display



	 
JavaScript



	 
trigonometry



	 
force



	 
torque



	 
work



	 
energy

















 
Disclaimers:

 
 
Financial


: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.


 
I also want you to know that I receive no financial compensation from the Connexions website even if you purchase 
	the PDF version of the module.


 
 
Affiliation


: I am a professor of Computer Information 
	Technology at Austin Community College in Austin, TX.
	




 
-end- 
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Preface






 

 

General








 
This module is part of a collection (see





http://cnx.org/content/col11294/latest/



) of modules designed to make physics 
concepts accessible to blind students. The collection is intended to supplement but not to 
replace the textbook in an introductory course in high school or college 
physics. 


 
This module explains power in a format that is accessible to blind 
students.




 

Prerequisites








 
In addition to an Internet connection and a browser, you will need the 
following tools (as a minimum) to work through the exercises in these modules:


 	 
A graph board for plotting graphs and vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
A protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
An audio screen reader that is compatible with your operating system, 
	such as the NonVisual Desktop Access program (NVDA), which is freely 
	available at 




	http://www.nvda-project.org/



.



	 
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor 
	(



http://www.userite.com/ecampus/lesson1/tools.php



).



	 
A device to create Braille labels. Will be used to label graphs 
	constructed on the graph board.





 
The minimum prerequisites for understanding the material in these modules 
	include:


 	 
A good understanding of algebra.



	 
An understanding of the use of a graph board for plotting graphs and 
	vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
An understanding of the use of a protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
A basic understanding of the use of sine, cosine, and tangent from 
	trigonometry (



http://www.clarku.edu/~djoyce/trig/



).



	 
An introductory understanding of JavaScript programming (



http://www.dickbaldwin.com/tocjscript1.htm



 and 



http://www.w3schools.com/js/default.asp



).



	 
An understanding of all of the material covered in the earlier modules 
	in this collection.







 

 

Supplemental material








 
 I recommend that you also study the other lessons in my extensive collection 
of online programming tutorials. You will find a consolidated index at





www.DickBaldwin.com



.





 

 

General background 
information








 
 
What is work?



 
You learned in an earlier module that work occurs when a force causes a mass to be displaced by some 
distance. You learned that the equation for the quantity of work done is equal to


 
W = (f*newton)*(d*meter) = f*d*N*m


 
You also learned that work is measured in joules, where one joule is equal to one newton multiplied by 
one meter.


 
1 joule = 1 N * 1 m, or


 
1 joule = (1 kg * m/s^2) * m, or


 
1 joule = 1 kg*m^2/s^2


 
Paste the right-hand expression into the Google search box and press Enter 
just to be sure.


 
 
What about time?



 
Note that the equation for work says nothing about time. The same amount of 
work is done if it takes one second or one month for the object to which the 
force is applied to move by the same distance.


 
 
That doesn't sound right!



 
This goes against our normal concept of work. If Joe spreads one cubic yard 
of topsoil on the lawn in one hour and Bill requires three hours to do the same 
job, we might say that Joe is working harder than Bill.


 
 
Power



 
To be correct from a physics viewpoint, we would need to say that Joe is 
delivering more 

 
power


 than Bill. In other words, 

 
power


 
is a measure of the rate at which work is done. They both do the same amount of 
work, but Joe does it more quickly than Bill. Hence Joe delivers more power than 
Bill.


 
 
Power in equation form



 
Power is the ratio of work to time. In equation form, 


 
Power = Work/time


 
 
The SI unit for power



 
The SI unit for power is the 

 
watt


. One watt of power is 
being delivered when one 
joule of work or energy is being delivered each second.


 
 
An electric heater



 
In other words, if you have an electric heater that is properly rated at 60 
watts, it will deliver 60 joules of energy per second when it is turned on.


 
This means that 
somewhere in the world, someone or something must be doing work at a rate of 60 
joules per second in order to insert the energy into the electrical grid that 
your heater will be taking out of the grid and turning into heat energy.


 
 
Horsepower



 
For historical reasons, particularly in the U.S., we also use the term 

 

horsepower


 to describe the power delivered by a machine. This is 
particularly true in the automotive industry, but it applies to other kinds of 
machines as well. We might speak of a car with a 300 horsepower engine, or a 
clothes washing machine with a quarter-horsepower motor.


 
One horsepower is equal to approximately 750 watts.


 
 
Most machines do work



 
Most machines are designed to consume electrical or chemical energy and do 
work on an object. Some machines, such as the treadmill at the health center, are designed to consume 
human energy in order to do work.


 
In order for a machine to do work, it must 
consume energy in some form.


 
 
Power ratings for machines



 
Machines are often described by a power rating. The power rating 
indicates the rate at which that machine can do work on objects. 


 
When I was in 
the military many years ago, there were potato peeling machines in kitchens in the mess 
halls. Their purpose was to do work on potatoes by removing the peel. Presumably a machine with 
a high power rating could peel more potatoes per hour than one with a lower 
power rating.


 
 
Automobile engines and horsepower



 
Automobile engines are often rated in terms of power using horsepower as the 
units. At the drag-race track, contests are held to determine which vehicle can move 
from point A to point B in the shortest amount of time. 


 
Since work is measured as force multiplied by distance, and power is measured 
as the work done per unit of time, everything else being equal, one would expect 
that the vehicle with the highest power rating would be the winner in moving a 
given distance in the shortest amount of time.


 
 
What about the units?



 
What are the units of power? We know that 


 
Power = force * distance/seconds


 
We know that the units of force are 


 
f = m*a = kg*m/s^2


 
We know that the units of time are seconds, and the units of distance are 
meters. Therefore,


 
Power = f*d/time = (kg*m/s^2)*(m/s) = (kg*m^2)/(s^3), or


 
Power = kg*(m^2)*(s^(-3))


 
Plug the right-hand expression into the Google search box and you will learn 
that


 
1 watt = 1 kg*(m^2)*(s^(-3)), or


 
1 watt = 1 N*m/s


 
 
Another viewpoint



 
As explained above, 


 
Power = force*distance/time


 
We learned in earlier modules that velocity is equal to the ratio of 
displacement and time. Therefore,


 
Power = force * velocity


 
Therefore, power is proportional to both force and velocity. A truck in a 
load-pulling contest that moves rather slowly but with great force is powerful.


 
Similarly, a racing motorcycle that moves very fast with relatively little 
force is also powerful.


 
And the great granddaddy of them all, a huge boulder that plows through a 
house at great speed during a landslide is very powerful.




 

 

Sample calculations








 
 
A story of two cranes



 
One crane named A lifts a 1000 kg object to a height of 100 meters in 10 
seconds. Another crane named B requires 100 seconds to do the same thing.


 
Which crane does the most work?


 
Which crane delivers the most power?


 
Solution:


 
Both cranes do the same amount of work by displacing the same object the same 
distance against the force of gravity. The work done is equal to


 
(1000kg*9.8m/s^2)*100m = 980000 joules


 
Crane A delivers 980000 joules in 10 seconds. Therefore, crane A delivers


 
(980000 joules) / (10 seconds) = 98000 watts


 
Crane B delivers 


 
	
(980000 joules) / (100 seconds) = 9800 watts


 
Therefore, crane A delivers the most power.


 
 
Another story about cranes



 
One crane named A lifts a 1000 kg object to a height of 100 meters in 10 
seconds. Another crane named B lifts a 500 kg object to a height of 100 meters 
in 5 seconds.


 
Which crane does the most work?


 
Which crane delivers the most power?


 
Solution:


 
The work done by crane A is 


 
	 	
(1000 kg) * (9.8 (m / (s^2))) * (100 m) = 980000 joules


 
The work done by crane B is


 
(500 kg) * (9.8 (m / (s^2))) * (100 m) = 490000 joules


 
Therefore crane A does the most work.


 
Crane A delivers 980000 joules in 10 seconds. Therefore, crane A delivers


 
(980000 joules) / (10 seconds) = 98000 watts


 
Crane B delivers 


 
	
(490000 joules) / (5 seconds) = 98000 watts


 
Therefore, both cranes deliver the same amount of power.


 
 
Your electric bill



 
An electric bill is often expressed in terms of kilowatt-hours (kwh). One 
kilowatt-hour represents a power expenditure of 1000 watts in one hour.


 
How many joules of energy are represented by 100 kwh?


 
Solution:


 
1 kwh = 1000 watt * 1 hour * 3600 s/hour, or


 
1 kwh = 3.6*10^6 watt*s


 
1 watt = 1 N*m/s, therefore


 
1 kwh = 3.6*10^6 *(N*m/s) * s = 3.6*10^6 N*m


 
1 joule = 1 N*m, therefore


 
1 kwh = 3.6*10^6 joules, and


 
100 kwh = 3.6*10^8 joules




 

Do the



 calculations





 
I encourage you to repeat the calculations that I have presented in this lesson to confirm that you get the same results. Experiment with the scenarios, making changes, and observing the results of your changes. Make certain that you can explain why your changes behave as they do. 




 

Resources








 
I will publish a module containing consolidated links to resources on my 
Connexions web page and will update and add to the list as additional modules 
in this collection are published. 




 

Miscellaneous








 
This section contains a variety of miscellaneous information.



 
Housekeeping material

 	 
Module name: Energy -- Power for Blind Students



	 
File: Phy1200.htm




	 
Keywords:


 	 
physics



	 
accessible



	 
accessibility



	 
blind



	 
graph board



	 
protractor



	 
screen reader



	 
refreshable Braille display



	 
JavaScript



	 
trigonometry



	 
potential energy



	 
work



	 
gravitational potential energy



	 
elastic potential energy



	 
kinetic energy



	 
mechanical energy



	 
total mechanical energy



	 
power



	 
watt

















 
Disclaimers:

 
 
Financial


: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.


 
I also want you to know that I receive no financial compensation from the Connexions website even if you purchase 
	the PDF version of the module.


 
 
Affiliation


: I am a professor of Computer Information 
	Technology at Austin Community College in Austin, TX.
	




 
-end- 
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Preface






 

 

General








 
This module is part of a collection of modules designed to make physics 
concepts accessible to blind students.


 
See





http://cnx.org/content/col11294/latest/



 for the main page of the 
collection and





http://cnx.org/content/col11294/latest/#cnx_sidebar_column



 for the table of 
contents for the collection.


 
The collection is intended to supplement but not to 
replace the textbook in an introductory course in high school or college 
physics. 


 
This module describes one of the ways for creating tactile graphics for the modules in this collection.




 

Prerequisites








 
In addition to an Internet connection and a browser, you will need the 
following tools (as a minimum) to work through the exercises in these modules:


 	 
A graph board for plotting graphs and vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
A protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
An audio screen reader that is compatible with your operating system, 
	such as the NonVisual Desktop Access program (NVDA), which is freely 
	available at 




	http://www.nvda-project.org/



.



	 
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor 
	(



http://www.userite.com/ecampus/lesson1/tools.php



).



	 
A device to create Braille labels. Will be used to label graphs 
	constructed on the graph board.





 
As you will see in this module, there are some additional requirements 
	for creating and exploring tactile graphics. 


 
The minimum prerequisites for understanding the material in these modules 
	include:


 	 
A good understanding of algebra.



	 
An understanding of the use of a graph board for plotting graphs and 
	vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
An understanding of the use of a protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
A basic understanding of the use of sine, cosine, and tangent from 
	trigonometry (



http://www.clarku.edu/~djoyce/trig/



).



	 
An introductory understanding of JavaScript programming (



http://www.dickbaldwin.com/tocjscript1.htm



 and 



http://www.w3schools.com/js/default.asp



).



	 
An understanding of all of the material covered in the earlier modules 
	in this collection.







 

 

Viewing tip








 
 I recommend that you open another copy of this document in a separate 
browser window and use the following links to easily find and view the figures 
while you are reading about them.



 

 

Figures








 	 


Figure 1



. Mirror image from file 1.svg.



	 


Figure 2



. Normal image from file 1.svg.



	 


Figure 3



. Text values for Braille keys in file 
	1.svg. 








 

 

Supplemental material








 
 I recommend that you also study the other lessons in my extensive collection 
of online programming tutorials. You will find a consolidated index at





www.DickBaldwin.com



.





 

 

Discussion








 
I will begin this discussion with a discussion of a type of graphics file 
known as Scalable Vector Graphics file.



 

Scalable vector graphics








 
There are a variety of different formats for storing graphics information in 
disk files. One of those formats, and the one that I have adopted for this 
collection of modules, is called 



Scalable 
Vector Graphics



. Files containing Scalable Vector Graphics information 
typically have an extension of svg, and are often referred to 
simply as svg files.


 
You will find a good explanation of Scalable Vector Graphics in the Wikipedia 
article titled 




Scalable Vector Graphics



.


 
 
Can be scaled without corruption



 
For my purposes, the major advantage of using svg files is that they can be 
enlarged or reduced in size without corrupting the image. For example, the images in the svg files 
that I will provide are designed to be printed on 8.5x11 inch paper stock. 
However, if you have access to a printer that can handle larger paper, you can 
use a program such as the 



free svg editing 
program named Inkscape



 to enlarge the images without corrupting them. You 
can then print the larger images on larger paper stock.




 

Download the svg file








 
You will need to download an svg graphics file named 1.svg to complete the work in 
this module. 



Click this link to download a zip file named 
1004.zip



 containing the file named 1.svg.




 

The need for graphics in physics








 
It is very difficult to learn introductory physics without having access to a variety of 
pictures, charts, and diagrams. Many of you are likely to need those materials 
in tactile form. While we can transmit words, sounds, and 
pictures via the Internet, we still don't have the ability to transmit tactile 
graphics via the Internet.


 
This means that it will be necessary for you to use the svg files that I provide 
and to make your own arrangements for having those files converted into tactile 
graphics.




 

A range of options








 
Depending on the resources that you have available, you have a range of options for the 
creation and exploration of tactile graphics.


 
My plan is to provide the necessary svg graphics files to produce tactile 
graphics for a range of different resources.


 
 
Machine embossing of tactile graphics



 
One of the available options for creating (and exploring) machine-embossed tactile graphics 
(on paper) is the 




IVEO Hands on 
Learning System



 from




ViewPlus Technologies



. 
(See the 



disclaimer



 below.)


 
The svg files that I will provide are intended to be compatible with 
the IVEO Learning System.


 
 
The opposite end of the budgetary spectrum



 
At the opposite end of the budgetary spectrum is the student whose only 
resource for tactile graphics is a human embosser using various tools from a 




tactile graphics kit



 to manually emboss printed versions of the 
svg files. The files (and the supplementary information that I will provide) 
are designed to support manual embossing as well as machine embossing. (The 
file that I will provide for this module is intended for manual 
embossing only. Future modules will include the necessary files for machine 
embossing.)


 
 
Steps



 
There are two steps involved in first creating and then using tactile graphics:


 	 
Embossing a paper copy of the graphic



	 
Exploring the embossed copy of the graphic using touch, and in some 
	cases, sound.





 
 
Embossing the graphic



 
There are at least two ways to emboss the paper copy of the graphic:


 	 
Manual embossing



	 
Machine embossing using a graphics-compatible Braille 
printer such as those 
from 



ViewPlus Technologies



.





 
 
Exploring the graphic



 
There are at least two 
possibilities for exploring the graphic:


 	 
Exploration using touch alone.



	 
Exploration using the IVEO Hands on Learning System with a ViewPlus touchpad, which adds sound to the mix.





 
 
Several combinations available



 
Depending on available resources, individual students might find themselves 
combining either of the two embossing methods with either of the two exploration 
methods. The files that I will provide for many of the modules will be designed to satisfy all 
four possible 
combinations.


 
However, my guess is that most students will find themselves in a situation where they 
are limited to manual embossing and exploration by touch only when they first begin 
studying the modules in this collection. Therefore, I will limit the discussion 
in this module to the use of the svg files for manual embossing. I will explain how to use the svg 
files for the other three combinations in future modules




 

Manual embossing








 
If there is at least one 
	sighted person who is willing to assist you, you should be able to use the 
	svg files that I will provide to create manually-embossed tactile graphics for the images in this 
	collection. I will refer to that sighted person as "your 
	assistant" in the following discussion.


 
 
Description of the scenario



 
This scenario assumes that you don't have access to an embossing 
	printer and you don't have access to the computer and touchpad resources 
	necessary to support the IVEO system. Therefore, you will need to arrange 
	for an assistant to manually emboss the images for you. You will also need to explore the 
	embossed image by touch alone, using the supplementary information that I 
	will provide in this module.


 
 
The file named 1.svg



 
For this scenario, you will need to extract and print the file named 1.svg from 
the zip file mentioned 



earlier



. You could use the 
free IVEO Viewer software to print it on an ordinary non-embossing printer. 
However, since this scenario has no IVEO involvement, it isn't 
necessary to use the IVEO Viewer software to print it. A simple alternative 
approach is to


 	 
Ask the your assistant to open the file 
named 1.svg in either Firefox 5 (or later) or Internet Explorer 9 (or later).



	 
Set Page Setup on the File menu to Portrait or Landscape as appropriate.



	 
Select Print Preview



	 
Use the print scaling capabilities of the browser to make the image as large as will fit on 
	a single page.



	 
Print the file.





 
 
Another alternative



 
Another alternative, (which may do a better job of maintaining the 
actual size of the graphic than either browser mentioned above), is to print the 
file using a free svg drawing program named Inkscape (see




http://inkscape.org/download/



).


 
Inkscape can appear to be rather daunting when it first appears on the 
screen. However, the process of opening a file in Inkscape and printing the file can all 
be handled by making simple selections from the 

 
File


 menu.


 
More importantly, as I mentioned earlier, if your printer can accommodate paper that is 
wider than 8.5 inches, the Inkscape program can also be used to enlarge the image in 
the svg file to provide you with a larger tactile graphic image.


 
 
A scaled version of the graphic



 


Figure 1




 shows a scaled version of the graphic contained in the file 
	named 1.svg for the benefit of your assistant who will emboss the image. 
	Note that this is a mirror image of the image that is to be presented to the 
	student after embossing. Having a mirror image makes it possible for the 
	assistant to emboss the image from the back of the paper, producing the 
	correctly-oriented image on the front of the paper.


	

	

 [image: Missing image]









Figure 3.1. 
 

Mirror image from file 1.svg.

Mirror image from file 1.svg.

 


Figure 2



 shows the same image in normal (not 
	mirror image) orientation.


	

	

 [image: Missing image]









Figure 3.2. 
 

Normal image from file 1.svg.

Normal image from file 1.svg.

 
 
The image



 
This image is provided as a test case to allow you and your assistant to 
experiment and to determine what works best for you. Much of the information and 
many of the objects in the image have to do with things that you haven't learned 
yet, so you shouldn't expect to understand why they are there.


 
Your assistant will probably notice that all of the text is printed 
backwards. This is because the svg file contains a mirror image of the actual 
image. In effect, your assistant will emboss the image from the back side of the 
paper. When 
you turn it over and explore the front side using touch, you will be exploring 
the image in the orientation that it is intended to be viewed.


 
Your assistant will also notice that there is a (reversed) letter in a small 
oblique font to the right (from her viewpoint) of each of the major text 
elements in the image, plus a few other letters in that same font scattered 
throughout the image. These are key characters, which are to be embossed in 
Braille. I will have more to say about this later.


 
 
Manual embossing



 
If your assistant has experience with manual embossing, the two of 
you probably know more about manually embossing tactile graphics than I do. 
However, manual embossing experience is not a requirement. Just about any 
sighted person should be able to emboss the images with your help.


 
 
Mostly straight lines



 
Most of the lines for the images in these modules will either be straight lines 
or gently curving lines that can be embossed using a 
serrated tracing wheel. (Serrated tracing wheels can be purchased at fabric, hobby, or craft stores. 
If there is a choice, ask your assistant to purchase the wheel with the sharpest serrations.) 



 
Just ask your assistant to emboss narrow lines once 
in the center of the line, and to emboss wide lines twice, once on each side of 
the line. Very wide lines can be embossed three times, once on each side and 
once in the center. The use of a straight edge as a guide works very well for straight 
lines. If the line is not straight, your assistant should do her best to follow 
the line with the tracing wheel on a freehand basis.


 
 
A backing pad is required



 
Don't attempt to emboss the image with the paper on a hard surface. You will 
need to place it on a backing pad of some sort so that the serrations will 
penetrate the paper. A block of Styrofoam works pretty well for this purpose, as 
does a piece of corrugated cardboard from a cardboard packing box. Many





tactile graphics kits



 include a backing pad, but those kits are pretty 
expensive and may be overkill for your needs.


 
You may be 
able to identify another inexpensive material for a backing pad that works even better. If 
you do, I would like to hear about it so that I can pass that information along 
to other students.


 
 
Don't emboss the English text characters



 
The most difficult thing about manually embossing the image in 



Figure 1



 
is the task of embossing the English text labels in a form that is accessible to 
a blind student. Therefore, I don't intend for your assistant to emboss that text, 
unless she elects to do so using Braille 



as 
described below



.


 
 
Key characters



 
The image in the file named 1.svg contains 19 strategically placed key 
characters consisting of the characters from A through S. (Other images in other 
modules will have different numbers of key characters.) As mentioned earlier, 
the key characters are printed in a smaller oblique font to make them easily 
distinguishable from the regular text. (They are also printed as a mirror image 
of the actual English character.)


 
 
Emboss the lines and Braille the key characters



 
Your assistant should emboss all of the lines in the image, and should 
replace the smaller, oblique key characters of "A" through "S" with corresponding Braille characters 
using a slate and stylus. This may be the point where you will need to help. If 
your assistant doesn't know Braille, have her place the Braille template over the 
character and tell you what the character is so that you can emboss it yourself.


 
Alternatively, your assistant can find a visual chart showing Braille characters for the alphabet at
Wikipedia. (See





http://en.wikipedia.org/wiki/Braille#Letters_and_numbers



.)


 
 
Make sure the orientation is correct



 
Each Braille character should be embossed in reversed orientation relative to that 
chart. For example, when you turn the paper over 
and touch it, you should recognize the Braille character for an "A" where the key 
value "A" appears (reversed) in English text on the printed mirror image.


 
In addition to the key characters, you or your assistant should emboss a 
Braille label of your own choosing on each image so that you can identify it 
later.


 
 
You may need a flag



 
Some of the key characters, such as the letter "A", with a small number of 
dots may be difficult for you to locate on the embossed image. Therefore, you 
and your assistant may need to emboss some sort of a flag near the Braille 
character to alert you of its presence. One possibility would be to use the 
tracing wheel to emboss a small X next to the Braille key character. If the two 
of you come up with a flag that is both effective and easy to create, I would 
like to hear about it so that I can pass the information along to other 
students.


 
 
Key-value pairs



 


Figure 3




 contains the text values associated with each of the Braille key characters 
shown in 



Figure 1



.


	



 
A: Beam supported by a diagonal cable
B: V
C: H
D: M*g
E: T
F: Ty
G: Tx
H: 30 degrees
I: The large characters are 32 pt and these characters are 16 pt
J: Note: Vectors not drawn to scale
K: Wall supporting beam
L: Vertical support vector at wall
M: Horizontal support vector at wall
N: Beam
O: Weight vector for beam
P: Horizontal component of tension vector
Q: Tension vector
R: Vertical component of tension vector
S: Physical support cable










Figure 3.3. 
 

Text values for Braille keys in file 1.svg.

Text values for Braille keys in file 1.svg.

 
The text values in the right-hand column in 



Figure 3




 are the text values 
	that you would read if all of the text on the image were embossed in 
	Braille. However, embossing all of that text in Braille would make your 
	assistant's job much more difficult. Therefore, in the interest of 
	simplicity, my approach will be to present the text for an individual image 
	as shown in 



Figure 3,



 and to provide Braille key characters on the images 
	that you can use to tie the text to the image.


 
 


 
On the other hand




 


 
If your assistant is good at manually embossing with Braille and can spare 
the time to do so, there is no reason that she can't simply emboss Braille right 
over the printed text. Then, except for keys that refer to objects such as the 
key labeled "M" in 



Figure 2



, you and your assistant 
can simply ignore the keys.


 
 
The intended operational mode



 
The intended operational mode is for you to locate an object of 
	interest on the embossed image, locate the Braille key associated with that 
	object, and then come back to 



Figure 3




 to read the text associated with that 
	object.


 
 
A vector diagram



 
Once you begin exploring the embossed image from the file named 1.svg by touch, you will discover that 
there are several objects on the image that consist of heavy straight lines with 
arrow heads. Those objects are what we will refer to as vectors in subsequent 
modules.


 
This diagram includes a vertical wall on the left side of the 
image. A rectangular beam protrudes horizontally from the wall towards the right 
a little below the vertical center of the image. A supporting cable is attached 
to the right end of the beam at an angle of 30 degrees and attaches back to the 
wall above the point where the beam is attached to the wall.


 
The image shows the vectors associated with various forces in the 
wall-beam-cable configuration along with the beam and the cable in the 
background. This will be a common theme throughout this collection. A picture of 
something will be presented in the background and vectors will be shown in the 
foreground.


 
 
Very light gray shading



 
Your assistant will note that I represented the wall and the beam with a very 
light gray shading and a few widely-spaced dots along the edges. I also 
represented the cable as a dashed line.


 
I'm not sure 
of the best way to emboss the beam and the wall. One approach would be to 
simply use the tracing wheel and emboss the outline of the beam and the wall. 
However, I'm concerned that the addition of the horizontal and 
vertical lines required to do that would make it more difficult for you to 
discern the more important information, which is the 
location and direction of each vector.


 
You and your assistant will probably need to discuss this issue and determine 
what works best for you in terms of identifying the location and shape of the 
beam and the wall. Ideally, you will come up with a solution that can be applied 
to the background pictures in other images in future modules.


 
One option might be to print two copies of the file and ask your assistant to 
emboss only the outer frame and the background picture in one, and to emboss 
everything but the background picture in the other.


 
If you come up with a really good idea in this regard, I 
would like to hear what it is so that I can pass it along to other 
students.





 

Resources








 
I will publish a module containing consolidated links to resources on my 
Connexions web page and will update and add to the list as additional modules 
in this collection are published. 




 

Miscellaneous








 
This section contains a variety of miscellaneous information.



 
Housekeeping material

 	 
Module name: Manual Creation of Tactile Graphics



	 
File: Phy1004.htm




	 
Revised: 07/02/2011



	 
Keywords:


 	 
physics



	 
accessible



	 
accessibility



	 
blind



	 
graph board



	 
protractor



	 
screen reader



	 
refreshable Braille display



	 
JavaScript



	 
trigonometry



	 
tactile graphics



	 
embossing



	 
IVEO

















 
Disclaimers:

 
 
IVEO Learning System


: 
	I have made positive statements about software and equipment from ViewPlus Technologies in this 
	and other modules. That information is provided on the basis of the suitability of the 
	ViewPlus software and equipment for the task at hand. I have no business 
	relationship and receive no compensation in any form from ViewPlus.


 
 
Financial


: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.


 
I also want you to know that I receive no financial compensation from the Connexions website even if you purchase 
	the PDF version of the module.


 
 
Affiliation


: I am a professor of Computer Information 
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Preface






 

 

General








 
This module is part of a collection (see





http://cnx.org/content/col11294/latest/



) of modules designed to make physics 
concepts accessible to blind students. The collection is intended to supplement but not to 
replace the textbook in an introductory course in high school or college 
physics. 


 
This module explains momentum, impulse, and the conservation of momentum in a format that is accessible to blind students.




 

Prerequisites








 
In addition to an Internet connection and a browser, you will need the 
following tools (as a minimum) to work through the exercises in these modules:


 	 
A graph board for plotting graphs and vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
A protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
An audio screen reader that is compatible with your operating system, 
	such as the NonVisual Desktop Access program (NVDA), which is freely 
	available at 




	http://www.nvda-project.org/



.



	 
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor 
	(



http://www.userite.com/ecampus/lesson1/tools.php



).



	 
A device to create Braille labels. Will be used to label graphs 
	constructed on the graph board.





 
The minimum prerequisites for understanding the material in these modules 
	include:


 	 
A good understanding of algebra.



	 
An understanding of the use of a graph board for plotting graphs and 
	vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
An understanding of the use of a protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
A basic understanding of the use of sine, cosine, and tangent from 
	trigonometry (



http://www.clarku.edu/~djoyce/trig/



).



	 
An introductory understanding of JavaScript programming (



http://www.dickbaldwin.com/tocjscript1.htm



 and 



http://www.w3schools.com/js/default.asp



).



	 
An understanding of all of the material covered in the earlier modules 
	in this collection.







 

 

Viewing tip








 
 I recommend that you open another copy of this document in a separate 
browser window and use the following links to easily find and view the figures 
and listings while you are reading about them.



 

 

Figures








 	 


Figure 1



. Solution results. 



	 


Figure 2



. Change in speed only. 



	 


Figure 3



. Change in direction only. 



	 


Figure 4



. Center of mass for two objects. 



	 


Figure 5



. Center of mass for three objects. 







 

 

Listings








 	 


Listing 1



. Solution script. 



	 


Listing 2



. Center of mass for two objects. 



	 


Listing 3



. Change to add a third object. 








 

 

Supplemental material








 
 I recommend that you also study the other lessons in my extensive collection 
of online programming tutorials. You will find a consolidated index at





www.DickBaldwin.com



.





 

 

Discussion








 
This module will describe and discuss some scenarios which, never having been 
seen, may be hard for a blind student to imagine. Some of those scenarios can be difficult to 
believe even when you can see them.



 

Newton's cradle








 
The behavior of Newton's cradle is somewhat difficult to believe even when 
you see it in operation. Newton's cradle is a gadget that is often found in novelty shops. It 
typically consists of an open wood or metal frame with about five steel balls 
suspended by strings on parallel beams that run from one end to the other along 
the top.


 
 
Several steel balls in a row



 
Each ball is suspended by two strings so that the ball forms the lower vertex 
of a triangle and the two equal-length strings form the sides of the triangle. 
Each string is attached at the upper end to a beam. The purpose of suspending 
each ball by two strings instead of suspending them on a single string is to cause all of the balls 
to swing back and forth along the same straight line.


 
 
A collision



 
When the system is in equilibrium, the balls are lined up in a row and each 
ball barely touches the one next to it. If you pull one of the balls at the end 
back and then release it, allowing it to swing down, it will strike its 
neighbor on the downswing.


 
 
Only the ball on the other end appears to move



 
Surprisingly, the neighboring ball doesn't appear to move when struck, nor 
does its neighbor, nor does that neighbor's neighbor. The only ball that appears to move is 
the ball at the far end of the line. That ball will be sent off in an upswing.


 
 
The process is reversed



 
When that ball reaches the top of its upswing, it will reverse direction, 
swing back down, and collide with its neighbor. This causes the ball that was 
used to start the process to be sent off in an upswing.


 
 
The process continues



 
Left alone, this process will continue until all of the energy in the system 
has been dissipated, which can be many minutes or even hours later.


 
Newton's 
cradle illustrates the conservation of momentum. You will find an interesting 
article that explains some of the technical details at





http://en.wikipedia.org/wiki/Newton%27s_cradle.



 




 

Momentum








 
You learned in an earlier module that momentum is the product of the mass of 
an object and the velocity of the object. Because velocity is a vector quantity, 
momentum is also a vector quantity. The direction of the momentum vector is the 
same as the direction of the underlying velocity vector.


 
 
A common symbol for momentum is p



 
A common symbol for momentum is 

 
p


. Momentum is a derived 
item in the SI system of units. In the SI system, momentum is defined as kg*m/s. 


 
 

In equation form



, therefore:


 	 
momentum = mass * velocity, or



	 
p = m * v in units of kg*m/s






 
 
Facts worth remembering -- Momentum



 	 
momentum = mass * velocity, or



	 
p = m * v





 
The units of momentum are kg*m/s




 
 
Mass in action



 
Momentum can also be thought of as "mass in motion." Since all objects have mass, if an object is moving, 
its mass is in motion. Therefore, the object has momentum.


 
 
Proportional to both mass and velocity



 
From the above 



equation



, it can be seen that 
an object can have a large momentum if either its mass or its velocity is large. Both 
variables are of equal importance in determining the momentum of an object. 


 
 
A car and a tennis ball



 
Consider the case of a car and a tennis ball rolling down the street at the 
same speed. Because the car has greater mass, it has more momentum than the 
tennis ball. However, if the car stops and the tennis ball continues to roll, 
the tennis ball then has the greater momentum.


 
 
Momentum is zero at rest



 
The momentum of any object at rest is zero. Objects at rest do not have 
momentum because their mass is not in motion.


 
 
The quantity of momentum



 
The quantity of momentum possessed by an object depends on:


 	 
How much mass is moving, and



	 
How fast the mass is moving.





 
For example, a small mass moving very fast can have the same momentum as a 
large mass moving slowly. You sometimes hear about the major damage that a 
very small piece of space junk moving at a very high speed could do if it were 
to strike the International Space Station.


 
A bullet shot from a firearm has a very small mass, but it has a very high 
velocity. Consequently, it probably has more momentum than a baseball pitched 
from second base to home plate, even though the baseball has much more mass.


 
 
What happened to the dinosaurs?



 
Similarly, you may have heard that an asteroid with a mass that was small 
relative to the mass of the earth but with an extremely high velocity led to the 
extinction of the dinosaurs about 160 million years ago when it collided with 
the earth in the Gulf of Mexico.




 

Impulse








 
 
Momentum can be changed by a force



 
An object with momentum can be stopped if a force is applied against it for a 
given amount of time. For example, when a car approaches a red traffic light, 
the driver applies the brakes. The friction of the tires on the pavement applies a 
force to the car, which eventually reduces the car's velocity to zero. When the 
velocity goes to zero, the momentum also goes to zero.


 
Therefore, the momentum of an object can be changed by applying a force to the object 
over a given period of time.


 
 
Unbalanced forces cause acceleration



 
As you learned in earlier modules, an unbalanced force always accelerates an 
object, either causing the object to speed up or causing the object to slow 
down. Either way, the application of an unbalanced force to an object will change the 
velocity of the object. When the velocity of the object is changed, the momentum 
of the object is changed as well.


 
 
The impulse



 
Let's use what we know from Newton's second law to derive a concept known as


 
impulse


.


 
 
The product of mass and acceleration



 
You learned in an earlier module that force is equal to the product of mass 
and acceleration:


 
F = m * a


 
where


 	 
F represents Force



	 
m represents mass



	 
a represents acceleration





 
 
The rate of change of velocity



 
You also learned that acceleration is the time rate of change of velocity, or


 
a = (v2 - v1)/t


 
where 


 	 
v2 - v1 indicates a change in velocity during a time interval given by 
t.





 
 
Combine and rearrange equations



 
Therefore, by substitution we can write:


 
F = m * (v2 - v1)/t


 
Multiplying both sides by t gives


 
F * t = m * (v2 - v1), or


 
F*t = m*v2 - m*v1


 
where


 	 
F*t represents impulse



	 
m*v2 and m*v1 each represent momentum



	 
m*v2 - m*v1 represents a change in momentum





 
 
A change in momentum



 
At this point, you should recognize that the product of mass and a change in 
velocity is a change in momentum.


 
In physics, the product of force and time is given the name 

 
impulse


. 
It follows, therefore, that 


 
 

impulse



 = F*t = change in momentum


 
This equation is often referred to as the 

 
impulse-momentum change 
equation


.



 
 
Facts worth remembering -- The 


 

 
 
impulse-momentum change 
equation




 
 

impulse



 = F*t = change in momentum


 
F*t = m*v2 - m*v1


 
where


 	 
F*t represents impulse



	 
m*v2 and m*v1 each represent momentum



	 
m*v2 - m*v1 represents a change in momentum









 

The physics of collisions








 
One area of physics where momentum plays a large part is the physics 
of collisions. Momentum and possible changes in momentum are involved in the interactions 
among all moving objects, even when the changes in momentum are not visually 
obvious.


 
For example, the passage of a moving iron object through the magnetic field 
of a moving magnet will cause changes in the momentum of both the iron object 
and the magnet, but the result may not be obvious.


 
 
Collisions may be more obvious



 
The type of interaction 
that we call a collision may be the type of interaction that is the most 
familiar to us. Collisions between objects happen all the time. This module will 
discuss several examples that involve collisions.


 
 
Collisions in everyday life



 
I may be wrong, but I suspect that as a blind student, you may be more 
attuned to collisions in everyday life than your fellow sighted students. 
For example, each time the end of your cane touches an object, a collision has 
occurred. Regardless of how light the touch, you probably recognize that collision and take appropriate action.


 
 
The impulse-momentum change equation



 
A law associated with the impulse-momentum change 




equation



 may be expressed 
in the following way (see





http://www.physicsclassroom.com/Class/momentum/U4l1b.cfm



):


 
 
In a collision, an object experiences a force for a specific amount of time 
that results in a change in momentum. The result of the force acting for the 
given amount of time is that the object's mass either speeds up or slows down 
(or changes direction). The impulse experienced by the object equals the change 
in momentum of the object.



 
In equation form,


 
F * t = m * (v2 - v1)


 
 
All objects in a collision experience an impulse



 
When a collision occurs, each object involved in the collision experiences an impulse. The impulse 
is equal to the change in momentum.


 
 
A hypothetical collision with a punching bag



 
In gyms where students practice boxing, there is usually a large object called a punching 
bag. Some punching bags are large cylindrical containers made of leather or 
some other pliable material filled with something like sand. Typically, they 
hang from the ceiling or from an overhead beam.


 
 
A void below the punching bag



 
Often, the punching bag is not attached to the floor and the bottom of 
the punching bag is often several feet above the floor. This leaves a void between 
the bottom of the punching bag and the floor.


 
 
A walk through the gym



 
Assume that you, as a blind student are walking through a gym that contains 
a punching bag of the type described above. Because of the void, you may not detect the presence of the 
punching bag with your cane and you might walk directly into the punching bag.


 
 
A force over a short period of time



 
Unlike a solid wall, the punching bag probably wouldn't stop your forward 
progress instantly. Instead, there would probably be a period of time during 
which the bag would exert a force on you and you would exert an equal but 
opposite force on the bag. 


 
Initially, both you and the heavy punching bag would probably move in the 
direction that you are walking. Shortly thereafter, your forward 
velocity would probably go to zero.


 
Then the punching bag would probably push you 
backwards giving you a negative velocity as the bag swings like a pendulum. However the collision plays itself out, you would experience an impulse that 
would change your momentum and the momentum of the punching bag as well.


 
 
An ideal assumption



 
If we assume (ideally) that the force exerted on you by the bag is 
constant at ten newtons for a total of five seconds, the impulse would be equal 
to 50*N*s.


 
(In reality, the force would vary during the time interval and the 
computation of the impulse would be somewhat more complicated. For a 
time-varying force, the impulse is the area under a graph of force versus time. 
The average of the force over the given time interval cal also be used to 
compute the impulse when the force is not constant.)


 
 
The effect of the time interval



 
The impulse, or the change in momentum, is equal to the product of the force 
and the time. Therefore, a large force over a short period of time can produce 
the same change in momentum as is produced by a smaller force over a longer 
period of time.


 
The effect on the object experiencing the change in momentum can be quite 
different for the two cases. This is particularly true when the human body 
experiences a change in momentum. Among other things, air bags in cars are 
designed to lengthen the time over which the change in momentum occurs for a 
human body involved in a collision. In addition, the air bag can also spread the 
force over a larger portion of the body, which can reduce the damage to the body 
caused by the change in momentum.


 
 
Another representation of units



 
In any event, if we substitute the units for the newton in the above 
expression, we get


 
50*N*s = 50*(kg*m/s^2)*s = 50*kg*m/s


 
 
Two ways to represent the units of an impulse



 
Therefore, we can represent the units for an impulse as either N*s or as 
kg*m/s. You should recognize the latter as the product of mass and velocity, 
which are the same units as momentum.


 
In a collision, the impulse experienced by an object is always equal to the 
change in momentum experienced by the object.


 
 
A Super Ball



 
Consider the case of a 

 
Super Ball


 bouncing off of a solid concrete floor. 

 

(Super Ball is a brand name and registered trademark of Wham-O Incorporated.)



 
The main characteristic of a Super Ball is its ability to bounce almost as 
high as the height from which it was released when dropped onto a solid surface. 
As a result, when the Super Ball collides with the floor, it demonstrates a strong 

 
rebound effect


. The greater the rebound 
effect, the greater will be the acceleration, momentum change, and impulse in a 
collision.


 
 
A rebound collision



 
A rebound collision involves a change in direction in addition to a change in 
speed. Because the direction changes, there is a large velocity change even if 
the magnitude of the velocity stays the same.


 
 
Elastic collision



 
Collisions in which objects rebound with the same speed (and thus, the same 
momentum and kinetic energy) as they had prior to the collision are known as 


 
elastic collisions


.


 
Stated differently, an elastic collision is a collision between two bodies in 
which the total kinetic energy of the two bodies after the collision is equal to 
their total kinetic energy before the collision. Elastic collisions occur only 
if there is no net conversion of kinetic energy into other forms.



 
 
Facts worth remembering -- Elastic collision



 
An elastic collision is a collision between two bodies in which 
			the total kinetic energy of the two bodies after the collision is 
			equal to their total kinetic energy before the collision.




 
 
Energy conversion



 
A future module will explain kinetic energy and other forms of energy, such 
as potential energy in detail. Briefly, kinetic energy is energy possessed by a 
moving object simply because it is moving. For example, it hurts more to be hit 
by a fast moving baseball than to be hit by a slow moving baseball, simply 
because the collision with a fast moving baseball imparts more energy into your 
body. In other words, the kinetic energy possessed by the fast-moving baseball 
is converted into pain in your body.


 
 
Characteristics of an elastic collision



 
An elastic collision is typically characterized by a large velocity change, a 
large momentum change, a large impulse, and a large force.


 
While the case of a Super Ball bouncing on a solid concrete floor isn't a 
perfect elastic collision, it comes very close. The amount of kinetic energy 
that is converted into other forms of energy during each bounce is very low, and 
the ball will continue bouncing for a very long time with the height of each 
bounce being almost as high as the height of the previous bounce.




 

Action and reaction








 
Two objects collide when they make contact while one or both are moving. As is 
the case with all interactions involving two or more moving objects, a collision 
results in a force being applied to all of the objects involved in the 
collision. The behavior of such collisions is governed by Newton's laws of 
motion.


 
 
Newton's third law



 
One paraphrased version of Newton's third law (see





http://www.physicsclassroom.com/Class/momentum/u4l2a.cfm



) reads:


 
 
... in every interaction, there is a pair of forces acting on the two 
interacting objects. The size of the force on the first object equals the size 
of the force on the second object. The direction of the force on the first 
object is opposite to the direction of the force on the second object. Forces 
always come in pairs - equal and opposite action-reaction force pairs.



 
According to Newton's third law, when two objects are involved in a 
collision, the two objects experience forces that are equal in magnitude and 
opposite in direction.


 
In most cases, the collision will cause one object to gain momentum and the 
other object to lose momentum. This, in turn, will cause one object to speed up 
and the other object to slow down.


 
 
Railroad cars



 
As a child, I grew up living next to a very large railroad yard. I was 
accustomed to hearing the sounds of controlled collisions between railroad cars.


 
 
How railroad couples work



 
The devices that hold railroad cars together in a train are activated by a 
controlled collision. While one railroad car is either standing still, or moving at a 
slow speed, another railroad car purposely collides with the first car. When that 
happens, the two railroad cars become fastened together (coupled).


 
 
The distribution of momentum



 
Prior to the collision, each car possesses a given amount of momentum, which 
can be zero for a car at rest or non-zero for a car in motion. After the 
collision, the momentum of each car will have changed.


 
 
The conservation of momentum -- a preview



 
As I will explain later, 
(except for the conversion of some kinetic energy into other forms, such as sound 
energy) the two cars coupled together will possess the total amount of momentum 
that was possessed by the individual cars prior to the collision. This typically means 
that one car speeds up and the other car slows down.


 
 
A change in momentum



 
During the time frame surrounding the instant of the collision, each car 
experiences a change in momentum. With sufficiently accurate measuring devices, 
you could measure and record the rate of change of momentum during that short 
time frame.


 
 
Accelerations are not necessarily equal



 
Although the forces experienced by the objects are equal in magnitude, the 
changes in velocity (accelerations) experienced by the two objects are not 
necessarily equal.


 
 
The acceleration is equal to...



 
As we learned in an earlier module, the acceleration 
experienced by an object is proportional to the applied force and inversely proportional 
to the mass of the object. Therefore, different masses 
experiencing the same magnitude of force will experience different magnitudes of 
acceleration.


 
 
Kicking a lightweight aluminum can



 
Consider what happens when someone leaves an empty lightweight aluminum drink 
can on the floor and you accidently kick it with your bare foot while walking 
briskly across the room. The can exerts a force on your foot, which fortunately 
doesn't hurt too much because of the small mass of the can. Your foot exerts an 
equal and opposite 
force on the can that probably sends it flying across the room.


 
The velocity of the can changes by a large amount, going from zero to a 
velocity that sends it flying. Thus, the acceleration of the can is large.


 
The velocity of your foot, on the other hand, changes very little at the 
moment of impact as a result of its large mass (although your muscular reaction 
might be such as to slow the foot down shortly thereafter). Thus, the magnitude 
of the acceleration of your foot due solely to the collision is small.


 
 
Kicking a heavy can



 
Now consider the same scenario except that this time, the can contains your brother's collection of rocks. In this case, the 
acceleration of the can due to the collision with your foot would probably be quite small, and 
the (negative) acceleration of your foot due to the collision might be much larger than 
with the lightweight can. 


 
The can of rocks probably wouldn't go flying across the room, but might 
simply turn over, spilling the rocks on the floor.


 
The negative acceleration experienced by your foot might result in some 
broken toes.


 
Once again, the forces would be equal in magnitude and opposite in direction, 
but the acceleration of each object would be inversely proportional to the mass 
of the object.


 
 
Equal and opposite forces



 
When you kick the can, your foot would exert a force on the can in the 
direction of motion of your foot. The can would exert a force on your foot that 
is equal in magnitude but opposite in direction.


 
The forward force on the can would cause it to gain velocity in the direction 
that your foot is moving. The backward force on your foot would cause your foot to slow 
down.


 
 
Equal acceleration



 
In the unlikely event that the mass of the can is exactly equal to 
the mass of your foot, the negative acceleration experienced by your foot would 
be equal to the positive acceleration exerted on the can. That is the one case 
where not only the magnitudes of the forces, but also the magnitudes of the 
accelerations would be equal.


 
For collisions between equal-mass objects, each object experiences the same 
acceleration.




 

Conservation of momentum








 
When two objects interact in an 

 
isolated system


, the total momentum 
of the two objects before the interaction is equal to the total momentum of the 
two objects after the interaction. The momentum lost by one 
object is gained by the other object.



 
 
Facts worth remembering -- Isolated system



 
An isolated system is a system that is free from the influence of a net 
external force that alters the momentum of the system.




 
The total momentum of a collection of objects in a system is conserved. The total amount of momentum is constant.


 
 
Many forms of interaction are possible



 
There are many ways that two objects can interact. For example, when a car 
pulls away from a stoplight, it gains momentum by exerting frictional forces on 
the surface of the earth. When that happens, the earth loses an equal amount of 
momentum. (Fortunately, this represents a very small fraction of the earth's 
momentum, so the loss of momentum isn't noticeable.)


 
When the driver applies the brakes and stops the car at the next stop light 
(by exerting frictional forces on the surface of the earth), the car loses 
all of its momentum and the earth gains an equal amount of momentum. (Once 
again, this represents a very small fraction of the earth's momentum, so the 
gain of momentum isn't noticeable.)


 
 
Railroad cars and controlled collisions



 
Earlier in this module, I described a process where controlled collisions 
are used to couple railroad cars together.


 
While one railroad car is either standing still, or moving at a slow speed, another railroad car purposely collides with that car. When that happens, the two railroad cars become fastened together (coupled).


 
 
Distribution of momentum



 
Prior to the collision, each car possesses a given amount of momentum, which can be zero for a car at rest or non-zero for a car in motion. After the collision, the momentum of each car will have changed.


 
Except for the conversion of some kinetic energy into other forms, such as sound energy, the two cars coupled together will possess the total amount of momentum that was possessed by the individual cars prior to the collision.


 
This typically means that one car speeds up and the other car slows down. 
During the time frame surrounding the instant of the collision, each car 
experiences a change in momentum.


 
 
A logical proof of the conservation of momentum



 
We already know that when two objects interact, each object exerts a force on 
the other object. The two forces are equal in magnitude and opposite in 
direction.


 
We can probably agree that when two objects interact, the amount of time that 
object-A interacts with object-B is the same as the amount of time that object-B 
interacts with object-A.


 
Therefore, if the forces are equal and opposite, and the times are the same, 
we can write


 
Fa*t = -Fb*t


 
where


 	 
Fa and Fb represent forces exerted on objects A and B respectively.



	 
t represents the time during which the objects interact.





 
 
Impulses acting on objects A and B



 
You should recognize these terms as the impulses acting on objects A and B. 
Therefore, the impulses acting on the two objects are equal and opposite.


 
 
Impulses are equal and object



 
You learned earlier that the impulse acting on an object is equal to the 
change in momentum of the object. If the impulses acting on the two objects are 
equal and opposite, then the change in momentum experienced by the two objects 
must be equal and opposite.


 
We can 

 

express this in equation form



 
as


 
ma*(va2 - va1) = -mb*(vb2 - vb1)


 
where


 	 
ma and mb are the masses of objects A and B respectively



	 
(va2 - va1) is the change in velocity of object-A



	 
(vb2 - vb1) is the change in velocity of object-B





 
 
The law of conservation of momentum



 
This equation is a statement of the law of conservation of momentum. The 
change in momentum experienced by object-A is equal to and opposite of the 
change in momentum experienced by object-B.


 
Stated differently, the momentum 
lost by object-A is gained by object-B, or vice-versa.


 
That being the case, the 
total momentum possessed by the system containing object-A and object-B remains 
unchanged by the interaction of the two objects. The total momentum of the 
system is conserved.



 
 
Facts worth remembering -- The law of conservation of momentum



 
For a collision occurring between object-A and object-B in an 
			isolated system, the total momentum of the two objects before the 
			collision is equal to the total momentum of the two objects after 
			the collision. (By total
momentum we mean the vector sum of the individual momenta of the objects.)




 
 
Bowling ball and bowling pins



 
Bowling is a game where the players roll a heavy ball down a long smooth 
wooden platform in an attempt to knock down ten heavy wooden objects (bowling 
pins) arranged in 
a triangle at the end of the platform. The bowling pins are shaped something 
like a flower vase that is larger at the bottom than at the top. Thus, each 
bowling pin has a low center of gravity.


 
When the ball strikes the cluster of bowling pins, there are eleven objects 
involved in a conservation of momentum process. The momentum that is lost by the 
bowling ball is distributed among the ten bowling pins, but the momentum is 
probably not distributed evenly among the bowling pins. There is a lot of chaos 
at the time of impact with the bowling ball colliding with the pins, pins 
colliding with other pins, etc. Some of the energy is also converted to sound.




 

Center of mass








 
Interactions between parts of a system transfer momentum between the parts, 
but do not change the total momentum of the system. We can define a
point called the center of mass that serves as an average location of a system 
of parts. 


 
The center of mass need not necessarily be at a location that is either in or on one of the 
parts. For example, the center of mass of a pair of heavy rods connected at one 
end so as to form a "V" shape is somewhere in space between the two rods.


 
Having determined the center of mass for a system, we can treat the mass of 
the system as if it were all concentrated at the center of mass.



 

Location of the center of mass








 
For a system composed of two masses, the center of
mass lies somewhere on a line between the two masses. The center of mass is a weighted average of the positions of the two 
masses.



 
 
Facts worth remembering -- Center of mass for two objects



 
For a pair of masses located at two points along the x-axis, we can write


 
xcm = (m1*x1/M) + (m2*x2/M)


 
where


 	 
xcm is the x-coordinate of the center of mass



	 
m1 and m2 are the values of the two masses



	 
x1 and x2 are the locations of the two masses



	 
M is the sum of m1 and m2







 
 
Multiple masses in three dimensions



 
When we have multiple masses in three dimensions, the definition of the 
center of mass is somewhat more complicated.



 
 
Facts worth remembering -- Center of mass for many objects



 
 
Vector form:



 
rcm = sum over all i(mi*ri / M)


 
 
Component form:



 
xcm = sum over all i(mi*xi / M)


 
ycm = sum over all i(mi*yi / M)


 
zcm = sum over all i(mi*zi / M)


 
where


 	 
 
Vector form



 	 
rcm is a position vector describing the location of the 
					center of mass



	 
ri are position vectors describing the locations of all 
					the masses



	 
mi are masses for i=1, i=2, etc.








				



	 
 
Component form



 	 
xcm, ycm, and zcm are the locations of the center of mass 
				along 3-dimensional axes.



	 
mi are masses for i=1, i=2, etc.



	 
xi, yi, and zi are the locations of the masses along 
				3-dimensional axes for i=1, i=2, etc.



	 
M is the sum of all of the masses








				









 

Motion of the center of mass








 
It can be shown that in an isolated system, the center of mass must move with constant
velocity regardless of the motions of the individual particles. 


 
It can be shown that in a non-isolated system, if a net external force acts on a system, the 
center of mass does not move
with constant velocity. Instead, it moves as if all the mass were concentrated there into
a fictitious point particle with all the external forces acting on that point.






 

 

Example scenarios








 
This section contains explanations and computations involving momentum, 
impulse, action and reaction, and 
the conservation of momentum.



 

Momentum examples








 
This section contains several examples involving momentum



 

A sprinter








 
Use the Google calculator to compute the momentum of a 70-kg sprinter running 
30 m/s at 0 degrees.


 
Answer: 2100 kg*m/s at 0 degrees




 

A truck








 
Use the Google calculator to compute the momentum in kg*m/s of a 2205-lb 
truck traveling 33.6 miles per hour at 0 degrees when the changes listed below 
occur:


 	 
Initial momentum



	 
Momentum when velocity is doubled 



	 
Momentum at initial velocity when mass is doubled



	 
Momentum when both velocity and mass are doubled





 
Answers:


 
1. Enter the following into the Google calculator and press Enter to produce 
the results shown.


 	 
convert 2205 lb to kg = 1000.17118 kilograms



	 
convert 33.6 mph to m/s = 15.020544 meters / second



	 
1000 kg*15 m/s = 15000 m kg / s





 
Therefore, the initial momentum = 15000*kg*m/s at 0 degrees


 
2. 1000 kg*30 m/s = 30000 m kg / s at 0 degrees


 
3. 2000 kg*15 m/s = 30000 m kg / s at 0 degrees


 
4. 2000 kg*30 m/s = 60000 m kg / s at 0 degrees




 

Change in momentum 
due to change in speed and direction








 
A car with a weight of 10000 newtons is moving in a direction of 90 degrees at 
40 
m/s. After going around a curve in the road, the car is moving in a direction of 
0 degrees at 20 m/s. What is the change in momentum of the car?


 
Solution:


 
While this problem could be solved using the Google calculator, because of 
the number of steps involved, JavaScript is probably a better approach.


 
The solution script for this problem is shown in 



Listing 1



.


Example 19.1. 
 <!---------------- File JavaScript01.html --------------------->
<html><body>
<script language="JavaScript1.3">

//The purpose of this function is to receive the adjacent
// and opposite side values for a right triangle and to
// return the angle in degrees in the correct quadrant.
function getAngle(x,y){
  if((x == 0) && (y == 0)){
    //Angle is indeterminate. Just return zero.
    return 0;
  }else if((x == 0) && (y > 0)){
    //Avoid divide by zero denominator.
    return 90;
  }else if((x == 0) && (y < 0)){
    //Avoid divide by zero denominator.
    return -90;
  }else if((x < 0) && (y >= 0)){
    //Correct to second quadrant
    return Math.atan(y/x)*180/Math.PI + 180;
  }else if((x < 0) && (y <= 0)){
    //Correct to third quadrant
    return Math.atan(y/x)*180/Math.PI + 180;
  }else{
    //First and fourth quadrants. No correction required.
    return Math.atan(y/x)*180/Math.PI;
  }//end else
}//end function getAngle

document.write("Start Script </br>");

var weight = 10000//N
var g = 9.8// m/s^2
//Find the mass of the car
var mass = weight/g;// kg


var ang1 = 90;//initial angle in degrees
var ang2 = 0; //final angle in degrees

var speed1 = 40;//initial speed in m/s
var speed2 = 20;//final speed in m/s

var ang1r = ang1*Math.PI/180;//initial angle in radians
var ang2r = ang2*Math.PI/180;//final angle in radians

//Remember, momentum is a vector quantity and momenta must
// be added and subtracted using vector arithmetic.

//Compute the components of the change in momentum.
var P1x = mass * speed1 * Math.cos(ang1r);
var P1y = mass * speed1 * Math.sin(ang1r);
var P2x = mass * speed2 * Math.cos(ang2r);
var P2y = mass * speed2 * Math.sin(ang2r);
var deltaPx = P2x-P1x;//change in horizontal component
var deltaPy = P2y-P1y;//change in vertical component

//Compute the magnitude of the change in momentum using
// the Pythagorean theorem.
var deltaPm = Math.sqrt(deltaPx*deltaPx + deltaPy*deltaPy);

//Compute the angle of the change in momentum usiing
// trigonometry.
var deltaPa = getAngle(deltaPx,deltaPy);

document.write("The givens." + "</br>");
document.write("weight = " + weight.toFixed(0)
  + " kg</br>");
document.write("speed1 = " + speed1.toFixed(0)
  + " m/s</br>");
document.write("angle 1 = " + ang1.toFixed(0)
  + " degrees</br>");
document.write("speed2 = " + speed2.toFixed(0)
  + " m/s</br>");
document.write("angle 2 = " + ang2.toFixed(0)
  + " degrees</br>");

document.write("Computed mass." + "</br>");
document.write("mass = " + mass.toFixed(0) + " kg</br>");

document.write("Components of momentum vectors." + "</br>");
document.write("P1x = " + P1x.toFixed(0) + "</br>");
document.write("P1y = " + P1y.toFixed(0) + "</br>");
document.write("P2x = " + P2x.toFixed(0) + "</br>");
document.write("P2y = " + P2y.toFixed(0) + "</br>");

document.write("Components of momentum change vectors."
  + "</br>");
document.write("deltaPx = " + deltaPx.toFixed(0) + "</br>");
document.write("deltaPy = " + deltaPy.toFixed(0) + "</br>");

document.write("Magnitude and angle of change vector."
  + "</br>");
document.write("deltaPm = " + deltaPm.toFixed(0)
  + " m kg/s</br>");
document.write("deltaPa = " + deltaPa.toFixed(0)
  + " degrees</br>");

document.write("End Script");

</script>
</body></html>



 
The comments in 



Listing 1



 explain the steps involved 
in finding the solution.


 
The output produced by 



Listing 1



 is shown in 




Figure 
1



 with the magnitude and angle of the vector that describes the change of 
momentum at the end.


	



 Start Script 
The givens.
weight = 10000 kg
speed1 = 40 m/s
angle 1 = 90 degrees
speed2 = 20 m/s
angle 2 = 0 degrees
Computed mass.
mass = 1020 kg
Components of momentum vectors.
P1x = 0
P1y = 40816
P2x = 20408
P2y = 0
Components of momentum change vectors.
deltaPx = 20408
deltaPy = -40816
Magnitude and angle of change vector.
deltaPm = 45634 m kg/s
deltaPa = -63 degrees
End Script 









Figure 19.1. 
 

Solution results.

Solution results.

 
I find it interesting that the magnitude of the change in momentum is 
	greater than the magnitude of either the initial or final momentum.




 

Change in 
	momentum due to change in speed only








 
What happens if the car in the previous example changes speed but doesn't 
change direction.


 
Solution:


 
Change the given conditions in the script in Listing 1 to those shown at the 
beginning of 



Figure 2



.


	



 Start Script 
The givens.
weight = 10000 kg
speed1 = 40 m/s
angle 1 = 90 degrees
speed2 = 20 m/s
angle 2 = 90 degrees
Computed mass.
mass = 1020 kg
Components of momentum vectors.
P1x = 0
P1y = 40816
P2x = 0
P2y = 20408
Components of momentum change vectors.
deltaPx = -0
deltaPy = -20408
Magnitude and angle of change vector.
deltaPm = 20408 m kg/s
deltaPa = 270 degrees
End Script 









Figure 19.2. 
 

Change in speed only.

Change in speed only.

 
This change causes the car to slow down, but to continue in the same 
	direction. As a result, the angle of the change in momentum is an angle that 
	is opposite to the direction that the car is moving. The magnitude of the 
	change in momentum depends entirely on the initial and final speeds.




 

Change in 
momentum due to change in direction only








 
What happens if the car in the previous example changes direction but doesn't 
change speed?


 
Solution:


 
Change the given conditions in the script in 



Listing 1



 to those shown at the 
beginning of 



Figure 3



. This scenario simulates the car 
making a 10-degree turn to the right without changing speed.


	



 Start Script 
The givens.
weight = 10000 kg
speed1 = 40 m/s
angle 1 = 90 degrees
speed2 = 40 m/s
angle 2 = 80 degrees
Computed mass.
mass = 1020 kg
Components of momentum vectors.
P1x = 0
P1y = 40816
P2x = 7088
P2y = 40196
Components of momentum change vectors.
deltaPx = 7088
deltaPy = -620
Magnitude and angle of change vector.
deltaPm = 7115 m kg/s
deltaPa = -5 degrees
End Script 









Figure 19.3. 
 

Change in direction only.

Change in direction only.




 

Impulse examples








 
This section contains several examples involving the impulse.



 

Pushing a wagon part 1








 
1. What is the impulse experienced by pushing a 10-kg wagon that was 
initially at rest, with a constant force of 2 newtons for a period of 3 seconds?


 
Answer:


 
The impulse is given by the product of force and time. The mass of the wagon 
is superfluous for this question.


 
impulse = 2 N * 3 s = 6*N*s




 

Pushing a wagon part 2








 
2. What is the acceleration of the wagon in question 1 above?


 
Answer:


 
Now we do need to know the mass.


 
The most straightforward solution comes from the fact that we know the mass 
and that the force is uniform. Therefore,


 
F = m*a, or


 
a = F/m = 2N/10kg = 0.2 m/s^2


 
A more interesting solution comes from the fact that since


 
impulse = F*t, and


 
F = m*a, then


 
impulse = m*a*t, or


 
a = impulse/(m*t) = 6*N*s/(10*kg*3*s) = 0.2 m/s^2




 

Pushing a wagon part 3








 
3. What is the velocity at the end of the 3-second interval in question 1 
above.


 
Answer:


 
The impulse is equal to the change in momentum, and the initial velocity is 
0.


 
impulse = m*(v2 - v1) = m*v2, or


 
v2 = impulse/m = 6*N*s/(10*kg) = 0.6 m/s


 
We can check that answer by knowing that the acceleration is uniform at 0.3 
m/s^2 for 3 s = 0.6 m/s.





 

Action and reaction example








 
 
A dip in the pool



 
You have a body mass of 70 kg. You are on your knees on an inflatable raft in 
a swimming pool. The raft has a mass of 1 
kg. Your outstretched hands are about two meters from a safety rope that is strung across the pool.


 
You decide to launch yourself from the raft to catch the rope, exerting a force 
with a horizontal component of 
5 newtons. (You assume that the vertical component of your launching force will 
take care of the downward pull of gravity, allowing you to fly in a parabolic 
arc to the rope.) Assuming uniform acceleration (which is unrealistic but we 
will assume that anyway), how long will it take you to fly 
through the air to reach the rope?


 
Answer:


 
The force that you exert on the raft will be equal and opposite to the force 
that the raft exerts on you. Therefore,


 
F = my*ay = -mr*ar


 
where


 	 
my and mr are the mass of you and the raft respectively



	 
ay and ar are the accelerations experienced by you and the raft 
	respectively





 
Therefore


 
ay = F/my = 5N/70kg = 0.07143 m/s^2 toward the rope


 
ar = -F/mr = -5N/1kg = -5.00000 m/s^2 away from the rope


 
We learned in an earlier module that given a constant acceleration, the 
distance traveled versus time is:


 
d = v0t + 0.5*a*t^2


 
In this case, v0 is zero, so


 
d = 0.5*ay*t^2, or 


 
t = sqrt(d/(0.5*ay)), or


 
t = sqrt(2m/(0.5*0.07143m/s^2)) = 7.48324 seconds


 
I doubt that you will stay in the air long enough to reach the rope.


 
During that time period, the raft will travel the following distance in the 
opposite direction (assuming no resistance from the water).


 
d = 0.5*ar*t^2, or


 
d = 0.5*(-5m/s^2)*(7.48324s)^2 = -140 meters




 

Conservation of momentum example








 
 
Railroad cars



 
Getting back to my example of coupling railroad cars, when the collision has 
been completed, the two masses have effectively been joined into a single mass 
and they are moving at the same velocity.


 
In that case, we can write the above 




equation



 as


 
ma*(v2 - va1) = -mb*(v2 - vb1)


 
ma*v2 +mb*v2 = ma*va1 +mb*vb1


 
v2 = (ma*va1 +mb*vb1)/(ma + mb)


 
where


 	 
ma an mb represent the masses for Car-A and Car-B respectively



	 
v2 is the velocity of the coupled cars after the collision



	 
va1 and vb1 represent the initial velocities for Car-A and Car-B 
	respectively





 
Then for any set of assumed mass values for the railroad cars and assumed 
values for the initial velocities, we can calculate the final velocity of the 
coupled pair of railroad cars.


 

 
Scenario #1: Assume that the two railroad cars are just alike and empty 
giving them the same mass. Also assume that the initial velocity for Car-A is 10 
m/s and the initial velocity for Car-b is 0. 


 
Question: What would be the final velocity of the coupled railroad cars?


 
Answer: For this scenario, we have


 
v2 = (ma*va1 +mb*vb1)/(ma + mb), or


 
v2 = (ma*10)/2*ma = 5 m/s


 
The final velocity of the pair of coupled cars is half the initial velocity 
of the car that was moving.


 

 
Scenario #2: Now assume that due to loading, Car-A has twice the mass of 
Car-B, the initial velocity for Car-A is 10m/s and the initial velocity for 
Car-B is 0. 


 
Question: What would be the final velocity of the coupled railroad cars?


 
Answer: For this scenario, we have


 
v2 = (ma*va1 +mb*vb1)/(ma + mb), or


 
v2 = (ma*va1)/(ma + 0.5ma), or


 
v2 = ma*10/1.5*ma = 6.67 m/s


 
When the car at rest is less massive than the car in motion, the final 
velocity is a little higher than when the two cars have the same mass.


 

 
Scenario #3: Finally, assume that due to loading, Car-A has twice the mass of 
Car-B, the initial velocity for Car-A is 10m/s and the initial velocity for 
Car-B is 5m/s.


 
Question: What would be the final velocity of each railroad car?


 
Answer: For this scenario, we have


 
v2 = (ma*va1 +mb*vb1)/(ma + mb), or


 
v2 = (ma*10 +0.5ma*5)/(1.5*ma), or


 
v2 = (10/1.5) + (0.5*5/1.5) = 8.33 m/s


 
When both cars are already moving in the same direction, the final velocity 
in that direction is greater than when one of the cars is stationary.




 

Center of mass examples








 
This section contains solutions to problems involving the center of mass.



 

Two objects








 
Two objects are located on a flat lawn with the following mass values and 
locations:


 	 
obj1m = 15 kg



	 
obj1x = 1 m



	 
obj1y = 5 m



	 
obj2m = 3 kg



	 
obj2x = 4 m



	 
obj2y = 2 m





 
What are the coordinates of the center of mass?


 
Solution:


 
A JavaScript script that will solve this problem is shown in




Listing 2



.


Example 19.2. 
 <!---------------- File JavaScript02.html --------------------->
<html><body>
<script language="JavaScript1.3">

document.write("Start Script </br>");

//Create arrays for mass,xCoor, and yCoor values;
var mass = new Array(15,3);
var xCoor = new Array(1,4);
var yCoor = new Array(5,2);

//Declare a counter variable.
var cnt = 0;

//Use a loop to compute total mass by summing the individual
// mass values.
var massTotal = 0;
for(cnt = 0;cnt < mass.length;cnt++){
  massTotal += mass[cnt];
}//end for loop

//Use a loop to compute x-coordinate of the center of mass
// by summing the normalized sum of products.
var cmX = 0;
for(cnt = 0;cnt < mass.length;cnt++){
  cmX += mass[cnt]*xCoor[cnt]/massTotal
}//end for loop

//Use a loop to compute y-coordinate of the center of mass
// by summing the normalized sum of products.
var cmY = 0;
for(cnt = 0;cnt < mass.length;cnt++){
  cmY += mass[cnt]*yCoor[cnt]/massTotal
}//end for loop

//Display the results
document.write("massTotal = " + massTotal + " kg</br>");
document.write("cmX = " + cmX + " meters</br>");
document.write("cmY = " + cmY + " meters</br>");

document.write("End Script");

</script>
</body></html>



 
The comments describe how the problem is solved.


 
The output is shown in 



Figure 4



.


	



 Start Script 
massTotal = 18 kg
cmX = 1.5 meters
cmY = 4.5 meters
End Script









Figure 19.4. 
 

Center of mass for two objects.

Center of mass for two objects.

 
The x-coordinate for the center of mass is 1.5 meters, and the 
	y-coordinate for the center of mass is 4.5 meters.




 

Three objects








 
Three objects are located on a flat lawn with the following mass values and 
locations:


 	 
obj1m = 5 kg



	 
obj1x = 1 m



	 
obj1y = 1 m



	 
obj2m = 5 kg



	 
obj2x = 3 m



	 
obj2y = 1 m



	 
obj3m = 10 kg



	 
obj3x = 2 m



	 
obj3y = 3 m





 
What are the coordinates of the center of mass?


 
Use the code from 



Listing 2



 but make the change 
shown in 



Listing 3



 in order to populate the world with 
three objects having different mass values and different coordinates.


Example 19.3. 
 //Create arrays for mass,xCoor, and yCoor values;
var mass = new Array(5,5,10);
var xCoor = new Array(1,3,2);
var yCoor = new Array(1,1,3);


 
The output is shown in 



Figure 5



.


	



 Start Script 
massTotal = 20 kg
cmX = 2 meters
cmY = 2 meters
End Script









Figure 19.5. 
 

Center of mass for three objects.

Center of mass for three objects.





 

Do the calculations








 
I encourage you to repeat the calculations that I have presented in this lesson to confirm that you get the same results. Experiment with the scenarios, making changes, and observing the results of your changes. Make certain that you can explain why your changes behave as they do. 




 

Resources








 
I will publish a module containing consolidated links to resources on my 
Connexions web page and will update and add to the list as additional modules 
in this collection are published. 




 

Miscellaneous








 
This section contains a variety of miscellaneous information.



 
Housekeeping material

 	 
Module name: Force and Motion -- Momentum, Impulse, and Conservation of Momentum for Blind Students



	 
File: Phy1160.htm




	 
Keywords:


 	 
physics



	 
accessible



	 
accessibility



	 
blind



	 
graph board



	 
protractor



	 
screen reader



	 
refreshable Braille display



	 
JavaScript



	 
trigonometry



	 
conservation of momentum



	 
momentum



	 
Newton's cradle



	 
impulse



	 
action and reaction

















 
Disclaimers:

 
 
Financial


: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.


 
I also want you to know that I receive no financial compensation from the Connexions website even if you purchase 
	the PDF version of the module.


 
 
Affiliation


: I am a professor of Computer Information 
	Technology at Austin Community College in Austin, TX.
	




 
-end- 
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Preface






 

 

General








 
This module is part of a collection (see





http://cnx.org/content/col11294/latest/



) of modules designed to make physics 
concepts accessible to blind students. The collection is intended to supplement but not to 
replace the textbook in an introductory course in high school or college 
physics. 


 
This module explains rotational kinetic energy and inertia in a format that 
is accessible to blind students.




 

Prerequisites








 
In addition to an Internet connection and a browser, you will need the 
following tools (as a minimum) to work through the exercises in these modules:


 	 
A graph board for plotting graphs and vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
A protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
An audio screen reader that is compatible with your operating system, 
	such as the NonVisual Desktop Access program (NVDA), which is freely 
	available at 




	http://www.nvda-project.org/



.



	 
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor 
	(



http://www.userite.com/ecampus/lesson1/tools.php



).



	 
A device to create Braille labels. Will be used to label graphs 
	constructed on the graph board.





 
The minimum prerequisites for understanding the material in these modules 
	include:


 	 
A good understanding of algebra.



	 
An understanding of the use of a graph board for plotting graphs and 
	vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
An understanding of the use of a protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
A basic understanding of the use of sine, cosine, and tangent from 
	trigonometry (



http://www.clarku.edu/~djoyce/trig/



).



	 
An introductory understanding of JavaScript programming (



http://www.dickbaldwin.com/tocjscript1.htm



 and 



http://www.w3schools.com/js/default.asp



).



	 
An understanding of all of the material covered in the earlier modules 
	in this collection.







 

 

Viewing tip








 
 I recommend that you open another copy of this document in a separate 
browser window and use the following links to easily find and view the material 
listed below while you are reading about it.




 

 

Facts worth remembering








 	 


Rotational inertia






	 


Translational and Rotational Kinetic Energy






	 


Finding the rotational inertia






	 


The parallel axis theorem






	 


Examples of rotational inertia










 

 

Supplemental material








 
 I recommend that you also study the other lessons in my extensive collection 
of online programming tutorials. You will find a consolidated index at





www.DickBaldwin.com



.





 

 

Discussion








 
What do we mean by rotational kinetic energy and rotational inertia?



 

Introduction








 
In an earlier module, you learned of Newton's first law, which can be 
paraphrased something like the following:


 
 
Newton's first law



 
Every body (that has mass) in a state of rest tends to remain at rest. 
Similarly, every body (that has mass) in a state of motion tends to remain in 
motion in a straight line. In both cases, the body tends to remain in its 
current state unless compelled to change its state by external forces acting 
upon it.


 
This law is sometimes referred to as the "Law of Inertia" -- objects that 
have mass don't like to change their velocity.


 
 
Newton's second law



 
Newton's second implies (once again paraphrasing) that the tendency to remain 
in the state of rest or motion depends on the amount of mass possessed by the 
body.


 
The greater the mass, the greater must be the external force required to 
cause the body to change its state by a given amount. You will recognize this as 
being characterized by the equation that tells us that acceleration (change of 
velocity) is proportional to the applied force and inversely proportional to the 
amount of mass.


 
 
Rotating rigid bodies



 
Similar considerations also apply to the rotation of rigid bodies. In the 
case of rigid-body rotation, however, it isn't simply the amount of mass that is 
important. The geometrical distribution of that mass also has an impact on the 
reluctance of a rotating body to change its state. We refer to this as 

 

rotational inertia


, which is sometimes called the 

 
moment of inertia


.


 
 
Rotational inertia or moment of inertia?



 
Rotational inertia and moment of inertia are simply two 
				names that mean the same thing (some authors prefer one, other 
				authors prefer the other)


 
I don't have a preference for either, but for consistency with the textbook 
currently being used for introductory physics courses at the college where I 
teach, I will use the term 

 
rotational inertia


 instead of 

 
moment of inertia


.


 
 
An example



 
For example, the same amount of mass can be used to create 


 	 
a tall solid 
cylinder with a small radius or 



	 
a thin disk with a large radius or 



	 
a very thin disk with most of the mass concentrated around the outer 
	circumference of the disk.





 
When rotated 
about its central axis, either disk has a greater rotational inertia than the 
cylinder, and the disk with most of its mass concentrated around the outer 
circumference has a greater rotational inertia than the other two.


 
The rotational inertia increases as the mass is moved further from the axis 
of rotation, and the effect is proportional to square of that distance. 
As a result, given that the total mass is the same in all three cases, a greater external force is required to cause 
either disk to change 
its rotational state than is required to cause the cylinder to change its 
rotational state.


 
 
Work and kinetic energy



 
You also learned in an earlier module that work must be done on an object to 
cause it to have kinetic energy, and the kinetic energy possessed by an object 
is proportional to one-half of the product of the object's mass and the square 
of its velocity.


 
KE = (1/2)*m*v^2


 
where


 	 
KE represents translational kinetic energy



	 
m represents mass



	 
v represents velocity





 
 
The rotational kinetic energy of a rotating body



 
When I was a youngster, I learned the hard way that a rotating rigid object 
has rotational kinetic energy. I had my bicycle turned upside down resting on the seat and 
the handle bars with the rear wheel turning very fast. I was using a long thin 
triangular file to chip mud off of the bicycle. I accidentally allowed one 
end of the file to come in contact with the tread on the spinning bicycle tire 
and ended up with a file sticking in the palm of my hand. Although I didn't know 
the technical term for rotational kinetic energy at the time, I did learn what 
rotational kinetic energy can do.




 

Calculating rotational kinetic energy








 
In principle, at least, we could calculate the rotational kinetic energy 
possessed by that spinning bicycle wheel by 


 	 
decomposing it into a very large number of small particles of mass,



	 
computing the kinetic energy of each particle of mass, and



	 
computing the sum of the kinetic energy values possessed by all of the 
	particles of mass.





 
That would be a difficult computation. We need a simpler way to express the 
rotational kinetic energy of a rotating rigid body.


 
 
A simpler way



 
There is a simpler way that 
is based on the tangential speed of each particle of mass and the 
angular velocity of the rotating object. 


 
You should recall that when the angular 
velocity is expressed in radians per second, the tangential speed of a point on 
the circumference of a circle is given by


 
v = r * w


 
where


 	 
v represents the tangential speed of the point in meters per second



	 
r represents the radius of the circle in meters



	 
w represents the angular velocity in radians per second





 
Thus, the tangential speed of our hypothetical particle of mass is equal to 
the product of the distance of that particle from the center of rotation (the 
axle on my upturned bicycle) and the angular velocity of the wheel.


 
 
Terminology



 
The convention is to use the Greek letter omega to represent angular 
velocity, but I decided to use the "w" character because


 	 
your Braille pad probably can't display the Greek letter omega



	 
the Greek letter omega looks a lot like a lower case "w"





 
 
Back to the bicycle wheel



 
Therefore, if we consider the bicycle wheel to be made up of an extremely 
large 
number of particles of mass, each located at a fixed distance from the axle, the kinetic energy of each particle would be given by


 
KEr = (1/2)*m*v^2, or


 
KEr = (1/2)*m*(r*w)^2, or


 
KEr = (1/2)*m*(r^2)*(w^2)


 
where all of the terms in this equation were defined earlier except for 


 	 
KEr, 
which represents rotational kinetic energy.





 
 
The total rotational kinetic energy of the bicycle wheel



 
Then the total rotational kinetic energy of the bicycle wheel would be


 
 

KErt



 = (1/2)*(sum from i=0 to i=N(mi*ri^2))*w^2


 
where


 	 
KErt represents the total rotational kinetic energy of the wheel



	 
mi represents the ith mass particle in a set of N mass particles



	 
ri represents the distance of the ith mass particle from the axis of 
	rotation



	 
w represents angular velocity in radians per second





 
 
Summation



 
It is conventional to use the Greek letter sigma to represent the sum with 
subscripts and superscripts providing the limits of the sum. However, since your 
Braille display probably won't display the Greek letter sigma with subscripts 
and superscripts, we will have to settle for something like 

 
"sum from i=0 to i=N"


 
to mean the same thing.


 
 
Factoring out like terms



 
Note that then entire wheel rotates at the same angular velocity, so we can 
(and did) factor the (1/2) and the w^2 out of the summation equation given above.


 
 
Integral calculus is the key



 
Regardless of how difficult it may seem to you to perform the summation given 
above, when you complete a course in integral calculus, you will have learned 
how to do that sort of thing for a variety of geometric shapes such as solid 
cylinders, hollow cylinders, solid spheres, hollow spheres, squares, rectangles, 
rods, etc. As a result, engineering and physics handbooks contain tables with 
this sort of information for a variety of common geometrical shapes.


 
(There is also such a table at





http://en.wikipedia.org/wiki/List_of_moments_of_inertia



, but if you are a 
blind student, your accessibility equipment may not be able to read it 
reliably.)




 

The rotational inertia (I)








 
Getting back to the earlier equation for 



rotational kinetic 
energy



, the quantity in parentheses cannot change for a given geometric 
shape. The distance between each mass particle and the axis of rotation stays 
the same for a rigid body, and the mass of each mass particle doesn't change. It 
is conventional to give the quantity in parentheses the symbol I (upper-case 
"I") and refer to it as either the 

 
rotational inertia


, or the 

 

moment of inertia


.


 
Therefore, using the terminology from the earlier equation for




rotational kinetic energy



,



 
 
Facts worth remembering -- 

 

Rotational Inertia






 
 

I = sum from i=0 to i=N(mi*ri^2)





 
where


 	 
I represents rotational inertia



	 
SI units for rotational inertia are kg*m^2



	 
mi represents the ith mass particle in a set of N mass 
				particles



	 
ri represents the distance of the ith mass particle from the 
				axis of rotation







 
 
Translational versus rotational kinetic energy



 
Given that information, let's form an analogy between translational kinetic 
energy from an earlier module and rotational kinetic energy from this module.



 
 
Facts worth remembering -- 
	

 

Translational and Rotational Kinetic 
	Energy






 
Kt = (1/2)*m*v^2


 
Kr = (1/2)*I*w^2


 
where


 	 
Kt represents translational kinetic energy



	 
Kr represents rotational kinetic energy



	 
m represents mass in kg



	 
v represents translational velocity in m/s



	 
I represents rotational inertia in kg*m^2



	 
w^2 represents angular velocity in radians per second







 
 
Comparing the terms



 
When we compare the terms in the two expressions, we see that angular 
	velocity in one case is analogous to translational velocity in the other 
case.


 
We also see that the rotational inertia in one expression is analogous to the 
mass in the other expression.




 

Mass is no longer absolute








 
As I explained earlier, mass is an absolute in 
translational terms. The translational inertia depends directly on the amount of 
mass.


 
However, mass is not an absolute in rotational terms. The rotational 
inertia for rotation depends not only upon the amount of mass 
involved, but also on how that mass is geometrically distributed within the object relative to the axis of 
rotation.


 
 
A measure of inertia



 
In translational terms, mass is a measure of the inertia of an object, or how 
difficult it is to cause the object to change its translational velocity.


 
In rotational terms, for a rigid rotating object, the rotational inertia ( I 
), is a measure of how hard it is to cause the object to change its 
angular velocity.


 
 
Finding the rotational inertia



 
Here are a few tips on how you might go about finding the rotational inertia 
of an object.



 
 
Facts worth remembering -- 
	

 

Finding the rotational inertia






 	 
If the object consists of a small number of parts in an easily-handled 
	geometric configuration, and you know the mass and position of each part, 
	you may be able to estimate the rotational inertia by evaluating the 
	expression given earlier for the 



rotational 
				inertia



.



	 
For symmetrical objects with simple geometric shapes, you may be 
			able to use calculus to perform the summation given earlier for the 
				



rotational inertia



.



	 
Because the rotational inertia is a sum, you may be able to decompose the
object into several parts, find the rotational inertia for each part, and then 
				add them together.



	 
You may be able to apply the 




				parallel axis theorem



 in conjunction with item 3.







 
 
The rotational axis is very important



 
The rotational inertia for an object depends heavily on the location of the axis of rotation. 
For example, some vehicles have doors on the back that are hinged on one side. 
Other vehicles have doors on the back that are hinged at the top. Given a door 
that has a rectangular shape, but which is not a square, the rotational inertia 
when the door is 
hinged on the side would be different from when the door is hinged at the top.


 
Assuming that both doors have the same mass, and are fastened to the vehicle 
with the same orientation, the center of mass for one 
arrangement would be further from the hinge than for the other arrangement. The 
arrangement for which the center of mass is further from the hinge would have the 
greater rotational inertia.


 
 
A simple experiment



 
Pick up an eight-foot piece of 2x4 lumber, grasp it near one end, and try 
swinging it like a baseball bat. You should find that to be relatively difficult 
because it has a large rotational inertia when rotated around its end. (It also 
has a lot torque due to gravity when supported only at the end. Torque will be 
the topic for a future module.)


 
Then grasp it in the center and rotate it as far as you can without hitting 
your body. You should find that to be somewhat easier because it has a smaller 
rotational inertia when rotated around its center than when rotated around its 
end.


 
I will have more to say about this later in this module.




 

The parallel axis theorem








 
It is possible to determine the rotational inertia of an object about 
any axis if we can determine the rotational inertia of that same object about a 
parallel axis that goes through the center of mass of the object.


 
I will explain this in much more detail in the dumbbell scenario later in 
this module.



 
 
Facts worth remembering -- 

 

The parallel axis theorem






 
The total rotational inertia of an object about a chosen axis is 


 	 
the
				rotational inertia about a parallel axis passing through the 
				object's center of mass, plus



	 
the
				rotational inertia of the center of mass, treated as a point 
				mass, about the chosen axis.





 
We can express this theorem in equation form as


 
Itotal = M*D^2 + Icm


 
where


 	 
Itotal is the total rotational inertia of the object



	 
M is the mass of the object



	 
D is the distance from the center of mass of the object to 
				the chosen axis



	 
Icm is the rotational inertia of the object through a 
				parallel axis that passes through the object's center of mass









 

Examples of rotational inertia








 
In this section, I will attempt to describe some simple geometric shapes and 
provide the formula for the rotational inertia for each shape. This information 
is largely based on information gleaned from





http://en.wikipedia.org/wiki/List_of_moments_of_inertia



. 


 
 
Terminology



 
Unless I specify otherwise, the axis of rotation will be the axis of 
symmetry, such as at the center of a wheel. Also, unless I specify otherwise, 


 	 
r represents the radius



	 
m represents the mass






 
 
Facts worth remembering -- 
	

 

Examples of rotational inertia






 
 
Thin hollow cylindrical shape or hoop



 
Think of a can of beans without the beans and without the end caps.


 
I = m*r^2


 
 
Solid cylinder or disk



 
I = (1/2)*m*r^2


 
 
Thick-walled cylindrical tube with open ends, of inner radius r1, 
			and outer radius r2



 
I = (1/2)*m*(r1^2 + r2^2)


 
 
Thin rectangular plate of height h and width w with axis 
			of rotation in the center, perpendicular to the plate



 
I = (1/12)*m*(h^2 + w^2)


 
 
Solid sphere



 
I = (2/5)*m*r^2


 
 
Then hollow spherical shell



 
I = (2/3)*m*r^2


 
 
Thin rod of length L



 
Axis of rotation is perpendicular to the end of the rod.


 
I = (1/3)*m*L^2


 
 
Thin rectangular plate of width L and height H



 
Axis of rotation is along the edge of the plate parallel to the H 
			dimension and perpendicular to the width L.


 
I = (1/3)*m*L^2


 
 
Thin rod of length L



 
Axis of rotation is through the center of the rod.


 
I = (1/12)*m*L^2


 
 
Thin rectangular plate of width L and height H



 
Axis of rotation is along the center of the plate parallel to the 
			H dimension perpendicular to the width L.


 
I = (1/12)*m*L^2







 

 

Example scenarios








 
I will apply some of what we have learned to several different scenarios in this section.



 

The 2x4 scenario








 
Returning to the earlier example, pick up an eight-foot piece of 2x4 lumber, 
grasp it near one end, and try swinging it like a baseball bat. 


 
Then grasp it in the center and rotate it as far as you can without hitting 
your body.


 
How does the rotational inertia with the axis at the end compare with the rotational 
inertia with the axis at the center? What is the ratio of the two?


 
 
Solution:



 
Although this may not be a good approximation, we will use the formulas for a 
thin rectangular plate of height h and width z from





http://en.wikipedia.org/wiki/List_of_moments_of_inertia



. (A 2x4 isn't very 
thin so this may not be a good approximation.)


 
When rotated around the end,


 
Iend = (1/3)*(m*h^2) + (1/12)*(m*z^2)


 
When rotated around the center,


 
Icen = (1/12)*(m*h^2 + m*z^2)


 
where


 	 
Iend is the rotational inertia with the axis of rotation at the end



	 
Icen is the rotational inertia with the axis of rotation at the center



	 
m is the mass



	 
h is the height



	 
z is the width (I avoided the use of w because I have been using that 
	character for angular velocity.)





 
 
Define the numeric values



 
Let h = 96 inches and z = 3.75 inches (a 2x4 really isn't 2 inches thick and 
4 inches wide)


 
Let mass = 1kg. We don't know what the mass of a 2.4 is. However, it will 
cancel out when we compute the ratio of the two cases. We can use any value so 
long as we don't ascribe any credibility to the absolute rotational inertia 
value.


 
 
Substitute numeric values for symbols



 
Iend = (1/3)*(1kg*(96inches)^2) + (1/12)*(1kg*(3.75 inches)^2)


 
Plugging this expression into the Google calculator gives us:


 
Iend = 1.98 m^2 kg


 
(Remember, however, that this isn't an accurate absolute value because we 
aren't using the actual mass of a piece of 2x4 lumber.)


 
Icen = (1/12)*(1kg*(96inches)^2 + 1kg*(3.75inches)^2)


 
The Google calculator gives us


 
Icen = 0.496 m^2 kg


 
 
And the ratio is...



 
If I formulated the problem correctly before plugging the 
expressions into the Google calculator, the ratio


 
Iend/Icen = (1.98 m^2 kg)/(0.496 m^2 kg) = 3.99


 
Therefore, it should have been about four times as difficult to swing the 2x4 
like a baseball bat than to spin it at its center. (The downward torque caused 
by gravity probably made it seem even worse that that.)




 

The dumbbell scenario








 
Among other things, this scenario illustrates the




parallel axis theorem



.


 
Consider a dumbbell, or a barbell, whichever you choose to call it. This 
object consists of two identical solid spheres, each with mass M. The centers of 
mass of the spheres are separated by a distance L. The radius of each sphere is R.


 
The spheres are connected by a thin rod with mass m of length d. Thus, the 
length of the rod is L-2*R.


 
Find the rotational inertia of the dumbbell about an 
axis at the center of and perpendicular to the rod.


 
 
Solution:



 
The total rotational inertia of the dumbbell about the chosen axis consists of the sum of three parts:


 	 
The rotational inertia of one sphere about that axis.



	 
The rotational inertia of the other sphere about that same axis.



	 
The rotational inertia of the rod about that axis.





 
 
There are really five items in the sum



 
We learned from the 



parallel axis 
theorem



 that the first two items in the above list are each made up of the 
sum of two items:


 	 
The rotational inertia of a sphere about an axis passing through the 
	sphere's center of mass
    



	 
The moment of inertia of the center of mass of the sphere, treated as a point particle, about the chosen axis.
	





 
We learned from the earlier 




Examples of rotational inertia



 that the rotational inertia of a solid sphere 
about an axis through its center of mass is


 
Isphere = (2/5)*M*R^2


 
We learned in 



Rotational inertia



 that the 
rotational inertia of a point mass rotating about a chosen axis is


 
I = M*r^2, or in this case


 
I = M*(L/2)^2


 
Thus, the rotational inertia of each sphere about the chosen axis is the sum 
of those two, or


 
Isphere_axis = (2/5)*M*R^2 + M*(L/2)^2


 
The total rotational inertia of the dumbbell will be twice this value plus 
the rotational inertia of the rod about the chosen axis. We learned in




Examples of rotational inertia



 
that the rotational inertia about the chosen axis for the rod is


 
Irod = (1/12)*m*d^2


 
This, the total rotational inertia of the dumbbell about the chosen axis is


 
Itotal = Irod + 2*Isphere_axis, or


 
Itotal = (1/12)*m*d^2 + 2*((2/5)*M*R^2 + M*(L/2)^2)


 
Because the length of the rod, d is


 
d = L-2*R


 
We could substitute this expression for d giving us


 
Itotal = (1/12)*m*(L-2*R)^2 + 2*((2/5)*M*R^2 + M*(L/2)^2)


 
which reduces the expression down to include


 	 
m represents the mass of the rod



	 
L represents the distance between the centers of mass of the two spheres



	 
R represents the radius of each sphere



	 
M represents the mass of each sphere





 
I will leave it as an exercise for the student to assign typical numeric 
values to each of those variables and to compute the rotational inertia of a 
dumbbell. 


 
Another good exercise for the student would be to replace the spheres with 
disks having the same mass and compare the rotational inertia of the two 
configurations.




 

A pulley and two objects, part 1








 
In this scenario, a friction-free pulley with a mass M and a rotational 
inertia I is suspended from a beam. A cord is threaded around the pulley and two 
objects with masses of m1 and m2 are fastened to the ends of the cord.


 
The cord will not stretch and will not slip on the surface of the pulley.


 
When the two objects are held at the same level with the cord taut and 
released simultaneously, one may move up and the other may move down, depending 
of the relative mass values of the two objects. Because the cord cannot stretch, 
the magnitude of the velocity of each object must be the same.


 
Ignoring air resistance, write a general equation for the magnitude of the 
velocity of each object after each object has moved a distance h.


 
 
Solution:



 
With no friction and no air resistance, all forces acting on the system are 
conservative. Therefore, the mechanical energy of the system must be preserved.


 
deltaU + deltaK = 0


 
where


 	 
deltaU is the change in potential energy



	 
deltaK is the change in kinetic energy





 
Since the pulley mechanism is in equilibrium, the only potential energy 
possessed by the system that can change is the gravitational potential energy of 
the two objects. Therefore, when the objects move, the gravitational potential 
energy of the two objects is converted into translational kinetic energy of the 
objects and rotational kinetic energy of the pulley.


 
 
Changes in potential energy of the system



 
In order to keep our algebraic signs straight, we will assume that m1 is greater than 
(or possibly equal to) m2. As a result, when the objects move, m1 will move down 
and m2 will move up.


 
This will result in the following changes in the potential energy of the 
system.


 
deltaU1 = -m1*g*h


 
deltaU2 = +m2*g*h


 
where


 	 
deltaU1 and deltaU2 represent the changes in gravitational potential 
	energy for m1 and m2 respectively.



	 
g represents the acceleration of gravity.



	 
h represents the magnitude of the change in height of each object.





 
 
The mechanical energy of the system



 
The mechanical energy of the system includes the translational kinetic energy 
of each of the two objects plus the rotational kinetic energy of the pulley.


 
deltaK = (1/2)*(m1+m2)*v^2 + (1/2)*I*w^2


 
where


 	 
m1 and m2 are the mass values for each object



	 
v is the magnitude of the translational velocity of each object



	 
I is the rotational inertia of the pulley



	 
w is the angular velocity of the pulley





 
 
Translational speed versus tangential speed



 
Because the cord cannot slip on the pulley, the tangential speed of a 
point on the edge of the pulley must be equal to the translational speed of the 
objects.


 
This tangential speed at the edge of the pulley is related to the angular 
velocity of the pulley as follows


 
v = w*R, or


 
w = v/R


 
Where 


 	 
v is the tangential speed of a point on the edge of the pulley, which is also the 
	speed of the cord, which is also the speed of each object.



	 
w is the angular velocity of the pulley.



	 
R is the radius of the pulley.





 
 
Substitute, combine terms, and simplify



 
Substitution of v/R for w yields


 
deltaK = (1/2)*(m1+m2)*v^2 + (1/2)*I*(v/R)^2


 
Combining potential and kinetic energy yields


 
deltaU + deltaK = -m1*g*h + m2*g*h 


 

+ 
(1/2)*(m1+m2)*v^2 + (1/2)*I*(v/R)^2 = 0


 
Simplification yields


 
(1/2)*(m1+m2)*v^2 + (1/2)*I*(1/R^2)*v^2 = (m1 - m2)*g*h


 
Solving for v^2 yields


 
v^2 = (2*(m1 - m2)*g*h)/((m1+m2) + I*(1/R^2)), or


 
The 

 

general equation



 for velocity is


 
v = ((2*(m1 - m2)*g*h)/((m1+m2) + I*(1/R^2)))^(1/2)




 

A pulley and two objects, part 2








 
Make the following assumptions:


 
The pulley is a uniform disk with a mass, M, of 1 kg and a radius, R, of 1 meter.


 
m1 = 2 kg


 
m2 = 1 kg


 
h = 0.5 m


 
Find the velocity v.


 
 
Solution:



 
Referring back to 



Examples of 
rotational inertia



, and changing the notation to match that being used in 
this scenario, we find that the rotational inertia for the pulley is


 
I = (1/2)*M*(R)^2


 
 
The rotational inertia



 
Let's begin by computing the rotational inertia of the pulley.


 
I = (1/2)*1kg*(1m)^2, or


 
I = 0.5*(m^2)*kg


 
 
Substitute values other than rotational inertia



 
 

Substituting values into



 the 



general equation



 
yields


 
v = ((2*(2kg - 1kg)*(9.8m/s^2)*0.5m)/((2kg+1kg) + I*(1/(1m)^2)))^(1/2)


 
where we still have the rotational inertia as a variable.


 
We will use this equation again later in this module.


 
 
Substitute the value for rotational inertia



 
 

Substituting the value



 for rotational 
inertia computed above gives us


 
v = ((2*(2kg - 1kg)*(9.8m/s^2)*0.5m)/((2kg+1kg) + (0.5*(m^2)*kg)*(1/(1m)^2)))^(1/2)


 
We will also use this equation again later in this module.


 
Assuming that I managed to get all of that done without making an error, the 
velocity is


 
v = 1.67 m/s




 

A pulley and two objects, part 3








 
Assume the same conditions as in 




part 2



, except that m2 = m1 = 2 kg, what is the velocity?


 
 
Solution:



 
Starting with the equation from 



above



 and replacing each 
occurrence of 1kg with 2kg yields


 
v = ((2*(2kg - 2kg)*(9.8m/s^2)*0.5m)/((2kg+2kg) + (0.5*(m^2)*kg)*(1/(1m)^2)))^(1/2)


 
Using the Google calculator to solve this equation tells us that


 
v = 0 m/s.


 
This is what we should expect for the two objects having the same mass. Each object has an equal desire to fall toward the earth, 
so they balance one another, causing the 
system to be in equilibrium.




 

A pulley and two objects, part 4








 
Go back to the conditions for 



part 
2



 except instead of assuming that the pulley is a uniform disk, assume that 
the pulley approximates a 

 
"thick-walled cylindrical tube with open ends, of inner 
radius r1, and outer radius r2"


. 


 
For this configuration, we can approximate the rotational inertia as


 
I = (1/2)*m*(r1^2 + r2^2) (see 




Examples of rotational inertia



)


 
For example, think of a pulley that looks something like a bicycle wheel with very lightweight spokes connecting the outer rim to 
the axle.


 
Let r1 = 0.9*r2 and let the mass be unchanged.


 
Find the velocity.


 
 
Solution:



 
Given that the inner radius is 0.9 times the outer radius and 
the mass is unchanged, we can 

 

approximate



 the rotational inertia 
for this pulley with


 
I = (1/2)*M*((0.9*R)^2 + R^2)


 
 
The rotational inertia



 
Let's compute the rotational inertia for this pulley.


 
I = (1/2)*1kg*((0.9*1m)^2 + (1m)^2), or


 
I = 0.905 (m^2)*kg


 
As you can see, the rotational inertia for this configuration is almost 
double the rotational inertia for the uniform disk configuration.


 
 
Start with the original equation



 
Go back and get the 



original equation



 
that contains numeric values but still has the rotational inertia as a variable.


 
v = ((2*(2kg - 1kg)*(9.8m/s^2)*0.5m)/((2kg+1kg) + I*(1/(1m)^2)))^(1/2)


 
 
Substitute the rotational inertia



 
Replace the rotational inertia, I, with the




approximate



 rotational inertia for our new pulley.


 
v = ((2*(2kg - 1kg)*(9.8m/s^2)*0.5m)/((2kg+1kg) + (0.905 (m^2)*kg)*(1/(1m)^2)))^(1/2)


 
Once again, if I managed to get through all of that without making an error, 
the velocity is


 
v = 1.58 m/s


 
 
Analysis



 
Comparing this value with the velocity from 



part 2



, , we see that the velocity 
was reduced from 1.67 m/s to 1.58 m/s due to the increase in the rotational 
inertia of the pulley.


 
This is what we should expect. Increasing the rotational 
inertia of the pulley causes it to take longer to accelerate given the same 
external force that is causing it to change its angular velocity and acquire 
rotational kinetic energy.




 

A pulley and two objects, part 5








 
Let's make one more adjustment to the geometry of the pulley and observe the 
effect that it has on the system.


 
Keep all of the parameters the same as




part 4



 except let the radius of 
the pulley, R, be 10m.


 
Find the velocity.


 
 
Solution:



 
Begin by computing the rotational inertia of the new pulley.


 
I = (1/2)*M*((0.9*R)^2 + R^2), or


 
I = (1/2)*1kg*((0.9*10m)^2 + (10m)^2), or


 
I = 90.5 (m^2)*kg


 
Note that the rotational inertia is proportional to the square of the radius. 
Therefore, increasing the radius by a factor of 10 caused the rotational inertia 
to be increased by a factor of 100.


 
Generally speaking, moving the concentration of mass further 
from the axis of rotation will increase the rotational inertia.


 
 
Start with the original equation as before



 
Going back and getting the 



original equation



 
that contains numeric values but still has the rotational inertia as a variable, 
we have.


 
v = ((2*(2kg - 1kg)*(9.8m/s^2)*0.5m)/((2kg+1kg) + I*(1/(1m)^2)))^(1/2)


 
 
Substitute the new rotational inertia



 
Replacing the rotational inertia, I, with the rotational inertia for our new pulley 
yields.


 
v = ((2*(2kg - 1kg)*(9.8m/s^2)*0.5m)/((2kg+1kg) + (90.5 (m^2)*kg)*(1/(1m)^2)))^(1/2)


 
Solving this equation with the Google calculator tells us that the new 
velocity value is 


 
v = 0.323 m/s


 
which is much lower than the velocity for either




part 2



 or




part 4



.




 

An Atwood machine








 
In case you want to learn more about this topic, the arrangement of the 
pulley and the objects that we have been discussing is commonly called an Atwood 
machine. The device was invented in 1784 by Rev. George Atwood as a laboratory experiment to verify the mechanical laws of motion.




 

A flywheel








 
A flywheel is a device that is commonly used to smooth out the irregularities 
of angular velocity in rotational motion. For example, in the age of steam engines, the 
rotational motion was powered only during a portion of each cycle, and was 
coasting during the remainder of the cycle. Unless corrected, therefore, a 
loaded steam engine output shaft would speed up and slow down once during each 
rotation of the shaft.


 
 
The correction



 
Most steam engines employed a large flywheel that was turned by the output 
shaft to cause the angular velocity to 
remain relatively constant despite the fact that rotational power was applied 
during only a portion of the cycle.


 
When rotational power was applied to the output shaft, the shaft turned the 
flywheel. When rotational power was not applied to the output shaft, the 
flywheel turned the shaft. Because the flywheel had a large rotational inertia, 
it preferred to turn at a near constant angular velocity.


 
Physically, the flywheels were usually large 
wheels with spokes and most of the mass distributed in a rim at the 
circumference of the wheel. This configuration produced a large rotational 
inertia for a given amount of mass and a given amount of available space.





 

What have we learned?








 
Perhaps the most important thing for you to take away from this module is 
that 


 	 
although the rotational inertia of a rotating object is influenced by 
	the mass of the object,



	 
it is also very heavily influenced by the geometrical distribution of 
	that mass.





 
Two rotating objects having exactly the same mass can have entirely different 
rotational inertia values (moments of inertia).


 
For example, a flywheel with the bulk of its mass concentrated a large 
distance from the axis of rotation is much more effective in smoothing out the 
angular velocity of the device than would be a flywheel with the same mass 
concentrated in a small radius near the axis of rotation.




 

Work through the examples








 
I encourage you to work through the examples that I have presented in this lesson to 
confirm that you get the same results. Experiment with 
the examples, making changes, and observing the results of your changes. Make 
certain that you can explain why your changes behave as they do. 




 

Resources








 
I will publish a module containing consolidated links to resources on my 
Connexions web page and will update and add to the list as additional modules 
in this collection are published. 




 

Miscellaneous








 
This section contains a variety of miscellaneous information.



 
Housekeeping material

 	 
Module name: Angular Momentum -- Rotational Kinetic Energy and Inertia for Blind Students



	 
File: Phy1300.htm




	 
Keywords:


 	 
physics



	 
accessible



	 
accessibility



	 
blind



	 
graph board



	 
protractor



	 
screen reader



	 
refreshable Braille display



	 
JavaScript



	 
trigonometry



	 
rotational kinetic energy



	 
rotational inertia



	 
moment of inertia



	 
Atwood machine



	 
flywheel

















 
Disclaimers:

 
 
Financial


: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.


 
I also want you to know that I receive no financial compensation from the Connexions website even if you purchase 
	the PDF version of the module.


 
 
Affiliation


: I am a professor of Computer Information 
	Technology at Austin Community College in Austin, TX.
	




 
-end- 
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Preface






 

 

General








 
This module is part of a collection of modules designed to make physics 
concepts accessible to blind students.


 
See





http://cnx.org/content/col11294/latest/



 for the main page of the 
collection and





http://cnx.org/content/col11294/latest/#cnx_sidebar_column



 for the table of 
contents for the collection.


 
The collection is intended to supplement but not to 
replace the textbook in an introductory course in high school or college 
physics.


 
This module explains force and center of gravity in a format that is accessible to blind students.




 

Prerequisites








 
In addition to an Internet connection and a browser, you will need the 
following tools (as a minimum) to work through the exercises in these modules:


 	 
A graph board for plotting graphs and vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
A protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
An audio screen reader that is compatible with your operating system, 
	such as the NonVisual Desktop Access program (NVDA), which is freely 
	available at 




	http://www.nvda-project.org/



.



	 
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor 
	(



http://www.userite.com/ecampus/lesson1/tools.php



).



	 
A device to create Braille labels. Will be used to label graphs 
	constructed on the graph board.



	 
The ability to create tactile graphics as described at
	




	http://cnx.org/content/m38546/latest/



.





 
The minimum prerequisites for understanding the material in these modules 
	include:


 	 
A good understanding of algebra.



	 
An understanding of the use of a graph board for plotting graphs and 
	vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
An understanding of the use of a protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
A basic understanding of the use of sine, cosine, and tangent from 
	trigonometry (



http://www.clarku.edu/~djoyce/trig/



).



	 
An introductory understanding of JavaScript programming (



http://www.dickbaldwin.com/tocjscript1.htm



 and 



http://www.w3schools.com/js/default.asp



).



	 
An understanding of all of the material covered in the earlier modules 
	in this collection.



	 
An understanding of the creation and use of tactile graphics as 
	described at 




	http://cnx.org/content/m38546/latest/



.







 

 

Viewing tip








 
 I recommend that you open another copy of this document in a separate 
browser window and use the following links to easily find and view the figures 
while you are reading about them.



 

 

Figures








 	 


Figure 1



. Mirror image from the file named Phy1120a1.svg. 



	 


Figure 2



. Non-mirror-image version of the image from the file named Phy1120a1.svg. 



	 


Figure 3



. Key-value pairs for the image in the file named Phy1120a1.svg.



	 


Figure 4



. Mirror image from the file named 
	Phy1120b1.svg. 



	 


Figure 5



. Non-mirror-image version of the image 
	from the file named Phy1120b1.svg. 



	 


Figure 6



. Key-value pairs for the image in the 
	file named Phy1120b1.svg.








 

 

Supplemental material








 
 I recommend that you also study the other lessons in my extensive collection 
of online programming tutorials. You will find a consolidated index at





www.DickBaldwin.com



.





 

 

General background 
information








 
 
The gravitational constant



 
The gravitational constant, G, is a constant that is used in the calculation of the gravitational attraction between objects with mass. 
The value of G is approximately:


 
G = 6.67 * 10^(-11) *m^3*kg^(-1)*s^(-2), or


 
G = 6.67 * 10^(-11) N*(m/kg)^2


 
According to the law of universal gravitation, the attractive force (F) between two bodies is proportional to the product of their masses (m1 and m2), and inversely proportional to the square of the distance (r) between them:


 
F = G*m1*m2/r^2


 
 
Newton's law of gravitation



 
Newton's law of gravitation proposes that every small element of matter, m, 
attracts every other small element of matter, m' with a force that is 
proportional to the product of the masses and inversely proportional to the 
square of the distance between them, so that at the small element level,


 
F = G*m*m'/r^2


 
As a result, we tend to fall toward the earth unless we are supported by 
upward forces, such as the floor that we are standing on.


 
 
An important simplification



 
It would be very difficult to deal with the attraction of gravity if we were 
required to deal with every object (including the earth) in terms of the many 
small elements of mass that make up the object.


 
Newton simplified that 
process by proving mathematically that the earth regarded as a sphere attracts a 
body as if the whole mass of the earth were concentrated at its center.


 
 
Almost parallel forces



 
The 
attraction of the earth on the elements of our body produces forces on those 
elements that are almost parallel. Those forces lie along lines that all end at 
a point that is almost 4000 miles beneath the surface of the earth.


 
At that distance, each pair of force lines forms the sides of a triangle with 
extremely long sides, an extremely small angle, and an extremely narrow base. As 
a practical matter, therefore, 
we can assume that those forces are parallel insofar as estimating the effect 
that the sum of all of those elemental forces have on our bodies.


 
 
The center of gravity C.G.



 
It can be proved that:


 
 
The resultant of the weights of all the elements of a rigid body passes 
through a certain fixed point commonly called its center of gravity, C.G., regardless 
of the orientation of that body relative to the earth.



 
For purposes of computations involving statics, the mass of a rigid body may be considered as if 
concentrated at it C.G., and its weight may be considered to center 
at this same point.


 
(Recall that the weight of an object is the force required to cause the mass 
of that object to fall toward the center of the earth with an acceleration of 
approximately 32.2 ft/s^2 or 9.81 m/s^2.)


 
 
A plumb-bob or plummet



 
A plumb-bob or a plummet is a weight, usually with a pointed tip on the bottom, that is suspended from a string and used as a vertical reference line, or plumb-line.


 
When the string is attached to an object that is fixed relative to the surface 
of the earth and the plummet is allowed to hang down, it will eventually (when 
it stops swinging) point directly at the center of mass of the earth.


 
 
Common uses for a plummet



 
The plummet is most commonly used in construction projects to ensure that constructions are "plumb", or vertical.


 
It is also used in land surveying to set a surveying instrument exactly over 
a fixed survey marker, or to transcribe positions onto the ground for placing a 
marker.


 
 
Experimental verification of the C.G.



 
I'm aware that as a blind student, you probably can't perform this 
experiment, but hopefully you can imagine it.


 
 
Make a hanger



 
Use a plummet to draw a vertical line on a flat, smooth, vertical surface 
(such as a wall). Drive a finishing nail (a nail with a small head) into the 
surface on the vertical line allowing a small portion of the nail to stick 
out. Cause the nail to be as 
horizontal as practical.


 
 
Make an irregular object



 
Cut an irregular shape out of a piece of flat cardboard and punch several 
holes around the perimeter of the shape.


 
 
Perform the experiment



 
Using several holes in succession, including holes on all four sides of the 
cardboard, hang the cardboard on the nail in such a way that the cardboard is 
free to swing and settle into a stable orientation.


 
Once the cardboard stops swinging, mark the point on the bottom of the 
cardboard that coincides with the vertical line that you drew on the vertical 
surface.


 
After you have done this several times, draw lines from each hole to the 
corresponding mark 
that you made on the opposite edge of the cardboard. All of these lines should 
cross at a single point. That point is the C.G. for that particular 
irregular shape of cardboard.


 
 
Modify the experiment



 
Cut regular shapes of cardboard such as rectangles, triangles, hexagons, 
octagons, etc, and repeat the experiment with those shapes. Observe the location 
of the C.G. for those shapes.


 
 
Rectangular shapes



 
You should find that the C.G. for a rectangular piece of 
cardboard is at the center of the rectangle. This should be the case for all 
rectangles ranging from squares to long skinny rectangles (although it may 
difficult to measure for long skinny rectangles.)


 
 
Triangular shapes



 
The C.G. for a triangular shape should be at the intersection of 
its medians.


 
In case you have forgotten, the median of a triangle is a line segment from a vertex of the triangle to the midpoint of the side opposite that vertex. Because there are three vertices, there are 
three medians. No matter what shape the triangle, all three medians intersect at a single point, 
which is called the centroid of the triangle. That point would also be the C.G. 
for a triangular-shaped piece of cardboard.


 
 
The doughnut hole



 
Cut a piece of cardboard in the general shape of a doughnut or tire with a 
hole in the middle and 
perform the experiment using that shape. Observe that the C.G. can 
be located in the doughnut hole. The C.G. of an object doesn't have to be in a 
solid part of the object.


 
 
A void in a 3D object



 
It is also possible for the C.G. to be located in a cavity in a 
three-dimensional object. For example, the C.G. for a small section 
of cylindrical pipe that is cut square on both ends would be in the center of 
the void half way between the ends of the pipe.




 

 

Discussion and computations









 

Creation of tactile graphics








 
The module titled Manual Creation of Tactile Graphics at





http://cnx.org/content/m38546/latest/



 explained how to create tactile 
graphics from svg files that I will provide.


 
If you are going to have an assistant create tactile graphics for this 
module, you will need to 



download the file named 
Phy1120.zip



, which contains the svg files for this module. Extract the svg 
files from the zip file and provide them to your assistant.


 
Also, if you are going to use tactile graphics, it probably won't be 
necessary for you to perform the graph board exercises. However, you should 
still walk through the graph board exercises in your mind because I will often 
embed important physics concepts in the instructions for doing the graph board 
exercises.


 
In each case where I am providing an svg file for the creation of tactile 
graphics, I will identify the name of the appropriate svg file and display an 
image of the contents of the file for the benefit of your assistant. As 
explained at 




http://cnx.org/content/m38546/latest/



, those images will be mirror images of 
the actual images so that your assistant can emboss the image from the back of 
the paper and you can explore it from the front.


 
I will also display a non-mirror-image version of the image so that your 
assistant can easily read the text in the image.


 
Also in those cases, I will provide a table of key-value pairs that explain 
how the Braille keys in the image relate to text or objects in the image.




 

Equilibrium: stable, unstable, and neutral








 
When a vertical line through the C.G. of a body falls within the area covered 
by the supporting 
base, the body can rest in equilibrium. A body in equilibrium can be further 
qualified as being either stable, unstable, or neutral.


 	 
Stable equilibrium: If a body at rest receives a small displacement and tends to return to its 
former position, that body is said to be in stable equilibrium.



	 
Unstable equilibrium: If that body 
tends to move further away, then that body is said to be in unstable 
equilibrium.



	 
Neutral equilibrium: If it does neither, the body is said to be in neutral equilibrium.





 
 
A practical example



 
Consider the case of a round pencil, sharpened on one end and flat on 
the other end. If you lay the pencil flat on the table and give it a very small 
push, it will move and then stop. That pencil is said to be in 

 
neutral


 
equilibrium. It doesn't tend to return to its original position, and except for 
rolling a small distance as a result of inertia, it doesn't tend to move further 
away.


 
 
Balance it on the flat end



 
If you balance the pencil on its flat end and give it a very small push at 
the other end, it will tip slightly and then return to its original position. 
This assumes that you don't push it beyond its tipping point, which we will 
discuss in more detail later. 


 
The pencil in this configuration is said to be in 

 
stable


 equilibrium. The key 
to success is 
that you don't tip it so far that a vertical line through the C.G. moves outside 
the circle that defines the area of the supporting base of the pencil.


 
 
Balance it on its point



 
Assume that you rub the pencil lead back and forth a few times to slightly 
flatten the pointed end. If you were able to balance the pencil on that very 
small flattened surface, and then blow on the pencil very lightly, it would 
probably tip over and fall flat on the table. The smaller the flattened surface 
supporting the pencil, the easier it would be to cause it to tip over. The 
pencil in that state would be said to be in 

 
unstable


 
equilibrium.


 
 
Stability is important



 
Stability is very important for many things such as boats and airplanes. 
Usually, the lower the C.G., the 
more stable will be the object.


 
 
A high-wire artist



 
For example, a high-wire artist at the circus may carry a long flexible pole, 
perpendicular to the wire held near the center of the pole at about thigh height. 
In this case, the supporting surface is the feet on the wire.


 
The flex in the pole allows the ends of the pole, and conceivably a large portion 
of the pole to hang lower than the soles of the feet. This has the effect of 
lowering the C.G. of the combination of the person and the pole considerably. If 
the C.G. is below the supporting surface, which in this case is the soles of the 
feet, the combination of the person and the pole will be very stable.


 
 
Cargo ships



 
The people that load cargo ships try to keep the C.G. of the loaded ship low 
in the hull of the ship. Sometimes they add extra weight called ballast very low 
in the hull to get the C.G. as low as possible.


 
 
Cargo aircraft



 
The people that load large military cargo aircraft are very careful how they 
load the cargo in order to control the location of the C.G. of the aircraft to 
maintain stability of the aircraft. The position of the C.G. relative to the 
axis of the wings is very important.


 
 
Children's toys



 
When my children were young, they had toys with a round bottom and something 
like a clown's head on the top. The toys had a heavy 
weight inside and very close to the bottom. This caused the C.G. to be very low in the toy. 
When the child pushed the toy over, it would return to an upright position. The 
toy was very stable.




 

An exercise involving the 
tipping point








 
Let's see if we can demonstrate stability or the lack thereof with a thought experiment. 
Begin by drawing 
two rectangles on your graph board side by side. Make each rectangle 2 units wide 
and five units tall.


 
 
 

Two boxes






 
Pretend that these rectangles represent side views of two cardboard boxes 
with dimensions of 2x2x5 ft. Assume that each box contains identical heavy 
material at one 
end and the remainder of the box is filled with very light packing material. 
Assume that the heavy contents are at the bottom of the left box and at the 
top of the right box. (The boxes and their contents are just alike, but one is 
upside down relative to the other.)


 
 
Tactile graphics



 
The file named Phy1120a1.svg contains an image that represents this scenario. 
The image shows two boxes, as described 



above



, tipped over to 




their tipping 
points



.


 


Figure 1



 shows the mirror image that is contained in 
that file for the benefit of your assistant who will create the tactile graphic 
for this exercise.


 [image: Missing image]

Figure 16.1. 
 

Mirror image from the file named Phy1120a1.svg.

Mirror image from the file named Phy1120a1.svg.

 


Figure 2



 shows a non-mirror-image version of the same 
image.


 [image: Missing image]

Figure 16.2. 
 

Non-mirror-image version of the image from the file named Phy1120a1.svg.

Non-mirror-image version of the image from the file named Phy1120a1.svg.

 


Figure 3



 shows the key-value pairs that go with the 
image in the file named Phy1120a1.svg.


	



 m: An exercise involving the tipping point
n: Tipping point = 45 degrees
o: Tipping point = 14 degrees
p: Center of gravity
q: Center of gravity
r: 45 degrees
s: 76 degrees
t: W
u: W
v: File: Phy1120a1.svg
w: Floor
x: Box
y: Box









Figure 16.3. 
 

Key-value pairs for the image in the file named Phy1120a1.svg.

Key-value pairs for the image in the file named Phy1120a1.svg.

 
 
Mark the C.G. of each box



 
Getting back to your drawing, assume that the C.G. of the left box is one foot up from the bottom and the 
C.G. of the right box is one foot down from the top (4 feet up from the bottom). 
In both cases, the C.G. is at the horizontal center of the box. Insert a pin at 
the location of the C.G. for both boxes and label it C.G. in both cases.


 
 
The weight of each box



 
The downward force that is the weight of each box is on a vertical line that 
goes through the C.G. and the total weight appears to be concentrated at the 
C.G. Therefore, when the box is setting flat on the floor, the 
weight vector for each box is on a line that is 1 ft. from either side of the box.


 
 
Vertical weight vectors



 
Begin at the C.G. for each box and draw a vertical line that extends 7 units 
down from the C.G. for each box. Label each line as W. These are weight vectors.


 
 
Both boxes are in equilibrium



 
We know from experience that both of these boxes are in equilibrium. We have 
also just learned that so long as the vertical weight vector that goes through the C.G. also 
goes through the two-foot wide supporting base of the box, the box will be in 
stable equilibrium.


 
 
What is the tipping point?



 
Label the bottom-right corner of each box as b. Pretend that you drive a nail 
immediately to the right of point b and allow it to protrude up from the floor 
so that when you push on the top-left corner of the box, it will rotate around 
point b instead of sliding to the right.


 
How far can we tip each box in a clockwise direction around the bottom right 
corner before we lose equilibrium?


 
 
Tactile graphics



 
The file named Phy1120b1.svg contains an image that shows the triangles 
discussed 



below



.


 


Figure 4



 shows the mirror image that is contained in 
that file for the benefit of your assistant who will create the tactile graphic 
for this exercise.


 [image: Missing image]

Figure 16.4. 
 

Mirror image from the file named Phy1120b1.svg.

Mirror image from the file named Phy1120b1.svg.

 


Figure 5



 shows a non-mirror-image version of the same 
image.


 [image: Missing image]

Figure 16.5. 
 

Non-mirror-image version of the image from the file named Phy1120b1.svg.

Non-mirror-image version of the image from the file named Phy1120b1.svg.

 


Figure 6



 shows the key-value pairs that go with the 
image in the file named Phy1120b1.svg.


	



 m: An exercise involving the tipping point, part 2
n: K1 = 1.414
o: K2 = 4.123
p: Z1 = 1
q: Z2 = 4
r: R = 1
s: R = 1
t: 45 degrees
u: 14 degrees
v: Center of gravity
w: Center of gravity
x: b
y: b
z: Floor
mm: W
mn: W
mo: File: Phy1120b1.svg









Figure 16.6. 
 

Key-value pairs for the image in the file named Phy1120b1.svg.

Key-value pairs for the image in the file named Phy1120b1.svg.

 
 
 

The lines K1



, K2, Z1, Z2, and R



 
To answer this question, begin by drawing a line from the C.G. to point b for each box. Label this line K1 
for the left box and K2 for the right box.


 
Label the line segment that extends from the C.G. to the bottom of the left 
box as Z1 and label the line segment that extends from the C.G. to the bottom of 
the right box as Z2. Label the line segment that is the right half of the bottom 
of each box as R.


 
 
Right triangles



 
In the left box, the line segments K1, Z1, and R form a right triangle for 
which the lengths of two line segments are:


 	 
Z1 = 1



	 
R = 1





 
In the right box, the line segments K2, Z2, and R form a right triangle for 
which the lengths of two line segments are:


 	 
Z2 = 4



	 
R = 1





 
 
Compute the lengths of K1 and K2



 
Using the Pythagorean theorem and the Google calculator, we can compute the 
following lengths:


 
K1 = sqrt(1^2 + 1^2) = 1.414


 
K2 = sqrt(1^2 + 4^2) = 4.123


 
 
The sides of the right triangles



 
Next, we will compute the interior angle for each triangle at the C.G. 
vertex. Label the interior angle for the left box P1 and label the interior 
angle for the right box P2.


 
We know the lengths of all three sides of each triangle. There are a couple 
of ways that we can use trigonometry to find the interior angles. Considering the 
triangle from the viewpoint of the interior angle at the C.G. for the left triangle:


 	 
hypotenuse = K1 = 1.414



	 
base = Z1 = 1



	 
opposite side = R = 1





 
For the right triangle,


 	 
hypotenuse = K2 = 4.123



	 
base = Z2 = 4



	 
opposite side = R = 1





 
 
Compute the interior angles at each C.G. vertex



 
Using the Google calculator, we can compute the interior angle at the C.G. for 
each box as follows:


 	 
P1 = arcsine(1/1.414)*180/PI = 45 degrees



	 
P2 = arcsine(1/4.123)*180/PI = 14 degrees





 
 
 

Tilt each box



 and observe the angles at the C.G. vertices



 
Now pretend that you exert a force on the top-left corner of each box 
causing it to rotate around the lower-right corner at point b. As you do that, 
the weight vector would rotate around the C.G. in a counter-clockwise direction 
(always pointing straight down) and the angle between the weight vector and the 
line K1 or K2 
would decrease.


 
 
The tipping point



 
When the angle between the weight vector and the line K1 or K2 goes to zero degrees 
for either box, the tipping point for that box will have 
been reached. (See the image in the file named Phy1120a1.svg, or




Figure 1



.)


 
At that exact point, the box will still be in equilibrium, but it will be in unstable 
equilibrium. Exerting a little more force to the right will cause the box to turn all the way 
over onto its side under its own weight. Relaxing the force a little when the 
box is in that position will allow it to rotate 
back towards its original position.


 
 
What are the tipping point angles?



 
The box on the left would need to rotate slightly more than 45 degrees 
clockwise around point b before the direction of the weight vector through the C.G. would move 
to the right of point b, causing the box to continue rotating under its own 
weight.


 
However, the box on the right would only need to rotate slightly more than 14 
degrees clockwise around point b before the direction of the weight vector through the C.G. 
would move to the right of point b causing the box to continue rotating under its 
own weight.


 
 
Conclusion



 
Therefore, the box on the left is more stable than the box on the right. If you want to 
lessen the likelihood of an object tipping over, cause the C.G. of the object to be near the bottom 
of the object.


 
 
An exercise for the student



 
I will leave it as an exercise for the student to compute moments about point 
b to confirm the tipping angle for each box where the torque about point b 
changes from counter-clockwise to clockwise. 




 

A real-world example








 
Let me illustrate this situation with a real-world example that may seem 
familiar to you. Assume that you put some flowers with long stems in a 
lightweight plastic vase and set the vase on a table. The C.G. of the vase and 
the flowers would be relatively high, and it wouldn't take much of a sideways 
push to cause the vase to turn over.


 
Now assume that you add water to the vase until it is about half full. This 
would cause the C.G. of the vase, the water, and the flowers to move down, 
probably into the bottom half of the vase. This would make it more difficult to tip the vase over. Of course, when it does tip over, it would make a bigger 
mess than would be the case without the water.





 

Do the computations








 
I encourage you to repeat the computations that I have performed in this 
	module. Experiment with 
the computations, making changes, and observing the results of your changes. Make 
certain that you can explain why your changes behave as they do. 




 

Resources








 
I will publish a module containing consolidated links to resources on my 
Connexions web page and will update and add to the list as additional modules 
in this collection are published. 




 

Miscellaneous








 
This section contains a variety of miscellaneous information.



 
Housekeeping material
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Financial


: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.


 
I also want you to know that I receive no financial compensation from the Connexions website even if you purchase 
	the PDF version of the module.


 
 
Affiliation


: I am a professor of Computer Information 
	Technology at Austin Community College in Austin, TX.
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Preface






 

 

General








 
This module is part of a collection (see





http://cnx.org/content/col11294/latest/



) of modules designed to make physics 
concepts accessible to blind students. The collection is intended to supplement but not to 
replace the textbook in an introductory course in high school or college 
physics. 


 
This module explains the mathematics of circular motion in a format that is 
accessible to blind students.




 

Prerequisites








 
In addition to an Internet connection and a browser, you will need the 
following tools (as a minimum) to work through the exercises in these modules:


 	 
A graph board for plotting graphs and vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
A protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
An audio screen reader that is compatible with your operating system, 
	such as the NonVisual Desktop Access program (NVDA), which is freely 
	available at 




	http://www.nvda-project.org/



.



	 
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor 
	(



http://www.userite.com/ecampus/lesson1/tools.php



).



	 
A device to create Braille labels. Will be used to label graphs 
	constructed on the graph board.





 
The minimum prerequisites for understanding the material in these modules 
	include:


 	 
A good understanding of algebra.



	 
An understanding of the use of a graph board for plotting graphs and 
	vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
An understanding of the use of a protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
A basic understanding of the use of sine, cosine, and tangent from 
	trigonometry (



http://www.clarku.edu/~djoyce/trig/



).



	 
An introductory understanding of JavaScript programming (



http://www.dickbaldwin.com/tocjscript1.htm



 and 



http://www.w3schools.com/js/default.asp



).



	 
An understanding of all of the material covered in the earlier modules 
	in this collection.







 

 

Supplemental material








 
 I recommend that you also study the other lessons in my extensive collection 
of online programming tutorials. You will find a consolidated index at





www.DickBaldwin.com



.





 

 

Discussion








 
Now that you have an idea of how circular motion behaves from a physical 
viewpoint, let's take a look at the mathematics that describe circular motion.



 

Angular displacement and 
angular velocity








 
We begin this module with two new terms: 

 
angular displacement


 and 


 
angular 
velocity


.


 
 
Dealing with points can be awkward



 
Up until now in this series of modules on circular motion, we have dealt 
mainly with the motion of points involved in uniform circular motion. However, 
in some situations, that is awkward. Consider a wheel on a car, for example. 
There are an infinite number of points on the wheel, and when the wheel is 
spinning, every point is moving with a different velocity and/or acceleration. 
It would be difficult for us to describe that motion in terms of the motions of 
all the points.


 
This causes us to seek a more comprehensive description that will encompass the 
motion of all of the points on the wheel. Two terms that accomplish that purpose 
are angular displacement and angular velocity.



 

Angular displacement








 
Approaching the situation from this viewpoint, we concentrate on angles instead of distances. If a wheel 
spins through one-fourth of a complete revolution, every point on the wheel 
moves through the same 90-degree angle. (However, as you learned in 
earlier modules, points at different radii move different distances.)


 
 
A set of new variables



 
We will define a set of variables involving angular motion that are analogous to displacement, 
velocity, and acceleration in the realm of linear motion. However, we will use angular measurements instead of 
linear distance measurements.


 
 
Angular displacement



 
Instead of linear displacement, for example, we will speak of angular 
displacement. 

 
Angular displacement


 is the angle through which a 
rotating body turns based on some starting and stopping criteria.


 
 
A pie-shaped wedge



 
As you learned in an earlier module, a point on a wheel moves along the 
	circumference of a circle as the wheel rotates. Viewing the rotating wheel 
	from a vantage point that is perpendicular to the wheel, during a given time 
	interval, we see that the point sweeps out a pie-shaped wedge with its point at the center of the wheel.


 
 
An arc of a circle



 
The motion of the point describes an arc 
	of a circle directly opposite the point at the center of the circle. This pie-shaped 
	wedge describes an angle, which is the 

 
angular displacement


 
	during that episode of movement. (You should be able to simulate this on your 
	graph board in order to get a better picture in your mind.)



 
 
Definition of angular displacement


 


 
dA = Af - Ai


 
where 


 	 
dA represents the angular displacement



	 
Ai is the angle that a line through the point makes with the 
				horizontal axis when the episode begins.



	 
Af is the angle that a line through the point makes with the 
				horizontal axis when the episode ends.





 
Physics books typically use Greek letters such as phi and theta 
			to represent angles. However, it is unlikely that your Braille 
			display can handle Greek characters, so I will stick with standard 
			qwerty keyboard characters.




 
 
Angular displacement is a signed quantity



 
The direction of rotation is indicated by the algebraic sign of the 
	angular displacement. It is conventional to consider a counter clockwise 
	rotation to result in a positive angular displacement.


 
 
Units of angular displacement



 
The units of angular displacement are typically degrees or radians.




 

Angular velocity








 
That brings us to angular velocity, The 

 
average angular velocity


 
is the average rate of change of angular displacement.



 
 
Definition of angular velocity



 
wAvg = dA/dT


 
where


 	 
wAvg represents average angular velocity



	 
dA represents the angular displacement in a given time 
				interval



	 
dT represents the time interval





 
It is customary in physics books to represent angular velocity 
			with the Greek letter omega. In this module, I will use a lower-case 
			"w" character to represent angular velocity where appropriate, 
			simply because it looks a lot like a Greek omega character.




 
 
Reduce the time interval



 
If we allow the time interval dT to be come shorter and shorter, we are 
	averaging over smaller and smaller time intervals. In the limit, as dT 
	approaches zero, wAvg becomes w, which is the 

 
instantaneous


 angular 
	velocity.


 
 
Angular velocity is a signed quantity



 
Angular velocity is also a signed quantity with the sign indicating the 
direction of rotation. By convention, counter clockwise rotation is viewed as 
positive rotation. The sign of angular velocity is the same as the sign of the 
angular displacement that forms the basis for the angular velocity.


 
 
Units of angular velocity



 
The units of angular velocity are typically degrees per second or radians per 
second. You will learn later that radians is a dimensionless quantity. 
Therefore, when angular velocity is measured in radians per second, it often 
appears simply as 


 
w = 10/sec




 

Radian measure








 
The most familiar measurement of angles, in the U.S. is in degrees. 
However, in some situations, it is more convenient to measure angles in radians 
than in degrees.


 
This becomes most apparent when we need to relate angular displacement or 
angular velocity with the distance traveled or the tangential speed of a point on 
a 
rotating object.



 
 
Definition of a radian



 
One radian is an angular measurement, which is equal to an angle 
			at the center of a circle whose arc is equal in length to the radius 
			of the circle.




 
 
Simulate with a graph board



 
I recommend that you use your graph board to simulate an angle of one radian.


 
Using your graph board along with some string and pushpins, draw a 
Cartesian coordinate system. Then draw a circle with a convenient radius with 
its center at the origin of your coordinate system.


 
 
Make the arc match the radius



 
Cut a piece of string to the length of the radius of the circle. Then, 
beginning at the intersection of the circle and the horizontal axis, lay the 
string along the circumference of the circle moving in a counter clockwise 
direction. Put a pushpin at the point where the string ends. Then stretch a 
rubber band from that point back to the center of the circle.


 
 
Measure the angle



 
Using your protractor, measure the angle that the rubber band makes with the horizontal axis. That 
angle should be about 57.3 degrees, which is one radian.


 
 
Measure the number of radians in 360 degrees



 
Now, using the string whose length is equal to the radius of the circle as a 
measuring tool, determine how many strings of that length you can lay end-to-end 
around the circumference of the circle.


 
You should find that about 6.28 (2*pi) 
such strings are required to go all the way around the circumference of the 
circle.


 
 
An angle in radians is a ratio of lengths



 
An angle measured in radians is a ratio of two values, each of which have 
	units of length. Therefore, such an angle has no dimensions.



 
 
Measurement of an angle in radians



 
angle = s/r


 
where


 	 
s is the length of an arc along the circumference of a 
				circle



	 
r is the radius of the circle



	 
angle is the angle subtended by the arc length, s







 
 
An example measurement



 
Assume that the arc length is equal to one-half the circumference of the 
	circle. This arc represents a subtended angle of 180 degrees. Then,


 
s = circumference/2 = pi * radius


 
angle = (pi * radius)/radius = pi


 
From this we can see that pi radians is equal to 180 degrees.


 
Earlier we saw that 2*pi radians equal 360 degrees.



 
 
Facts worth remembering



 	 
One radian is equal to approximately 57.3 degrees



	 
Pi radians is equal to 180 degrees



	 
2*Pi radians are equal to 360 degrees









 

Tangential 
displacement versus angular displacement








 
Consider the case of a 1.5-radian angular displacement of a wheel in a 
	given time interval. What is the corresponding displacement of a 
	point on the circumference of the wheel? Assume that the radius of the wheel 
	is 0.5 meters.


 
angle = s/r, or


 
s = angle * r, or


 
s = 1.5 * 0.5m = 0.75m


 
 
A simple solution



 
Thus, we see that the tangential displacement of a point on the circumference of 
a wheel due to a given angular displacement of the wheel in radians is simply 
the product of the displacement and the radius of the wheel.


 
Solving for the 
same result using angular displacement in degrees would be somewhat more 
complicated.




 

Tangential speed versus 
angular velocity








 
A similar simplification occurs when dealing with the angular velocity of a 
wheel and the tangential speed of a point on the circumference of the wheel.


 
As in linear measurements, the average angular velocity of a wheel is equal 
to the angular displacement of the wheel divided by the time interval during 
which the displacement takes place.



 
 
Measurement of angular velocity in radians



 
w = dA/dT


 
By substitution,


 
w = (s/r)/dT = s/(r*dT)


 
where


 	 
s is the length of an arc along the circumference of a 
				circle



	 
dA is an angular displacement in a given time interval



	 
dT is the time interval



	 
r is the radius of the circle



	 
w is the angular velocity







 
 
Another example



 
Consider the case of a 1.5-radian/second angular velocity of a wheel. 
	What is the corresponding tangential speed of a point on the circumference of 
	the wheel? Assume that the radius of the wheel is 0.5 meters.


 
The tangential speed is equal to the tangential displacement, s, divided by the 
time interval over which the displacement occurs. Given the above information, 
we can write:


 
w = s/(r*dT)


 
Given that


 
v = s/dT


 
Substitution yields


 
v; = w*r, or


 
v = (1.5/s)*(0.5m) = 0.75 m/s


 
 
Another simple relationship



 
Once again, if you keep your units straight, the tangential speed of a point 
on the circumference of the wheel is simply equal to the angular velocity in 
radians per second multiplied by the radius of the wheel.



 
 
Facts worth remembering



 
tangential displacement = dA * r


 
tangential speed = w * r


 
where


 	 
tangential displacement is the distance that a given point 
				travels around the circumference of a circle as a function of an 
				angular displacement in radians.



	 
tangential speed is the speed at which a point travels around 
				the circumference of a circle as a function of an angular 
				velocity in radians.



	 
w is the angular velocity in radians/second



	 
dA represents angular displacement



	 
r represents radius










 

The relationship between period and frequency








 
As you already know, when the speed of a point moving in a circle is constant, its motion is called uniform
circular motion.


 
As you also already know, even though the speed of the point is constant, the velocity is
not constant. The velocity is constantly changing because the direction of the 
velocity vector is constantly changing.


 
 
The period



 
The amount of time required
for the point to travel completely around the circle is called the period of the motion.


 
 
The frequency



 
The frequency of the motion, which is the number of revolutions per unit time, is
defined as the reciprocal of the period. That is,


 
frequency in rev per sec = 1/(period in sec per rev), or


 
f = 1/T


 
where


 	 
f represents frequency in revolutions per second



	 
T represents period in seconds per revolution







The r

 

elationship between angular velocity and frequency








 
The speed of a point moving completely around the circle is equal to the distance 
traveled divided by the time.


 
sT = 2*pi*r/T, or


 
sT = 2*pi*r*f


 
where


 	 
sT is the tangential speed



	 
r is the radius



	 
T is the time required for the point to make one complete revolution



	 
f is the reciprocal of T





 
We know from before that


 
sT = w * r, or


 
w = sT/r


 
Therefore, by substitution from above,


 
w = 2*pi*r*f/r = 2*pi*f, or


 
the angular velocity in radians per second is the product of 2*pi and the 
frequency in revolutions per second.


 
where


 	 
sT is tangential speed



	 
w is angular velocity in radians per second



	 
f is frequency in revolutions per second, or cycles per second, or hertz





 
 
The SI unit for frequency



 
The SI unit for frequency is hertz (Hz) where 1 Hz is equal to one revolution 
per second or one cycle per second.



 
 
Facts worth remembering



 
w = 2*pi*f




 
where

    


 	 
w is angular velocity in radians per second
    



	 
f is frequency in revolutions per second, or cycles per second, or hertz
				





 
The SI unit for frequency is hertz (Hz) where 1 Hz is equal to one revolution per second or one cycle per second






 

Radial (centripetal) acceleration








 
In an earlier module, you learned how to subtract vectors and; 
demonstrate that the acceleration vector of an object moving with uniform 
circular motion always points toward the center of the circle. However, in that 
lesson, we did not address the magnitude of the acceleration vector. We will do 
that here.


 
 
A very difficult derivation



 
Deriving the magnitude of the acceleration vector depends very heavily on the 
use of vector diagrams, complex assumptions, complicated equations. 
Unfortunately, this is one of those times that I won't be able to present that 
derivation in a format that is accessible for blind students. In this case, 
blind students will simply have to accept the final results in equation form and 
use those equations for the solution of problems in this area.



 
 
Facts worth remembering



 
Ar = v^2/r, or


 
Ar = (w^2)*r


 
where


 	 
Ar is the magnitude of the radial acceleration



	 
v is the magnitude of the tangential velocity of the object 
				moving around the circle



	 
r is the radius of the circle



	 
w is the angular velocity of the object moving around the 
				circle










 

 

Example scenarios








 
In this section, I will work through some examples that illustrate what you 
learned in the earlier section along with what you have learned in earlier modules.



 

Circumference of the 
Earth at the equator








 
The radius of the Earth at the equator is equal to approximately 6378km. What is the circumference of the earth at the equator.


 
Solution:


 
If you were to travel around the Earth at the equator, you would travel along 
a circular arc that subtends an angle of 2*pi radians. We know how to compute 
the length of the circular arc given the radius and the subtended angle:


 
arc length = (subtended angle) * radius, or


 
circumference = 2*pi*6378km = 40074 km




 

Speed of a point on the equator








 
The Earth rotates around its axis once each 24 hours. Therefore, a point on 
the equator makes one full trip around a circle with the circumference of the 
Earth each 24 hours.


 
Assume you are standing at a point on the equator. Ignoring all of the other 
motions of the universe, what is the speed with which you are traveling around 
that circle?


 
What is the angular velocity of the earth in radians per second.


 
Does the angular velocity of the Earth change when you drive North from the 
equator?



 

Solution A








 
 
Speed



 
Since we already know the circumference of the Earth, we know that you will 
travel 40074 km each 24 hours. Therefore, 


 
speed = 40074km/24hr = 463.8 meters/second, or


 
speed = 1037 miles/hour


 
Did you know that you are constantly moving through space at a speed slightly 
greater than 1000 miles per hour?


 
 
Angular velocity



 
We also know that the earth rotates around its axis by 2*pi radians each 24 hours. Therefore, the 
angular velocity of the earth is


 
w = 2*pi radians/24 hours = 7.27 *10^(-5) radians / second


 
 
Differences in angular velocity



 
For purposes of this discussion, the Earth does not distort as it rotates. 
Therefore, the angular velocity of every point on the surface of the Earth 
rotates around the Earth's axis with the same angular velocity; namely 2*pi 
radians every 24 hours.


 
However I did see on TV the other day that the angular velocity of the 
Earth's core may be different from the angular velocity of the outer crust of 
the Earth. Apparently this can happen because the core is not firmly attached to 
the crust, but rather is suspended in a bath of molten rock.




 

Solution B








 
You learned earlier that the speed is equal to the product of the angular 
velocity and the radius. Therefore, 


 
speed = w * r, or


 
speed = (7.27 *10^(-5) radians / second) * 6378km, or


 
speed = 463.7 m/s


 
which agrees with Solution A above.


 
Note that w represents angular velocity and r represents radius in the above 
calculations.





 

Period and frequency








 
A child's toy contains a round disk that rotates with a period of 0.628 
seconds.


 
What is the frequency with which a spot on the edge of the disk passes a 
fixed mark on the body of the toy.


 
What is the angular velocity of the toy?


 
Solution:


 
f = 1/T = 1/(0.628) = 1.59 Hz


 
w = 2*pi*f = 10 radian/second


 
where


 	 
f represents frequency



	 
T represents the period



	 
w represents angular velocity







 

Radial acceleration








 
A student ties a 10 kg mass onto a fishing line with a breaking strength of 5 
newtons, and then starts swinging the mass around over his head. The student 
tries very hard to cause the path to be circular. The distance from the center 
of the circle to the mass is 3 meters.


 
As time goes on, the student swings the mass faster and faster until the 
fishing line breaks. What is the tangential velocity of the mass when the 
fishing line breaks.


 
Solution:


 
Centripetal force = mass * (centripetal acceleration), or


 
f = m * Ar, or


 
f = m * v^2/r, or


 
v^2 = f*r/m, or


 
v = (f*r/m)^(1/2), or


 
v = (5 newtons * 3 meters/10 kg)^(1/2), or


 
v = 1.22 m/s


 
The magnitude of the tangential velocity of the mass when the fishing line 
breaks is 1.22 meters/second


 
Check the solution using angular velocity, w


 
w = v / r, or


 
w = (1.22 m/s) / 3m = 0.407 radians/second


 
The angular velocity for a tangential velocity of 1.22 m/s is 0.407 
radians/second


 
Ar = (w^2)*r, or


 
Ar = (( 0.407 /second)^2)*3m, or


 
Ar = 0.5 m/s^2


 
The magnitude of the radial acceleration is 0.5 m/s^2


 
f = m * Ar, or


 
f = 10kg*(0.5 m/s^2), or


 
f = 5 newtons, or


 
the force equals 5 newtons, which matches the breaking strength of the 
fishing line.





 

Work through the examples








 
I encourage you to work through the examples that I have presented in 
	this module to 
confirm that you get the same results. Experiment with 
the scenarios, making changes, and observing the results of your changes. Make 
certain that you can explain why your changes behave as they do. 




 

Resources








 
I will publish a module containing consolidated links to resources on my 
Connexions web page and will update and add to the list as additional modules 
in this collection are published. 




 

Miscellaneous








 
This section contains a variety of miscellaneous information.



 
Housekeeping material

 	 
Module name: Circular Motion -- The Mathematics of Circular Motion for Blind Students



	 
File: Phy1260.htm




	 
Keywords:
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Disclaimers:

 
 
Financial


: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.


 
I also want you to know that I receive no financial compensation from the Connexions website even if you purchase 
	the PDF version of the module.
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: I am a professor of Computer Information 
	Technology at Austin Community College in Austin, TX.
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Preface






 

 

General








 
This module is part of a collection (see





http://cnx.org/content/col11294/latest/



) of modules designed to make physics 
concepts accessible to blind students. The collection is intended to supplement but not to 
replace the textbook in an introductory course in high school or college 
physics. 


 
This module explains various units of force in a format that is accessible to blind students.




 

Prerequisites








 
In addition to an Internet connection and a browser, you will need the 
following tools (as a minimum) to work through the exercises in these modules:


 	 
A graph board for plotting graphs and vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
A protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
An audio screen reader that is compatible with your operating system, 
	such as the NonVisual Desktop Access program (NVDA), which is freely 
	available at 




	http://www.nvda-project.org/



.



	 
A refreshable Braille display capable of providing a line by line tactile output of information displayed on the computer monitor 
	(



http://www.userite.com/ecampus/lesson1/tools.php



).



	 
A device to create Braille labels. Will be used to label graphs 
	constructed on the graph board.



	 
The ability to create tactile graphics as described at
	




	http://cnx.org/content/m38546/latest/



.





 
The minimum prerequisites for understanding the material in these modules 
	include:


 	 
A good understanding of algebra.



	 
An understanding of the use of a graph board for plotting graphs and 
	vector diagrams (



http://www.youtube.com/watch?v=c8plj9UsJbg



).



	 
An understanding of the use of a protractor for measuring angles (



http://www.youtube.com/watch?v=v-F06HgiUpw



).



	 
A basic understanding of the use of sine, cosine, and tangent from 
	trigonometry (



http://www.clarku.edu/~djoyce/trig/



).



	 
An introductory understanding of JavaScript programming (



http://www.dickbaldwin.com/tocjscript1.htm



 and 



http://www.w3schools.com/js/default.asp



).



	 
An understanding of all of the material covered in the earlier modules 
	in this collection.



	 
An understanding of the creation and use of tactile graphics as 
	described at 




	http://cnx.org/content/m38546/latest/



.







 

Viewing tip








 
I recommend that you open another copy of this document in a separate browser 
window and use the following links to easily find and view the figures while you are reading about them.



 

Figures








 	 


Figure 1



. SI base units. 



	 


Figure 2



. Examples of SI derived units. 



	 


Figure 3



. Mirror image of the image from the file named Phy1150a1.svg. 



	 


Figure 4



. Non-mirror image of the image from the file named Phy1150a1.svg. 



	 


Figure 5



. Key-value pairs for the image in the file named Phy1150a1.svg. 








 

 

Supplemental material








 
 I recommend that you also study the other lessons in my extensive collection 
of online programming tutorials. You will find a consolidated index at





www.DickBaldwin.com



.





 

 

Background 
information









 

Creation of tactile graphics








 
The module titled Manual Creation of Tactile Graphics at





http://cnx.org/content/m38546/latest/



 explained how to create tactile 
graphics from svg files that I will provide.


 
If you are going to have an assistant create tactile graphics for this 
module, you will need to 



download the file 
named Phy1150.zip



, which contains the svg file for this module. Extract the 
svg file from the zip file and provide them to your assistant.


 
Also, if you are going to use tactile graphics, it probably won't be 
necessary for you to perform the graph board exercises. However, you should 
still walk through the graph board exercises in your mind because I will often 
embed important physics concepts in the instructions for doing the graph board 
exercises.


 
In each case where I am providing an svg file for the creation of tactile 
graphics, I will identify the name of the appropriate svg file and display an 
image of the contents of the file for the benefit of your assistant. As 
explained at 




http://cnx.org/content/m38546/latest/



, those images will be mirror images of 
the actual images so that your assistant can emboss the image from the back of 
the paper and you can explore it from the front.


 
I will also display a non-mirror-image version of the image so that your 
assistant can easily read the text in the image.


 
Also in those cases, I will provide a table of key-value pairs that explain 
how the Braille keys in the image relate to text or objects in the image.




 

Things can be confusing








 
One of the more confusing things about physics textbooks can be their 
treatment of the units in which force is measured and reported. Several 
different units are often used including:


 	 
newton



	 
poundal



	 
dyne



	 
pound-force



	 
gram-force



	 
kilogram-force





 
The first three units in the above list are said to be 

 
absolute units 
of force


 because they are measured in fundamental units of mass, 
length, and time. The last three units are tied directly to the gravitational 
attraction between the earth and other objects.


 
The newton, which is an SI derived unit, is possibly the most universally 
accepted unit of force in the year 2011.


 
 
Force equals the product of mass and acceleration



 
You learned in an earlier module that the force that is required to cause a 
given mass to be accelerated by a given amount is proportional to the product of 
the mass and the acceleration. If we specify mass and acceleration in consistent 
units, we can write 


 
f = m * a


 
where 


 	 
f is force



	 
m is mass



	 
a is acceleration







 

SI units and the newton








 
Many 
physics books use a system of units called 

 
SI units


. SI is an abbreviation for a 
French name, which I am unable to pronounce, and 
which is probably also not compatible with your screen reader and your Braille 
display.


 
I won't attempt to explain much about SI units in this module. I provided 
some information in an earlier module titled 




Units and Dimensional Analysis



. 
Also, you can probably find a good 
explanation in your textbook, and if not, you can Google SI units and find 
hundreds of web pages that explain the system in varying levels of detail.


 
 
Tables of SI units



 
Most of those references will probably also provide tables for the units, but 
those tables may be partially incompatible with your screen reader and 
Braille display due to the extensive use of superscripts. Therefore, I will provide tables 
that should be accessible in 



Figure 1



 and 



Figure 2



.


 
 
Base units and derived units



 
When reading about SI units, you will find that they are often divided into base 
units and derived units. I will put the base units in 



Figure 1



 and some 
sample derived 
units in 



Figure 2



.


	



 Base Quantity               Name        Symbol

length                      meter       m
mass                        kilogram    kg
time                        second      s
electric current            ampere      A
thermodynamic temperature   kelvin      K
amount of substance         mole        mol
luminous intensity          candela     cd









Figure 18.1. 
 

SI base units.

SI base units.

 
Note that the list of derived units in 



Figure 2



 is only a sampling of 
	different units that can be derived from the base units.


 
 
The exponentiation indicator



 
As is the case throughout these modules, the character "^" that you see used 
extensively in 



Figure 2



 indicates that the character 
following the ^ is an exponent. Note also that when the exponent is negative, it 
is enclosed along with its minus sign in parentheses for clarity.


	



 
force            newton                    kg*m/s^2
area             square meter              m^2
volume           cubic meter               m^3
speed, velocity  meter per second          m/s
acceleration     meter per second squared  m/s^2
wave number      reciprocal meter          m^(-1)
mass density     kilogram per cubic meter  kg/m^3
specific volume  cubic meter per kilogram  m^3/kg
current density  ampere per square meter   A/m^2









Figure 18.2. 
 

Examples of SI derived units.

Examples of SI derived units.

 
 
The newton



 
The first derived unit listed in 



Figure 2



 is the newton, which is the product 
of the base unit for mass (kg) and the base unit for acceleration (m/s^2). Thus, 
the units for the newton are


 
kg*m/s^2


 
A newton is a unit of force that causes a mass of one kilogram to be 
accelerated by one meter per second squared (1 m/s^2).




 

A practical example 
using the Google calculator








 
When making physics calculations, It is extremely important that you 
understand and keep track of the units that you are using. The Google search box 
can serve your needs as a scientific calculator if you are careful how you use 
it. For example, if you enter an expression such as 
3+5 in the Google search box and press the Enter key, the result of evaluating that expression will be 
displayed immediately below the search box.


 
 
A physics problem



 
A typical problem in a physics textbook states that a 2-kg mass is moving in a circular path 
with a constant angular velocity of 5 radians per second and with a tangential velocity of 3 m/sec. 
The objective is to find the centripetal force on the mass.


 
You will learn all that you need to know to solve this problem in future 
modules. For now, just bear with me and concentrate on the use of the Google 
search box as a scientific calculator.


 
As you will learn in a future module, a radian is a dimensionless quantity, 
and the proper units for an angular velocity of 5 radians per second is simply 5/s. 
(It also works to spell radians out, but abbreviations for radians may not 
work in the Google calculator.)


 
 
The algebraic solution



 
Once you work through the algebra for this problem, you will have determined that the answer to the 
problem is given by the following expression:


 
centripetal force = 2kg * (5/s) *(3m/s)


 
 
Let Google do the work



 
Enter the following expression into the Google search box and press the Enter 
key:


 
2kg * (5/s) *(3m/s)


 
The following text should appear immediately below the search box.


 
2 kg * (5 / s) * (3 (m / s)) = 30 newtons


 
Note that in this case, I used the correct symbols for SI units.


 
 
Do it again with the units spelled differently



 
Enter the following expression into the search box and press the Enter key.


 
2 kilograms * (5 radians/second) * (3 meters/second)


 
The following text should appear immediately below the search box.


 
2 kilograms * ((5 radians) / second) * (3 (meters / second)) = 30 newtons


 
 
Do it one more time



 
Let's do it one more time, this time mixing metric and English units. Enter 
the following expression into the search box and press the Enter key.


 
2 kilograms * (5 radians/second) * (9.8425197 feet/second)


 
The following output should appear below the search box:


 
2 kilograms * ((5 radians) / second) * (9.8425197 (feet / second)) = 30 newtons


 
 
The conclusion



 
Given an input with units in the correct format, the Google calculator 
is not only able to deal with those units and perform the calculation correctly, it is also able to properly convert 
the result to the correct value in derived units (newtons in this case).




 

Other units








 
When analyzing a physics problem, the safest approach is probably to convert 
all of the given information into SI units and solve the problem in SI units, 
converting the result back to some other system of units if required. However, 
some textbooks and some physics professors may not allow that approach. 
Therefore, you need to know something about the other units of force that you 
may encounter.



 

poundal








 
As you learned in an earlier module, the 

 
pound


 is a unit of mass.


 
There is a very handy online mass unit converter at





http://www.onlineconversion.com/weight_common.htm



. However, I don't know if 
it is accessible for screen readers and Braille displays. According to that 
converter,


 
1 pound = 0.45359237 kilograms


 
 
Can use Google for conversion



 
Even if that converter isn't accessible, you can use the Google calculator to make such conversions. 
Enter the following in the Google search box and press the Enter key:


 
conversion pound to kilogram


 
The following text should appear immediately below the search box:


 
1 pound = 0.45359237 kilograms


 
 
The foot



 
A foot is a unit of length commonly used for measurements in the United 
States.


 
1 foot = 0.3048 meters


 
 
The poundal unit of force



 
A poundal is a unit of force that causes a mass of one pound to accelerate at one foot per second squared (1 ft/s^2).


 
Because the poundal and the newton are both units of force, we can convert 
from one to the other as follows:


 
1 poundal = 0.138254954 newton




 

dyne








 
The gram is another unit of mass and the centimeter is another unit of 
length. 


 
1 gram = 0.001 kilogram


 
1 centimeter = 0.01 meter


 
 
The dyne unit of force



 
A dyne is a unit for force that causes a mass of one gram to accelerate at 
one centimeter per second squared (1 cm/s^2). Once again, we can convert back 
and forth between dynes and newtons using the following relationship:


 
1 dyne = 0.00001 newton





 

Acceleration of gravity








 
The values for the next three units of force that I will explain depend on 
the gravitational attraction between the earth and other objects.


 
The universal law of gravitation tells us that objects having mass are 
attracted to one another by a force that is proportional to the product of 
their masses and inversely proportional to the distance between them.


 
 

attractive force



 = G*m1*m2/d^2


 
where 


 	 
G is the gravitational constant 6.673*10^(-11)*m^3*kg^(-1)*s^(-2)



	 
m1 and m2 are the masses involved



	 
d is the distance between the masses





 
It is also true that for large spherical masses like the earth, the effect is 
as if all of the mass is concentrated at a point located at the center of the 
sphere.


 
 
Objects are attracted to the earth



 
Therefore, all objects on or near the surface of the earth are attracted 
toward the center of the earth by an amount given by the above




equation



.


 
Neglecting friction such as air resistance, 
objects near the surface at different points on earth fall with an acceleration somewhere 
between about 9.78 m/s^2 and 9.82 m/s^2 depending on latitude.



 

pound-force








 
The unit of force named pound-force incorporates the gravitational pull of 
the earth in its definition. One pound-force is the force required to cause a mass of one 
standard pound to be accelerated by an amount equal to the standard acceleration 
of gravity that exists near the surface of the earth.


 
In accordance with the 




General Conference on Weights and Measures



, standard gravity is usually taken to be 9.80665 m/s^2 (32.174049 ft/s^2).


 
The acceleration of the standard gravitational field and the 




international avoirdupois pound



 define the pound-force as:


 	 
1 pound-force = 1 pound * 32.174049 ft/s^2



	 
1 pound-force = 0.45359237kg * 9.80665 m/s^2



	 
1 pound-force = 4.44822162 newton







 

gram-force








 
As with pound-force, the unit of force named gram-force also incorporates the 
gravitational pull of the earth in its definition. One gram force is the force required to cause a one-gram mass to be 
accelerated by 980.665 cm/s^2.


 
We can convert force back and forth between units of gram-force and units of 
newton using the following relationship.


 
1 gram-force = 0.00980665 newton




 

kilogram-force








 
Finally, the unit of force named kilogram-force also incorporates the 
gravitational pull of the earth in its definition. One kilogram-force is the force required to cause a one-kilogram mass to be 
accelerated 9.80665 m/s^2.


 
Once again, we can convert between force units of kilogram-force and newton 
using the following relationship.


 
1 kilogram-force = 9.80665 newton





 

Weight is a force








 
Despite the fact that scales in the grocery stores in the United States have 
displays that read in pounds (which is a unit of mass), weight is not a measure 
of mass. Weight is a measure of force. 


 
 
What exactly is the weight of an object?



 
The measurement that we normally think of as the weight of an object with a 
given mass is 
the force exerted on that object at the surface of the earth by the 
gravitational attraction between that object and the earth.


 
The weight of that same object on the surface of the moon would be the force 
exerted on that object by the gravitational attraction between that object and 
the moon.


 
 
Weighing a package of hamburger



 
Assume that you have a package that contains a one-pound mass of hamburger. You put it on a scale on the 
surface of the earth and the display reads 1 pound.


 
Now assume that you take the 
same scale and the same package of hamburger to the surface of the moon and place the 
package on 
the scale. The display would no longer read 1 pound.


 
The weight indicated by the scale would be different because the gravitational 
attraction between the mass of the hamburger and the mass of the moon would be less than 
the gravitational attraction between the mass of the hamburger and the mass of 
the earth.


 
According to the calculator at




http://www.moonconnection.com/moon_gravity.phtml



, 
the scale would read 0.2 pounds on the moon.


 
 
What does the output of the scale really mean?



 
When you see a scale with a display that reads pound, it should read 
pound-force instead. If it reads kilogram, it should read kilogram-force 
instead. Pound-force, kilogram-force, and gram-force are units that are tied 
directly to the gravitational attraction between the earth and other objects.


 
 
Weightlessness



 
When astronauts go into space and speak of being weightless, they probably 
aren't completely weightless. However, their weight is probably so low that it seems 
to them to be zero.


 
The reduction in an astronaut's weight occurs because 
the distance between the astronaut and any large massive object (such as the 
earth or the moon) is so great that 
the gravitational attraction between them is very small.





 

 

Sample problems








 
Let's work through several sample problems involving forces. The first 
will be a statics problem and the last three will be dynamics problems.



 

A static scenario








 
It will probably help you to keep track of everything if you draw the 
scenario on your graph board.


 
Draw a side view of two cubes 
with different masses on the top of a flat level horizontal 
friction-free table. Label them Mass C and Mass B. Mass C is on the left and 
Mass B is on the right. 


 
Mass B is close to the rightmost edge of the table and Mass C is to the 
left of Mass B.


 
Label Mass C as 3 kg and label Mass B as 2 kg.


 
 
A mass hanging on a cord



 
Draw a strong but lightweight cord, connected to the right side of Mass B and 
thread the cord over a very 
light frictionless pulley that changes the orientation of the cord from 
horizontal to vertical. The pulley is attached to the right edge of the table.


 
Draw a triangle-shaped mass connected to the cord that hangs down from the 
pulley. Label this Mass A and label it as 5 kg.


 
 
Two additional cords



 
Draw a strong but lightweight cord connecting Mass B to 
Mass C.


 
Draw another strong but lightweight cord connecting Mass C to a 
vertical wall on the left side of Mass C. That cord prevents any of the masses from moving and keeps the entire 
system in equilibrium with the 5-kg mass suspended from the cord that is 
threaded over the pulley.


 
 
Everything should be lined up



 
The pulley, both masses, and all three horizontal segments of cord above the 
tabletop should be in a 
straight line. The attachment heights of the cords and the top of the pulley 
should be 
such that all of the cords above the tabletop are horizontal. In other words, 
there should be no vertical components in any of the forces that act on the cords 
above the tabletop.


 
 
Label the tension in each cord



 
Label the tension in the cord between Mass B and Mass A as P. Label the 
tension in the cord between Mass C and Mass B as Q Label the tension in the cord 
between the wall and Mass C as R.


 
 
Tactile graphics



 
The svg file that is required to create tactile graphics for this exercise is 
named Phy1150a1.svg. You should have 




downloaded



 that file earlier. This file contains an image that 
represents the instructions given 



above



.


 


Figure 3



 shows the mirror image that is contained in 
that file for the benefit of your assistant who will create the tactile graphic 
for this exercise.


 [image: Missing image]

Figure 18.3. 
 

Mirror image of the image from the file named  Phy1150a1.svg.

Mirror image of the image from the file named  Phy1150a1.svg.

 


Figure 4



 shows a non-mirror-image version of the same image.


 [image: Missing image]

Figure 18.4. 
 

Non-mirror image of the image from the file  named Phy1150a1.svg.

Non-mirror image of the image from the file  named Phy1150a1.svg.

 


Figure 5



 shows the key-value pairs that go with the image in the file named 
Phy1150a1.svg


	



 m: R
n: Q
o: Friction free pulley
p: Friction free table
q: P
r: Mass A 5 kg
s: Mass C 3 kg
t: Mass B 2 kg
u: A static scenario
v: File: Phy1150a1.svg










Figure 18.5. 
 

Key-value pairs for the image in the file named Phy1150a1.svg.

Key-value pairs for the image in the file named Phy1150a1.svg.

 
 
The question



 
What are the tensions P, Q, and R in the individual cord segments when the 
system is in equilibrium and nothing is moving?


 
 
The answers



 
Mass A is in equilibrium because the upward force exerted by the cord 
attached to the top of Mass A is equal to the downward force of gravity that is 
exerted on Mass A.


 
Therefore, when the system is in equilibrium, the tension P is equal to the 
weight of Mass A, which is equal to the product of its mass and the acceleration 
of gravity.


 
P = 5*kg*9.81*m/s^2 = 49.05 newtons


 
 
The effect of the pulley



 
A single-wheel, frictionless, lightweight pulley as described here changes the direction of the cord, but does not 
change the tension P in the cord. The tension in the cord is the same on both 
sides of the pulley.


 
 
Support from the table



 
Mass B and Mass C are both in vertical equilibrium because their weight is 
being supported by the table.


 
 
Horizontal equilibrium



 
Mass B is in horizontal equilibrium because the force exerted on one side of 
the mass by tension Q is equal to the force exerted on the other side of the 
mass by tension P, which is 49.05 newtons.


 
Mass C is in horizontal equilibrium because the force exerted on one side of 
the mass by tension R is equal to the force exerted on the other side of the 
mass by tension Q, which as explained above, is 49.05 newtons.


 
The wall exerts a force that is equal in magnitude and opposite 
in direction to tension R in the cord that attaches Mass C to the wall. 



 
 
Tensions are all the same



 
Therefore, the tensions in all three cords are the same and the force exerted by 
the wall supports the weight of Mass A hanging by the cord on the other end of 
the chain.


 
P = Q = R = 49.05 newtons




 

First dynamic scenario








 
Now assume that someone cuts the cord that attaches Mass A to Mass B. What 
happens to the tension in each cord? Which, if any of the masses move, and if 
they move, what is their acceleration?


 
We probably don't need to do any calculations to answer these questions. Life 
experience tells us that the tension in each cord immediately goes to 
zero when the cord holding up the weight is cut.


 
 
Movement



 
Mass B and Mass C remain in equilibrium with no horizontal forces acting on 
them and their weights being supported by the table. They don't move.


 
Mass A immediately begins a free fall toward the floor with an acceleration 
that is equal to the acceleration of gravity at 9.81 m/s^2. A short segment of 
cord trails out behind Mass A like an unopened parachute.




 

Second dynamic scenario








 
Now assume that we start over with the original static scenario and someone cuts the cord that attaches 
Mass A to Mass B. What 
happens to the tension in each cord? Which, if any of the masses move, and if 
they move, what is their acceleration?


 
This situation is a little more complicated and will probably require some 
calculations to sort out. 


 
It seem obvious that the tensions labeled Q and R immediately go to zero, 
but the tension labeled P does not go to zero.


 
 
Movement



 
Mass C remains in equilibrium with no horizontal forces acting on 
it and its weight being supported by the table. It does not move.


 
However, Mass A starts falling toward the floor, dragging Mass B horizontally 
towards the pulley.


 
 
The driving force



 
The only force causing Mass A and Mass B to move is the weight of Mass A 
(49.05 newtons), which has not changed. However, that force is now trying to 
move a total of 7 kg instead of only 5 kg as in the first dynamic scenario above.


 
A 
force of 49.05 newtons is not sufficient to cause a mass of 7 kg to accelerate 
at 9.81 m/s^2. Instead, the acceleration of each mass is proportional to the 
force and inversely proportional to the total mass.


 
a = f/m = (49.05*newtons)/(7*kg)


 
Entering the rightmost expression into the Google search box and pressing 
Enter tells us that


 
 	
a = 7.0 m / s^2


 
 	
Thus, the acceleration of Mass A and Mass B is 7 m/s^2, a little less than the 
acceleration of gravity.


 
 
What is the value of tension P?



 
Tension P is exerting a horizontal force on the right side of Mass B that is 
causing that mass to accelerate at 7.0 m / s^2. The force required to achieve 
that acceleration on a mass of 2 kg is


 
P = m*a = 2 kg*7.0 m / s^2


 
Once again using the Google calculator, we learn that


 
P = 14 newtons


 
Thus, although the tension at P did not go to zero when the cord was cut at 
Q, the resulting tension in the cord at P was substantially reduced relative to 
the tension at P while the system was in equilibrium.




 

Third dynamic scenario








 
Now assume that we start over with the original static scenario and someone cuts the cord that attaches 
Mass C to the wall. What 
happens to the tension in each cord? Which, if any of the masses move, and if 
they move, what is their acceleration?


 
This situation is considerably more complicated and will definitely require some 
calculations.

The tension labeled R goes to zero immediately, but the tensions labeled P and Q do not go to zero.


 
 
Movement



 
None of the masses remain in equilibrium. Mass A starts falling toward the floor, dragging 
Mass B 
and Mass C horizontally toward the pulley.


 
 
The driving force



 
Once again, the only force causing all three masses to move is the weight of 
Mass A (49.05 newtons), which has not changed. However, 
that force is now trying to move a total of 10 kg instead of only 5 kg or 7 kg 
as in the two scenarios described above.


 
A force of 49.05 newtons is not sufficient to cause a mass of 
10 kg to accelerate at 9.81 m/s^2. Instead, the acceleration of each mass is proportional to the force and inversely proportional to the total mass.


 
a = f/m = (49.05*newtons)/(10*kg)


 
Entering the rightmost expression into the Google search box and pressing Enter tells us that


 
a = 4.9 m / s^2


 
 
Half the acceleration of gravity



 
Note that this is half the acceleration of gravity. This makes sense, because 
the force attributable to gravitational attraction acting on a mass of 5 kg is 
being applied to 10 kg of mass. It follows, therefore, that the acceleration 
that is achieved will be only half the acceleration of gravity.


 
 
What is the value of tension P?



 
Tension P is exerting a horizontal force on the right side of Mass B that is causing that 
mass and Mass C to accelerate at 4.9 m / s^2. The force required to achieve that acceleration on a mass of 
5 kg is


 
P = m*a = 5*kg*4.9 m / s^2


 
Once again using the Google calculator, we learn that 


 
P = 24.5 newtons


 
Mass B and Mass C together represent 50-percent of the total mass, and 
tension P is 50-percent of the force applied to the total mass. 


 
 
What is the value of tension Q?



 
Tension Q is exerting a horizontal force on the right side of Mass C that is 
causing Mass C to accelerate at 4.9 m / s^2. The force required to achieve that acceleration on a mass of 
3 kg is


 
Q = m*a = 3*kg*4.9 m / s^2


 
Once again using the Google calculator, we learn that 


 
Q = 14.7 newtons


 
Mass C is 30-percent of the total mass, and tension Q is 30-percent of the 
force applied to the total mass.





 

Do the calculations








 
I encourage you to repeat the calculations that I have presented in this lesson to 
confirm that you get the same results. Experiment with 
the scenarios, making changes, and observing the results of your changes. Make 
certain that you can explain why your changes behave as they do. 




 

Resources








 
I will publish a module containing consolidated links to resources on my 
Connexions web page and will update and add to the list as additional modules 
in this collection are published. 




 

Miscellaneous








 
This section contains a variety of miscellaneous information.



 
Housekeeping material

 	 
Module name: Force and Motion -- Units of Force



	 
File: Phy1150.htm
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Disclaimers:

 
 
Financial


: Although the Connexions
site makes it possible for you to download a PDF file for this
module at no charge, and also makes it possible for you to
purchase a pre-printed version of the PDF file, you should be
aware that some of the HTML elements in this module may not translate well into
PDF.


 
I also want you to know that I receive no financial compensation from the Connexions website even if you purchase 
	the PDF version of the module.


 
 
Affiliation


: I am a professor of Computer Information 
	Technology at Austin Community College in Austin, TX.
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