
  
    
  
Chapter 8. Longitudinal waves



8.1. Introduction and key concepts*



Introduction



 We have already studied transverse pulses and waves. In this chapter we look at another type of wave called longitudinal waves. In transverse waves, the motion of the particles in the medium were perpendicular to the direction of the wave. In longitudinal waves, the particles in the medium move parallel (in the same direction as) to the motion of the wave. Examples of transverse waves are water waves or light waves. An example of a longitudinal wave is a sound wave.

What is a longitudinal wave?



	 Definition:  Longitudinal waves 
	 
      A longitudinal wave is a wave where the particles in the medium move parallel to the direction of propagation of the wave. 
      



 When we studied transverse waves we looked at two different motions: the motion of the particles of the medium and the motion of the wave itself. We will do the same for longitudinal waves.
 The question is how do we construct such a wave?
 To create a transverse wave, we flick the end of for example a rope up and down. The particles move up and down and return to their equilibrium position. The wave moves from left to right and will be displaced.
 
        
 [image: What is a longitudinal wave?]
Figure 8.1. 


      
 A longitudinal wave is seen best in a spring that is hung from a ceiling. Do the following investigation to find out more about longitudinal waves.
 Investigation : Investigating longitudinal waves 



 	 Take a spring and hang it from the ceiling. Pull the free end of the spring and release it. Observe what happens.

 [image: Investigation : Investigating longitudinal waves]

Figure 8.2. 


	 In which direction does the disturbance move?


	 What happens when the disturbance reaches the ceiling?


	 Tie a ribbon to the middle of the spring. Watch carefully what happens to the ribbon when the free end of the spring is pulled and released. Describe the motion of the ribbon.





 From the investigation you will have noticed that the disturbance moves parallel to the direction in which the spring was pulled. The spring was pulled down and the wave moved up and down. The ribbon in the investigation represents one particle in the medium. The particles in the medium move in the same direction as the wave. The ribbon moves from rest upwards, then back to its original position, then down and then back to its original position.
 [image: Investigation : Investigating longitudinal waves]

Figure 8.3. 
Longitudinal wave through a spring


Characteristics of Longitudinal Waves



 As in the case of transverse waves the following properties can be defined for longitudinal waves:
wavelength, amplitude, period, frequency and wave speed. However instead of peaks and troughs, longitudinal waves have compressions and rarefactions.
	 Definition:  Compression 
	 
      A compression is a region in a longitudinal wave where the particles are closest together. 
      



	 Definition:  Rarefaction 
	 
      A rarefaction is a region in a longitudinal wave where the particles are furthest apart. 
      



Compression and Rarefaction



 As seen in Figure 8.4, there are regions where the medium is compressed and other regions where the medium is spread out in a longitudinal wave.
 The region where the medium is compressed is known as a compression and the region where the medium is spread out is known as a rarefaction.
 [image: Compression and Rarefaction]

Figure 8.4. 
Compressions and rarefactions on a longitudinal wave


Wavelength and Amplitude



	 Definition:  Wavelength 
	 
        The wavelength in a longitudinal wave is the distance between two consecutive points that are in phase. 
        



 The wavelength in a longitudinal wave refers to the distance between two consecutive compressions or between two consecutive rarefactions.
	 Definition:  Amplitude 
	 
        The amplitude is the maximum displacement from equilibrium. For a longitudinal wave which is a pressure wave this would be the maximum increase (or decrease) in pressure from the equilibrium pressure that is cause when a peak (or trough) passes a point.
        



 [image: Wavelength and Amplitude]

Figure 8.5. 
Wavelength on a longitudinal wave

 The amplitude is the distance from the equilibrium position of the medium to a compression or a rarefaction.

Period and Frequency



	 Definition:  Period 
	 
       The period of a wave is the time taken by the wave to move one wavelength.
        



	 Definition:  Frequency 
	 
        The frequency of a wave is the number of wavelengths per second.  
        



 The period of a longitudinal wave is the time taken by the wave to move one wavelength. As for transverse waves, the symbol T is used to represent period and period is measured in seconds (s).
 The frequencyf of a wave is the number of wavelengths per second. Using this definition and the fact that the period is the time taken for 1 wavelength, we can define:
(8.1)

 or alternately,
(8.2)


Speed of a Longitudinal Wave



 The speed of a longitudinal wave is defined as:
(8.3)
            
              v
              =
              f
              ·
              λ
            
          
 where

 	v=speed in m·s–1

	f=frequency in Hz

	λ=wavelength in m



Exercise 1.:  Speed of longitudinal waves 
 
         The musical note “A” is a sound wave. The note has a frequency of 440 Hz and a wavelength of 0,784 m. Calculate the speed of the musical note. 

        

 	 Determine what is given and what is required :(8.4)

 We need to calculate the speed of the musical note “A”.

	 Determine how to approach based on what is given : We are given the frequency and wavelength of the note. We can therefore use:
(8.5)
            
              v
              =
              f
              ·
              λ
            
          

	  Calculate the wave speed : 
        
(8.6)


        

	 Write the final answer : The musical note “A” travels at .
 







Exercise 2.:  Speed of longitudinal waves 
 
         A longitudinal wave travels into a medium in which its speed increases.
How does this affect its... (write only increases, decreases, stays the same).

         	 period?


	 wavelength?





        
        

 	 Determine what is required : We need to determine how the period and wavelength of a longitudinal wave change when its speed increases.

	 Determine how to approach based on what is given : We need to find the link between period, wavelength and wave speed.

	 Discuss how the period changes : We know that the frequency of a longitudinal wave is dependent on the frequency of the vibrations that lead to the creation of the longitudinal wave. Therefore, the frequency is always unchanged, irrespective of any changes in speed. Since the period is the inverse of the frequency, the period remains the same.

	 Discuss how the wavelength changes : The frequency remains unchanged. According to the wave equation
(8.7)
            
              v
              =
              f
              λ
            
          
 if f remains the same and v increases, then λ, the wavelength, must also increase.
 










8.2. Sound waves, seismic waves and graphs of motion*



Sound Waves



 Sound waves coming from a tuning fork are caused by the vibrations of the tuning fork which push against the air particles in front of it. As the air particles are pushed together a compression is formed. The particles behind the compression move further apart causing a rarefaction. As the particles continue to push against each other,
the sound wave travels through the air. Due to this motion of the particles, there is a constant variation in the pressure in the air. Sound waves are therefore pressure waves. This means that in media where the particles are closer together, sound waves will travel quicker.
 Sound waves travel faster through liquids, like water, than through the air because water is denser than air (the particles are closer together). Sound waves travel faster in solids than in liquids.
 [image: Sound Waves]

Figure 8.6. 
Sound waves are pressure waves and need a medium through which to travel.

 Tip
A sound wave is different from a light wave.
      
 	 A sound wave is produced by an oscillating object while a light wave is not.





      
 Also, because a sound wave is a mechanical wave (i.e. that it needs a medium) it is not capable of traveling through a vacuum, whereas a light wave can travel through a vacuum.

 Tip
A sound wave is a pressure wave. This means that regions of high pressure (compressions) and low pressure (rarefactions) are created as the sound source vibrates. These compressions and rarefactions arise because the source vibrates longitudinally and the longitudinal motion of air produces pressure fluctuations.

 Sound will be studied in more detail in Sound.

Summary - Longitudinal Waves



 	 A longitudinal wave is a wave where the particles in the medium move parallel to the direction in which the wave is travelling.


	 Longitudinal waves consist of areas of higher pressure, where the particles in the medium are closest together (compressions) and areas of lower pressure, where the particles in the medium are furthest apart (rarefactions).


	 The wavelength of a longitudinal wave is the distance between two consecutive compressions, or two consecutive rarefactions.


	 The relationship between the period (T) and frequency (f) is given by

(8.8)


	 The relationship between wave speed (v), frequency (f) and wavelength (λ) is given by

(8.9)v=fλ

	 Graphs of position vs time, velocity vs time and acceleration vs time can be drawn and are summarised in figures


	 Sound waves are examples of longitudinal waves. The speed of sound depends on the medium, temperature and pressure. Sound waves travel faster in solids than in liquids, and faster in liquids than in gases. Sound waves also travel faster at higher temperatures and higher pressures.





Exercises - Longitudinal Waves



 	 Which of the following is not a longitudinal wave?

 	 seismic P-wave


	 light


	 sound


	 ultrasound




Click here for the solution

	 Which of the following media can sound not travel through?

 	 solid


	 liquid


	 gas


	 vacuum




Click here for the solution

	 Select a word from Column B that best fits the description in Column A:

Table 8.1. 	Column A	Column B
	waves in the air caused by vibrations	longitudinal waves
	waves that move in one direction, but medium moves in another	frequency
	waves and medium that move in the same direction	white noise
	the distance between consecutive points of a wave which are in phase	amplitude
	how often a single wavelength goes by	sound waves
	half the difference between high points and low points of waves	standing waves
	the distance a wave covers per time interval	transverse waves
	the time taken for one wavelength to pass a point	wavelength
	 	music
	 	sounds
	 	wave speed


Click here for the solution

	 A longitudinal wave has a crest to crest distance of 10 m. It takes the wave 5 s to pass a point.

 	 What is the wavelength of the longitudinal wave?


	 What is the speed of the wave?




Click here for the solution

	 A flute produces a musical sound travelling at a speed of . The frequency of the note is 256 Hz. Calculate:

 	 the period of the note


	 the wavelength of the note




Click here for the solution

	 A person shouts at a cliff and hears an echo from the cliff 1 s later. If the speed of sound is , how far away is the cliff?
Click here for the solution


	 A wave travels from one medium to another and the speed of the wave decreases. What will the effect be on the ... (write only increases, decreases or remains the same)

 	 wavelength?


	 period?




Click here for the solution





Glossary



	Definition:  Amplitude 
	
        The boldboldamplitude is the maximum displacement from equilibrium. For a longitudinal wave which is a pressure wave this would be the maximum increase (or decrease) in pressure from the equilibrium pressure that is cause when a peak (or trough) passes a point.
        

	Definition:  Compression 
	
      A boldboldcompression is a region in a longitudinal wave where the particles are closest together. 
      

	Definition:  Frequency 
	
        The boldboldfrequency of a wave is the number of wavelengths per second.  
        

	Definition:  Longitudinal waves 
	
      A longitudinal wave is a wave where the particles in the medium move parallel to the direction of propagation of the wave. 
      

	Definition:  Period 
	
       The boldboldperiod of a wave is the time taken by the wave to move one wavelength.
        

	Definition:  Rarefaction 
	
      A boldboldrarefaction is a region in a longitudinal wave where the particles are furthest apart. 
      

	Definition:  Wavelength 
	
        The boldboldwavelength in a longitudinal wave is the distance between two consecutive points that are in phase. 
        



Solutions


Chapter 2. States of matter and the kinetic molecular theory



2.1. States of matter*



Introduction



 In this chapter we will explore the states of matter and then look at the kinetic molecular theory. Matter exists in three states: solid, liquid and gas. We will also examine how the kinetic theory of matter helps explain boiling and melting points as well as other properties of matter.

States of matter



 All matter is made up of particles. We can see this when we look at diffusion. Diffusion is the movement of particles from a high concentration to a low concentration. Diffusion can be seen as a spreading out of particles resulting in an even distribution of the particles. You can see diffusion when you place a drop of food colouring in water. The colour slowly spreads out through the water. If matter were not made of particles then we would only see a clump of colour when we put the food colouring in water, as there would be nothing that could move about and mix in with the water. The composition of matter will be looked at in What are the objects around us made of?. 

 Diffusion is a result of the constant thermal motion of particles. In ??? we will talk more about the thermal motion of particles. 

 In 1828 Robert Brown observed that pollen grains suspended in water moved about in a rapid, irregular motion. This motion has since become known as Brownian motion. Brownian motion is essentially diffusion of many particles.

 Matter exists in one of three states, namely solid, liquid and gas. Matter can change between these states by either adding heat or removing heat. This is known as a change of state. As we heat an object (e.g. water) it goes from a solid to a liquid to a gas. As we cool an object it goes from a gas to a liquid to a solid.
The changes of state that you should know are:

 	Melting: 
 Melting is the process of going from solid to liquid.

	Boiling:  Boiling (or evaporation) is the process of going from liquid to gas.

	Freezing:  Freezing is the process of going from liquid to solid.

	Condensation:  Condensation is the process of going from gas to liquid.

	Sublimation:  Occasionally (e.g. for carbon dioxide) we can go directly from solid to gas in a process called sublimation.



 A solid has a fixed shape and volume. A liquid takes on the shape of the container that it is in. A gas completely fills the container that it is in. See ??? for more on changes of state.

 If we know the melting and boiling point of a substance then we can say what state (solid, liquid or gas) it will be in at any temperature. 
Experiment: States of matter



 
Aim

To investigate the heating and cooling curve of water.

 
Apparatus

beakers, ice, bunsen burner, thermometer, water.

 
Method


 	Place some ice in a beaker

	Measure the temperature of the ice and record it.

	After 10 s measure the temperature again and record it. Repeat every 10 s, until at least 1 minute after the ice has melted.

	Heat some water in a beaker until it boils. Measure and record the temperature of the water.

	Remove the water from the heat and measure the temperature every 10 s, until the beaker is cool to touch





 Warning
Be careful when handling the beaker of hot water. Do not touch the beaker with your hands, you will burn yourself.

 
Results
Record your results in the following table:
 
Table 2.1. Table of results	
                Temperature of ice
              	
                Time (s)
              	
                Temperature of water
              	
                Time (s)
              
	 	 	 	 
	 	 	 	 
	 	 	 	 
	 	 	 	 
	 	 	 	 



Plot a graph of temperature against time for the ice melting and the boiling water cooling. 

 
Discussion and conclusion
Discuss your results with others in your class. What conclusions can you draw? You should find that the temperature of the ice increases until the first drops of liquid appear and then the temperature remains the same, until all the ice is melted. You should also find that when you cool water down from boiling, the temperature remains constant for a while, then starts decreasing. 


 In the above experiment, you investigated the heating and cooling curves of water. We can draw heating and cooling curves for any substance. A heating curve of a substance gives the changes in temperature as we move from a solid to a liquid to a gas. A cooling curve gives the changes in temperature as we move from gas to liquid to solid. An important observation is that as a substance melts or boils, the temperature remains constant until the substance has changed state. This is because all the heat energy goes into breaking or forming the forces between the molecules. 
 The above experiment is one way of demonstrating the changes of state of a substance. Ice melting or water boiling should be very familiar to you. 


2.2. Properties of matter*



The Properties of Matter 



 Let us now look at what we have learned about chemical 
bonds, intermolecular forces and the kinetic theory of matter, and see whether 
this can help us to understand some of the macroscopic properties of materials.

 	 Melting point

	 Definition:  Melting point 
	 
The temperature at which a solid changes 
its phase or state to become a liquid. The 
process is called melting and the reverse process (change in phase from liquid 
to solid) is called freezing. 




In order for a solid to melt, the energy of the particles 
must increase enough to overcome the bonds that are holding the particles 
together. It makes sense then that a solid which is held together by strong 
bonds will have a higher melting point 
than one where the bonds are weak, because more energy (heat) is needed to break 
the bonds. In the examples we have looked at metals, ionic solids and some 
atomic lattices (e.g. diamond) have high melting points, whereas the melting 
points for molecular solids and other atomic lattices (e.g. graphite) are much 
lower. Generally, the intermolecular forces between molecular solids are 
weaker than those between ionic and 
metallic solids.


	 Boiling point

	 Definition:  Boiling point 
	 
The temperature at which a liquid changes 
its phase to become a gas. The process is 
called evaporation and the reverse process is called condensation 




When the temperature of a liquid increases, the average 
kinetic energy of the particles also increases and they are able to overcome 
the bonding forces that are holding them in the liquid. When boiling point is 
reached, evaporation takes place and some 
particles in the liquid become a gas. In other words, the energy of the 
particles is too great for them to be held in a liquid anymore. The stronger the 
bonds within a liquid, the higher the boiling point needs to be in order to 
break these bonds. Metallic and ionic compounds have high boiling points while 
the boiling point for molecular liquids is lower.
The data in Table 2.2 below may help you to understand some of 
the concepts we have explained. Not all of the substances in the table are 
solids at room temperature, so for now, let's just focus on the boiling points for each of these substances. What do 
you notice?

Table 2.2. The melting and boiling 
points for a number of substances	Substance	Melting 
point (°C)	Boiling point (°C)
	Ethanol (C2H6O)	-
114,3	78,4
	Water	0	100
	Mercury	-38,83	356,73
	Sodium chloride	801	1465



You will have seen that substances such as ethanol, with relatively weak 
intermolecular forces, have the lowest boiling point, while substances with 
stronger intermolecular forces such as sodium chloride and mercury, must be 
heated much more if the particles are to have enough energy to overcome the 
forces that are holding them together in the liquid. See the section below for a further exercise on boiling point. 

	 Density and viscosity

Density and viscosity is not in CAPS - Included for Completeness


	 Definition: Density
	 Density is a measure of the mass of a substance per 
unit volume.



 The density of a solid is generally higher than that of a liquid 
because the particles are held much more closely together and therefore there 
are more particles packed together in a particular volume. In other words, there 
is a greater mass of the substance in a particular volume. In general, density 
increases as the strength of the intermolecular forces increases. 
	 Definition: Viscosity
	 Viscosity is a measure of how resistant a liquid is to 
flowing (in other words, how easy it is to pour the liquid from one container to 
another).



 Viscosity is also sometimes described as the 'thickness' of a fluid. 
Think for example of syrup and how slowly it pours from one container into 
another. Now compare this to how easy it is to pour water. The viscosity of 
syrup is greater than the viscosity of water. Once again, the stronger the 
intermolecular forces in the liquid, the greater its viscosity.




 It should be clear now that we can explain a lot of 
the macroscopic properties of matter (i.e. 
the characteristics we can see or observe) by understanding their microscopic structure and the way in which the atoms 
and molecules that make up matter are held together.
Exercise: Forces and boiling point 



 The table below gives the molecular formula and the boiling point 
for a number of organic compounds called alkanes (more on these compounds in grade 12). Refer 
to the table and then answer the questions that follow.

Table 2.3. 	Organic compound	Molecular 
formula	Boiling point (°C)
	Methane	CH4	-161.6
	Ethane	C2H6	-
88.6
	Propane	C3H8
	-45
	Butane	C4H10	-0.5
	Pentane	C5H12	36.1
	Hexane	C6H14	69
	Heptane	C7H16	98.42
	Octane	C8H18	125.52


Data from: http://www.wikipedia.com
 	 Draw a 
graph to show the relationship between the number of carbon atoms in each 
alkane and its boiling point. (Number of carbon atoms will go on the x-axis and 
boiling point on the y-axis).


	 Describe what you see.


	 Suggest a reason for what you have observed.


	 Why was it enough for us to use 'number of carbon atoms' 
as a measure of the molecular weight of the molecules?





Click 
here for the solution


 
(This media type is not supported in this reader. Click to open media in browser.)
Figure 2.1. 


2.3. The kinetic molecular theory*



The Kinetic Theory of Matter



 The kinetic theory of 
matter helps us to explain why matter exists in different phases (i.e. solid, liquid and gas), and how matter 
can change from one phase to the next. The kinetic theory of matter also helps 
us to understand other properties of matter. It is important to realise that 
what we will go on to describe is only a theory. It cannot be proved beyond doubt, but the 
fact that it helps us to explain our observations of changes in phase, and other 
properties of matter, suggests that it probably is more than just a theory.

 Broadly, the Kinetic Theory of Matter says that:

 	 Matter is made up of particles 
that are constantly moving.


	 All particles have energy, but the energy varies depending on whether the 
substance is a solid, liquid or gas. Solid particles have the least amount of 
energy and gas particles have the greatest amount of energy.


	 The temperature of a 
substance is a measure of the average kinetic 
energy of the particles.


	 A change in phase 
may occur when the energy of the particles is changed.


	 There are spaces 
between the particles of matter.


	 There are attractive 
forces between particles and these become stronger as the particles 
move closer together. These attractive forces will either be intramolecular 
forces (if the particles are atoms) or intermolecular forces (if the particles 
are molecules). When the particles are extremely close, repulsive forces start 
to act.




 Table 2.4 summarises the 
characteristics of the particles that are in each phase of matter.
Table 2.4. Table summarising the general features of solids, liquids and 
gases.	
                Property of matter
              	
                Solid
              	
                Liquid
              	
                Gas
              
	Particles	Atoms or molecules	Atoms or molecules	Atoms or molecules
	Energy and movement of particles	Low energy - particles vibrate around a fixed point	Particles have less energy than in the gas phase	Particles have high energy and are constantly 
moving
	Spaces between particles	Very little space between particles. Particles are tightly 
packed together	Smaller spaces than in gases, but larger spaces than in 
solids	Large spaces because of high energy
	Attractive forces between particles	Very strong forces. Solids have a fixed volume.	Stronger forces than in gas. Liquids can be poured.	Weak forces because of the large distance between 
particles
	Changes in phase	Solids become liquids if their temperature is increased. In some cases a 
solid may become a gas if the temperature is increased.	A liquid becomes a gas if its temperature is increased. It 
becomes a solid if its temperature decreases.	In general a gas becomes a liquid when it is cooled. (In a 
few cases a gas becomes a solid when cooled). Particles have less energy and 
therefore move closer together so that the attractive forces become stronger, 
and the gas becomes a liquid (or a solid.)


 The following presentation is a brief summary of the 
above. Try to fill in the blank spaces before clicking onto the next slide.


(This media type is not supported in this reader. Click to open media in browser.)
Figure 2.2. 

 Let's look at an example that 
involves the three phases of water: ice (solid), water (liquid) and water vapour 
(gas). Note that in the Figure 2.3 below the 
molecules in the solid phase are represented by single spheres, but they would 
in reality look like the molecules in the liquid and gas phase. Sometimes we 
represent molecules as single spheres in the solid phase to emphasise the small 
amount of space between them and to make the drawing simpler.
 [image: The Kinetic Theory of Matter]

Figure 2.3. 
The three phases of matter

 Taking water as an example we find that in the solid 
phase the water molecules have very little energy and can't move away from each 
other. The molecules are held closely together in a regular pattern called a 
lattice. If the ice is heated, the energy 
of the molecules increases. This means that some of the water molecules are able 
to overcome the intermolecular forces that are holding them together, and the 
molecules move further apart to form liquid 
water. This is why liquid water is able to flow, because the 
molecules are more free to move than they were in the solid lattice. If the 
molecules are heated further, the liquid water will become water vapour, which 
is a gas. Gas particles have lots of energy and are far away from each other. 
That is why it is difficult to keep a gas in a specific area! The attractive 
forces between the particles are very weak and they are only loosely held 
together. Figure 2.4 shows the changes in phase that may occur in 
matter, and the names that describe these processes.
 [image: The Kinetic Theory of Matter]

Figure 2.4. 
Changes in phase


Summary



 	 There are three states of matter: solid, liquid and gas.

	 Diffusion is the movement of particles from a high concentration to a low concentration. Brownian motion is the diffusion of many particles.

	 The kinetic theory of 
matter attempts to explain the behaviour of matter in different 
phases.


	 The kinetic theory of matter says that all matter is 
composed of particles which have a certain 
amount of energy which allows them to 
move at different speeds depending on the 
temperature (energy). There are spaces 
between the particles and also attractive 
forces between particles when they come close together.


	 Intramolecular force is the force between the atoms of a molecule, which holds 
them together. Intermolecular force is a force between molecules, which holds them together. 

	 Understanding chemical bonds, intermolecular forces and 
the kinetic theory of matter can help to explain many of the macroscopic properties of matter.


	 Melting point is the 
temperature at which a solid changes its 
phase to become a liquid. The reverse 
process (change in phase from liquid to solid) is called freezing. The stronger the chemical bonds and 
intermolecular forces in a substance, the higher the melting point will be.


	 Boiling point is the 
temperature at which a liquid changes phase to become a gas. The reverse 
process (change in phase from gas to liquid) is called condensing. The stronger the 
chemical bonds and intermolecular forces in a substance, the higher the boiling 
point will be.


	 Density is a measure 
of the mass of a substance per unit volume.


	 Viscosity is a 
measure of how resistant a liquid is to flowing.





End of chapter exercises



 	 Give one word or term for each of the following 
descriptions.

 	 The 
property that determines how easily a liquid flows.


	 The change in phase from liquid to gas.




Click here for the solution


	 If one substance A has a melting point that is lower than the melting point of substance B, this 
suggests that...

 	 A 
will be a liquid at room temperature.


	 The chemical bonds in substance A are weaker than those 
in substance B.


	 The chemical bonds in substance A are stronger than 
those in substance B.


	 B will be a gas at room temperature.




Click here for the solution

	 Boiling point is an important concept to understand.

 	 Define 'boiling point'.


	 What change in phase takes place when a liquid reaches 
its boiling point?


	 What is the boiling point of water?


	 Use the kinetic theory of matter and your knowledge of 
intermolecular forces to explain why water changes phase at this temperature.




Click here for the solution


	 Describe a solid in terms of the kinetic molecular theory. 
Click here for the solution

	 Refer to the table below which gives the melting and 
boiling points of a number of elements and then answer the questions that 
follow. (Data from 
http://www.chemicalelements.com)

Table 2.5. 	Element	Melting 
point	Boiling point (°C)

	copper	1083	2567
	magnesium	650	1107
	oxygen	-218,4	-183
	carbon	3500	4827
	helium	-272	-268,6
	sulphur	112,8	444,6


 	 What state of matter (i.e. solid, liquid or gas) will each of 
these elements be in at room temperature?


	 Which of these elements has the strongest forces 
between its atoms? Give a reason for your answer.


	 Which of these elements has the weakest forces between 
its atoms? Give a reason for your answer.




Click here for the solution





Glossary



	Definition:  Boiling point 
	
The temperature at which a italicsliquid changes 
its phase to become a italicsgas. The process is 
called evaporation and the reverse process is called condensation 


	Definition:  Melting point 
	
The temperature at which a italicssolid changes 
its phase or state to become a italicsliquid. The 
process is called melting and the reverse process (change in phase from liquid 
to solid) is called boldboldfreezing. 


	Definition: Density
	Density is a measure of the mass of a substance per 
unit volume.

	Definition: Viscosity
	Viscosity is a measure of how resistant a liquid is to 
flowing (in other words, how easy it is to pour the liquid from one container to 
another).



Solutions


Chapter 6. Transverse pulses



6.1. Introduction and key concepts*



Introduction



 This chapter forms the basis of the discussion into mechanical waves. Waves are all around us, even though most of us are not aware of it. The most common waves are waves in the sea, but waves can be created in any container of water, ranging from an ocean to a tea-cup. Waves do not only occur in water, they occur in any kind of medium. Earthquakes generate waves that travel through the rock of the Earth. When your friend speaks to you he produces sound waves that travel through the air to your ears. Light is made up of electromagnetic waves. A wave is simply moving energy.

What is a medium?



 In this chapter, as well as in the following chapters, we will speak about waves moving in a medium. A medium is just the substance or material through which waves move. In other words the medium carries the wave from one place to another. The medium does not create the wave and the medium is not the wave. Therefore the medium does not travel with the wave as the wave propagates through it. Air is a medium for sound waves, water is a medium for water waves and rock is a medium for earthquakes (which are also a type of wave). Air, water and rock are therefore examples of media (media is the plural of medium).
	 Definition:  Medium 
	 
      
 A medium is the substance or material in which a wave will move. 

      



 In each medium, the atoms that make up the medium are moved temporarily from their rest position. In order for a wave to travel, the different parts of the medium must be able to interact with each other.

What is a pulse?



 Investigation : Observation of Pulses 



 Take a heavy rope. Have two people hold the rope stretched out horizontally. Flick the rope at one end only once.
 
        
 [image: Investigation : Observation of Pulses]
Figure 6.1. 


      
 What happens to the disturbance that you created in the rope? Does it stay at the place where it was created or does it move down the length of the rope? 

 In the activity, we created a pulse. A pulse is a single disturbance that moves through a medium. In a transverse pulse the displacement of the medium is perpendicular to the direction of motion of the pulse. Figure 6.2 shows an example of a transverse pulse. In the activity, the rope or spring was held horizontally and the pulse moved the rope up and down. This was an example of a transverse pulse.
	 Definition:  Pulse 
	 
      
 A pulse is a single disturbance that moves through a medium. 

      



	 Definition:  Transverse Pulse 
	 
      
 A pulse where all of the particles disturbed by the pulse move perpendicular (at a right angle) to the direction in which the pulse is moving. 

      



Pulse Length and Amplitude



 The amplitude of a pulse is a measurement of how far the medium is displaced momentarily from a position of rest. The pulse length is a measurement of how long the pulse is. Both these quantities are shown in Figure 6.2.
	 Definition:  Amplitude 
	 
        
 The amplitude of a pulse is a measurement of how far the medium is displaced from rest. 

        



 [image: Pulse Length and Amplitude]

Figure 6.2. 
Example of a transverse pulse

 The position of rest is the position the medium would be in if it were undisturbed. This is also called the equilibrium position. Sometimes people will use rest and sometimes equilibrium but they will also use to the two in the same discussion to mean the same thing.
 Investigation : Pulse Length and Amplitude 



 The graphs below show the positions of a pulse at different times.
 
          
 [image: Investigation : Pulse Length and Amplitude]
Figure 6.3. 


        
 Use your ruler to measure the lengths of a and p. Fill your answers in the table.
Table 6.1. 	Time	
                  
                    a
                  
                	
                  
                    p
                  
                
	t=0 s	 	 
	t=1 s	 	 
	t=2 s	 	 
	t=3 s	 	 


 What do you notice about the values of a and p?
 

 In the activity, we found that the values for how high the pulse (a) is and how wide the pulse (p) is the same at different times. Pulse length and amplitude are two important quantities of a pulse.

Pulse Speed



	 Definition:  Pulse Speed 
	 
        
 Pulse speed is the distance a pulse travels per unit time. 

        



 In Motion in one dimension we saw that speed was defined as the distance traveled per unit time. We can use the same definition of speed to calculate how fast a pulse travels. If the pulse travels a distance D in a time t, then the pulse speed v is:
(6.1)

Exercise 1.:  Pulse Speed 
 
         A pulse covers a distance of  in  on a heavy rope. Calculate the pulse speed. 

        

 	 Determine what is given and what is required : We are given:
 	 the distance travelled by the pulse: 


	 the time taken to travel : 




 We are required to calculate the speed of the pulse.

	 Determine how to approach the problem : We can use:
(6.2)

 to calculate the speed of the pulse.

	  Calculate the pulse speed : 
        
(6.3)


        

	 Write the final answer : The pulse speed is .
 







 Tip
The pulse speed depends on the properties of the medium and not on the amplitude or pulse length of the pulse.

 Pulse Speed 



 	 A pulse covers a distance of  in . Calculate the speed of the pulse.
Click here for the solution.


	 A pulse has a speed of . How far does it travel in ?
Click here for the solution.


	 A pulse has a speed of . How long does it take to cover a distance of ?
Click here for the solution.


	 How long will it take a pulse moving at  to travel a distance of ?
Click here for the solution.


	 The diagram shows two pulses in the same medium. Which has the higher speed? Explain your answer.

 [image: Pulse Speed]

Figure 6.4. 

Click here for the solution.







6.2. Superposition of pulses*



Superposition of Pulses



 Two or more pulses can pass through the same medium at that same time in the same place. When they do they interact with each other to form a different disturbance at that point. The resulting pulse is obtained by using the principle of superposition. The principle of superposition states that the effect of the different pulses is the sum of their individual effects. After pulses pass through each other, each pulse continues along its original direction of travel, and their original amplitudes remain unchanged.
 Constructive interference takes place when two pulses meet each other to create a larger pulse. The amplitude of the resulting pulse is the sum of the amplitudes of the two initial pulses. This is shown in Figure 6.5.
	 Definition:  Constructive interference
	 
      Constructive interference is when two pulses meet, resulting in a bigger pulse. 
      



 [image: Superposition of Pulses]

Figure 6.5. 
Superposition of two pulses: constructive interference.

 Destructive interference takes place when two pulses meet and cancel each other. The amplitude of the resulting pulse is the sum of the amplitudes of the two initial pulses, but the one amplitude will be a negative number. This is shown in Figure 6.6. In general, amplitudes of individual pulses add together to give the amplitude of the resultant pulse.
	 Definition:  Destructive interference
	 
      Destructive interference is when two pulses meet, resulting in a smaller pulse. 
      



 [image: Superposition of Pulses]

Figure 6.6. 
Superposition of two pulses. The left-hand series of images demonstrates destructive interference, since the pulses cancel each other. The right-hand series of images demonstrate a partial cancelation of two pulses, as their amplitudes are not the same in magnitude.

Exercise 2.:  Superposition of Pulses 
 
       The two pulses shown below approach each other at . Draw what the waveform would look like after ,  and .

       
        
 [image: Superposition of Pulses]
Figure 6.6. 


      

      
      

 	 After  : After , pulse A has moved  to the right and pulse B has moved  to the left.
 
        
 [image: Superposition of Pulses]
Figure 6.6. 


      

	 After  : After  more, pulse A has moved  to the right and pulse B has moved  to the left.
 
        
 [image: Superposition of Pulses]
Figure 6.6. 


      

	 After  : After , pulse A has moved  to the right and pulse B has moved  to the left.
 
        
 [image: Superposition of Pulses]
Figure 6.6. 


      







 Tip
The idea of superposition is one that occurs often in physics. You will see much, much more of superposition!

Experiment: Constructive and destructive interference



 
Aim

To demonstrate constructive and destructive interference

 
Apparatus
Ripple tank apparatus

 [image: Apparatus]
Figure 6.7. 

 
Method


 	Set up the ripple tank

	Produce a single pulse and observe what happens

	Produce two pulses simultaneously and observe what happens

	Produce two pulses at slightly different times and observe what happens





 
Results and conclusion

You should observe that when you produce two pulses simultaneously you see them interfere constructively and when you produce two pulses at slightly different times you see them interfere destructively.


Problems Involving Superposition of Pulses 



 	 For the following pulse, draw the resulting wave forms after , , ,  and . Each pulse is travelling at . Each block represents . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.

 [image: Problems Involving Superposition of Pulses]

Figure 6.8. 

Click here for the solution.

	 For the following pulse, draw the resulting wave forms after , , ,  and . Each pulse is travelling at . Each block represents . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
 [image: Problems Involving Superposition of Pulses]

Figure 6.9. 

Click here for the solution.

	 For the following pulse, draw the resulting wave forms after , , ,  and . Each pulse is travelling at . Each block represents . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
 [image: Problems Involving Superposition of Pulses]

Figure 6.10. 

Click here for the solution.

	 For the following pulse, draw the resulting wave forms after , , ,  and . Each pulse is travelling at . Each block represents . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
 [image: Problems Involving Superposition of Pulses]

Figure 6.11. 

Click here for the solution.

	 For the following pulse, draw the resulting wave forms after , , ,  and . Each pulse is travelling at . Each block represents . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
 [image: Problems Involving Superposition of Pulses]

Figure 6.12. 

Click here for the solution.

	 For the following pulse, draw the resulting wave forms after , , ,  and . Each pulse is travelling at . Each block represents . The pulses are shown as thick black lines and the undisplaced medium as dashed lines.
 [image: Problems Involving Superposition of Pulses]

Figure 6.13. 

Click here for the solution.

	 
          What is superposition of waves?
Click here for the solution.


	 What is constructive interference?
Click here for the solution.


	 What is destructive interference?
Click here for the solution.
        





  The following presentation provides a summary of the work covered in this chapter. Although the presentation is titled waves, the presentation covers pulses only.
      
(This media type is not supported in this reader. Click to open media in browser.)
Figure 6.14. 



Summary



 	A medium is the substance or material in which a wave will move

	A pulse is a single disturbance that moves through a medium

	The amplitude of a pules is a measurement of how far the medium is displaced from rest

	Pulse speed is the distance a pulse travels per unit time

	Constructive interference is when two pulses meet and result in a bigger pulse

	Destructive interference is when two pulses meet and and result in a smaller pulse

	We can draw graphs to show the motion of a particle in the medium or to show the motion of a pulse through the medium

	When a pulse moves from a thin rope to a thick rope, the speed and pulse length decrease. The pulse will be reflected and inverted in the thin rope. The reflected pulse has the same length and speed, but a different amplitude

	When a pulse moves from a thick rope to a thin rope, the speed and pulse length increase. The pulse will be reflected in the thick rope. The reflected pulse has the same length and speed, but a different amplitude

	A pulse reaching a free end will be reflected but not inverted. A pulse reaching a fixed end will be reflected and inverted




Exercises - Transverse Pulses



 	 A heavy rope is flicked upwards, creating a single pulse in the rope. Make a drawing of the rope and indicate the following in your drawing:

 	 The direction of motion of the pulse


	 Amplitude


	 Pulse length


	 Position of rest




Click here for the solution.

	 A pulse has a speed of . How far will it have travelled in ?
Click here for the solution.


	 A pulse covers a distance of  in . What is the speed of the pulse?
Click here for the solution.


	 How long does it take a pulse to cover a distance of  if its speed is ?
Click here for the solution.


	 The following position-time graph for a pulse in a slinky spring is given. Draw an accurate sketch graph of the velocity of the pulse against time.

 [image: Exercises - Transverse Pulses]

Figure 6.15. 

Click here for the solution.

	 The following velocity-time graph for a particle in a medium is given. Draw an accurate sketch graph of the position of the particle vs. time.

 [image: Exercises - Transverse Pulses]

Figure 6.16. 

Click here for the solution.

	 Describe what happens to a pulse in a slinky spring when:

 	 the slinky spring is tied to a wall.


	 the slinky spring is loose, i.e. not tied to a wall.





(Draw diagrams to explain your answers.)
Click here for the solution.


	 The following diagrams each show two approaching pulses. Redraw the diagrams to show what type of interference takes place, and label the type of interference.

 	 
 [image: Exercises - Transverse Pulses]

Figure 6.17. 


	 
 [image: Exercises - Transverse Pulses]

Figure 6.18. 




Click here for the solution.

	 Two pulses, A and B, of identical shape and amplitude are simultaneously generated in two identical wires of equal mass and length. Wire A is, however, pulled tighter than wire B. Which pulse will arrive at the other end first, or will they both arrive at the same time?
Click here for the solution.






Glossary



	Definition:  Amplitude 
	
        
The amplitude of a pulse is a measurement of how far the medium is displaced from rest. 

        

	Definition:  Constructive interference
	
      Constructive interference is when two pulses meet, resulting in a bigger pulse. 
      

	Definition:  Destructive interference
	
      Destructive interference is when two pulses meet, resulting in a smaller pulse. 
      

	Definition:  Medium 
	
      
A medium is the substance or material in which a wave will move. 

      

	Definition:  Pulse 
	
      
A pulse is a single disturbance that moves through a medium. 

      

	Definition:  Pulse Speed 
	
        
Pulse speed is the distance a pulse travels per unit time. 

        

	Definition:  Transverse Pulse 
	
      
A pulse where all of the particles disturbed by the pulse move perpendicular (at a right angle) to the direction in which the pulse is moving. 

      



Solutions



    
      [image: Siyavula textbooks: Grade 10 Physical Science [CAPS]]
    

  Chapter 3. The atom



3.1. Introduction and models*



Introduction



 The following video covers some of the properties of an atom.

(This media type is not supported in this reader. Click to open media in browser.)
Figure 3.1. Veritasium video on the atom - 1

 We have now looked at many examples of the types of matter and materials that exist around us and we have investigated some of the ways that materials are classified. But what is it that makes up these materials? And what makes one material different from another? In order to understand this, we need to take a closer look at the building block of matter - the atom. Atoms are the basis of all the structures and organisms in the universe. The planets, sun, grass, trees, air we breathe and people are all made up of different combinations of atoms.

Project: Models of the atom



 
Our current understanding of the atom came about over a long period of time, with many different people playing a role. Conduct some research into the development of the different ideas of the atom and the people who contributed to it. Some suggested people to look at are: JJ Thomson, Ernest Rutherford, Marie Curie, JC Maxwell, Max Planck, Albert Einstein, Niels Bohr, Lucretius, LV de Broglie, CJ Davisson, LH Germer, Chadwick, Werner Heisenberg, Max Born, Erwin Schrodinger, John Dalton, Empedocles, Leucippus, Democritus, Epicurus, Zosimos, Maria the Jewess, Geber, Rhazes, Robert Boyle, Henry Cavendish, A Lavoisier and H Becquerel. You do not need to find information on all these people, but try to find information about as many of them as possible.

 Make a list of the key contributions to a model of the atom that each of these people made and then make a timeline of this information. (You can use an online tool such as Dipity to make a timeline.) Try to get a feel for how it all eventually fit together into the modern understanding of the atom. 


Models of the Atom



 It is important to realise that a lot of what we know about the structure of atoms has been developed over a long period of time. This is often how scientific knowledge develops, with one person building on the ideas of someone else. We are going to look at how our modern understanding of the atom has evolved over time.
 The idea of atoms was invented by two Greek philosophers, Democritus and Leucippus in the fifth century BC. The Greek word ατoμoν  (atom) means indivisible because they believed that atoms could not be broken into smaller pieces.
 Nowadays, we know that atoms are made up of a positively charged nucleus in the centre
surrounded by negatively charged electrons. However, in the past, before the structure of the atom was properly understood, scientists came up with lots of different models or pictures to describe what atoms look like.
	 Definition:  Model 
	 
      
 A model is a representation of a system in the real world. Models help us to understand systems and their properties. For example, an atomic model represents what the structure of an atom could look like, based on what we know about how atoms behave. It is not necessarily a true picture of the exact structure of an atom. 

      



The Plum Pudding Model



 After the electron was discovered by J.J. Thomson in 1897, people realised that atoms were made up of even smaller particles than they had previously thought. However, the atomic nucleus had not been discovered yet and so the 'plum pudding model' was put forward in 1904. In this model, the atom is made up of negative electrons that float in a soup of positive charge, much like plums in a pudding or raisins in a fruit cake (Figure 3.2). In 1906, Thomson was awarded the Nobel Prize for his work in this field. However, even with the Plum Pudding Model, there was still no understanding of how these electrons in the atom were arranged.
 [image: The Plum Pudding Model]

Figure 3.2. 
A schematic diagram to show what the atom looks like according to the Plum Pudding model

 The discovery of radiation was the next step along the path to building an accurate picture of atomic structure. In the early twentieth century, Marie Curie and her husband Pierre,  discovered that some elements (the radioactive elements) emit particles, which are able to pass through matter in a similar way to X-rays (read more about this in Grade 11). It was Ernest Rutherford who, in 1911, used this discovery to revise the model of the atom.

Interesting fact
Two other models proposed for the atom were the cubic model and the Saturnian model. In the cubic model, the electrons were imagined to lie at the corners of a cube. In the Saturnian model, the electrons were imagined to orbit a very big, heavy nucleus.


Rutherford's model of the atom



 Rutherford carried out some experiments which led to a change in ideas around the atom. His new model described the atom as a tiny, dense, positively charged core called a nucleus surrounded by lighter, negatively charged electrons. Another way of thinking about this model was that the atom was seen to be like a mini solar system where the electrons orbit the nucleus like planets orbiting around the sun. A simplified picture of this is shown in Figure 3.3. This model is sometimes known as the planetary model of the atom.
 [image: Rutherford's model of the atom]

Figure 3.3. 
Rutherford's model of the atom


The Bohr Model



 There were, however, some problems with this model: for example it could not explain the very interesting
observation that atoms only emit light at certain wavelengths or frequencies. Niels Bohr solved
this problem by proposing that the electrons could only orbit the nucleus in certain special orbits
at different energy levels around the nucleus. The exact energies of the orbitals in each energy level depends on
the type of atom. Helium for example, has different energy levels to Carbon. If an electron jumps down
from a higher energy level to a lower energy level, then light is emitted from
the atom. The energy of the light emitted is the same as the gap in the energy between the two
energy levels. You can read more about this in "Energy quantisation and electron configuration". The distance between the nucleus and the electron in the lowest energy level of a hydrogen atom is known as the Bohr radius.
 Interesting Fact 
 Light has the properties of both a particle and a wave! Einstein discovered
that light comes in energy packets which are called photons. When an electron in an atom
changes energy levels, a photon of light is emitted. This photon has the same energy as
the difference between the two electron energy levels.



Other models of the atom



 
Although the most common model of the atom is the Bohr model, scientists have not stopped thinking about other ways to describe atoms. One of the most important contributions to atomic theory (the field of science that looks at atoms) was the development of quantum theory. Schrodinger, Heisenberg, Born and many others have had a role in developing quantum theory. The description of an atom by quantum theory is very complex and is only covered at university level.  


Models of the atom



 Match the information in column A, with the key discoverer in column B.


Table 3.1. 	Column A	Column B
	Discovery of electrons and the plum pudding model	Niels Bohr
	Arrangement of electrons	Marie Curie and her husband, Pierre
	Atoms as the smallest building block of matter	Ancient Greeks
	Discovery of the nucleus	JJ Thomson
	Discovery of radiation	Rutherford



Click here for the solution


Atomic mass and diameter



 It is difficult sometimes to imagine the size of an atom, or its mass, because we cannot see an atom and also because we are not used to working with such small measurements.
How heavy is an atom?



 It is possible to determine the mass of a single atom in kilograms. But to do this, you would need very modern mass spectrometers and the values you would get would be very clumsy and difficult to use. The mass of a carbon atom, for example, is about , while the mass of an atom of hydrogen is about . Looking at these very small numbers makes it difficult to compare how much bigger the mass of one atom is when compared to another.
 To make the situation simpler, scientists use a different unit of mass when they are describing the mass of an atom. This unit is called the atomic mass unit (amu). We can abbreviate (shorten) this unit to just 'u'. Scientists use the carbon standard to determine amu. The carbon standard assigns carbon an atomic mass of 12 u. Using the carbon standard the mass of an atom of hydrogen will be 1 u. You can check this by dividing the mass of a carbon atom in kilograms (see above) by the mass of a hydrogen atom in kilograms (you will need to use a calculator for this!). If you do this calculation, you will see that the mass of a carbon atom is twelve times greater than the mass of a hydrogen atom. When we use atomic mass units instead of kilograms, it becomes easier to see this. Atomic mass units are therefore not giving us the actual mass of an atom, but rather its mass relative to the mass of one (carefully chosen) atom in the Periodic Table. Although carbon is the usual element to compare other elements to, oxygen and hydrogen have also been used. The important thing to remember here is that the atomic mass unit is relative to one (carefully chosen) element. The atomic masses of some elements are shown in the  table  below.
Table 3.2. The atomic mass number of some of the elements	
                  Element
                	
                  Atomic mass (u)
                
	Carbon (C)	12
	Nitrogen (N)	14
	Bromine (Br)	80
	Magnesium (Mg)	24
	Potassium (K)	39
	Calcium (Ca)	40
	Oxygen (O)	16


 The actual value of 1 atomic mass unit is  or . This is a very tiny mass!

How big is an atom?



 Tip
pm stands for picometres. 

 Atomic radius also varies depending on the element. On average, the radius of an atom ranges from  (Helium) to  (Caesium). Using different units, , and . That is the same as saying that  or that ! In other words, the diameter of an atom ranges from  to . This is very small indeed.
 The atomic radii given above are for the whole atom (nucleus and electrons). The nucleus itself is even smaller than this by a factor of about 23 000 in uranium and 145 000 in hydrogen. If the nucleus were the size of a golf ball, then the nearest electrons would be about one kilometer away! This should help you realise that the atom is mostly made up of empty space. 
Rutherfords alpha-particle scattering experiment



 Radioactive elements emit different types of particles. Some of these are positively charged alpha (α) particles.
Rutherford carried out a series of experiments where he bombarded sheets of gold foil with these particles, to try to get a better understanding of where the positive charge in the atom was. A simplified diagram of his experiment is shown in Figure 3.4.
 [image: Rutherfords alpha-particle scattering experiment]

Figure 3.4. 
Rutherford's gold foil experiment. Figure (a) shows the path of the α particles after they hit the gold sheet. Figure (b) shows the arrangement of atoms in the gold sheets and the path of the α particles in relation to this.

 Rutherford set up his experiment so that a beam of alpha particles was directed at the gold sheets. Behind the gold sheets was a screen made of zinc sulphide. This screen allowed Rutherford to see where the alpha particles were landing. Rutherford knew that the electrons in the gold atoms would not really affect the path of the alpha particles, because the mass of an electron is so much smaller than that of a proton. He reasoned that the positively charged protons would be the ones to repel the positively charged alpha particles and alter their path.
 What he discovered was that most of the alpha particles passed through the foil undisturbed and could be detected on the screen directly behind the foil (A). Some of the particles ended up being slightly deflected onto other parts of the screen (B). But what was even more interesting was that some of the particles were deflected straight back in the direction from where they had come (C)! These were the particles that had been repelled by the positive protons in the gold atoms. If the Plum Pudding model of the atom were true then Rutherford would have expected much more repulsion, since the positive charge according to that model is distributed throughout the atom. But this was not the case. The fact that most particles passed straight through suggested that the positive charge was concentrated in one part of the atom only.


Relative atomic mass



	 Definition:  Relative atomic mass 
	 
        
 Relative atomic mass is the average mass of one atom of all the naturally occurring isotopes of a particular chemical element, expressed in atomic mass units.
 

        



 The relative atomic mass of an element is the number you will find on the periodic table. 



3.2. Structure*



Structure of the atom



 As a result of the work done by previous scientists on atomic models (that we discussed in "Models of the Atom"), scientists now have a good idea of what an atom looks like. This knowledge is important because it helps us to understand why materials have different properties and why some materials bond with others. Let us now take a closer look at the microscopic structure of the atom.
 So far, we have discussed that atoms are made up of a positively charged nucleus surrounded by
one or more negatively charged electrons. These electrons orbit the nucleus.
 Before we look at some useful concepts we first need to understand what electrons, protons and neutrons are.
The Electron



 The electron is a very light particle. It has a mass of .
Scientists believe that the electron can be treated as a point particle
or elementary particle
meaning that it can't be broken down into anything smaller. The electron also carries one unit
of negative electric charge which is the same as  (Coulombs).
 The electrons determine the charge on an atom. If the number of electrons is the same as the number of protons then the atom will be neutral. If the number of electrons is greater than the number of protons then the atom will be negatively charged. If the number of electrons is less than the number of protons then the atom will be positively charged. Atoms that are not neutral are called ions. Ions will be covered in more detail in a later chapter. For now all you need to know is that for each electron you remove from an atom you loose –1 of charge and for each electron that you add to an atom you gain +1 of charge. For example, the charge on an atom of sodium after removing one electron is  –1.

The Nucleus



 Unlike the electron, the nucleus can be broken up into smaller building
blocks called protons and neutrons. Together, the protons and
neutrons are called nucleons.
The Proton



 Each proton carries one unit of positive electric charge.
Since we know that atoms are
electrically neutral, i.e. do not carry any extra charge, then the number
of protons in an atom has to be the same as the number of electrons to balance
out the positive and negative charge to zero. The total positive charge of a
nucleus is equal to the number of protons in the nucleus. The proton is much heavier
than the electron (10 000 times heavier!) and has a mass of . When we talk about the atomic mass of an atom, we are mostly referring to the combined mass of the protons and neutrons, i.e. the nucleons.

The Neutron



 The neutron is electrically neutral i.e. it carries no charge at all.
Like the proton, it is much heavier than the electron and its mass is  (slightly heavier than the proton).
 Interesting Fact 
 Rutherford predicted (in 1920) that another kind of particle must be
present in the nucleus along with the proton. He predicted this because
if there were only positively charged protons in the nucleus, then it should break
into bits because of the repulsive forces between the like-charged protons! Also,
if protons were the only particles
in the nucleus, then a helium nucleus (atomic number 2) would have
two protons and therefore only twice the mass of hydrogen. However,
it is actually four times heavier than hydrogen. This suggested that there
must be something else inside the nucleus as well as the protons.
To make sure that the atom stays electrically neutral, this particle would have to be neutral itself. In 1932 James Chadwick discovered the neutron and measured
its mass.


Table 3.3. Summary of the particles inside the atom	 	
                    proton
                  	
                    neutron
                  	
                    electron
                  
	
                    Mass (kg)
                  	1,6726×10–27	1,6749×10–27	9,11×10–31
	
                    Units of charge
                  	+1	0	–1
	
                    Charge (C)
                  	1,6×10–19	0	–1,6×10–19





Atomic number and atomic mass number



 The chemical properties of an element are determined by the charge of
its nucleus, i.e. by the number of protons. This number is
called the atomic number and is denoted by the letter Z.
	 Definition:  Atomic number (Z) 
	 
      
 The number of protons in an atom 

      



 You can find the atomic number on the periodic table. The atomic number is an integer and ranges from 1 to about 118.
 The mass of an atom depends on how many nucleons its nucleus contains.
The number of nucleons, i.e. the total number of protons plus neutrons,
is called the
atomic mass number and is denoted by the letter A.
	 Definition:  Atomic mass number (A) 
	 
      
 The number of protons and neutrons in the nucleus of an atom 

      



 Tip
Don't confuse the notation we have used above with the way this information appears on the Periodic Table. On the Periodic Table, the atomic number usually appears in the top lefthand corner of the block or immediately above the element's symbol. The number below the element's symbol is its relative atomic mass. This is not exactly the same as the atomic mass number. This will be explained in "Isotopes". The example of iron is shown below.
      
 
        
 [image: Atomic number and atomic mass number]
Figure 3.5. 


      



 You will notice in the example of iron that the atomic mass number is more or less the same as its atomic mass. Generally, an atom that contains n nucleons (protons and neutrons), will have a mass approximately equal to nu. For example the mass of a C-12 atom which has 6 protons, 6 neutrons and 6 electrons is 12u, where the protons and neutrons have about the same mass and the electron mass is negligible.
Exercise 1.
 
   Use standard notation to represent sodium and give the number of protons, neutrons and electrons in the element.
  



 	Write the element symbol: Sodium is given by Na

	Write down the number of protons: Sodium has 11 protons, so we have: 11Na

	Write down the number of neutrons: Sodium has 12 neutrons.

	Work out A: A=N+Z=12+11=23

	Write the answer: In standard notation sodium is given by: 1123Na. The number of protons is 11, the number of neutrons is 12 and the number of electrons is 11.




  



 The structure of the atom
      



 	 Explain the meaning of each of the following terms:

 	 nucleus


	 electron


	 atomic mass




Click here for the solution

	 Complete the following table: (Note: You will see that the atomic masses on the Periodic Table are not whole numbers. This will be explained later. For now, you can round off to the nearest whole number.)

Table 3.4. 	Element	Atomic mass	Atomic number	Number of protons	Number of electrons	Number of neutrons
	Mg	24	12	 	 	 
	O	 	 	8	 	 
	 	 	17	 	 	 
	Ni	 	 	 	28	 
	 	40	 	 	 	20
	Zn	 	 	 	 	 
	 	 	 	 	 	0
	C	12	 	 	6	 


Click here for the solution

	 Use standard notation to represent the following elements:

 	 potassium


	 copper


	 chlorine




Click here for the solution

	 
For the element 1735Cl, give the number of ...

 	 protons


	 neutrons


	 electrons





... in the atom.
Click here for the solution


	 Which of the following atoms has 7 electrons?

 	 25He


	 613C


	 37Li


	 715N




Click here for the solution

	 
In each of the following cases, give the number or the element symbol represented by 'X'.

 	 1840X


	 20xCa


	 x31P




Click here for the solution

	 
Complete the following table:

Table 3.5. 	 	A	Z	N
	92235U	 	 	 
	92238U	 	 	 



In these two different forms of Uranium...

 	 What is the same?


	 What is different?





Uranium can occur in different forms, called isotopes. You will learn more about isotopes in "Isotopes".
Click here for the solution







3.3. Isotopes*



Isotopes



What is an isotope?



 The chemical properties of an element depend on the number of protons and electrons inside the atom. So if a neutron or two is added or removed from the nucleus, then the chemical properties will not change. This means that such an atom would remain in the same place in the Periodic Table. For example, no matter how many neutrons we add or subtract from a nucleus with 6 protons, that element will always be called carbon and have the
element symbol C (see the Table of Elements). Atoms which have the same number of protons, but a different number of neutrons, are called isotopes.
	 Definition:  Isotope 
	 
        
 The isotope of a particular element is made up of atoms which have the same number of protons as the atoms in the original element, but a different number of neutrons.  

        



 The different isotopes of an element have the same atomic
number Z but different mass numbers A because they have a different
number of neutrons N. The chemical properties of the different
isotopes of an element are the same, but they might vary in how stable their nucleus is. Note that we can also write elements as X - A where the X is the element symbol and the A is the atomic mass of that element. For example, C-12 has an atomic mass of 12 and Cl-35 has an atomic mass of 35 u, while Cl-37 has an atomic mass of 37 u.
 Interesting Fact 
 In Greek, “same place” reads as

(isos topos). This is why atoms which have the same number of protons, but
different numbers of neutrons, are called isotopes. They are in the same place on the Periodic Table!


 It is important to realise that the atomic mass of isotopes of the same element will be different because they have a different number of nucleons. Chlorine, for example, has two common isotopes which are chlorine-35 and chlorine-37. Chlorine-35 has an atomic mass of 35 u, while chlorine-37 has an atomic mass of 37 u. In the world around us, both of these isotopes occur naturally. It doesn't make sense to say that the element chlorine has an atomic mass of 35 u, or that it has an atomic mass of 37 u. Neither of these are absolutely true since the mass varies depending on the form in which the element occurs. We need to look at how much more common one is than the other in order to calculate the relative atomic mass for the element chlorine. This is the number that you find on the Periodic Table.
Interesting fact
 The relative atomic mass of some elements depends on where on Earth the element is found. This is because the isotopes can be found in varying ratios depending on certain factors such as geological composition, etc. The International Union of Pure and Applied Chemistry (IUPAC) has decided to give the relative atomic mass of some elements as a range to better represent the varying isotope ratios on the Earth. For the calculations that you will do at high school, it is enough to simply use one number without worrying about these ranges.


Exercise 2.:  The relative atomic mass of an isotopic element 
 
         The element chlorine has two isotopes, chlorine-35 and chlorine-37. The abundance of these isotopes when they occur naturally is 75% chlorine-35 and 25% chlorine-37. Calculate the average relative atomic mass for chlorine.
 

        

 	 Calculate the mass contribution of chlorine-35 to the average relative atomic mass : Contribution of 
 

	 Calculate the contribution of chlorine-37 to the average relative atomic mass : Contribution of 

	 Add the two values to arrive at the average relative atomic mass of chlorine : 
 If you look on the periodic table, the average relative atomic mass for chlorine is . You will notice that for many elements, the relative atomic mass that is shown is not a whole number. You should now understand that this number is the average relative atomic mass for those elements that have naturally occurring isotopes.







 This simulation allows you to see how isotopes and relative atomic mass are inter related.

 [image: The relative atomic mass of an isotopic element]
Figure 3.6. 


run demo
 Isotopes 



 	 Complete the table below:

Table 3.6. 	Isotope	Z	A	Protons	Neutrons	Electrons
	Carbon-12	 	 	 	 	 
	Carbon-14	 	 	 	 	 
	Chlorine-35	 	 	 	 	 
	Chlorine-37	 	 	 	 	 


Click here for the solution

	 If a sample contains 90% carbon-12 and 10% carbon-14, calculate the relative atomic mass of an atom in that sample.
Click here for the solution

	 If a sample contains 22,5% Cl-37 and 77,5% Cl-35, calculate the relative atomic mass of an atom in that sample.Click here for the solution





 Standard notation shows the chemical symbol, the atomic mass number
and the atomic number of an element as follows:
 
        
 [image: Isotopes]
Figure 3.7. 


      

A nuclide is a distinct kind of atom or nucleus characterized by the number of protons and neutrons in the atom. To be absolutely correct, when we represent atoms like we do here, then we should call them nuclides. 


 For example, the iron nucleus which has 26 protons and 30 neutrons, is
denoted as:
(3.1)

 where the atomic number is Z=26 and the mass number A=56.
The number of neutrons is simply the difference N=A–Z.
 The following worked examples will help you to understand the concept of an isotope better.
Exercise 3.:  Isotopes  
 
         For the element 92234U (uranium), use standard notation to describe:

         	 the isotope with 2 fewer neutrons


	 the isotope with 4 more neutrons





        
        

 	 Go over the definition of isotope : We know that isotopes of any element have the same number
of protons (same atomic number)
in each atom, which means that they have the same chemical symbol. However, they have a different number of neutrons, and therefore a different mass number.

	 Rewrite the notation for the isotopes : Therefore, any isotope of uranium will have the symbol:
(3.2)
            U
          
 Also, since the number of protons in uranium isotopes is always the same, we can write
down the atomic number:
(3.3)
            
              92
              U
            
          
 Now, if the isotope we want has 2 fewer neutrons than 92234U,
then we take the original mass number and subtract 2, which gives:
(3.4)
            
              92232
              U
            
          
 Following the steps above, we can write the isotope with 4 more neutrons as:
(3.5)
            
              92238
              U
            
          







Exercise 4.:  Isotopes 
 
         Which of the following are isotopes of 2040 Ca ?

         	 
            
              
                1940
                K
              
            
          

	 
            
              
                2042
                 Ca 
              
            
          

	 
            
              
                1840
                 Ar 
              
            
          




        
        

 	 Go over the definition of isotope: : We know that isotopes have the same atomic number but different mass numbers.

	 Determine which of the elements listed fits the definition of an isotope. : You need to look for the element that has the same atomic number but a different atomic mass number. The only element is 2042Ca. What is different is that there are 2 more neutrons than in the original element.







Exercise 5.:  Isotopes 
 
         For the sulphur isotope 1633S, give the number of...

         	 protons


	 nucleons


	 electrons


	 neutrons





        
        

 	 Determine the number of protons by looking at the atomic number, Z. : Z=16, therefore the number of protons is 16 (answer to (a)).
 

	 Determine the number of nucleons by looking at the atomic mass number, A. : A=33, therefore the number of nucleons is 33 (answer to (b)).

	 Determine the number of electrons : The atom is neutral, and therefore the number of electrons is the same as the number of protons. The number of electrons is 16 (answer to (c)).

	 Calculate the number of neutrons :(3.6)

 The number of neutrons is 17 (answer to (d)).







 Isotopes 



 	 Atom A has 5 protons and 5 neutrons, and atom B has 6 protons and 5 neutrons. These atoms are...

 	 allotropes


	 isotopes


	 isomers


	 atoms of different elements




Click here for the solution

	 For the sulphur isotopes, 1632S and 1634S, give the number of...

 	 protons


	 nucleons


	 electrons


	 neutrons




Click here for the solution

	 Which of the following are isotopes of 1735Cl?

 	 3517Cl


	 1735Cl


	 1737Cl




Click here for the solution

	 Which of the following are isotopes of U-235? (X represents an element symbol)

 	 92238X


	 90238X


	 92235X




Click here for the solution





Relative atomic mass



 It is important to realise that the atomic mass of isotopes of the same element will be different because they have a different number of nucleons. Chlorine, for example, has two common isotopes which are chlorine-35 and chlorine-37. Chlorine-35 has an atomic mass of 35 u, while chlorine-37 has an atomic mass of 37 u. In the world around us, both of these isotopes occur naturally. It doesn't make sense to say that the element chlorine has an atomic mass of 35 u, or that it has an atomic mass of 37 u. Neither of these are absolutely true since the mass varies depending on the form in which the element occurs. We need to look at how much more common one is than the other in order to calculate the relative atomic mass for the element chlorine. This is the number that you find on the Periodic Table.
Interesting fact
 The relative atomic mass of some elements depends on where on Earth the element is found. This is because the isotopes can be found in varying ratios depending on certain factors such as geological composition, etc. The International Union of Pure and Applied Chemistry (IUPAC) has decided to give the relative atomic mass of some elements as a range to better represent the varying isotope ratios on the Earth. For the calculations that you will do at high school, it is enough to simply use one number without worrying about these ranges.


Exercise 6.:  The relative atomic mass of an isotopic element 
 
         The element chlorine has two isotopes, chlorine-35 and chlorine-37. The abundance of these isotopes when they occur naturally is 75% chlorine-35 and 25% chlorine-37. Calculate the average relative atomic mass for chlorine.
 

        

 	 Calculate the mass contribution of chlorine-35 to the average relative atomic mass : Contribution of 
 

	 Calculate the contribution of chlorine-37 to the average relative atomic mass : Contribution of 

	 Add the two values to arrive at the average relative atomic mass of chlorine : 
 If you look on the periodic table, the average relative atomic mass for chlorine is . You will notice that for many elements, the relative atomic mass that is shown is not a whole number. You should now understand that this number is the average relative atomic mass for those elements that have naturally occurring isotopes.







 This simulation allows you to see how isotopes and relative atomic mass are inter related.

 [image: The relative atomic mass of an isotopic element]
Figure 3.8. 


run demo
 Isotopes 



 	 Complete the table below:

Table 3.7. 	Isotope	Z	A	Protons	Neutrons	Electrons
	Carbon-12	 	 	 	 	 
	Carbon-14	 	 	 	 	 
	Chlorine-35	 	 	 	 	 
	Chlorine-37	 	 	 	 	 


Click here for the solution

	 If a sample contains 90% carbon-12 and 10% carbon-14, calculate the relative atomic mass of an atom in that sample.
Click here for the solution

	 If a sample contains 22,5% Cl-37 and 77,5% Cl-35, calculate the relative atomic mass of an atom in that sample.Click here for the solution








3.4. Electronic structure*



Electron configuration



The energy of electrons



 You will remember from our earlier discussions that an atom is made up of a central nucleus, which contains protons and neutrons and that this nucleus is surrounded by electrons. Although these electrons all have the same charge and the same mass, each electron in an atom has a different amount of energy. Electrons that have the lowest energy are found closest to the nucleus where the attractive force of the positively charged nucleus is the greatest. Those electrons that have higher energy, and which are able to overcome the attractive force of the nucleus, are found further away.

Electron configuration



 We will start with a very simple view of the arrangement or configuration of electrons around an atom. This view simply states that electrons are arranged in energy levels (or shells) around the nucleus of an atom. These energy levels are numbered 1, 2, 3, etc. Electrons that are in the first energy level (energy level 1) are closest to the nucleus and will have the lowest energy. Electrons further away from the nucleus will have a higher energy. 
 In the following examples, the energy levels are shown as concentric circles around the central nucleus. The important thing to know for these diagrams is that the first energy level can hold 2 electrons, the second energy level can hold 8 electrons and the third energy level can hold 8 electrons.
 	 Lithium
Lithium (Li) has an atomic number of 3, meaning that in a neutral atom, the number of electrons will also be 3. The first two electrons are found in the first energy level, while the third electron is found in the second energy level (Figure 3.9).

 [image: Electron configuration]

Figure 3.9. 
The arrangement of electrons in a lithium atom.


	 Fluorine
Fluorine (F) has an atomic number of 9, meaning that a neutral atom also has 9 electrons. The first 2 electrons are found in the first energy level, while the other 7 are found in the second energy level (Figure 3.10).

 [image: Electron configuration]

Figure 3.10. 
The arrangement of electrons in a fluorine atom.


	 Argon
Argon has an atomic number of 18, meaning that a neutral atom also has 18 electrons. The first 2 electrons are found in the first energy level, the next 8 are found in the second energy level, and the last 8 are found in the third energy level (Figure 3.11).

 [image: Electron configuration]

Figure 3.11. 
The arrangement of electrons in an argon atom.




 But the situation is slightly more complicated than this. Within each energy level, the electrons move in orbitals. An orbital defines the spaces or regions where electrons move.
	 Definition:  Atomic orbital 
	 
        
 An atomic orbital is the region in which an electron may be found around a single atom.
 

        



 
The first energy level contains only one 's' orbital, the second energy level contains one 's' orbital and three 'p' orbitals and the third energy level contains one 's' orbital and three 'p' orbitals (as well as 5 'd' orbitals). Within each energy level, the 's' orbital is at a lower energy than the 'p' orbitals. This arrangement is shown in Figure 3.12.
 [image: Electron configuration]

Figure 3.12. 
The positions of the first ten orbitals of an atom on an energy diagram. Note that each block is able to hold two electrons.

 This diagram also helps us when we are working out the electron configuration of an element. The electron configuration of an element is the arrangement of the electrons in the shells and subshells. There are a few guidelines for working out the electron configuration. These are:

 	 Each orbital can only hold two electrons. Electrons that occur together in an orbital are called an electron pair.


	 An electron will always try to enter an orbital with the lowest possible energy.


	 An electron will occupy an orbital on its own, rather than share an orbital with another electron. An electron would also rather occupy a lower energy orbital with another electron, before occupying a higher energy orbital. In other words, within one energy level, electrons will fill an 's' orbital before starting to fill 'p' orbitals.


	 The s subshell can hold 2 electrons


	 The p subshell can hold 6 electrons




 In the examples you will cover, you will mainly be filling the s and p subshells. Occasionally you may get an example that has the d subshell. The f subshell is more complex and is not covered at this level.

 The way that electrons are arranged in an atom is called its electron configuration.
	 Definition:  Electron configuration 
	 
        
 Electron configuration is the arrangement of electrons in an atom, molecule or other physical structure. 

        



 An element's electron configuration can be represented using Aufbau diagrams or energy level diagrams. An Aufbau diagram uses arrows to represent electrons. You can use the following steps to help you to draw an Aufbau diagram:
 	 Determine the number of electrons that the atom has.


	 Fill the 's' orbital in the first energy level (the 1s orbital) with the first two electrons.


	 Fill the 's' orbital in the second energy level (the 2s orbital) with the second two electrons.


	 Put one electron in each of the three 'p' orbitals in the second energy level (the 2p orbitals) and then if there are still electrons remaining, go back and place a second electron in each of the 2p orbitals to complete the electron pairs.


	 Carry on in this way through each of the successive energy levels until all the electrons have been drawn.




 Tip
When there are two electrons in an orbital, the electrons are called an electron pair. If the orbital only has one electron, this electron is said to be an unpaired electron. Electron pairs are shown with arrows pointing in opposite directions.

Interesting fact
Aufbau is the German word for 'building up'. Scientists used this term since this is exactly what we are doing when we work out electron configuration, we are building up the atoms structure.


 You can think of Aufbau diagrams as being similar to people getting on a bus or a train. People will first sit in empty seats with empty seats between them and the other people (unless they know the people and then they will sit next to them). When all the seats are filled like this, any more people that get on will be forced to sit next to someone or stand. As the bus or train fills even more the people have to stand to fit on. 
 An Aufbau diagram for the element Lithium is shown in Figure 3.13.
 [image: Interesting fact]

Figure 3.13. 
The electron configuration of Lithium, shown on an Aufbau diagram

 A special type of notation is used to show an atom's electron configuration. The notation describes the energy levels, orbitals and the number of electrons in each. For example, the electron configuration of lithium is 1s22s1. The number and letter describe the energy level and orbital and the number above the orbital shows how many electrons are in that orbital.
 Aufbau diagrams for the elements fluorine and argon are shown in Figure 3.14 and Figure 3.15 respectively. Using standard notation, the electron configuration of fluorine is 1s22s22p5 and the electron configuration of argon is 1s22s22p6.
 [image: Interesting fact]

Figure 3.14. 
An Aufbau diagram showing the electron configuration of fluorine

 [image: Interesting fact]

Figure 3.15. 
An Aufbau diagram showing the electron configuration of argon


Exercise 7.: Aufbau diagrams
 
   Give the electron configuration for sodium (Na) and draw an aufbau diagram.
  



 	Write down the number of electrons: Sodium has 11 electrons.

	Work out which orbitals to fill: We start by placing two electrons in the 1s orbital: 1s2. Now we have 9 electrons left to place in orbitals, so we put two in the 2s orbital: 2s2. There are now 7 electrons to place in orbitals so we place 6 of them in the 2p orbital: 2p6. The last electron goes into the 3s orbital: 3s1.

	Write down the electron configuration: The electron configuration is: 1s22s22p63s1

	Draw the Aufbau diagram: Using the electron configuration we get the following diagram:

 [image: Aufbau diagrams]

Figure 3.15. 








 There are different orbital shapes, but we will be mainly dealing with only two. These are the 's' and 'p' orbitals (there are also 'd' and 'f' orbitals). The 's' orbitals are spherical and the 'p' orbitals are dumbbell shaped. 

 [image: Aufbau diagrams]
Figure 3.16. 
The shapes of orbitals. a) shows an 's' orbital, b) shows a single 'p' orbital and c) shows the three 'p' orbitals.

Hund's rule and Pauli's principle



 
Sometimes people refer to Hund's rule for electron configuration. This rule simply says that electrons would rather be in a subshell on their own than share a subshell. This is why when you are filling the subshells you put one electron in each subshell and then go back and fill the subshell, before moving onto the next energy level.

 
Pauli's exclusion principle simply states that electrons have a property known as spin and that two electrons in a subshell will not spin the same way. This is why we draw electrons as one arrow pointing up and one arrow pointing down.


Core and valence electrons



 Electrons in the outermost energy level of an atom are called valence electrons. The electrons that are in the energy shells closer to the nucleus are called core electrons. Core electrons are all the electrons in an atom, excluding the valence electrons. An element that has its valence energy level full is more stable and less likely to react than other elements with a valence energy level that is not full.
	 Definition:  Valence electrons 
	 
        
 The electrons in the outer energy level of an atom 

        



	 Definition:  Core electrons 
	 
        
 All the electrons in an atom, excluding the valence electrons 

        




The importance of understanding electron configuration



 By this stage, you may well be wondering why it is important for you to understand how electrons are arranged around the nucleus of an atom. Remember that during chemical reactions, when atoms come into contact with one another, it is the electrons of these atoms that will interact first. More specifically, it is the valence electrons of the atoms that will determine how they react with one another.
 To take this a step further, an atom is at its most stable (and therefore unreactive) when all its orbitals are full. On the other hand, an atom is least stable (and therefore most reactive) when its valence electron orbitals are not full. This will make more sense when we go on to look at chemical bonding in a later chapter. To put it simply, the valence electrons are largely responsible for an element's chemical behaviour and elements that have the same number of valence electrons often have similar chemical properties.
 One final point to note about electron configurations is stability. Which configurations are stable and which are not? Very simply, the most stable configurations are the ones that have full energy levels. These configurations occur in the noble gases. The noble gases are very stable elements that do not react easily (if at all) with any other elements. This is due to the full energy levels. All elements would like to reach the most stable electron configurations, i.e. all elements want to be noble gases. This principle of stability is sometimes referred to as the octet rule. An octet is a set of 8, and the number of electrons in a full energy level is 8. 
Experiment: Flame tests



 
Aim:

To determine what colour a metal cation will cause a flame to be.

 
Apparatus:

Watch glass, bunsen burner, methanol, bamboo sticks, metal salts (e.g. NaCl, CuCl2, CaCl2, KCl, etc. ) and metal powders (e.g. copper, magnesium, zinc, iron, etc.)

 Warning
Be careful when working with bunsen burners as you can easily burn yourself. Make sure all scarves/loose clothing is securely tucked in and long hair is tied back. Ensure that you work in a well-ventilated space and that there is nothing flammable near the open flame.

 
Method:

For each salt or powder do the following: 
 	Dip a clean bamboo stick into the methanol

	Dip the stick into the salt or powder

	Wave the stick through the flame from the bunsen burner. DO NOT hold the stick in the flame, but rather wave it back and forth through the flame.

	Observe what happens





 
Results:

Record your results in a table, listing the metal salt and the colour of the flame.

 
Conclusion:

You should have observed different colours for each of the metal salts and powders that you tested.

 The above experiment on flame tests relates to the line emission spectra of the metals. These line emission spectra are a direct result of the arrangement of the electrons in metals.
 Energy diagrams and electrons
        



 	 Draw Aufbau diagrams to show the electron configuration of each of the following elements:

 	 magnesium


	 potassium


	 sulphur


	 neon


	 nitrogen





	 Use the Aufbau diagrams you drew to help you complete the following table:

Table 3.8. 	Element	No. of energy levels	No. of core electrons	No. of valence electrons	Electron configuration (standard notation)
	Mg	 	 	 	 
	K	 	 	 	 
	S	 	 	 	 
	Ne	 	 	 	 
	N	 	 	 	 



	 Rank the elements used above in order of increasing reactivity. Give reasons for the order you give.
 Click here for the answer




Group work : Building a model of an atom         



 Earlier in this chapter, we talked about different 'models' of the atom. In science, one of the uses of models is that they can help us to understand the structure of something that we can't see. In the case of the atom, models help us to build a picture in our heads of what the atom looks like.
 Models are often simplified. The small toy cars that you may have played with as a child are models. They give you a good idea of what a real car looks like, but they are much smaller and much simpler. A model cannot always be absolutely accurate and it is important that we realise this so that we don't build up a false idea about something.
 In groups of 4-5, you are going to build a model of an atom. Before you start, think about these questions:
 	 What information do I know about the structure of the atom? (e.g. what parts make it up? how big is it?)


	 What materials can I use to represent these parts of the atom as accurately as I can?


	 How will I put all these different parts together in my model?




 As a group, share your ideas and then plan how you will build your model. Once you have built your model, discuss the following questions:
 	 Does our model give a good idea of what the atom actually looks like?


	 In what ways is our model inaccurate? For example, we know that electrons move around the atom's nucleus, but in your model, it might not have been possible for you to show this.


	 Are there any ways in which our model could be improved?




 Now look at what other groups have done. Discuss the same questions for each of the models you see and record your answers. 


 The following simulation allows you to build an atom
run demo

 [image: Group work : Building a model of an atom]
Figure 3.17. 
Build an atom simulation



 This is another simulation that allows you to build an atom. This simulation also provides a summary of what you have learnt so far. 

 Run demo

 [image: Group work : Building a model of an atom]
Figure 3.18. 
Build an atom simulation 2


Summary



 	 Much of what we know today about the atom, has been the result of the work of a number of scientists who have added to each other's work to give us a good understanding of atomic structure.


	 Some of the important scientific contributors include J.J.Thomson (discovery of the electron, which led to the Plum Pudding Model of the atom), Ernest Rutherford (discovery that positive charge is concentrated in the centre of the atom) and Niels Bohr (the arrangement of electrons around the nucleus in energy levels).


	 Because of the very small mass of atoms, their mass is measured in atomic mass units (u). .


	 An atom is made up of a central nucleus (containing protons and neutrons), surrounded by electrons.


	 The atomic number (Z) is the number of protons in an atom.


	 The atomic mass number (A) is the number of protons and neutrons in the nucleus of an atom.


	 The standard notation that is used to write an element, is ZAX, where X is the element symbol, A is the atomic mass number and Z is the atomic number.


	 The isotope of a particular element is made up of atoms which have the same number of protons as the atoms in the original element, but a different number of neutrons. This means that not all atoms of an element will have the same atomic mass.


	 The relative atomic mass of an element is the average mass of one atom of all the naturally occurring isotopes of a particular chemical element, expressed in atomic mass units. The relative atomic mass is written under the elements' symbol on the Periodic Table.


	 The energy of electrons in an atom is quantised. Electrons occur in specific energy levels around an atom's nucleus.


	 Within each energy level, an electron may move within a particular shape of orbital. An orbital defines the space in which an electron is most likely to be found. There are different orbital shapes, including s, p, d and f orbitals.


	 Energy diagrams such as Aufbau diagrams are used to show the electron configuration of atoms.


	 The electrons in the outermost energy level are called valence electrons.


	 The electrons that are not valence electrons are called core electrons.


	 Atoms whose outermost energy level is full, are less chemically reactive and therefore more stable, than those atoms whose outer energy level is not full.




 
(This media type is not supported in this reader. Click to open media in browser.)
Figure 3.19. 

End of chapter exercises



 	 Write down only the word/term for each of the following descriptions.

 	 The sum of the number of protons and neutrons in an atom


	 The defined space around an atom's nucleus, where an electron is most likely to be found




Click here for the solution

	 For each of the following, say whether the statement is True or False. If it is False, re-write the statement correctly.

 	 1020Ne and 1022Ne each have 10 protons, 12 electrons and 12 neutrons.


	 The atomic mass of any atom of a particular element is always the same.


	 It is safer to use helium gas rather than hydrogen gas in balloons.


	 Group 1 elements readily form negative ions.




Click here for the solution

	 Multiple choice questions: In each of the following, choose the one correct answer.

 	 The three basic components of an atom are:

 	 protons, neutrons, and ions


	 protons, neutrons, and electrons


	 protons, neutrinos, and ions


	 protium, deuterium, and tritium




Click here for the solution

	 The charge of an atom is...

 	 positive


	 neutral


	 negative




Click here for the solution

	 If Rutherford had used neutrons instead of alpha particles in his scattering experiment, the neutrons would...

 	 not deflect because they have no charge


	 have deflected more often


	 have been attracted to the nucleus easily


	 have given the same results




Click here for the solution

	 Consider the isotope 92234U. Which of the following statements is true?

 	 The element is an isotope of 94234Pu


	 The element contains 234 neutrons


	 The element has the same electron configuration as 92238U


	 The element has an atomic mass number of 92




Click here for the solution

	 The electron configuration of an atom of chlorine can be represented using the following notation:

 	  1s22s83s7

	 
1s22s22p63s23p5


	 
1s22s22p63s23p6

	 
1s22s22p5



Click here for the solution




	Give the standard notation for the following elements:

 	beryllium

	carbon-12

	titanium-48

	fluorine



Click here for the solution


	Give the electron configurations and aufbau diagrams for the following elements:
 	aluminium

	phosphorus

	carbon



Click here for the solution


	Use standard notation to represent the following elements: 
 	argon

	calcium

	silver-107

	bromine-79



Click here for the solution


	For each of the following elements give the number of protons, neutrons and electrons in the element: 
 	78195Pt

	1840Ar

	2759Co

	37Li

	511B



Click here for the solution


	For each of the following elements give the element or number represented by 'x': 
 	45103X

	x35Cl

	4xBe



Click here for the solution


	Which of the following are isotopes of 1224Mg: 
 	2512Mg

	1226Mg

	1324Al



Click here for the solution


	If a sample contains 69% of copper-63 and 31% of copper-65, calculate the relative atomic mass of an atom in that sample.
Click here for the solution

	Complete the following table:

Table 3.9. 	Element	Electron configuration	Core electrons	Valence electrons
	Boron (B)	 	 	 
	Calcium (Ca)	 	 	 
	Silicon (Si)	 	 	 
	Lithium (Li)	 	 	 
	Neon (Ne)	 	 	 



Click here for the solution


	Draw aufbau diagrams for the following elements:
 	beryllium

	sulphur

	argon



Click here for the solution







Glossary



	Definition:  Atomic mass number (A) 
	
      
The number of protons and neutrons in the nucleus of an atom 

      

	Definition:  Atomic number (Z) 
	
      
The number of protons in an atom 

      

	Definition:  Atomic orbital 
	
        
An atomic orbital is the region in which an electron may be found around a single atom.
 

        

	Definition:  Core electrons 
	
        
All the electrons in an atom, excluding the valence electrons 

        

	Definition:  Electron configuration 
	
        
Electron configuration is the arrangement of electrons in an atom, molecule or other physical structure. 

        

	Definition:  Isotope 
	
        
The boldboldisotope of a particular element is made up of atoms which have the same number of protons as the atoms in the original element, but a different number of neutrons.  

        

	Definition:  Model 
	
      
A model is a representation of a system in the real world. Models help us to understand systems and their properties. For example, an italicsatomic model represents what the structure of an atom italicscould look like, based on what we know about how atoms behave. It is not necessarily a true picture of the exact structure of an atom. 

      

	Definition:  Relative atomic mass 
	
        
Relative atomic mass is the average mass of one atom of all the naturally occurring isotopes of a particular chemical element, expressed in atomic mass units.
 

        

	Definition:  Valence electrons 
	
        
The electrons in the outer energy level of an atom 

        



Solutions


Chapter 19. Vectors and scalars



19.1. Introduction and key concepts*



Introduction



 This chapter focuses on vectors. We will learn what is a vector and how it differs from everyday numbers. We will also learn how to add, subtract and multiply them and where they appear in Physics.
 Are vectors Physics? No, vectors themselves are not Physics. Physics is just a description of the world around us. To describe something we need to use a language. The most common language used to describe Physics is Mathematics. Vectors form a very important part of the mathematical description of Physics, so much so that it is
absolutely essential to master the use of vectors.

Scalars and Vectors



 In Mathematics, you learned that a number is something that represents a quantity. For example if you have 5 books, 6 apples and 1 bicycle, the 5, 6, and 1 represent how many of each item you have.
 These kinds of numbers are known as scalars.
	 Definition:  Scalar 
	 
      
 A scalar is a quantity that has only magnitude (size). 

      



 An extension to a scalar is a vector, which is a scalar with a direction. For example, if you travel 1 km down Main Road to school, the quantity 1 km down Main Road is a vector. The “1 km” is the quantity (or scalar) and the “down Main Road” gives a direction.
 In Physics we use the word magnitude to refer to the scalar part of the vector.
	 Definition:  Vectors 
	 
      
 A vector is a quantity that has both magnitude and direction. 

      



 A vector should tell you how much and which way.
 For example, a man is driving his car east along a freeway at . What we have given here is a vector – the velocity. The car is moving at  (this is the magnitude) and we know where it is going – east (this is the direction). Thus, we know the speed and direction of the car. These two quantities, a magnitude and a direction, form a vector we call velocity.

Notation



 Vectors are different to scalars and therefore have their own notation.
Mathematical Representation



 There are many ways of writing the symbol for a vector. Vectors are denoted by symbols with an arrow pointing to the right above it. For example, ,  and  represent the vectors acceleration, velocity and force, meaning they have both a magnitude and a direction.
 Sometimes just the magnitude of a vector is needed. In this case, the arrow is omitted. In other words, F denotes the magnitude of the vector . 

Graphical Representation



 Vectors are drawn as arrows. An arrow has both a magnitude (how long it is) and a direction (the direction in which it points). The starting point of a vector is known as the tail and the end point is known as the head.
 [image: Graphical Representation]

Figure 19.1. 
Examples of vectors

 [image: Graphical Representation]

Figure 19.2. 
Parts of a vector



Directions



 There are many acceptable methods of writing vectors. As long as the vector has a magnitude and a direction, it is most likely acceptable. These different methods come from the different methods of expressing a direction for a vector.
Relative Directions



 The simplest method of expressing direction is with relative directions: to the left, to the right, forward, backward, up and down.

Compass Directions



 Another common method of expressing directions is to use the points of a compass: North, South, East, and West.
If a vector does not point exactly in one of the compass directions, then we use an angle. For example, we can have a vector pointing 40∘ North of West. Start with the vector pointing along the West direction:
Then rotate the vector towards the north until there is a 40∘ angle between the vector and the West.
The direction of this vector can also be described as: W 40∘ N (West 40∘ North); or N 50∘ W (North 50∘ West)




 [image: Compass Directions]
Figure 19.3. 

 [image: Compass Directions]
Figure 19.4. 

 [image: Compass Directions]
Figure 19.5. 


Bearing



 The final method of expressing direction is to use a bearing. A bearing is a direction relative to a fixed point.
 Given just an angle, the convention is to define the angle with respect to the North. So, a vector with a direction of 110∘ has been rotated clockwise 110∘ relative to the North. A bearing is always written as a three digit number, for example 275∘ or 080∘ (for 80∘).
 
          
 [image: Bearing]
Figure 19.6. 


        
 Scalars and Vectors 



 	 Classify the following quantities as scalars or vectors:

 	 12 km


	 1 m south


	 , 45∘

	 075∘, 2 cm


	 , 0∘



Click here for the solution

	 Use two different notations to write down the direction of the vector in each of the following diagrams:

 	 
 [image: Scalars and Vectors]

Figure 19.7. 


	 
 [image: Scalars and Vectors]

Figure 19.8. 


	 
 [image: Scalars and Vectors]

Figure 19.9. 




Click here for the solution






Drawing Vectors



 In order to draw a vector accurately we must specify a scale and
include a reference direction in the diagram. A scale allows us to
translate the length of the arrow into the vector's magnitude. For
instance if one chose a scale of 1 cm = 2 N (1 cm represents 2 N), a
force of 20 N towards the East would be represented as an arrow 10 cm
long. A reference direction may be a line representing a horizontal surface or the points of a compass.
 
        
 [image: Drawing Vectors]
Figure 19.10. 


      
 
        Method: Drawing Vectors
        
 	 Decide upon a scale and write it down.


	 Determine the length of the arrow representing the vector, by using the scale.


	 Draw the vector as an arrow. Make sure that you fill in the arrow head.


	 Fill in the magnitude of the vector.





      
Exercise 1.:  Drawing vectors 
 
       Represent the following vector quantities:

       	  north


	 16 m east





      
      

 	  Decide upon a scale and write it down : 
      
 	 

	 





      

	  Determine the length of the arrow at the specific scale: 
      
 	 If , then 


	 If , then 





      

	  Draw the vectors as arrows : 
      
 	 
Scale used: 
Direction = North

 [image: Drawing vectors]

Figure 19.10. 


	 
Scale used: 
Direction = East

 [image: Drawing vectors]

Figure 19.10. 





      
      







Drawing Vectors 



 Draw each of the following vectors to scale. Indicate the scale that you have used:
      
 	 12 km south


	 1,5 m N 45∘ W


	 , 20∘ East of North


	 , 085∘

	 5 mm, 225∘



Click here for the solution



19.2. Mathematical properties*



Mathematical Properties of Vectors



 Vectors are mathematical objects and we need to understand the mathematical properties of vectors, like adding and subtracting.
 For all the examples in this section, we will use displacement as our vector quantity. Displacement was discussed in
Grade 10.
 Displacement is defined as the distance together with direction of the straight line joining a final point to an initial point.
 Remember that displacement is just one example of a vector. We could just as well have decided to use forces or velocities to illustrate the properties of vectors.
Adding Vectors



 When vectors are added, we need to add both a magnitude and a direction. For example, take 2 steps in the forward direction, stop and then take another 3 steps in the forward direction. The first 2 steps is a displacement vector and the second 3 steps is also a displacement vector. If we did not stop after the first 2 steps, we would have taken 5 steps in the forward direction in total. Therefore, if we add the displacement vectors for 2 steps and 3 steps, we should get a total of 5 steps in the forward direction. Graphically, this can be seen by first following the first vector two steps forward and then following the second one three steps forward (ie. in the same direction):
 
          
 [image: Adding Vectors]
Figure 19.11. 


        
 We add the second vector at the end of the first vector, since this is where we now are after the first vector has acted. The vector from the tail of the
first vector (the starting point) to the head of the last (the end
point) is then the sum of the vectors. This is the head-to-tail method of vector addition.
 As you can convince yourself, the order in which you add vectors does
not matter. In the example above, if you decided to first go 3 steps
forward and then another 2 steps forward, the end result would still be 5
steps forward.
 The final answer when adding vectors is called the resultant. The resultant displacement in this case will be 5 steps forward.
	 Definition:  Resultant of Vectors 
	 
        
 The resultant of a number of vectors is the single vector whose effect is the same as the individual vectors acting together. 

        



 In other words, the individual vectors can be replaced by the
resultant – the overall effect is the same. If vectors  and  have a resultant , this can be represented mathematically as,
(19.1)

 Let us consider some more examples of vector addition using displacements. The arrows tell you how far to move and in what
direction. Arrows to the right correspond to steps forward, while
arrows to the left correspond to steps backward. Look at all of the
examples below and check them.
 
          
 [image: ]
Figure 19.12. 


        
 This example says 1 step forward and then another step forward is the same as an arrow twice as long – two steps forward.
 
          
 [image: ]
Figure 19.13. 


        
 This examples says 1 step backward and then another step backward is the same as an arrow twice as long – two steps backward.
 It is sometimes possible that you end up back where you started. In this case the net result of what you have done is that you have gone nowhere
(your start and end points are at the same place). In this case, your resultant displacement is a vector with length zero units. We use the symbol  to denote such a vector:
 
          
 [image: ]
Figure 19.14. 


        
 
          
 [image: ]
Figure 19.15. 


        
 Check the following examples in the same way. Arrows up the page can be
seen as steps left and arrows down the page as steps right.
 Try a couple to convince yourself!
Table 19.1. 	
                   [image: ]

Figure 19.16. 


                	
                   [image: ]

Figure 19.17. 


                


Table 19.2. 	
                   [image: ]

Figure 19.18. 


                	
                   [image: ]

Figure 19.19. 


                


 It is important to realise that the directions are not special– `forward
and backwards' or `left and right' are treated in the same way. The same is
true of any set of parallel directions:
Table 19.3. 	
                   [image: ]

Figure 19.20. 


                	
                   [image: ]

Figure 19.21. 


                


Table 19.4. 	
                   [image: ]

Figure 19.22. 


                	
                   [image: ]

Figure 19.23. 


                


 In the above examples the separate displacements were parallel to one
another. However the same head-to-tail technique of vector addition
can be applied to vectors in any direction.
Table 19.5. 	
                   [image: ]

Figure 19.24. 


                	
                   [image: ]

Figure 19.25. 


                	
                   [image: ]

Figure 19.26. 


                


 Now you have discovered one use for vectors; describing resultant
displacement – how far and in what direction you
have travelled after a series of movements.
 Although vector addition here has been demonstrated with
displacements, all vectors behave in exactly the same way. Thus, if
given a number of forces acting on a body you can use the same method
to determine the resultant force acting on the body. We will return to
vector addition in more detail later.

Subtracting Vectors



 What does it mean to subtract a vector? Well this is really simple; if
we have 5 apples and we subtract 3 apples, we have only 2 apples left. Now
lets work in steps; if we take 5 steps forward and then subtract 3 steps
forward we are left with only two steps forward:
 
 [image: Subtracting Vectors]
Figure 19.27. 


        
 What have we done? You originally took 5 steps forward but then you took
3 steps back. That backward displacement would be represented by an arrow
pointing to the left (backwards) with length 3. The net result of
adding these two vectors is 2 steps forward:
 
          
 [image: Subtracting Vectors]
Figure 19.28. 


        
 Thus, subtracting a vector from another is the same as adding a vector in the opposite direction (i.e. subtracting 3 steps forwards is the same
as adding 3 steps backwards).
 Tip
Subtracting a vector from another is the same as adding a vector in the opposite direction.

 In the problem, motion in the forward direction has been represented by an arrow to the right. Arrows to the right are positive and arrows to the left are negative. More generally, vectors in opposite directions differ in sign (i.e. if we define up as positive, then
vectors acting down are negative). Thus, changing the sign of a vector
simply reverses its direction:
Table 19.6. 	
                   [image: Subtracting Vectors]

Figure 19.29. 


                	
                   [image: Subtracting Vectors]

Figure 19.30. 


                


Table 19.7. 	
                   [image: Subtracting Vectors]

Figure 19.31. 


                	
                   [image: Subtracting Vectors]

Figure 19.32. 


                


Table 19.8. 	
                   [image: Subtracting Vectors]

Figure 19.33. 


                	
                   [image: Subtracting Vectors]

Figure 19.34. 


                


 In mathematical form, subtracting  from
 gives a new vector :
(19.2)

 This clearly shows that subtracting vector  from
 is the same as adding  to
. Look at the following examples of vector
subtraction.
 
          
 [image: ]
Figure 19.35. 


        
 
          
 [image: ]
Figure 19.36. 


        

Scalar Multiplication



 What happens when you multiply a vector by a scalar (an ordinary
number)?
 Going back to normal multiplication we know that 2×2 is just
2 groups of 2 added together to give 4. We can adopt a similar approach to understand how vector multiplication works.
 
          
 [image: Scalar Multiplication]
Figure 19.37. 


        



19.3. Techniques of vector addition*



Techniques of Vector Addition



 Now that you have learned about the mathematical properties of
vectors, we return to vector addition in more detail. There are a number of
techniques of vector addition. These techniques fall into two main categories - graphical and algebraic techniques.
Graphical Techniques



 Graphical techniques involve drawing accurate scale diagrams to denote
individual vectors and their resultants. We next discuss the two primary
graphical techniques, the head-to-tail technique and the parallelogram
method.
The Head-to-Tail Method



 In describing the mathematical properties of vectors we used
displacements and the head-to-tail graphical method of vector addition
as an illustration. The head-to-tail method of graphically adding vectors is a standard method that must be understood.
 
            Method: Head-to-Tail Method of Vector Addition
          
 	 Draw a rough sketch of the situation.


	 Choose a scale and include a reference direction.


	 Choose any of the vectors and draw it as an arrow in the
correct direction and of the correct length – remember to put an
arrowhead on the end to denote its direction.


	 Take the next vector and draw it as an arrow starting from the
arrowhead of the first vector in the correct direction and of the
correct length.


	 Continue until you have drawn each vector – each time starting
from the head of the previous vector. In this way, the vectors to be
added are drawn one after the other head-to-tail.


	 The resultant is then the vector drawn from the tail of the
first vector to the head of the last. Its magnitude can be
determined from the length of its arrow using the scale. Its
direction too can be determined from the scale diagram.




Exercise 2.: Head-to-Tail Addition I 
 
           A ship leaves harbour H and sails 6 km north to port A. From here the ship travels 12 km east to port B, before sailing 5,5 km south-west to port C. Determine the ship's resultant displacement using the head-to-tail technique of vector addition. 

          

 	 Draw a rough sketch of the situation : Its easy to understand the problem if we first draw a quick sketch. The rough sketch should include all of the information given in the problem. All of the magnitudes of the displacements are shown and a compass has been included as a reference direction. In a rough sketch one is interested in the approximate shape of the vector diagram.
 
            
 [image: Head-to-Tail Addition I]
Figure 19.37. 


          

	 Choose a scale and include a reference direction : The choice of scale depends on the actual question – you should choose a
scale such that your vector diagram fits the page.
 It is clear from the rough sketch that choosing a scale where 1 cm represents 2 km (scale: 1 cm = 2 km) would be a good choice in this
problem. The diagram will then take up a good fraction of an A4 page. We now start the accurate construction.

	 Choose any of the vectors to be summed and draw it as an arrow in the correct direction and of the correct length – remember to put an
arrowhead on the end to denote its direction : Starting at the harbour H we draw the first vector 3 cm long in the direction north.
 
            
 [image: Head-to-Tail Addition I]
Figure 19.37. 


          

	Draw the second vector: Take the next vector and draw it as an arrow starting from the
head of the first vector in the correct direction and of the
correct length. 

 Since the ship is now at port A we draw the second vector 6 cm long starting from point A in the direction east.
 
            
 [image: Head-to-Tail Addition I]
Figure 19.37. 


          

	Draw the third vector: Take the next vector and draw it as an arrow starting from the
head of the second vector in the correct direction and of the
correct length. 

 Since the ship is now at port B we draw the third vector 2,25 cm long starting from this point in the direction south-west. A protractor is required to measure the angle of 45∘.
 
            
 [image: Head-to-Tail Addition I]
Figure 19.37. 


          

	Draw the resultant: The resultant is then the vector drawn from the tail of the
first vector to the head of the last. Its magnitude can be
determined from the length of its arrow using the scale. Its
direction too can be determined from the scale diagram.

 As a final step we draw the resultant displacement from
the starting point (the harbour H) to the end point (port C). We use a
ruler to measure the length of this arrow and a protractor to determine its direction.
 
            
 [image: Head-to-Tail Addition I]
Figure 19.37. 


          

	 Apply the scale conversion : We now use the scale to convert the length of the resultant in the scale diagram to the actual displacement in the problem. Since we have chosen a scale of 1 cm = 2 km in this problem the resultant has a magnitude of 9,2 km. The direction can be specified in terms of the angle measured either as 072,3∘ east of north or on a bearing of 072,3∘.

	 Quote the final answer : The resultant displacement of the ship is 9,2 km on a bearing of 072,3∘. 







Exercise 3.:  Head-to-Tail Graphical Addition II 
 
           A man walks 40 m East, then 30 m North.

           	 What was the total distance he walked?


	 What is his resultant displacement?





          
          

 	 Draw a rough sketch : 
            
 [image: Head-to-Tail Graphical Addition II]
Figure 19.37. 


          

	 Determine the distance that the man traveled : In the first part of his journey he traveled 40 m and in the second part he traveled 30 m. This gives us a total distance traveled of 40 m + 30 m = 70 m.

	 Determine his resultant displacement : The man's resultant displacement is the vector from where he started to where he ended. It is the vector sum of his two separate displacements. We will use the head-to-tail method of accurate construction to find this vector.

	 Choose a suitable scale : A scale of 1 cm represents 10 m (1 cm = 10 m) is a good choice here. Now we can begin the process of construction.

	 Draw the first vector to scale : We draw the first displacement as an arrow 4 cm long in an eastwards direction.
 
            
 [image: Head-to-Tail Graphical Addition II]
Figure 19.37. 


          

	 Draw the second vector to scale : Starting from the head of the first vector we draw the second vector as an arrow 3 cm long in a northerly direction.
 
            
 [image: Head-to-Tail Graphical Addition II]
Figure 19.37. 


          

	 Determine the resultant vector : Now we connect the starting point to the end point and
measure the length and direction of this arrow (the resultant).
 
            
 [image: Head-to-Tail Graphical Addition II]
Figure 19.37. 


          

	 Find the direction : To find the direction you measure the angle between the resultant and the 40 m vector. You should get about 37∘.

	 Apply the scale conversion : Finally we use the scale to convert the length of the resultant in
the scale diagram to the actual magnitude of the resultant
displacement. According to the chosen scale 1 cm = 10 m. Therefore 5 cm represents 50 m. The resultant displacement is then 50 m  37∘ north of east.
 











19.4. Adding and subtracting vectors*



Algebraic Addition and Subtraction of Vectors



Vectors in a Straight Line



 Whenever you are faced with adding vectors acting in a straight line (i.e. some directed left and some right, or some acting up and others down) you can use a very simple algebraic technique:
 
            Method: Addition/Subtraction of Vectors in a Straight Line
          
 	 Choose a positive direction. As an example, for
situations involving displacements in the directions west and east, you
might choose west as your positive direction. In that case,
displacements east are negative.


	 Next simply add (or subtract) the
magnitude of the vectors using the appropriate signs.


	 As a final step the direction of the resultant should be included in
words (positive answers are in the positive direction, while negative
resultants are in the negative direction).




 Let us consider a few examples.
Exercise 4.:  Adding vectors algebraically I 
 
           A tennis ball is rolled towards a wall which is 10 m away from the ball. If after striking the wall the ball rolls a further 2,5 m along the ground away from the wall, calculate algebraically the ball's resultant displacement. 

          

 	 Draw a rough sketch of the situation : 
            
 [image: Adding vectors algebraically I]
Figure 19.37. 


          

	 Decide which method to use to calculate the resultant : We know that the resultant displacement of the ball
() is equal to the sum of the ball's separate
displacements ( and ):
(19.3)

 Since the motion of the ball is in a straight line (i.e. the ball
moves towards and away from the wall), we can use the method of algebraic addition
just explained.

	 Choose a positive direction : Let's choose the positive direction to be towards the wall. This means that the negative direction is away from the wall.

	 Now define our vectors algebraically : With right positive:
(19.4)


	 Add the vectors : Next we simply add the two displacements to give the resultant:
(19.5)


	 Quote the resultant : Finally, in this case towards the wall is the positive direction, so:
 = 7,5 m towards the wall. 







Exercise 5.:  Subtracting vectors algebraically I 
 
           Suppose that a tennis ball is thrown horizontally towards a wall at an initial velocity of  to the right. After striking the wall, the ball returns to the thrower at  . Determine the change in velocity of the ball. 

          

 	 Draw a sketch : A quick sketch will help us understand the problem.
 
            
 [image: Subtracting vectors algebraically I]
Figure 19.37. 


          

	 Decide which method to use to calculate the resultant : Remember that velocity is a vector. The change in the velocity of the
ball is equal to the difference between the ball's initial and final
velocities:
(19.6)

 Since the ball moves along a straight line (i.e. left and right), we
can use the algebraic technique of vector subtraction just discussed.

	 Choose a positive direction : Choose the positive direction to be towards the wall. This means that the negative direction is away from the wall.

	  Now define our vectors algebraically : 
          
(19.7)


          

	 Subtract the vectors : Thus, the change in velocity of the ball is:
(19.8)


	 Quote the resultant : Remember that in this case towards the wall means a positive velocity, so away from the wall means a negative velocity:
 away from the wall. 







 Resultant Vectors 



 	 Harold walks to school by walking 600 m Northeast and then 500 m N 40∘ W. Determine his resultant displacement by using accurate scale drawings.
Click here for the solution 


	 A dove flies from her nest, looking for food for her chick. She flies at a velocity of 2m·s–1 on a bearing of 135∘ and then at a velocity of  on a bearing of 230∘. Calculate her resultant velocity by using accurate scale drawings.
Click here for the solution 


	 A squash ball is dropped to the floor with an initial velocity of . It rebounds (comes back up) with a velocity of .

 	 What is the change in velocity of the squash ball?


	 What is the resultant velocity of the squash ball?




Click here for the solution




 Remember that the technique of addition and subtraction just discussed can only be applied to vectors acting along a straight line. When vectors are not in a straight line, i.e. at an angle to each other, the following method can be used:

A More General Algebraic technique



 Simple geometric and trigonometric techniques can be used to find resultant vectors.
Exercise 6.:  An Algebraic Solution I 
 
           A man walks 40 m East, then 30 m North. Calculate the man's resultant displacement. 

          

 	 Draw a rough sketch : As before, the rough sketch looks as follows:
 
            
 [image: An Algebraic Solution I]
Figure 19.37. 


          

	 Determine the length of the resultant : Note that the triangle formed by his separate displacement vectors and his resultant displacement vector is a right-angle triangle. We can thus use the Theorem of Pythagoras to determine the length of the resultant. Let xR represent the length of the resultant vector. Then:
(19.9)


	 Determine the direction of the resultant : Now we have the length of the resultant displacement vector but not yet its direction. To determine its direction we calculate the angle α between the resultant displacement vector and East, by using simple trigonometry:
(19.10)


	 Quote the resultant : The resultant displacement is then 50 m at 36,9∘ North of East.
 This is exactly the same answer we arrived at after drawing a scale diagram! 







 In the previous example we were able to use simple trigonometry to
calculate the resultant displacement. This was possible since the
directions of motion were perpendicular (north and east).
Algebraic techniques, however, are not limited to cases where the vectors to be combined are along the same straight line or at right angles to one
another. The following example illustrates this.
Exercise 7.: An Algebraic Solution II [ADVANCED]
 
           A man walks from point A to point B which is 12 km away on a bearing of 45∘. From point B the man walks a further 8 km east to point C. Calculate the resultant displacement. 

          

 	 Draw a rough sketch of the situation : 
            
 [image: An Algebraic Solution II [ADVANCED]]
Figure 19.37. 


          
  since the man walks initially on a bearing of 45∘.
Then,  (parallel lines, alternate angles). Both of these angles are included in the rough sketch.

	 Calculate the length of the resultant : The resultant is the vector AC. Since we know both
the lengths of AB and BC and the included angle , we can use
the cosine rule:
(19.11)


	 Determine the direction of the resultant : Next we use the sine rule to determine the angle θ:
(19.12)

 To find , we add 45∘.
Thus, .

	 Quote the resultant : The resultant displacement is therefore 18,5 km on a bearing of 062,8∘. 







 More Resultant Vectors 



 	 A frog is trying to cross a river. It swims at  in a northerly direction towards the opposite bank. The water is flowing in a westerly direction at  . Find the frog's resultant velocity by using appropriate calculations. Include a rough sketch of the situation in your answer.
Click here for the solution


	 Sandra walks to the shop by walking 500 m Northwest and then 400 m N 30∘ E. Determine her resultant displacement by doing appropriate calculations.
Click here for the solution








19.5. Components*



Components of Vectors



 In the discussion of vector addition we saw that a number of vectors acting
together can be combined to give a single vector (the resultant). In
much the same way a single vector can be broken down into a number of vectors which when added give that original vector. These vectors which sum to the original are called components of the original vector. The process of breaking a vector into its components is called resolving into components.
 While summing a given set of vectors gives just one answer (the
resultant), a single vector can be resolved into infinitely many sets
of components. In the diagrams below the same black vector is resolved
into different pairs of components. These components are shown as dashed lines. When added together the dashed vectors give the original black vector
(i.e. the original vector is the resultant of its components).
 
        
 [image: Components of Vectors]
Figure 19.38. 


      
 In practice it is most useful to resolve a vector into components
which are at right angles to one another, usually horizontal and vertical.
 Any vector can be resolved into a horizontal and a vertical component. If  is a vector, then the horizontal component of  is  and the vertical component is .
 
        
 [image: Components of Vectors]
Figure 19.39. 


      
Exercise 8.:  Resolving a vector into components 
 
       A motorist undergoes a displacement of 250 km in a direction 30∘ north of east. Resolve this displacement into components in the directions north () and east (). 

      

 	 Draw a rough sketch of the original vector : 
        
 [image: Resolving a vector into components]
Figure 19.39. 


      

	 Determine the vector component : Next we resolve the displacement into its components north and
east. Since these directions are perpendicular to one another, the
components form a right-angled triangle with the original displacement
as its hypotenuse.
 
        
 [image: Resolving a vector into components]
Figure 19.39. 


      
 Notice how the two components acting together give the original vector as
their resultant.

	 Determine the lengths of the component vectors : Now we can use trigonometry to calculate the magnitudes of the
components of the original displacement:
(19.13)

 and
(19.14)

 Remember xN and xE are the magnitudes of the components – they
are in the directions north and east respectively. 







Vector addition using components



 Components can also be used to find the resultant of vectors. This technique can be applied to both graphical and algebraic methods of finding the resultant. The method is simple: make a rough sketch of the problem, find the horizontal and vertical components of each vector, find the sum of all horizontal components and the sum of all the vertical components and then use them to find the resultant.
 Consider the two vectors,  and , in Figure 19.40, together with their resultant, .
 [image: Vector addition using components]

Figure 19.40. 
An example of two vectors being added to give a resultant

 Each vector in Figure 19.40 can be broken down into one component in the x-direction (horizontal) and one in the y-direction (vertical). These components are two vectors which when added give you the original vector as the resultant. This is shown in Figure 19.41 where we can see that:
 
          
()

          
          
()

          
        
 In summary, addition of the x components of the two original
vectors gives the x component of the resultant. The same applies to
the y components. So if we just added all the components
together we would get the same answer! This is another important
property of vectors.
 [image: Vector addition using components]

Figure 19.41. 
Adding vectors using components.

Exercise 9.:  Adding Vectors Using Components 
 
         If in Figure 19.41,  at an angle of 21,8∘ to the horizontal and  at an angle of 53,13∘ to the horizontal, find . 

        

 	 Decide how to tackle the problem : The first thing we must realise is that the order that we add the vectors does not matter. Therefore, we can work through the vectors to be added in any order.

	 Resolve  into components : We find the components of  by using known trigonometric ratios. First we find the magnitude of the vertical component, Ay:
(19.15)

 Secondly we find the magnitude of the horizontal component, Ax:
(19.16)

 
          
 [image: ]
Figure 19.41. 


        
 The components give the sides of the right angle triangle, for which the original vector, , is the hypotenuse.

	 Resolve  into components : We find the components of  by using known trigonometric ratios. First we find the magnitude of the vertical component, By:
(19.17)

 Secondly we find the magnitude of the horizontal component, Bx:
(19.18)

 
          
 [image: ]
Figure 19.41. 


        

	 Determine the components of the resultant vector : Now we have all the components. If we add all the horizontal components then
we will have the x-component of the resultant vector, . Similarly, we add all the vertical components then we will have the y-component of the resultant vector, .
(19.19)

 Therefore,  is 8 m to the right.
(19.20)

 Therefore,  is 6 m up.

	 Determine the magnitude and direction of the resultant vector : Now that we have the components of the resultant, we can use the Theorem of Pythagoras to determine the magnitude of the resultant, R.
(19.21)

 
          
 [image: ]
Figure 19.41. 


        
 The magnitude of the resultant, R is 10 m. So all we have to do is calculate its direction. We can specify the direction as the angle the vectors makes with a known direction. To do this you only need to visualise the vector as starting at the origin of a coordinate system. We have drawn this explicitly below and the angle we will calculate is labeled α.
 Using our known trigonometric ratios we can calculate the value of α;
(19.22)


	 Quote the final answer :  is 10 m at an angle of 36,8∘ to the positive x-axis. 







 Adding and Subtracting Components of Vectors 



 	 Harold walks to school by walking 600 m Northeast and then 500 m N 40o W. Determine his resultant displacement by means of addition of components of vectors.
Click here for the solution


	 A dove flies from her nest, looking for food for her chick. She flies at a velocity of  on a bearing of 135∘ in a wind with a velocity of  on a bearing of 230∘. Calculate her resultant velocity by adding the horizontal and vertical components of vectors.
Click here for the solution 






Summary



 	 A scalar is a physical quantity with magnitude only.


	 A vector is a physical quantity with magnitude and direction.


	 Vectors may be represented as arrows where the length of the arrow indicates the magnitude and the arrowhead indicates the direction of the vector.


	 The direction of a vector can be indicated by referring to another vector or a fixed point (eg. 30∘ from the river bank); using a compass (eg. N 30∘ W); or bearing (eg. 053∘).


	 Vectors can be added using the head-to-tail method, the parallelogram method or the component method.


	 The resultant of a number of vectors is the single vector whose effect is the same as the individual vectors acting together.





End of chapter exercises: Vectors



 	 An object is suspended by means of a light string. The sketch shows a horizontal force F which pulls the object from the vertical position until it reaches an equilibrium position as shown. Which one of the following vector diagrams best represents all the forces acting on the object?

 [image: End of chapter exercises: Vectors]

Figure 19.42. 

Table 19.9. 	A	B	C	D
	 [image: End of chapter exercises: Vectors]

Figure 19.43. 
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Figure 19.44. 
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Figure 19.45. 

	 [image: End of chapter exercises: Vectors]

Figure 19.46. 




Click here for the solution 

	 A load of weight W is suspended from two strings. F1 and F2 are the forces exerted by the strings on the load in the directions show in the figure above. Which one of the following equations is valid for this situation?

 	 W=F12+F22

	 F1sin50∘=F2sin30∘

	 F1cos50∘=F2cos30∘

	 W=F1+F2



 [image: End of chapter exercises: Vectors]

Figure 19.47. 

Click here for the solution 

	 Two spring balances P and Q are connected by means of a piece of string to a wall as shown. A horizontal force of 100 N is exerted on spring balance Q. What will be the readings on spring balances P and Q?

 [image: End of chapter exercises: Vectors]

Figure 19.48. 

Table 19.10. 	 	P	Q
	A	100 N	0 N
	B	25 N	75 N
	C	50 N	50 N
	D	100 N	100 N


Click here for the solution 

	 A point is acted on by two forces in equilibrium. The forces

 	 have equal magnitudes and directions.


	 have equal magnitudes but opposite directions.


	 act perpendicular to each other.


	 act in the same direction.




Click here for the solution 

	 A point in equilibrium is acted on by three forces. Force F1 has components 15 N due south and 13 N due west. What are the components of force F2?

 	 13 N due north and 20 due west


	 13 N due north and 13 N due west


	 15 N due north and 7 N due west


	 15 N due north and 13 N due east
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Figure 19.49. 

Click here for the solution 

	 Which of the following contains two vectors and a scalar?

 	 distance, acceleration, speed


	 displacement, velocity, acceleration


	 distance, mass, speed


	 displacement, speed, velocity




Click here for the solution 

	 Two vectors act on the same point. What should the angle between them be so that a maximum resultant is obtained?

 	 0∘

	 90∘

	 180∘

	 cannot tell




Click here for the solution 

	 Two forces, 4 N and 11 N, act on a point. Which one of the following cannot be the magnitude of a resultant?

 	 4 N


	 7 N


	 11 N


	 15 N





Click here for the solution 




End of chapter exercises: Vectors - Long questions



 	 A helicopter flies due east with an air speed of . It flies through an air current which moves at  north. Given this information, answer the following questions:

 	 In which direction does the helicopter fly?


	 What is the ground speed of the helicopter?


	 Calculate the ground distance covered in 40 minutes by the helicopter.




Click here for the solution 

	 A plane must fly 70 km due north. A cross wind is blowing to the west at . In which direction must the pilot steer if the plane flies at a speed of  in windless conditions?
Click here for the solution 


	 A stream that is 280 m wide flows along its banks with a velocity of . A raft can travel at a speed of  across the stream. Answer the following questions:

 	 What is the shortest time in which the raft can cross the stream?


	 How far does the raft drift downstream in that time?


	 In what direction must the raft be steered against the current so that it crosses the stream perpendicular to its banks?


	 How long does it take to cross the stream in part c?




Click here for the solution 

	 A helicopter is flying from place X to place Y. Y is 1 000 km away in a direction 50∘ east of north and the pilot wishes to reach it in two hours. There is a wind of speed  blowing from the northwest. Find, by accurate construction and measurement (with a scale of ), the

 	 the direction in which the helicopter must fly, and


	 the magnitude of the velocity required for it to reach its destination on time.




Click here for the solution 

	 An aeroplane is flying towards a destination 300 km due south from its present position. There is a wind blowing from the north east at . The aeroplane needs to reach its destination in 30 minutes. Find, by accurate construction and measurement (with a scale of ), or otherwise,

 	 the direction in which the aeroplane must fly and


	 the speed which the aeroplane must maintain in order to reach the destination on time.


	 Confirm your answers in the previous 2 subquestions with calculations.




Click here for the solution 

	 An object of weight W is supported by two cables attached to the ceiling and wall as shown. The tensions in the two cables are T1 and T2 respectively. Tension . Determine the tension T2 and weight W of the object by accurate construction and measurement or by calculation.

 [image: End of chapter exercises: Vectors - Long questions]

Figure 19.50. 

Click here for the solution 

	 In a map-work exercise, hikers are required to walk from a tree marked A on the map to another tree marked B which lies 2,0 km due East of A. The hikers then walk in a straight line to a waterfall in position C which has components measured from B of 1,0 km E and 4,0 km N.

 	 Distinguish between quantities that are described as being vector and scalar.


	 Draw a labeled displacement-vector diagram (not necessarily to scale) of the hikers' complete journey.


	 What is the total distance walked by the hikers from their starting point at A to the waterfall C?


	 What are the magnitude and bearing, to the nearest degree, of the displacement of the hikers from their starting point to the waterfall?




Click here for the solution 

	 An object X is supported by two strings, A and B, attached to the ceiling as shown in the sketch. Each of these strings can withstand a maximum force of 700 N. The weight of X is increased gradually.

 	 Draw a rough sketch of the triangle of forces, and use it to explain which string will break first.


	 Determine the maximum weight of X which can be supported.
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Figure 19.51. 

Click here for the solution 

	 A rope is tied at two points which are 70 cm apart from each other, on the same horizontal line. The total length of rope is 1 m, and the maximum tension it can withstand in any part is 1000 N. Find the largest mass (m), in kg, that can be carried at the midpoint of the rope, without breaking the rope. Include a vector diagram in your answer.

 [image: End of chapter exercises: Vectors - Long questions]

Figure 19.52. 

Click here for the solution 






Glossary



	Definition:  Resultant of Vectors 
	
        
The resultant of a number of vectors is the single vector whose effect is the same as the individual vectors acting together. 

        

	Definition:  Scalar 
	
      
A scalar is a quantity that has only magnitude (size). 

      

	Definition:  Vectors 
	
      
A vector is a quantity that has both magnitude and direction. 

      



Solutions


Units



Introduction



 Imagine you had to make curtains and needed to buy fabric. The
shop assistant would need to know how much fabric you needed.
Telling her you need fabric 2 wide and 6 long would be
insufficient — you have to specify the unit (i.e. 2 metres wide and 6 metres long). Without the unit the
information is incomplete and the shop assistant would have to
guess. If you were making curtains for a doll's house the
dimensions might be 2 centimetres wide and 6 centimetres long!
 It is not just lengths that have units, all physical quantities
have units (e.g. time, temperature, distance, etc.).
	 Definition:  Physical Quantity 
	 
      
 A physical quantity is anything
that you can measure. For example, length, temperature, distance
and time are physical quantities. 

      




Unit Systems



SI Units



 We will be using the SI units in this course. SI units are the
internationally agreed upon units. Historically these units are
based on the metric system which was developed in France at the
time of the French Revolution.
	 Definition:  SI Units 
	 
        
 The name SI units comes from the
French Système International d'Unités, which means
international system of units. 

        



 There are seven base SI units. These are listed in
Table 1. All physical quantities have units
which can be built from these seven base units. So, it is possible to create a
different set of units by defining a different set of base units.
 These seven units are called base units because none of them can
be expressed as combinations of the other six. This is identical
to bricks and concrete being the base units of a building. You can
build different things using different combinations of bricks and
concrete. The 26 letters of the alphabet are the base units for a
language like English. Many different words can be formed by using
these letters.
Table 1. SI Base Units	
                  Base quantity
                	
                  Name
                	
                  Symbol
                
	length	metre	m
	mass	kilogram	kg
	time	second	s
	electric current	ampere	A
	temperature	kelvin	K
	amount of substance	mole	mol
	luminous intensity	candela	cd



The Other Systems of Units



 The SI Units are not the only units available, but they are most
widely used. In Science there are three other sets of units that
can also be used. These are mentioned here for interest only.
c.g.s. Units



 In the c.g.s. system, the metre is replaced by the centimetre and
the kilogram is replaced by the gram. This is a simple change but
it means that all units derived from these two are changed. For
example, the units of force and work are different. These units
are used most often in astrophysics and atomic physics.

Imperial Units



 Imperial units arose when kings and queens decided the measures
that were to be used in the land. All the imperial base units,
except for the measure of time, are different to those of SI
units. This is the unit system you are most likely to encounter if
SI units are not used. Examples of imperial units are pounds,
miles, gallons and yards. These units are used by the Americans and
British. As you can imagine, having different units in use from
place to place makes scientific communication very difficult. This
was the motivation for adopting a set of internationally agreed
upon units.

Natural Units



 This is the most sophisticated choice of units. Here the most
fundamental discovered quantities (such as the speed of light) are
set equal to 1. The argument for this choice is that all other
quantities should be built from these fundamental units. This
system of units is used in high energy physics and quantum
mechanics.



Writing Units as Words or Symbols



 Unit names are always written with a lowercase first letter, for
example, we write metre and litre. The symbols or
abbreviations of units are also written with lowercase initials,
for example m for metre and ℓ for litre. The exception to
this rule is if the unit is named after a person, then the
symbol is a capital letter. For example, the kelvin was named
after Lord Kelvin and its symbol is K. If the abbreviation of the unit that is named after a person has two letters, the second letter is lowercase, for example Hz for hertz.
 Naming of Units 



 For the following symbols of units that you will come across later
in this book, write whether you think the unit is named after a
person or not.
 	 J (joule)


	 ℓ (litre)


	 N (newton)


	 mol (mole)


	 C (coulomb)


	 lm (lumen)


	 m (metre)


	 bar (bar)




 Click here for the solution.


Combinations of SI Base Units



 To make working with units easier, some combinations of the base
units are given special names, but it is always correct to reduce
everything to the base units. Table 2 lists
some examples of combinations of SI base units that are assigned
special names. Do not be concerned if the formulae look unfamiliar
at this stage - we will deal with each in detail in the chapters
ahead (as well as many others)!
 It is very important that you are able to recognise the units
correctly. For instance, the newton (N) is another name for
the kilogram metre per second squared
(kg·m·s–2), while the kilogram metre squared
per second squared (kg·m2·s–2) is called the
joule (J).
Table 2. Some examples of combinations of SI base units assigned
special names	
                Quantity
              	
                Formula
              	
                Unit Expressed in Base Units
              	
                Name of Combination
              
	Force	
                
                  ma
                
              	kg·m·s–2	N (newton)
	Frequency	
                
              	s–1	Hz (hertz)
	Work	
                
                  Fs
                
              	kg·m2·s–2	J (joule)


 Tip
When writing combinations of base SI units, place a dot
(·) between the units to indicate that different base units
are used. For example, the symbol for metres per second is
correctly written as m·s–1, and not as ms–1 or m/s. Although the last two options will be accepted in tests and exams, we will only use the first one in this book.


Rounding, Scientific Notation and Significant Figures



Rounding Off



 Certain numbers may take an infinite amount of paper and ink to write out. Not only is that impossible, but writing numbers out to a high precision (many decimal places) is very inconvenient and rarely gives better answers. For this reason we often estimate the number to a certain number of decimal places.
Rounding off or approximating a decimal number to a given number of decimal places is the quickest way to approximate a number. For example, if you wanted to round-off 2,6525272 to three decimal places then you would first count three places after the decimal.
2,652|5272
All numbers to the right of | are ignored after you determine whether the number in the third decimal place must be rounded up or rounded down. You round up the final digit (make the digit one more) if the first digit after the | was greater or equal to 5 and round down (leave the digit alone) otherwise.
So, since the first digit after the | is a 5, we must round up the digit in the third decimal place to a 3 and the final answer of 2,6525272 rounded to three decimal places is 2,653.
Exercise 1.:  Rounding-off 
 
         Round off π=3,141592654... to 4 decimal places. 

        

 	 Determine the last digit that is kept and mark the cut-off with |. : 
          
            
              π
              =
              3
              ,
              1415
              |
              92654
              ...
            
          
        

	 Determine whether the last digit is rounded up or down. : The last digit of π=3,1415|92654... must be rounded up because there is a 9 after the |.

	 Write the final answer. : π=3,1416 rounded to 4 decimal places. 







Exercise 2.:  Rounding-off 
 
         Round off 9,191919... to 2 decimal places 

        

 	 Determine the last digit that is kept and mark the cut-off with |. : 
          
            
              9
              ,
              19
              |
              1919
              ...
            
          
        

	 Determine whether the last digit is rounded up or down. : The last digit of 9,19|1919... must be rounded down because there is a 1 after the |.

	 Write the final answer. : Answer = 9,19 rounded to 2 decimal places. 








Error Margins



 In a calculation that has many steps, it is best to leave the rounding off right until the end.
For example, Jack and Jill walk to school. They walk 0,9 kilometers to get to school and it takes them 17 minutes. We can calculate their speed in the following two ways.
 Method 1:
          
()

          

()

          Method 2:
          
()

          
          
          
          
()

          
        
 You will see that we get two different answers. In Method 1 no rounding was done, but in Method 2, the time was rounded to 2 decimal places. This made a big difference to the answer. The answer in Method 1 is more accurate because rounded numbers were not used in the calculation. Always only round off your final answer.

Scientific Notation



 In Science one often needs to work with very large or very small numbers. These can be written more easily in scientific notation, in the general form
(1)
            
              d
              ×
              10e
            
          
 where d is a decimal number between 0 and 10 that is rounded off to a few decimal places. e is known as the exponent and is an integer.
If e>0 it represents how many times the decimal place in d should be moved to the right. If e<0, then it represents how many times the decimal place in d should be moved to the left. For example 3,24×103 represents 3240 (the decimal moved three places to the right) and 3,24×10–3 represents 0,00324 (the decimal moved three places to the left).
 If a number must be converted into scientific notation, we need to work out how many times the number must be multiplied or divided by 10 to make it into a number between 1 and 10 (i.e. the value of e) and what this number between 1 and 10 is (the value of d). We do this by counting the number of decimal places the decimal comma must move.
 For example, write the speed of light in scientific notation, to two decimal places. The speed of light is 299 792 458 m·s–1. First, find where the decimal comma must go for two decimal places (to find d) and then count how many places there are after the decimal comma to determine e.
 In this example, the decimal comma must go after the first 2, but since the number after the 9 is 7, d=3,00. e=8 because there are 8 digits left after the decimal comma. So the speed of light in scientific notation, to two decimal places is 3,00 × 108 m·s–1.

Significant Figures



 In a number, each non-zero digit is a significant figure. Zeroes are only counted if they are between two non-zero digits or are at the end of the decimal part. For example, the number 2000 has 1 significant figure (the 2), but 2000,0 has 5 significant figures. You estimate a number like this by removing significant figures from the number (starting from the right) until you have the desired number of significant figures, rounding as you go. For example 6,827 has 4 significant figures, but if you wish to write it to 3 significant figures it would mean removing the 7 and rounding up, so it would be 6,83.
 Using Significant Figures 



 	 Round the following numbers:

 	 123,517 ℓ to 2 decimal places


	 14,328 km·h–1 to one decimal place


	 0,00954 m to 3 decimal places




Click here for the solution.

	 Write the following quantities in scientific notation:

 	 10130 Pa to 2 decimal places


	 978,15 m·s–2 to one decimal place


	 0,000001256 A to 3 decimal places




Click here for the solution.

	 Count how many significant figures each of the quantities below has:

 	 2,590 km


	 12,305 mℓ

	 7800 kg




Click here for the solution.






Prefixes of Base Units



 Now that you know how to write numbers in scientific notation, another important aspect of units is the prefixes that are used with the units.
	 Definition:  Prefix 
	 
      
 A prefix is a group of letters that are placed in front of a word. The effect of the prefix is to change meaning of the word. For example, the prefix un is often added to a word to mean not, as in unnecessary which means not necessary. 

      



 In the case of units, the prefixes have a special use. The kilogram (kg) is a simple example. 1 kg is equal to 1 000 g or 1×103 g. Grouping the 103 and the g together we can replace the 103 with the prefix k (kilo). Therefore the k takes the place of the 103.
The kilogram is unique in that it is the only SI base unit containing a prefix.
 In Science, all the prefixes used with units are some power of 10. Table 3 lists some of these prefixes. You will not use most of these prefixes, but those prefixes listed in bold should be learnt. The case of the prefix symbol is very important. Where a letter features twice in the table, it is written in uppercase for exponents bigger than one and in lowercase for exponents less than one. For example M means mega (106) and m means milli (10–3).
Table 3. Unit Prefixes	
                Prefix
              	
                Symbol
              	
                Exponent
              	
                Prefix
              	
                Symbol
              	
                Exponent
              
	yotta	Y	
                
                  1024
                
              	yocto	y	
                
                  10
                      –
                      24
                    
                
              
	zetta	Z	
                
                  1021
                
              	zepto	z	
                
                  10
                      –
                      21
                    
                
              
	exa	E	
                
                  1018
                
              	atto	a	
                
                  10
                      –
                      18
                    
                
              
	peta	P	
                
                  1015
                
              	femto	f	
                
                  10
                      –
                      15
                    
                
              
	tera	T	
                
                  1012
                
              	pico	p	
                
                  10
                      –
                      12
                    
                
              
	
                giga
              	G	
                
                  109
                
              	
                nano
              	n	
                
                  10
                      –
                      9
                    
                
              
	
                mega
              	M	
                
                  106
                
              	
                micro
              	
                
                  μ
                
              	
                
                  10
                      –
                      6
                    
                
              
	
                kilo
              	k	
                
                  103
                
              	
                milli
              	m	
                
                  10
                      –
                      3
                    
                
              
	
                hecto
              	h	
                
                  102
                
              	
                centi
              	c	
                
                  10
                      –
                      2
                    
                
              
	
                deca
              	da	
                
                  101
                
              	
                deci
              	d	
                
                  10
                      –
                      1
                    
                
              


 Tip
There is no space and no dot between the prefix and the symbol for the unit.

 Here are some examples of the use of prefixes:
 	 40000 m can be written as 40 km (kilometre)


	 0,001 g is the same as 1×10–3 g and can be written as 1 mg (milligram)


	 2,5×106 N can be written as 2,5 MN (meganewton)


	 250000 A can be written as 250 kA (kiloampere) or 0,250 MA (megaampere)


	 0,000000075 s can be written as 75 ns (nanoseconds)


	 3×10–7 mol can be rewritten as 0,3×10–6 mol, which is the same as 0,3 μmol (micromol)




 Using Scientific Notation 



 	 Write the following in scientific notation using Table 3 as a reference.

 	 0,511 MV


	 10 cℓ

	 0,5 μm


	 250 nm


	 0,00035 hg




Click here for the solution.

	 Write the following using the prefixes in Table 3.

 	 1,602 ×10–19 C


	 1,992 ×106 J


	 5,98 ×104 N


	 25 ×10–4 A


	 0,0075 ×106 m




Click here for the solution.





The Importance of Units



 Without units much of our work as scientists would be meaningless. We need to express our thoughts clearly and units give meaning to the numbers we measure and calculate. Depending on which units we use, the numbers are different. For example if you have 12 water, it means nothing. You could have 12 ml of water, 12 litres of water, or even 12 bottles of water. Units are an essential part of the language we use. Units must be specified when expressing physical quantities. Imagine that you are baking a cake, but the units, like grams and millilitres, for the flour, milk, sugar and baking powder are not specified!
 Investigation : Importance of Units 



 Work in groups of 5 to discuss other possible situations where using the incorrect set of units can be to your disadvantage or even dangerous. Look for examples at home, at school, at a hospital, when travelling and in a shop. 

 Case Study : The importance of units 



 Read the following extract from CNN News 30 September 1999 and answer the questions below.
 NASA: Human error caused loss of Mars orbiter November 10, 1999
 Failure to convert English measures to metric values caused the loss of the Mars Climate Orbiter, a spacecraft that smashed into the planet instead of reaching a safe orbit, a NASA investigation concluded Wednesday.
The Mars Climate Orbiter, a key craft in the space agency's exploration of the red planet, vanished on 23 September after a 10 month journey. It is believed that the craft came dangerously close to the atmosphere of Mars, where it presumably burned and broke into pieces.
An investigation board concluded that NASA engineers failed to convert English measures of rocket thrusts to newton, a metric system measuring rocket force. One English pound of force equals 4,45 newtons. A small difference between the two values caused the spacecraft to approach Mars at too low an altitude and the craft is thought to have smashed into the planet's atmosphere and was destroyed.
The spacecraft was to be a key part of the exploration of the planet. From its station about the red planet, the Mars Climate Orbiter was to relay signals from the Mars Polar Lander, which is scheduled to touch down on Mars next month.
“The root cause of the loss of the spacecraft was a failed translation of English units into metric units and a segment of ground-based, navigation-related mission software,” said Arthus Stephenson, chairman of the investigation board.
Questions:
 	 Why did the Mars Climate Orbiter crash? Answer in your own words.


	 How could this have been avoided?


	 Why was the Mars Orbiter sent to Mars?


	 Do you think space exploration is important? Explain your answer.






How to Change Units



 It is very important that you are aware that different systems of units exist. Furthermore, you must be able to convert between units. Being able to change between units (for example, converting from millimetres to metres) is a useful skill in Science.
 The following conversion diagrams will help you change from one unit to another.
 [image: How to Change Units]

Figure 1. 
The distance conversion table

 If you want to change millimetre to metre, you divide by 1000 (follow the arrow from mm to m); or if you want to change kilometre to millimetre, you multiply by 1000×1000.
 The same method can be used to change millilitre to litre or kilolitre. Use Figure 2 to change volumes:
 [image: How to Change Units]

Figure 2. 
The volume conversion table

Exercise 3.:  Conversion 1 
 
       Express 3 800 mm in metres. 

      

 	 Find the two units on the conversion diagram. : Use Figure 1 . Millimetre is on the left and metre in the middle.

	 Decide whether you are moving to the left or to the right. : You need to go from mm to m, so you are moving from left to right.

	 Read from the diagram what you must do and find the answer. : 3 800 mm ÷ 1000 = 3,8 m 







Exercise 4.:  Conversion 2 
 
       Convert 4,56 kg to g. 

      

 	 Find the two units on the conversion diagram. : Use Figure 1. Kilogram is the same as kilometre and gram the same as metre.

	 Decide whether you are moving to the left or to the right. : You need to go from kg to g, so it is from right to left.

	 Read from the diagram what you must do and find the answer. : 4,56 kg × 1000 = 4560 g 







Two other useful conversions



 Very often in Science you need to convert speed and temperature. The following two rules will help you do this:
 Converting speed
When converting km·h–1 to m·s–1you divide by 3,6. For example 72 km·h–1÷ 3,6 = 20 m·s–1.
 When converting m·s–1to km·h–1, you multiply by 3,6. For example 30 m·s–1×3,6 = 108 km·h–1.
 Converting temperature
Converting between the kelvin and celsius temperature scales is easy. To convert from celsius to kelvin add 273. To convert from kelvin to celsius subtract 273. Representing the kelvin temperature by TK and the celsius temperature by ToC,
(2)
            
              TK
              =
              T
                  o
                  C
                
              +
              273
            
          


A sanity test



 A sanity test is a method of checking whether an answer makes sense. All we have to do is to take a careful look at our answer and ask the question Does the answer make sense?
 Imagine you were calculating the number of people in a classroom. If the answer you got was 1 000 000 people you would know it was wrong — it is not possible to have that many people in a classroom. That is all a sanity test is — is your answer insane or not?
 It is useful to have an idea of some numbers before we start. For example, let us consider masses. An average person has a mass around 70 kg, while the heaviest person in medical history had a mass of 635 kg. If you ever have to calculate a person's mass and you get 7 000 kg, this should fail your sanity check — your answer is insane and you must have made a mistake somewhere. In the same way an answer of 0.01 kg should fail your sanity test.
 The only problem with a sanity check is that you must know what typical values for things are. For example, finding the number of learners in a classroom you need to know that there are usually 20–50 people in a classroom. If you get and answer of 2500, you should realise that it is wrong.
The scale of the matter... :



  Try to get an idea of the typical values for the following physical quantities and write your answers into the table:
Table 4. 	
                Category
              	
                Quantity
              	
                Minimum
              	
                Maximum
              
	People	mass	 	 
	 	height	 	 
	Transport	speed of cars on freeways	 	 
	 	speed of trains	 	 
	 	speed of aeroplanes	 	 
	 	distance between home and school	 	 
	General	thickness of a sheet of paper	 	 
	 	height of a doorway	 	 




Summary



 	 You need to know the seven base SI Units as listed in Table 1. Combinations of SI Units can have different names.


	 Unit names and abbreviations are written with lowercase letter unless it is named after a person.


	 Rounding numbers and using scientific notation is important.


	 Table 3 summarises the prefixes used in Science.


	 Use figures Figure 1 and Figure 2 to convert between units.





End of Chapter Exercises



 	 Write down the SI unit for the each of the following quantities:

 	 length


	 time


	 mass


	 quantity of matter




Click here for the solution.

	 For each of the following units, write down the symbol and what power of 10 it represents:

 	 millimetre


	 centimetre


	 metre


	 kilometre




Click here for the solution.

	 For each of the following symbols, write out the unit in full and write what power of 10 it represents:

 	 μg


	 mg


	 kg


	 Mg




Click here for the solution.

	 Write each of the following in scientific notation, correct to 2 decimal places:

 	 0,00000123 N


	 417 000 000 kg


	 246800 A


	 0,00088 mm




Click here for the solution.

	 Rewrite each of the following, accurate to two decimal places, using the correct prefix where applicable:

 	 0,00000123 N


	 417 000 000 kg


	 246800 A


	 0,00088 mm




Click here for the solution.

	 For each of the following, write the measurement using the correct symbol for the prefix and the base unit:

 	 1,01 microseconds


	 1 000 milligrams


	 7,2 megameters


	 11 nanolitre




Click here for the solution.

	 The Concorde is a type of aeroplane that flies very fast. The top speed of the Concorde is 2 172 km·hr–1. Convert the Concorde's top speed to m·s–1.Click here for the solution.


	 The boiling point of water is 100 ∘C. What is the boiling point of water in kelvin?Click here for the solution.







Chapter 16. Electric circuits



16.1. Introduction and key concepts*



Electric Circuits



 People all over the world depend on electricity to provide power for most appliances in the home and at work. For example, fluorescent lights, electric heating and cooking (on electric stoves), all depend on electricity to work.
To realise just how big an impact electricity has on our daily lives, just think about what happens when there is a power
failure or load shedding.
 Discussion : Uses of electricity 



 With a partner, take the following topics and, for each topic, write down at least 5 items/appliances/machines which need
electricity to work. Try not to use the same item more than once.
 	 At home


	 At school


	 At the hospital


	 In the city




 Once you have finished making your lists, compare with the lists of other people in your class. (Save your lists somewhere safe for later because there will be another activity for which you'll need them.)
 When you start comparing, you should notice that there are many different items which we use in our daily lives which rely on electricity to work!
 

 Tip
Safety Warning:
We believe in experimenting and learning about physics at every opportunity, BUT
playing with electricity and electrical appliances can be EXTREMELY DANGEROUS! Do not try to build
homemade circuits alone. Make sure you have someone with you who knows if what you are doing is safe.
Normal electrical outlets are dangerous. Treat electricity with respect in your everyday life. Do not touch exposed wires and do not approach downed power lines.

Closed circuits



 In the following activity we will investigate what is needed to cause charge to flow in an electric circuit.
Experiment : Closed circuits 



 
Aim:

          
To determine what is required to make electrical charges flow.
In this experiment, we will use a lightbulb to check whether electrical charge is flowing in the circuit or not. If charge is flowing, the lightbulb should glow. On the other hand, if no charge is flowing, the lightbulb will not glow.
 
Apparatus:

          
        You will need a small lightbulb which is attached to a metal conductor (e.g. a bulb from a school electrical kit), some connecting wires and a battery.
 
Method:

          
        Take the apparatus items and try to connect them in a way that you cause the light bulb to glow (i.e. charge flows in the circuit).
 
Questions:

          
        
 	 Once you have arranged your circuit elements to make the lightbulb glow, draw your circuit.


	 What can you say about how the battery is connected? (i.e. does it have one or two connecting leads attached? Where are they attached?)


	 What can you say about how the light bulb is connected in your circuit? (i.e. does it connect to one or two connecting leads, and where are they attached?)


	 Are there any items in your circuit which are not attached to something? In other words, are there any gaps in your circuit?




 Write down your conclusion about what is needed to make an electric circuit work and charge to flow.
 

 In the experiment above, you will have seen that the light bulb only glows when there is a closed circuit i.e. there are no gaps in the circuit and all the circuit elements are connected in a closed loop. Therefore, in order for charges to flow, a closed circuit and an energy source (in this case the battery) are needed. (Note: you do not have to have a lightbulb in the circuit! We used this as a check that charge was flowing.)
	 Definition:  Electric circuit 
	 
        
 An electric circuit is a closed path (with no breaks or gaps) along which electrical charges (electrons) flow powered by an energy source. 

        




Representing electric circuits



Components of electrical circuits



 Some common elements (components) which can be found in electrical circuits include light bulbs, batteries, connecting leads, switches, resistors, voltmeters and ammeters. You will learn more about these items in later sections, but it is important to know what their symbols are and how to represent them in circuit diagrams. Below is a table with the items and their symbols:
Table 16.1. 	
                    Component
                  	
                    Symbol
                  	
                    Usage
                  
	light bulb	
                     [image: Components of electrical circuits]

Figure 16.1. 


                  	glows when charge moves through it
	battery	
                     [image: Components of electrical circuits]

Figure 16.2. 
The longer line shows the positive (+) side of the battery, the shorter line shows the (-) side of the battery.


                  	provides energy for charge to move - conventional current flow from positive to negative through a circuit
	switch	
                     [image: Components of electrical circuits]

Figure 16.3. 


                  	allows a circuit to be open or closed
	resistor	
                     [image: Components of electrical circuits]

Figure 16.4. 


                  	resists the flow of charge
	 	OR	 
	 	
                     [image: Components of electrical circuits]

Figure 16.5. 


                  	 
	voltmeter	
                     [image: Components of electrical circuits]

Figure 16.6. 


                  	measures potential difference
	ammeter	
                     [image: Components of electrical circuits]

Figure 16.7. 


                  	measures current in a circuit
	connecting lead	
                     [image: Components of electrical circuits]

Figure 16.8. 


                  	connects circuit elements together



Circuit diagrams



	 Definition:  Representing circuits 
	 
          
 A physical circuit is the electric circuit you create with real components.

          
 A circuit diagram is a drawing which uses symbols to represent the different components in the physical circuit.
 

          



 We use circuit diagrams to represent circuits because they are much simpler and more general than drawing the physical circuit because they only show the workings of the electrical components. You can see this in the two pictures below. The first picture shows the physical circuit for an electric torch. You can see the light bulb, the batteries, the switch and the outside plastic casing of the torch. The picture is actually a cross-section of the torch so that we can see inside it.
 [image: Circuit diagrams]

Figure 16.9. 
Physical components of an electric torch. The dotted line shows the path of the electrical circuit.

 Below is the circuit diagram for the electric torch. Now the light bulb is represented by its symbol, as are the batteries, the switch and the connecting wires. It is not necessary to show the plastic casing of the torch since it has nothing to do with the electric workings of the torch. You can see that the circuit diagram is much simpler than the physical circuit drawing!
 [image: Circuit diagrams]

Figure 16.10. 
Circuit diagram of an electric torch.


Series and parallel circuits



 There are two ways to connect electrical components in a circuit: in series or in parallel.
	 Definition:  Series circuit 
	 
          
 In a series circuit, the charge flowing from the battery can only flow along a single path to return to the battery. 

          



	 Definition:  Parallel circuit 
	 
          
 In a parallel circuit, the charge flowing from the battery can flow along multiple paths to return to the battery. 

          



 The picture below shows a circuit with two resistors connected in series on the left and a circuit with two resistors connected in parallel on the right. In the series circiut, the charge path from the battery goes through every component before returning to the battery. In the parallel circuit, there is more than one path for the charge to flow from the battery through one of the components and back to the battery.
 
            
 [image: Series and parallel circuits]
Figure 16.11. 


          
 This simulation allows you to experiment with building circuits.

 [image: Series and parallel circuits]
Figure 16.12. 



run demo
Exercise 1.:  Drawing circuits I 
 
           Draw the circuit diagram for a circuit which has the following components:

           	 1 battery


	 1 lightbulb connected in series


	 2 resistors connected in parallel





          
          

 	 Identify the components and their symbols and draw according to the instructions: : 
            
 [image: Drawing circuits I]
Figure 16.12. 


          







Exercise 2.:  Drawing circuits II 
 
           Draw the circuit diagram for a circuit which has the following components:

           	 3 batteries in series


	 1 lightbulb connected in parallel with 1 resistor


	 a switch in series with the batteries





          
          

 	 Identify the symbol for each component and draw according to the instructions: : 
            
 [image: Drawing circuits II]
Figure 16.12. 


          







 Circuits 



 	 Using physical components, set up the physical circuit which is described by the circuit diagram below and then draw the physical circuit:

 [image: Circuits]

Figure 16.13. 

 
Click here for the solution 

	 Using physical components, set up a closed circuit which has one battery and a light bulb in series with a resistor.

 	 Draw the physical circuit.


	 Draw the resulting circuit diagram.


	 How do you know that you have built a closed circuit? (What happens to the light bulb?)


	 If you add one more resistor to your circuit (also in series), what do you notice? (What happens to the light from the light bulb?)


	 Draw the new circuit diagram which includes the second resistor.




 Click here for the solution   

	 Draw the circuit diagram for the following circuit: 2 batteries and a switch in series, and 1 lightbulb which is in parallel with two resistors.

 	 Now use physical components to set up the circuit.


	 What happens when you close the switch? What does does this mean about the circuit?


	 Draw the physical circuit.




 Click here for the solution 




Discussion : Alternative Energy 



 At the moment, most electric power is produced by burning fossil fuels such as coal and oil. In South Africa, our main
source of electric power is coal-burning power stations. (We also have one nuclear power plant called Koeberg in the Western Cape). However, burning fossil fuels releases large amounts of pollution into the earth's atmosphere and contributes
to global warming. Also, the earth's fossil fuel reserves (especially oil) are starting to run low. For these reasons, people all across the world are working to find alternative/other sources of energy and on ways to conserve/save energy. Other sources of energy include
wind power, solar power (from the sun), and hydro-electric power (from water, e.g. dammed rivers) among others.
 With a partner, take out the lists you made earlier of the item/appliances/machines which used electricity in the following environments. For each item, try to think of an alternative AND a way to conserve or save power.
 For example, if you had a flourescent light as an item used in the home, then:
 	 Alternative: use candles at suppertime to reduce electricity consumption


	 Conservation: turn off lights when not in a room, or during the day.




 
            Topics:
          
 	 At home


	 At school


	 At the hospital


	 In the city




 Once you have finished making your lists, compare with the lists of other people in your class.
 





16.2. Potential difference*



Potential Difference



Potential Difference



 When a circuit is connected and complete, charge can move through the circuit. Charge will not move unless there is something to make it move. Think of it as though charge is at rest and something has to push it along. This means that work needs to be done to make charge move. A force acts on the charges, doing work, to make them move. The force is provided by the battery in the circuit.
 We call the moving charge "current" and we will talk about this later.
 The amount of work done to move a unit charge from one point to another point in a circuit is called the potential difference between those two points. You can think of it as a difference in the potential energy of the unit charge due to its position in the circuit. The difference in potential energy, called potential difference, is equal to the amount of work done to move the unit charge between the two points. Just like with gravity, when you raise an object above the ground it has gravitational potential energy due to its position, the same goes for a charge in a circuit and electrical potential energy. Potential difference is measured between or across two points. We do not say potential difference through something.
	 Definition:  Potential Difference 
	 
        
 Electrical potential difference is the difference in electrical potential energy per unit charge between two points. The unit of potential difference is the volt[1] (V). 
The potential difference of a battery is the voltage measured across it when current is flowing through it.


        



 The unit of potential difference is the volt (V), which is the same as 1 joule per coulomb, the amount of work done per unit charge. Electrical potential difference is also called voltage.

Potential difference and emf



 
	  We use an instrument called a voltmeter to measure the potential difference between two points in a circuit. It must be connected across the two points, in parallel to that portion of the circuit as shown in the diagram below.
	
 [image: Potential difference and emf]

Figure 16.14. 
A voltmeter should be connected in parallel in a circuit.

EMF



 When you use a voltmeter to measure the potential difference across (or between) the terminals of a battery, when no current is flowing through the battery, you are measuring the electromotive force (emf) of the battery. This is how much potential energy the battery has to make charges move through the circuit. It is a measure of how much chemical potential energy can be transferred to electrical energy in the battery. This driving potential energy is equal to the total potential energy drops in the circuit. This means that the voltage across the battery is equal to the sum of the voltages in the circuit.


	 Definition: emf
	 
The emf (electromotive force) is the voltage measured across the terminals of a battery when no current is flowing through the battery.




 
	  You have now learnt that the emf is the voltage measured across the terminals of a battery when there is no current flowing through it and that the potential difference of a battery is the voltage measured across it when there is current flowing through it. So how do these two quantities compare with each other? 
	
Experiment : Investigate the emf and potential difference of a battery 



 
Aim:
 To measure the emf and potential difference across a battery in a circuit
 
Apparatus:
 A battery, connecting wires, a light bulb, a switch, a voltmeter.
 
Method: 
 Set up a circuit with a battery, a lightbulb and a switch connected in series.
 First we will measure the emf of the battery when no current is flowing. Make sure that the switch is open and the lightbulb is not glowing. This is how we check that there is no current flowing through the circuit. Then connect the voltmeter across the terminals of the battery. Make sure that the voltmeter is set to the largest scale when you first start measuring. Write down the voltage you measure. This is the emf. Disconnect the voltmeter.
 Second we will measure the potential difference across the battery. This time, make sure the switch is closed and that the lightbulb is glowing. This means that there is current flowing through the circuit. Now connect the voltmeter again across the terminals of the battery. Again make sure that the voltmeter is set on its largest scale. Write down the voltage you measure. This is called the potential difference of the battery. How does it compare to the other value you measured when there was no current flowing?
 
Summary:
You will have noticed that the voltages you measured when there was no current flowing (emf) and when there was current flowing (potential difference) were different. The emf was a higher value than the potential difference. Discuss with your classmates and teacher why you think this might happen.

 
	  Batteries all have some internal resistance to charges moving through them and therefore some work is required to move the charges through the battery itself. This internal resistance causes the potential difference across the battery terminals to be slightly less than the emf. 
	
 In the following exercises, we will assume that we have 'perfect' batteries with no internal resistance. In this special case, the potential difference of the battery and its emf will be the same. We can use this information to solve problems in which the voltages across elements in a circuit add up to the emf.
(16.1)
            
              E
              M
              F
              =
              Vtotal
            
          
Exercise 3.:  Voltages I 
 
         What is the voltage across the resistor in the circuit shown?



 [image: Voltages I]
Figure 16.14. 




 

        

 	 Check what you have and the units : We have a circuit with a battery and one resistor. We know the voltage across the battery. We want to find the voltage across the resistor.
(16.2)
            
              Vbattery
              =
              2
              V
            
          

	 Applicable principles : We know that the voltage across the battery must be equal to the total voltage across all other circuit components.
(16.3)
            
              Vbattery
              =
              Vtotal
            
          
 There is only one other circuit component, the resistor.
(16.4)
            
              Vtotal
              =
              V1
            
          
 This means that the voltage across the battery is the same as the voltage across the resistor.
(16.5)
            
              Vbattery
              =
              Vtotal
              =
              V1
            
          
(16.6)
            
              Vbattery
              =
              Vtotal
              =
              V1
            
          
(16.7)
            
              V1
              =
              2
              V
            
          







Exercise 4.:  Voltages II 
 
         What is the voltage across the unknown resistor in the circuit shown?



 [image: Voltages II]
Figure 16.14. 




 

        

 	 Check what you have and the units : We have a circuit with a battery and two resistors. We know the voltage across the battery and one of the resistors. We want to find that voltage across the resistor.
(16.8)
            
              Vbattery
              =
              2
              V
            
          
(16.9)
            
              VA
              =
              1
              V
            
          

	 Applicable principles : We know that the voltage across the battery must be equal to the total voltage across all other circuit components that are in series.
(16.10)
            
              Vbattery
              =
              Vtotal
            
          
 The total voltage in the circuit is the sum of the voltages across the individual resistors
(16.11)
            
              Vtotal
              =
              VA
              +
              VB
            
          
 Using the relationship between the voltage across the battery and total voltage across the resistors
(16.12)
            
              Vbattery
              =
              Vtotal
            
          
(16.13)








Exercise 5.:  Voltages III 
 
         What is the voltage across the unknown resistor in the circuit shown?



 [image: Voltages III]
Figure 16.14. 




 

        

 	 Check what you have and the units : We have a circuit with a battery and three resistors. We know the voltage across the battery and two of the resistors. We want to find that voltage across the unknown resistor.
(16.14)
            
              Vbattery
              =
              7
              V
            
          
(16.15)


	 Applicable principles : We know that the voltage across the battery must be equal to the total voltage across all other circuit components that are in series.
(16.16)
            
              Vbattery
              =
              Vtotal
            
          
 The total voltage in the circuit is the sum of the voltages across the individual resistors
(16.17)
            
              Vtotal
              =
              VB
              +
              Vknown
            
          
 Using the relationship between the voltage across the battery and total voltage across the resistors
(16.18)
            
              Vbattery
              =
              Vtotal
            
          
(16.19)








Exercise 6.:  Voltages IV 
 
         What is the voltage across the parallel resistor combination in the circuit shown? Hint: the rest of the circuit is the same as the previous problem.



 [image: Voltages IV]
Figure 16.14. 




 

        

 	 Quick Answer : The circuit is the same as the previous example and we know that the voltage difference between two points in a circuit does not depend on what is between them so the answer is the same as above Vparallel=2V.

	 Check what you have and the units - long answer : We have a circuit with a battery and five resistors (two in series and three in parallel). We know the voltage across the battery and two of the resistors. We want to find that voltage across the parallel resistors, Vparallel.
(16.20)
            
              Vbattery
              =
              7
              V
            
          
(16.21)
            
              Vknown
              =
              1
              V
              +
              4
              V
            
          

	 Applicable principles : We know that the voltage across the battery must be equal to the total voltage across all other circuit components.
(16.22)
            
              Vbattery
              =
              Vtotal
            
          
 Voltages only add for components in series. The resistors in parallel can be thought of as a single component which is in series with the other components and then the voltages can be added.
(16.23)
            
              Vtotal
              =
              Vparallel
              +
              Vknown
            
          
 Using the relationship between the voltage across the battery and total voltage across the resistors
(16.24)
            
              Vbattery
              =
              Vtotal
            
          
(16.25)












16.3. Current and measurement*



Current



Flow of Charge



 We have been talking about moving charge. But how much charge is moving, and how fast is it moving? The concept that represents this information is called current. Current allows us to quantify the movement of charge.
 When we talk about current we talk about how much charge moves past a fixed point in circuit in one second. Think of charges being pushed around the circuit by the battery; there are charges in the wires but unless there is a battery they won't move. When one charge moves, the charges next to it also move. They keep their spacing as if you had a tube of marbles like in this picture.
 
          
 [image: Flow of Charge]
Figure 16.15. 


        
 If you push one marble into the tube then one must come out the other side. If you look at any point in the tube and push one marble into the tube, one marble will move past the point you are looking at. This is similar to charges in the wires of a circuit.
 If one charge moves then they all move and the same number move at every point in the circuit. This is due to the conservation of charge.

Current



 Now that we've thought about moving charges and visualised what is happening we need to get back to quantifying moving charge. We've already said that we call moving charge current but we define it precisely as follows:
	 Definition:  Current 
	 
        
 Current is the rate of flow of charge, i.e. the rate at which charges move past a fixed point in a circuit. We use the symbol I to show current and it is measured in amperes (A). One ampere is one coulomb of charge moving in one second. The relationship between current, charge and time is given by:

        
(16.26)


        
        



 When current flows in a circuit we show this on a diagram by adding arrows. The arrows show the direction of flow in the circuit. By convention we say that charge flows from the positive end (or terminal) of a battery, through the circuit, and back to the negative end (or terminal) of the battery. This is shown in the diagram below. We measure the current with an instrument called an ammeter.
 
          
 [image: ]
Figure 16.16. 


        
 The arrows in this picture show you the direction that charge will flow in the circuit. Note that the arrows point from the positive end of the battery, through the circuit, towards the negative end of the battery. 
 Interesting Fact 
  Benjamin Franklin made a guess about the
direction of charge flow when rubbing smooth wax with rough wool.
He thought that the charges flowed from the wax to the wool (i.e.
from positive to negative) which was opposite to the real
direction. Due to this, electrons are said to have a
negative charge and so objects which Ben Franklin called "negative" (meaning a shortage of charge) really have an excess
of electrons. By the time the true direction of electron flow was
discovered, the convention of ´positive¡ and ´negative¡ had
already been so well accepted in the scientific world that no
effort was made to change it.


 Tip
A battery does not produce the same amount of
current no matter what is connected to it. While the voltage
produced by a battery is constant, the amount of current supplied
depends on what is in the circuit.

Exercises: Current



Exercise 7.
  Using the relationship between current, charge, and time, calculate the current in a circuit which has  of charge passing a point every second.


 	Write down the relationship between current, charge and time: 


	 Figure out what is given and what is being asked for: Given:  
    
()
 Asked for: I

	 We can now substitute the numbers in the equation and solve for current, I. : 
    
(16.27)








Exercise 8.
 
     How much charge flows per second in a circuit with a current of ?


 	 Determine what is being asked for and what is given: Asked for: Charge, Q
 Given: Current 

()

	 Write down the relationship between current and rate of flow of charge: 
    


	 Rearrange the equation to solve for Q: 







Exercise 9.
 
     If
 of charge flow past a point in a circuit in 1 second, what is the current in the circuit?


 	 Determine what is being asked for and what is given: Asked for: current, I
 Given: charge




	 Convert all non-SI units to SI units: 


	 Write down the relationship between current and rate of flow of charge: 


	 We can now substitute the numbers into the equation and solve for current, I. : 








Exercise 10.
  I measure the current in a circuit to be 500mA. How much charge is flowing per second in the circuit?


 	 Determine what is being asked for and what is given: Asked for: Charge, Q
 Given: Current I=500mA,

Δt=1s

	 Convert all non-SI units to SI units: 500mA=500×10−3A

	 Write down the relationship between current and rate of flow of charge: 


	 Rearrange the equation to solve for Q.: 









Measuring voltage and current in circuits



 As we have seen in previous sections, an electric circuit is made
up of a number of different components such as batteries, resistors and
light bulbs. There are devices to measure the properties of these components.
These devices are called meters.
 For example, one may be interested in measuring the
amount of current flowing through a circuit using an ammeter or measuring the
voltage provided by a battery using a voltmeter. In this section we will discuss the
practical usage of voltmeters and ammeters.
Voltmeter



 A voltmeter is an instrument for measuring the voltage between two
points in an electric circuit. In analogy with a water circuit, a
voltmeter is like a meter designed to measure pressure difference.
Since one is interested in measuring the voltage between two
points in a circuit, a voltmeter must be connected in
parallel with the portion of the circuit on which the
measurement is made.
 [image: Voltmeter]

Figure 16.17. 
A voltmeter should be connected in parallel in a circuit.

 Figure 16.17 shows a voltmeter connected
in parallel with a battery. The positive lead of the voltmeter must be connected closest to the positive end of the battery and the negative lead closest to the negative end of the battery. The voltmeter may also be used to measure the
voltage across a resistor or any other component of a circuit that has a voltage drop or potential difference.

Ammeter



 An ammeter is an instrument used to measure the flow of electric
current in a circuit. Since one is interested in measuring the
current flowing through the circuit, the ammeter
must be connected in series with the measured circuit
component (Figure 16.18). The positive lead from the ammeter must be connected closest to the positive end of the battery and the negative lead must be connected closest to the negative end of the battery.
 [image: Ammeter]

Figure 16.18. 
An ammeter should be connected in series in a circuit.


Impact of meters on circuits



 A good quality meter used correctly will not significantly change
the values it is used to measure. This means that an ammeter has
very low resistance so as to not slow down the flow of charge. A voltmeter has a very high resistance so that it does not add another
parallel pathway to the circuit for the charge to flow along.
 Investigation : Using meters 



 If possible,
connect meters in circuits to get used to how to use meters to
measure electrical quantities. If the meters have more than one
scale, always connect to the largest scale first so that the meter
will not be damaged by having to measure values that exceed its
limits. 

 The table below summarises the use of each measuring instrument
that we discussed and the way it should be connected to a circuit
component.
Table 16.2. 	
                  Instrument
                	
                  Measured Quantity
                	
                  Proper Connection
                
	Voltmeter	Voltage	In Parallel
	Ammeter	Current	In Series






16.4. Resistance*



Resistance



 
	The resistance of a circuit element can be thought of as how much it opposes the flow of electric current in the circuit. 
	
	 Definition:  Resistance 
	 
        
  The resistance of a conductor is defined as the potential difference across it divided by the current flowing though it. We use the symbol R to show resistance and it is measured in units called Ohms with the symbol 
Ω.

        
()

        
        





	
What causes resistance?



 We have spoken about resistors that reduce the flow of charge
in a conductor. On a microscopic level, electrons moving through
the conductor collide with the particles of which the conductor
(metal) is made. When they collide, they transfer kinetic energy.
The electrons lose kinetic energy and slow down. This leads to
resistance. The transferred energy causes the resistor to heat up.
You can feel this directly if you touch a cellphone charger when you are charging a cell phone - the charger gets warm because its circuits have some resistors in them!
 All conductors have some resistance. For example, a piece of wire
has less resistance than a light bulb, but both have resistance. A lightbulb is a very thin wire surrounded by a glass housing The high resistance of the filament (small wire) in a lightbulb causes the electrons to
transfer a lot of their kinetic energy in the form of heat[2]. The heat energy is enough
to cause the filament to glow white-hot which produces light. The wires
connecting the lamp to the cell or battery hardly even get warm while
conducting the same amount of current. This is because of their
much lower resistance due to their larger cross-section (they are thicker).
 An important effect of a resistor is that it converts electrical
energy into heat energy. Light is a by-product of the heat that is produced.
 Interesting Fact 
 There is a special type of conductor,
called a superconductor that has no resistance, but the
materials that make up all known superconductors only start superconducting
at very low temperatures (approximately -170∘C).


Why do batteries go flat?



 A battery stores chemical potential energy. When it is connected in a circuit, a chemical reaction takes place inside the battery which converts chemical potential energy to electrical energy which powers the charges (electrons) to move through the circuit. All the circuit elements (such as the conducting leads, resistors and lightbulbs) have some resistance to the flow of charge and convert the electrical energy to heat and, in the case of the lightbulb, heat and light.
Since energy is always conserved, the battery goes flat when all its chemical potential energy has been converted into other forms of energy.


Resistors in electric circuits



 It is important to understand what effect adding resistors to a circuit has on the total resistance of a circuit and on the current that can flow in the circuit.
Resistors in series



 When we add resistors in series to a circuit, we increase the resistance to the flow of current. There is only one path along which the current can flow and the current is the same at all places in the series circuit. Take a look at the diagram below: On the left there is a circuit with a single resistor and a battery. No matter where we measure the current, it is the same in a series circuit. On the right, we have added a second resistor in series to the circuit. The total resistance of the circuit has increased and you can see from the reading on the ammeter that the current in the circuit has decreased and is still the same everywhere in the circuit.
 
            
 [image: Resistors in series]
Figure 16.19. 


          
 
Potential difference and resistors in series
When resistors are in series, one after the other, there is a potential difference across each resistor. The total potential difference across a set of resistors in series is the sum of the potential differences across each of the resistors in the set. This is the same as falling a large distance under gravity or falling that same distance (difference) in many smaller steps. The total distance (difference) is the same.
 Look at the circuits below. If we measured the potential difference between the black dots in all of these circuits it would be the same; it is just the potential difference across the battery which is the same as the potential difference across the rest of the circuit. So we now know the total potential difference is the same across one, two or three resistors. We also know that some work is required to make charge flow through each one. Each is a step down in potential energy. These steps add up to the total voltage drop which we know is the difference between the two dots.

The sum of the potential differences across each individual resistor is equal to the potential difference measured across all of them together. For this reason, series circuits are sometimes called voltage dividers.
 
          
 [image: Potential difference and resistors in series]
Figure 16.20. 


        
 Let us look at this in a bit more detail. In the picture below you can see what the different measurements for 3 identical resistors in series could look like. The total voltage across all three resistors is the sum of the voltages across the individual resistors. 
 
          
 [image: Potential difference and resistors in series]
Figure 16.21. 


        
Equivalent Series Resistance



 When there is more than one resistor in a circuit, we are usually able to calculate the total combined resitance of all the resistors. The resistance of the single resistor is known as equivalent resistance or total resistance.
Consider a circuit consisting of three resistors and a single cell connected in series.
 
            
 [image: Equivalent Series Resistance]
Figure 16.22. 


          
 We can define the total resistance in a series circuit as:
	 Definition:  Equivalent resistance in a series circuit, Rs 
	 
          
 For n resistors in series the equivalent resistance is:

          
(16.28)
              
                Rs
                =
                R1
                +
                R2
                +
                R3
                +
                ⋯
                +
                Rn
              
            

          
          



 The more resistors we add in series, the higher the equivalent resistance in the circuit. Since the resistors act as obstacles to the flow of charge through the circuit, the current in the circuit is reduced. Therefore, the higher the resistance in the circuit, the lower the current through the battery and the circuit. We say that the current in the battery is inversely proportional to the resistance in the circuit. 

Let us apply the rule of equivalent resistance in a series circuit to the following circuit.
 
            
 [image: ]
Figure 16.23. 


          
 The resistors are in series, therefore:
(16.29)

Experiment : Current in Series Circuits


 
Aim:

          To determine the effect of multiple resistors on current in a circuit
 
Apparatus:

          
        
 	 Battery


	 Resistors


	 Light bulb


	 Wires




 
Method:

          
        
 	 Construct the following circuits

 [image: Method:]
Figure 16.24. 


	 Rank the three circuits in terms of the brightness of the bulb.




 
Conclusions:

          
        The brightness of the bulb is an indicator of how much current is flowing. If the bulb gets brighter because of a change then more current is flowing. If the bulb gets dimmer less current is flowing.
You will find that the more resistors you have the dimmer the bulb.
 

Exercise 11.:  Equivalent series resistance I 
 
           Two 10 kΩ resistors are connected in series. Calculate the equivalent resistance. 

          

 	 Determine how to approach the problem : Since the resistors are in series we can use:
(16.30)
              
                Rs
                =
                R1
                +
                R2
              
            

	  Solve the problem : 
          
(16.31)


          

	 Write the final answer : The equivalent resistance of two 10 kΩ resistors connected in series is 20 kΩ. 







Exercise 12.:  Equivalent series resistance II 
 
           Two resistors are connected in series. The equivalent resistance is 100 Ω. If one resistor is 10 Ω, calculate the value of the second resistor. 

          

 	 Determine how to approach the problem : Since the resistors are in series we can use:
(16.32)
              
                Rs
                =
                R1
                +
                R2
              
            
 We are given the value of Rs and R1.

	  Solve the problem : 
          
(16.33)


          

	 Write the final answer : The second resistor has a resistance of 90 Ω. 








(This media type is not supported in this reader. Click to open media in browser.)

Figure 16.25. Khan academy video on circuits - 2


Resistors in parallel



 In contrast to the series case, when we add resistors in parallel, we create more paths along which current can flow. By doing this we decrease the total resistance of the circuit!
 Take a look at the diagram below. On the left we have the same circuit as shown on the left in Figure 16.19 with a battery and a resistor. The ammeter shows a current of 1 ampere. On the right we have added a second resistor in parallel to the first resistor. This has increased the number of paths (branches) the charge can take through the circuit - the total resistance has decreased. You can see that the current in the circuit has increased. Also notice that the current in the different branches can be different (in this case 1 A and 2 A) but must add up to the current through the battery (3 A). Since the total current in the circuit is equal to the sum of the currents in the parallel branches, a parallel circuit is sometimes called a current divider.
 
            
 [image: Resistors in parallel]
Figure 16.26. 


          
 
Potential difference and parallel resistors
When resistors are connected in parallel the start and end points for all the resistors are the same. These points have the same potential energy and so the potential difference between them is the same no matter what is put in between them. You can have one, two or many resistors between the two points, the potential difference will not change. You can ignore whatever components are between two points in a circuit when calculating the difference between the two points.
 Look at the following circuit diagrams. The battery is the same in all cases. All that changes is that more resistors are added between the points marked by the black dots. If we were to measure the potential difference between the two dots in these circuits we would get the same answer for all three cases.
 
          
 [image: Potential difference and parallel resistors]
Figure 16.27. 


        
 Let's look at two resistors in parallel more closely. When you construct a circuit you use wires and you might think that measuring the voltage in different places on the wires will make a difference. This is not true. The potential difference or voltage measurement will only be different if you measure a different set of components. All points on the wires that have no circuit components between them will give you the same measurements.
 All three of the measurements shown in the picture below (i.e. A–B, C–D and E–F) will give you the same voltage. The different measurement points on the left (i.e. A, E, C) have no components between them so there is no change in potential energy.
Exactly the same applies to the different points on the right (i.e. B, F, D). When you measure the potential difference between the points on the left and right you will get the same answer.
 
          
 [image: Potential difference and parallel resistors]
Figure 16.28. 


        
 
	 Definition:  Equivalent resistance of two parallel resistor, Rp 
	 
          
 For 2 resistors in parallel with resistances R1 and R2, the equivalent resistance is:

          
()

          
          



Equivalent parallel resistance



 Consider a circuit consisting of a single cell and three resistors that are connected in parallel.
 
            
 [image: Equivalent parallel resistance]
Figure 16.29. 


          
 Using what we know about voltage and current in parallel circuits we can define the equivalent resistance of several resistors in parallel as:
	 Definition:  Equivalent resistance in a parallel circuit, Rp 
	 
          
 For n resistors in parallel, the equivalent resistance is:

          
(16.34)


          
          



 Let us apply this formula to the following circuit.
 
            
 [image: ]
Figure 16.30. 


          
 What is the total resistance in the circuit?
(16.35)

Experiment : Current in Parallel Circuits 


 
Aim:

          To determine the effect of multiple resistors on current in a circuit
 
Apparatus:

          
        
 	 Battery


	 Resistors


	 Light bulb


	 Wires




 
Method:

          
        
 	 Construct the following circuits

 [image: Method:]
Figure 16.31. 


	 Rank the three circuits in terms of the brightness of the bulb.




 
Conclusions:

          
        The brightness of the bulb is an indicator of how much current is flowing. If the bulb gets brighter because of a change then more current is flowing. If the bulb gets dimmer less current is flowing.
You will find that the more resistors you have the brighter the bulb.
 

 Why is this the case? Why do more resistors make it easier for charge to flow in the circuit? It is because they are in parallel so there are more paths for charge to take to move. You can think of it like a highway with more lanes, or the tube of marbles splitting into multiple parallel tubes. The more branches there are, the easier it is for charge to flow. You will learn more about the total resistance of parallel resistors later but always remember that more resistors in parallel mean more pathways. In series the pathways come one after the other so it does not make it easier for charge to flow.
Exercise 13.
 
           Two  resistors are connected in parallel. Calculate the equivalent resistance. 

          

 	 Determine how to approach the problem : Since the resistors are in parallel we can use:
(16.36)


	  Solve the problem : 
          
(16.37)


          

	 Write the final answer : The equivalent resistance of two  resistors connected in parallel is . 







Exercise 14.
 
           Two resistors are connected in parallel. The equivalent resistance is . If one resistor is  , calculate the value of the second resistor. 

          

 	 Determine how to approach the problem : Since the resistors are in parallel we can use:
(16.38)

 We are given the value of Rp and R1.

	  Solve the problem : 
          
(16.39)


          

	 Write the final answer : The second resistor has a resistance of . 








(This media type is not supported in this reader. Click to open media in browser.)

Figure 16.32. Khan academy video on circuits - 3

 Resistance 



 	 What is the unit of resistance called and what is its symbol? Click here for the solution


	 Explain what happens to the total resistance of a circuit when resistors are added in series? Click here for the solution


	 Explain what happens to the total resistance of a circuit when resistors are added in parallel? Click here for the solution


	 Why do batteries go flat? Click here for the solution








(This media type is not supported in this reader. Click to open media in browser.)

Figure 16.33. Khan academy video on circuits - 4

 The following presentation summarizes the concepts covered in this chapter.
(This media type is not supported in this reader. Click to open media in browser.)

Figure 16.34. 


Exercises - Electric circuits



 	  Write definitions for each of the following:

 	 resistor


	 coulomb


	 voltmeter




 Click here for the solution 

	  Draw a circuit diagram which consists of the following components:

 	 2 batteries in parallel


	 an open switch


	 2 resistors in parallel


	 an ammeter measuring total current


	 a voltmeter measuring potential difference across one of the parallel resistors




 Click here for the solution 

	  Complete the table below:

Table 16.3. 	Quantity	Symbol	Unit of meaurement	Symbol of unit
	e.g. Distance	e.g. d	e.g. kilometer	e.g. km
	Resistance	 	 	 
	Current	 	 	 
	Potential difference	 	 	 


 Click here for the solution 

	Draw a diagram of a circuit which contains a battery connected to a lightbulb and a resistor all in series. 
 	 Also include in the diagram where you would place an ammeter if you wanted to measure the current through the lightbulb.

	Draw where and how you would place a voltmeter in the circuit to measure the potential difference across the resistor.



 Click here for the solution 

	Thandi wants to measure the current through the resistor in the circuit shown below and sets up the circuit as shown below. What is wrong with her circuit setup? 

 [image: Exercises - Electric circuits]

Figure 16.35. 

Click here for the solution 


	 [SC 2003/11] The emf of a battery can best be explained as the ⋯
 	 rate of energy delivered per unit current


	 rate at which charge is delivered


	 rate at which energy is delivered


	 charge per unit of energy delivered by the battery




 Click here for the solution 

	 [IEB 2002/11 HG1] Which of the following is the correct definition of the emf of a battery?

 	 It is the product of current and the external resistance of the circuit.


	 It is a measure of the cell's ability to conduct an electric current.


	 It is equal to the “lost volts” in the internal resistance of the circuit.


	 It is the power supplied by the battery per unit current passing through the battery.




 Click here for the solution 

	 [IEB 2005/11 HG] Three identical light bulbs A, B and C are connected in an electric circuit as shown in the diagram below.

 [image: Exercises - Electric circuits]

Figure 16.36. 

 	 How bright is bulb A compared to B and C?


	 How bright are the bulbs after switch S has been opened?


	 How do the currents in bulbs A and B change when switch S is opened?

Table 16.4. 	 	Current in A	Current in B
	(a)	decreases	increases
	(b)	decreases	decreases
	(c)	increases	increases
	(d)	increases	decreases





 Click here for the solution 

	 [IEB 2004/11 HG1] When a current I is maintained in a conductor for a time of t, how many electrons with charge e pass any cross-section of the conductor per second?

 	 It


	 It/e


	 Ite


	 e/It




  Click here for the solution





Glossary



	Definition:  Current 
	
        
Current is the rate of flow of charge, i.e. the rate at which charges move past a fixed point in a circuit. We use the symbol I to show current and it is measured in amperes (A). One ampere is one coulomb of charge moving in one second. The relationship between current, charge and time is given by:

        
(16.40)scrolldisplay
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	Definition:  Electric circuit 
	
        
An electric circuit is a closed path (with no breaks or gaps) along which electrical charges (electrons) flow powered by an energy source. 

        

	Definition:  Equivalent resistance in a parallel circuit, simplemathmathml-miitalicsRmathml-miitalicspscrollRp 
	
          
For simplemathmathml-miitalicsnscrolln resistors in parallel, the equivalent resistance is:
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	Definition:  Equivalent resistance in a series circuit, simplemathmathml-miitalicsRmathml-miitalicssscrollRs 
	
          
For simplemathmathml-miitalicsnscrolln resistors in series the equivalent resistance is:

          
(16.42)simplemath
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	Definition:  Equivalent resistance of two parallel resistor, simplemathmathml-miitalicsRmathml-miitalicspscrollRp 
	
          
For simplemathmathml-miitalics2scroll2 resistors in parallel with resistances simplemathmathml-miitalicsRmathml-miitalics1scrollR1 and simplemathmathml-miitalicsRmathml-miitalics2scrollR2, the equivalent resistance is:

          
()displayRp=R1R2R1+R2

          
          

	Definition:  Parallel circuit 
	
          
In a parallel circuit, the charge flowing from the battery can flow along boldboldmultiple paths to return to the battery. 

          

	Definition:  Potential Difference 
	
        
Electrical potential difference is the difference in electrical potential energy per unit charge between two points. The unit of potential difference is the volt[3] (V). 
The potential difference of a battery is the voltage measured across it when current is flowing through it.


        

	Definition:  Representing circuits 
	
          
A boldboldphysical circuit is the electric circuit you create with real components.

          
A boldboldcircuit diagram is a drawing which uses symbols to represent the different components in the physical circuit.
 

          

	Definition:  Resistance 
	
        
 The resistance of a conductor is defined as the potential difference across it divided by the current flowing though it. We use the symbol boldboldR to show resistance and it is measured in units called boldboldOhms with the symbol simplemath
Ωscroll
normalΩ.

        
()scrolldisplay
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	Definition:  Series circuit 
	
          
In a series circuit, the charge flowing from the battery can only flow along a boldboldsingle path to return to the battery. 

          

	Definition: emf
	
The emf (electromotive force) is the voltage measured across the terminals of a battery when italicsno current is flowing through the battery.





[3] named after the Italian physicist Alessandro Volta (1745–1827)



Solutions


Chapter 18. Quantitative aspects of chemical change



18.1. Moles and molar mass*



Quantitative Aspects of Chemical Change



 An equation for a chemical reaction can provide us with a lot of useful information. It tells us what the reactants and the products are in the reaction, and it also tells us the ratio in which the reactants combine to form products. Look at the equation below:
 
        
          
            Fe
            +
            S
            →
            FeS
          
        
      
 In this reaction, every atom of iron (Fe) will react with a single atom of sulphur (S) to form one molecule of iron sulphide (FeS). However, what the equation doesn't tell us, is the quantities or the amount of each substance that is involved. You may for example be given a small sample of iron for the reaction. How will you know how many atoms of iron are in this sample? And how many atoms of sulphur will you need for the reaction to use up all the iron you have? Is there a way of knowing what mass of iron sulphide will be produced at the end of the reaction? These are all very important questions, especially when the reaction is an industrial one, where it is important to know the quantities of reactants that are needed, and the quantity of product that will be formed. This chapter will look at how to quantify the changes that take place in chemical reactions.

The Mole



 Sometimes it is important to know exactly how many particles (e.g. atoms or molecules) are in a sample of a substance, or what quantity of a substance is needed for a chemical reaction to take place.
 The amount of substance is so important in chemistry that it is given it's own name, which is the mole.  
	 Definition:  Mole 
	 
      
 The mole (abbreviation 'n') is the SI (Standard International) unit for 'amount of substance'. 

      



 Now that we know what a mole is, we can relate it to something that we know already. This is the relative atomic mass. For example, if we have a sample containing 1g of hydrogen then we have 1 mole of hydrogen, since the relative atomic mass of hydrogen is 1u.
 We can build up to the idea of Avogadro's number. For example, if you have 12 eggs then you have a dozen eggs. After this number we get a gross of eggs, which is 144 eggs. Finally if we wanted one mole of eggs this would be 6,022× 1023. That is a lot of eggs!
 In one mole of any substance, there are 6,022× 1023 particles. When we talk about the mole, we should always say what the particles are. The particles can be atoms, molecules, electrons, or almost anything else.
	 Definition:  Avogadro's number 
	 
      
 The number of particles in a mole, equal to 6,022× 1023. 

      



 If we were to write out Avogadro's number then it would look like:
. This is a very large number. If we had this number of cold drink cans, then we could cover the surface of the earth to a depth of over ! If you could count atoms at a rate of 10 million per second, then it would take you 2 billion years to count the atoms in one mole!
 Interesting Fact 
 The original hypothesis that was proposed by Amadeo Avogadro was that 'equal volumes of gases, at the same temperature and pressure, contain the same number of molecules'. His ideas were not accepted by the scientific community and it was only four years after his death, that his original hypothesis was accepted and that it became known as 'Avogadro's Law'. In honour of his contribution to science, the number of particles in one mole was named Avogadro's number.


 Moles and mass
      



 	 
Complete the following table:

Table 18.1. 	Element	Relative atomic mass (u)	Sample mass (g)	Number of moles in the sample
	Hydrogen	1.01	1.01	 
	Magnesium	24.31	24.31	 
	Carbon	12.01	24.02	 
	Chlorine	35.45	70.9	 
	Nitrogen	 	42.08	 


Click here for the solution

	 
How many atoms are there in...

 	 1 mole of a substance


	 2 moles of calcium


	 5 moles of phosphorus


	  of magnesium


	  of carbon




Click here for the solution





Molar Mass



	 Definition:  Molar mass 
	 
      
 Molar mass (M) is the mass of 1 mole of a chemical substance. The unit for molar mass is grams per mole or g·mol–1. 

      



 You will remember that when the mass, in grams, of an element is equal to its relative atomic mass, the sample contains one mole of that element. This mass is called the molar mass of that element.
 You may sometimes see the molar mass written as Mm. We will use M in this book, but you should be aware of the alternate notation.
 It is worth remembering the following: On the periodic table, the relative atomic mass that is shown can be interpreted in two ways.
 	 The mass of a single, average atom of that element relative to the mass of an atom of carbon.


	 The mass of one mole of the element. This second use is the molar mass of the element.




Table 18.2. The relationship between relative atomic mass, molar mass and the mass of one mole for a number of elements.	
                Element
              	
                Relative atomic mass (u)
              	
                Molar mass (g·mol–1)
              	
                Mass of one mole of the element (g)
              
	Magnesium	24,31	24,31	24,31
	Lithium	6,94	6,94	6,94
	Oxygen	16	16	16
	Nitrogen	14,01	14,01	14,01
	Iron	55,85	55,85	55,85


Exercise 1.:  Calculating the number of moles from mass 
 
       Calculate the number of moles of iron (Fe) in a  sample.

      
      

 	 Find the molar mass of iron : If we look at the periodic table, we see that the molar mass of iron is . This means that 1 mole of iron will have a mass of .

	 Use the molar mass and sample mass to calculate the number of moles of iron : If 1 mole of iron has a mass of , then: the number of moles of iron in  must be:
(18.1)

 There are 2 moles of iron in the sample.







Exercise 2.:  Calculating mass from moles 
 
       You have a sample that contains 5 moles of zinc.

       	 What is the mass of the zinc in the sample?


	 How many atoms of zinc are in the sample?





      
      

 	 Find the molar mass of zinc : Molar mass of zinc is , meaning that 1 mole of zinc has a mass of .
 

	 Calculate the mass of zinc, using moles and molar mass. : If 1 mole of zinc has a mass of , then 5 moles of zinc has a mass of:  (answer to a)

	 Use the number of moles of zinc and Avogadro's number to calculate the number of zinc atoms in the sample. :(18.2)
          
            5
            ×
            6
            ,
            022
            ×
            1023
            =
            30
            ,
            115
            ×
            1023
          
        
 (answer to b)







 Moles and molar mass
      



 	 Give the molar mass of each of the following elements:

 	 hydrogen


	 nitrogen


	 bromine




Click here for the solution

	 Calculate the number of moles in each of the following samples:

 	  of boron (B)


	  of manganese (Mn)


	  of mercury (Hg)


	  of barium (Ba)


	  of lead (Pb)




Click here for the solution





An equation to calculate moles and mass in chemical reactions



 The calculations that have been used so far, can be made much simpler by using the following equation:
(18.3)

 Tip
Remember that when you use the equation , the mass is always in grams (g) and molar mass is in grams per mol (g·mol–1).

 The equation can also be used to calculate mass and molar mass, using the following equations:
(18.4)
          
            m
            =
            n
            ×
            M
          
        
 and
(18.5)

 The following diagram may help to remember the relationship between these three variables. You need to imagine that the horizontal line is like a 'division' sign and that the vertical line is like a 'multiplication' sign. So, for example, if you want to calculate 'M', then the remaining two letters in the triangle are 'm' and 'n' and 'm' is above 'n' with a division sign between them. In your calculation then, 'm' will be the numerator and 'n' will be the denominator.
 
        
 [image: ]
Figure 18.1. 


      
Exercise 3.:  Calculating moles from mass 
 
       Calculate the number of moles of copper there are in a sample that weighs .

      
      

 	  Write the equation to calculate the number of moles : 
      
(18.6)


      

	 Substitute numbers into the equation :(18.7)

 There are 2 moles of copper in the sample.







Exercise 4.: Calculating mass from moles 
 
       You are given a 5 mol sample of sodium. What mass of sodium is in the sample?

      
      

 	  Write the equation to calculate the sample mass : 
      
(18.8)
          
            m
            =
            n
            ×
            M
          
        

      

	 Substitute values into the equation : M
 Therefore,
(18.9)

 The sample of sodium has a mass of  .







Exercise 5.: Calculating atoms from mass 
 
       Calculate the number of atoms there are in a sample of aluminium that weighs .

      
      

 	  Calculate the number of moles of aluminium in the sample : 
      
(18.10)


      

	 Use Avogadro's number to calculate the number of atoms in the sample: Number of atoms in 3 mol aluminium =3 ×6,022×1023
 There are 18,069×1023 aluminium atoms in a sample of .







 Some simple calculations
      



 	 Calculate the number of moles in each of the following samples:

 	  of calcium


	  of manganese


	  of aluminium




Click here for the solution

	 A lead sinker has a mass of .

 	 Calculate the number of moles of lead the sinker contains.


	 How many lead atoms are in the sinker?




Click here for the solution

	 Calculate the mass of each of the following samples:

 	  magnesium


	  lithium


	 4,5× 1025 atoms of silicon




Click here for the solution





Molecules and compounds



 So far, we have only discussed moles, mass and molar mass in relation to elements. But what happens if we are dealing with a molecule or some other chemical compound? Do the same concepts and rules apply? The answer is 'yes'. However, you need to remember that all your calculations will apply to the whole molecule. So, when you calculate the molar mass of a molecule, you will need to add the molar mass of each atom in that compound. Also, the number of moles will also apply to the whole molecule. For example, if you have one mole of nitric acid (HNO3), it means you have 6,022× 1023 molecules of nitric acid in the sample. This also means that there are 6,022× 1023 atoms of hydrogen, 6,022× 1023 atoms of nitrogen and (3× 6,022× 1023) atoms of oxygen in the sample.
 In a balanced chemical equation, the number that is written in front of the element or compound, shows the mole ratio in which the reactants combine to form a product. If there are no numbers in front of the element symbol, this means the number is '1'.
 e.g. N2+3H2→2NH3
 In this reaction, 1 mole of nitrogen reacts with 3 moles of hydrogen to produce 2 moles of ammonia.
Exercise 6.:  Calculating molar mass 
 
       Calculate the molar mass of H2SO4.

      
      

 	 Use the periodic table to find the molar mass for each element in the molecule: Hydrogen ; Sulphur = ; Oxygen 

	  Add the molar masses of each atom in the molecule : 
      
(18.11)










Exercise 7.:  Calculating moles from mass 
 
       Calculate the number of moles there are in  of MgCl2.

      
      

 	  Write the equation for calculating the number of moles in the sample : 
      
(18.12)


      

	  Calculate the values that you will need, to substitute into the equation : 
      
 	 Convert mass into grams

(18.13)


	 Calculate the molar mass of MgCl2.

(18.14)





      

	 Substitute values into the equation :(18.15)

 There are  of magnesium chloride in a  sample.







Exercise 8.: Calculating the mass of reactants and products 
 
       Barium chloride and sulphuric acid react according to the following equation to produce barium sulphate and hydrochloric acid.

       
        
          BaCl2
            +
            H2SO4
            →BaSO4
            +
            2
            HCl
          
        
      

       If you have  of BaCl2...

       	 What quantity (in g) of H2SO4 will you need for the reaction so that all the barium chloride is used up?


	 What mass of HCl is produced during the reaction?





      
      

 	  Calculate the number of moles of BaCl2 that react. : 
      
(18.16)


      
      

	 Determine how many moles of H2SO4 are needed for the reaction : According to the balanced equation, 1 mole of BaCl2 will react with 1 mole of H2SO4. Therefore, if  of BaCl2 react, then there must be the same number of moles of H2SO4 that react because their mole ratio is 1:1.

	 Calculate the mass of H2SO4 that is needed. :(18.17)

 (answer to 1)

	 Determine the number of moles of HCl produced. : According to the balanced equation, 2 moles of HCl are produced for every 1 mole of the two reactants. Therefore the number of moles of HCl produced is (2 ×0,0096), which equals .

	 Calculate the mass of HCl. :(18.18)

 (answer to 2)







 Group work : Understanding moles, molecules and Avogadro's number
      



 Divide into groups of three and spend about 20 minutes answering the following questions together:
 	 What are the units of the mole? Hint: Check the definition of the mole.


	 You have a  sample of iron sulphide (FeS)

 	 How many moles of FeS are there in the sample?


	 How many molecules of FeS are there in the sample?


	 What is the difference between a mole and a molecule?





	 The exact size of Avogadro's number is sometimes difficult to imagine.

 	 Write down Avogadro's number without using scientific notation.


	 How long would it take to count to Avogadro's number? You can assume that you can count two numbers in each second.
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Figure 18.2. Khan academy video on the mole - 1

 More advanced calculations
      



 	 Calculate the molar mass of the following chemical compounds:

 	 KOH


	 FeCl3

	 Mg(OH)2



Click here for the solution

	 How many moles are present in:

 	  of Na2SO4

	  of Ca(OH)2

	 2,45×1023 molecules of CH4?




Click here for the solution

	 For a sample of  of potassium bromide (KBr), calculate...

 	 the number of moles of K+ ions


	 the number of moles of Br– ions




Click here for the solution

	 You have a sample containing  of calcium chloride.

 	 What is the chemical formula of calcium chloride?


	 How many calcium atoms are in the sample?




Click here for the solution

	 Calculate the mass of:

 	  of NH4OH


	  of 



Click here for the solution

	  sulphur reacts with an unknown quantity of zinc according to the following equation:
Zn+S→ZnS
 	 What mass of zinc will you need for the reaction, if all the sulphur is to be used up?


	 What mass of zinc sulphide will this reaction produce?




Click here for the solution

	 Calcium chloride reacts with carbonic acid to produce calcium carbonate and hydrochloric acid according to the following equation:
CaCl2+H2CO3→CaCO3+2HCl
If you want to produce  of calcium carbonate through this chemical reaction, what quantity (in g) of calcium chloride will you need at the start of the reaction?
Click here for the solution







18.2. Stoichiometry and composition*



The Composition of Substances



 The empirical formula of a chemical compound is a simple expression of the relative number of each type of atom in that compound. In contrast, the molecular formula of a chemical compound gives the actual number of atoms of each element found in a molecule of that compound.
	 Definition:  Empirical formula 
	 
      
 The empirical formula of a chemical compound gives the relative number of each type of atom in that compound. 

      



	 Definition:  Molecular formula 
	 
      
 The molecular formula of a chemical compound gives the exact number of atoms of each element in one molecule of that compound. 

      



 The compound ethanoic acid for example, has the molecular formula CH3COOH or simply C2H4O2. In one molecule of this acid, there are two carbon atoms, four hydrogen atoms and two oxygen atoms. The ratio of atoms in the compound is 2:4:2, which can be simplified to 1:2:1. Therefore, the empirical formula for this compound is CH2O. The empirical formula contains the smallest whole number ratio of the elements that make up a compound.
 Knowing either the empirical or molecular formula of a compound, can help to determine its composition in more detail. The opposite is also true. Knowing the composition of a substance can help you to determine its formula. There are four different types of composition problems that you might come across:
 	 Problems where you will be given the formula of the substance and asked to calculate the percentage by mass of each element in the substance.


	 Problems where you will be given the percentage composition and asked to calculate the formula.


	 Problems where you will be given the products of a chemical reaction and asked to calculate the formula of one of the reactants. These are often referred to as combustion analysis problems.


	 Problems where you will be asked to find number of moles of waters of crystallisation.




Exercise 9.:  Calculating the percentage by mass of elements in a compound 
 
       Calculate the percentage that each element contributes to the overall mass of sulphuric acid (H2SO4).

      
      

 	 Write down the relative atomic mass of each element in the compound: 
 
 

	 Calculate the molecular mass of sulphuric acid : Use the calculations in the previous step to calculate the molecular mass of sulphuric acid.
(18.19)


	 Convert the mass of each element to a percentage of the total mass of the compound : Use the equation:
 
 
        Hydrogen
      
(18.20)

 
        Sulphur
      
(18.21)

 
        Oxygen
      
(18.22)

 (You should check at the end that these percentages add up to 100%!)
 In other words, in one molecule of sulphuric acid, hydrogen makes up 2,06% of the mass of the compound, sulphur makes up 32,69% and oxygen makes up 65,25%.







Exercise 10.:  Determining the empirical formula of a compound 
 
       A compound contains 52.2% carbon (C), 13.0% hydrogen (H) and 34.8% oxygen (O). Determine its empirical formula.

      
      

 	 If we assume that we have  of this substance, then we can convert each element percentage into a mass in grams : Carbon , hydrogen  and oxygen 

	 Convert the mass of each element into number of moles :(18.23)

 Therefore,
(18.24)

(18.25)

(18.26)


	 Convert these numbers to the simplest mole ratio by dividing by the smallest number of moles : In this case, the smallest number of moles is 2.18. Therefore...
 
        Carbon
      
(18.27)

 
        Hydrogen
      
(18.28)

 
        Oxygen
      
(18.29)

 Therefore the empirical formula of this substance is: C2H6O. Do you recognise this compound?







Exercise 11.:  Determining the formula of a compound 
 
        of lead combines with oxygen to form  of a lead oxide. Use this information to work out the formula of the lead oxide (Relative atomic masses:  and ).

      
      

 	  Calculate the mass of oxygen in the reactants : 
      
(18.30)


      

	 Calculate the number of moles of lead and oxygen in the reactants :(18.31)

 
        Lead
      
(18.32)

 
        Oxygen
      
(18.33)


	 Deduce the formula of the compound : The mole ratio of Pb:O in the product is 1:2, which means that for every atom of lead, there will be two atoms of oxygen. The formula of the compound is PbO2.







Exercise 12.:  Empirical and molecular formula
      
 
       Vinegar, which is used in our homes, is a dilute form of acetic acid. A sample of acetic acid has the following percentage composition: 39,9% carbon, 6,7% hyrogen and 53,4% oxygen.

       	 Determine the empirical formula of acetic acid.


	 Determine the molecular formula of acetic acid if the molar mass of acetic acid is .





      
      

 	 Calculate the mass of each element in  of acetic acid. : In  of acetic acid, there is ,  and 

	 Calculate the number of moles of each element in  of acetic acid. : 
        
      
(18.34)


	 Divide the number of moles of each element by the lowest number to get the simplest mole ratio of the elements (i.e. the empirical formula) in acetic acid. : Empirical formula is CH2O

	 Calculate the molecular formula, using the molar mass of acetic acid. : The molar mass of acetic acid using the empirical formula is . Therefore the actual number of moles of each element must be double what it is in the empirical formula.
 The molecular formula is therefore C2H4O2 or CH3COOH







Exercise 13.: Waters of crystallisation
 
 Aluminium trichloride (AlCl3) is an ionic substance that forms crystals in the solid phase. Water molecules may be trapped inside the crystal lattice. We represent this as: AlCl3·nH2O. A learner heated some aluminium trichloride crystals until all the water had evaporated and found that the mass after heating was . The mass before heating was . What is the number of moles of water molecules in the aluminium trichloride?



 	Work out the mass of water molecules lost: We first need to find n, the number of water molecules that are present in the crystal. To do this we first note that the mass of water lost is 5–2,8=2,2.

	Work out the mass ratio and mole ratio: The next step is to work out the mass ratio of aluminium trichloride to water and the mole ratio. The mass ratio is:
 
()2,8:2,2

To work out the mole ratio we divide the mass ratio by the molecular mass of each species:

()
 
Next we do the following:

()
 and

()

So the mole ratio of aluminium trichloride to water is:

()1:6

	Write down the final answer: And now we know that there are 6 moles of water molecules in the crystal.
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Figure 18.3. Khan academy video on molecular and empirical formulae - 1
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Figure 18.4. Khan academy video on mass composition - 1

 Moles and empirical formulae
      



 	 Calcium chloride is produced as the product of a chemical reaction.

 	 What is the formula of calcium chloride?


	 What percentage does each of the elements contribute to the mass of a molecule of calcium chloride?


	 If the sample contains  of calcium chloride, what is the mass of calcium in the sample?


	 How many moles of calcium chloride are in the sample?




Click here for the solution

	  of zinc combines with  of sulphur. What is the empirical formula of zinc sulphide?

 	 What mass of zinc sulphide will be produced?


	 What percentage does each of the elements in zinc sulphide contribute to its mass?


	 Determine the formula of zinc sulphide.




Click here for the solution

	 A calcium mineral consisted of 29,4% calcium, 23,5% sulphur and 47,1% oxygen by mass. Calculate the empirical formula of the mineral.
Click here for the solution


	 A chlorinated hydrocarbon compound was analysed and found to consist of 24,24% carbon, 4,04% hydrogen and 71,72% chlorine. From another experiment the molecular mass was found to be 99g·mol–1. Deduce the empirical and molecular formula.
Click here for the solution






Molar Volumes of Gases



	 Definition: Molar volume of gases
	 1 mole of gas occupies 22,4dm3 at S.T.P.



 This applies to any gas that is at standard temperature and pressure. In grade 11 you will learn more about this and the gas laws.

Molar concentrations of liquids



 A typical solution is made by dissolving some solid substance in a liquid. The amount of substance that is dissolved in a given volume of liquid is known as the concentration of the liquid. Mathematically, concentration (C) is defined as moles of solute (n) per unit volume (V) of solution.
(18.35)

 For this equation, the units for volume are dm3. Therefore, the unit of concentration is mol· dm –3.
When concentration is expressed in mol· dm –3 it is known as the molarity (M) of the solution. Molarity is the most common expression for concentration.
 Tip
Do not confuse molarity (M) with molar mass (M). Look carefully at the question in which the M appears to determine whether it is concentration or molar mass.

	 Definition:  Concentration 
	 
      
 Concentration is a measure of the amount of solute that is dissolved in a given volume of liquid. It is measured in mol· dm –3. Another term that is used for concentration is molarity (M) 

      



Exercise 14.:  Concentration Calculations 1 
 
       If  of sodium hydroxide (NaOH) is dissolved in  of water, what is the concentration of the solution in mol· dm –3?

      
      

 	  Convert the mass of NaOH into moles : 
      
(18.36)


      

	 Calculate the concentration of the solution. :(18.37)

 The concentration of the solution is  or 
 







Exercise 15.: Concentration Calculations 2 
 
       You have a  container in which to prepare a solution of potassium permanganate (KMnO4). What mass of KMnO4 is needed to make a solution with a concentration of ?

      
      

 	 Calculate the number of moles of KMnO4 needed :(18.38)

 therefore
(18.39)


	 Convert the number of moles of KMnO4 to mass. :(18.40)

 The mass of KMnO4 that is needed is .
 







Exercise 16.: Concentration Calculations 3 
 
       How much sodium chloride (in g) will one need to prepare  of solution with a concentration of ?

      
      

 	  Convert all quantities into the correct units for this equation : 
      
(18.41)


      

	  Calculate the number of moles of sodium chloride needed : 
      
(18.42)


      

	 Convert moles of sodium chloride to mass :(18.43)

 The mass of sodium chloride needed is 
 







 Molarity and the concentration of solutions
      



 	  of potassium bromide was dissolved in  of water. Calculate its molarity.
Click here for the solution


	  of sodium chloride (NaCl) is dissolved in  of water.

 	 How many moles of NaCl are present in solution?


	 What is the volume of water (in  dm 3)?


	 Calculate the concentration of the solution.


	 What mass of sodium chloride would need to be added for the concentration to become ?




Click here for the solution

	 What is the molarity of the solution formed by dissolving  of sodium hydroxide (NaOH) in  of water?
Click here for the solution


	 What mass (g) of hydrogen chloride (HCl) is needed to make up  of a solution of concentration ?
Click here for the solution


	 How many moles of H2SO4 are there in  of a  sulphuric acid solution? What mass of acid is in this solution?
Click here for the solution






Stoichiometric calculations



 Stoichiometry is the calculation of the quantities of reactants and products in chemical reactions. It is also the numerical relationship between reactants and products. In  representing chemical change showed how to write balanced chemical equations. By knowing the ratios of substances in a reaction, it is possible to use stoichiometry to calculate the amount of either reactants or products that are involved in the reaction. The examples shown below will make this concept clearer.
Exercise 17.:  Stoichiometric calculation 1 
 
       What volume of oxygen at S.T.P. is needed for the complete combustion of  of propane (C3H8)? (Hint: CO2 and H2O are the products in this reaction (and in all combustion reactions))

      
      

 	 Write a balanced equation for the reaction. : 
          
            C3
            H8
            
              (
              g
              )
            
            +
            5
            O2
            
              (
              g
              )
            
            →
            3
            C
            O2
            
              (
              g
              )
            
            +
            4
            H2
            O
            
              (
              g
              )
            
          
        
      

	 Determine the ratio of oxygen to propane that is needed for the reaction. : From the balanced equation, the ratio of oxygen to propane in the reactants is 5:1.

	 Determine the volume of oxygen needed for the reaction. : 1 volume of propane needs 5 volumes of oxygen, therefore  of propane will need  of oxygen for the reaction to proceed to completion.







Exercise 18.:  Stoichiometric calculation 2 
 
       What mass of iron (II) sulphide is formed when  of iron is completely reacted with sulphur?

      
      

 	 Write a balanced chemical equation for the reaction. : 
          
            Fe
            (
            s
            )
            +
            S
            (
            s
            )
            →
            FeS
            (
            s
            )
          
        
      

	  Calculate the number of moles of iron that react. : 
      
(18.44)


      

	 Determine the number of moles of FeS produced. : From the equation  of Fe gives  of FeS. Therefore,  of iron in the reactants will give  of iron sulphide in the product.

	 Calculate the mass of iron sulphide formed :(18.45)

 The mass of iron (II) sulphide that is produced during this reaction is . 







 When we are given a known mass of a reactant and are asked to work out how much product is formed, we are working out the theoretical yield of the reaction. In the laboratory chemists never get this amount of product. In each step of a reaction a small amount of product and reactants is 'lost' either because a reactant did not completely react or some of the product was left behind in the original container. Think about this. When you make your lunch or supper, you might be a bit hungry, so you eat some of the food that you are preparing. So instead of getting the full amount of food out (theoretical yield) that you started preparing, you lose some along the way. 
Exercise 19.:  Industrial reaction to produce fertiliser 
 
       Sulphuric acid (H2SO4) reacts with ammonia (NH3) to produce the fertiliser ammonium sulphate ((NH4)2SO4) according to the following equation:

       
      

       What is the maximum mass of ammonium sulphate that can be obtained from  of sulphuric acid?
 

      

 	  Convert the mass of sulphuric acid into moles : 
      
(18.46)


      
      

	 Calculate the maximum amount of ammonium sulphate that can be produced : From the balanced equation, the mole ratio of H2SO4 in the reactants to  in the product is 1:1. Therefore,  of H2SO4 of .
 The maximum mass of ammonium sulphate that can be produced is calculated as follows:
      
()
 The maximum amount of ammonium sulphate that can be produced is .
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Figure 18.5. Khan academy video on stoichiometry - 1

 Stoichiometry
      



 	 Diborane, B2H6, was once considered for use as a rocket fuel. The combustion reaction for diborane is:
B2H6(g)+3O2(g)→2HBO2(g)+2H2O(l)
If we react  of diborane, how many grams of water would we expect to produce?
Click here for the solution


	 Sodium azide is a commonly used compound in airbags. When triggered, it has the following reaction:
2NaN3(s)→2Na(s)+3N2(g)
If  of sodium azide is used, how many moles of nitrogen gas would we expect to produce?
Click here for the solution


	 Photosynthesis is a chemical reaction that is vital to the existence of life on Earth. During photosynthesis, plants and bacteria convert carbon dioxide gas, liquid water, and light into glucose (C6H12O6) and oxygen gas.

 	 Write down the equation for the photosynthesis reaction.


	 Balance the equation.


	 If  of carbon dioxide are used up in the photosynthesis reaction, what mass of glucose will be produced?




Click here for the solution
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Figure 18.6. 

Summary



 	 It is important to be able to quantify the changes that take place during a chemical reaction.


	 The mole (n) is a SI unit that is used to describe an amount of substance that contains the same number of particles as there are atoms in  of carbon.


	 The number of particles in a mole is called the Avogadro constant and its value is 6,022× 1023. These particles could be atoms, molecules or other particle units, depending on the substance.


	 The molar mass (M) is the mass of one mole of a substance and is measured in grams per mole or g·mol–1. The numerical value of an element's molar mass is the same as its relative atomic mass. For a compound, the molar mass has the same numerical value as the molecular mass of that compound.


	 The relationship between moles (n), mass in grams (m) and molar mass (M) is defined by the following equation:

(18.47)


	 In a balanced chemical equation, the number in front of the chemical symbols describes the mole ratio of the reactants and products.


	 The empirical formula of a compound is an expression of the relative number of each type of atom in the compound.


	 The molecular formula of a compound describes the actual number of atoms of each element in a molecule of the compound.


	 The formula of a substance can be used to calculate the percentage by mass that each element contributes to the compound.


	 The percentage composition of a substance can be used to deduce its chemical formula.


	 One mole of gas occupies a volume of .


	 The concentration of a solution can be calculated using the following equation,

(18.48)


where C is the concentration (in mol· dm –3), n is the number of moles of solute dissolved in the solution and V is the volume of the solution (in  dm –3).


	 Molarity is a measure of the concentration of a solution, and its units are .


	 Stoichiometry is the calculation of the quantities of reactants and products in chemical reactions. It is also the numerical relationship between reactants and products.


	The theoretical yield of a reaction is the maximum amount of product that we expect to get out of a reaction




End of chapter exercises



 	 Write only the word/term for each of the following descriptions:

 	 the mass of one mole of a substance


	 the number of particles in one mole of a substance




Click here for the solution

	 Multiple choice: Choose the one correct answer from those given.

 	  of magnesium chloride is formed as the product of a chemical reaction. Select the true statement from the answers below:

 	 0.08 moles of magnesium chloride are formed in the reaction


	 the number of atoms of Cl in the product is 0,6022× 1023

	 the number of atoms of Mg is 0,05


	 the atomic ratio of Mg atoms to Cl atoms in the product is 1:1




Click here for the solution

	 2 moles of oxygen gas react with hydrogen. What is the mass of oxygen in the reactants?

 	 32 g


	 0,125 g


	 64 g


	 0,063 g




Click here for the solution

	 In the compound potassium sulphate (K2SO4), oxygen makes up x% of the mass of the compound. x = ...

 	 36.8


	 9,2


	 4


	 18,3




Click here for the solution

	 The molarity of a  solution, containing 5 g of NaCl is...

 	 


	 


	 


	 




Click here for the solution




	Calculate the number of moles in:

 	5 g of methane (CH4)

	3,4 g of hydrochloric acid

	6,2 g of potassium permanganate (KMnO4)

	4 g of neon

	9,6 kg of titanium tetrachloride (TiCl4)



Click here for the solution

	Calculate the mass of:
 	0,2 mols of potassium hydroxide (KOH)

	0,47 mols of nitrogen dioxide

	5,2 mols of helium

	0,05 mols of copper (II) chloride (CuCl2)

	31,31×1023 molecules of carbon monoxide (CO)



Click here for the solution


	Calculate the percentage that each element contributes to the overall mass of:

 	Chloro-benzene (C6H5Cl)

	Lithium hydroxide (LiOH)



Click here for the solution


	CFC's (chlorofluorocarbons) are one of the gases that contribute to the depletion of the ozone layer. A chemist analysed a CFC and found that it contained 58,64% chlorine, 31,43% fluorine and 9,93% carbon. What is the empirical formula?
Click here for the solution


	14 g of nitrogen combines with oxygen to form 46 g of a nitrogen oxide. Use this information to work out the formula of the oxide.
Click here for the solution

	Iodine can exist as one of three oxides (). A chemist has produced one of these oxides and wishes to know which one they have. If he started with 508 g of iodine and formed 652 g of the oxide, which form has he produced?
Click here for the solution

	A fluorinated hydrocarbon (a hydrocarbon is a chemical compound containing hydrogen and carbon.) was analysed and found to contain 8,57% H, 51,05% C and 40,38% F.
 	What is its empirical formula?

	What is the molecular formula if the molar mass is 94,1g⋅mol−1?



Click here for the solution

	Copper sulphate crystals often include water. A chemist is trying to determine the number of moles of water in the copper sulphate crystals. She weighs out 3 g of copper sulphate and heats this. After heating, she finds that the mass is 1,9 g. What is the number of moles of water in the crystals? (Copper sulphate is represented by CuSO4⋅xH2O).Click here for the solution

	  of a  solution of sulphuric acid is added to  of a  solution of sodium hydroxide.

 	 Write down a balanced equation for the reaction which takes place when these two solutions are mixed.


	 Calculate the number of moles of sulphuric acid which were added to the sodium hydroxide solution.


	 Is the number of moles of sulphuric acid enough to fully neutralise the sodium hydroxide solution? Support your answer by showing all relevant calculations.
(IEB Paper 2 2004)




Click here for the solution

	 A learner is asked to make  of sodium hydroxide (NaOH) solution of concentration .

 	 Determine the mass of sodium hydroxide pellets he needs to use to do this.


	 Using an accurate balance the learner accurately measures the correct mass of the NaOH pellets. To the pellets he now adds exactly  of pure water. Will his solution have the correct concentration? Explain your answer.

	The learner then takes  of a  solution of sulphuric acid (H2SO4) and adds it to  of a  solution of NaOH at 250C.


	 Write down a balanced equation for the reaction which takes place when these two solutions are mixed.


	 Calculate the number of moles of H2SO4 which were added to the NaOH solution.


	 Is the number of moles of H2SO4 calculated in the previous question enough to fully neutralise the NaOH solution? Support your answer by showing all the relevant calculations.
(IEB Paper 2, 2004)




Click here for the solution





Glossary



	Definition:  Avogadro's number 
	
      
The number of particles in a mole, equal to simplemath6,022× 1023scroll6,022× 1023. 

      

	Definition:  Concentration 
	
      
Concentration is a measure of the amount of solute that is dissolved in a given volume of liquid. It is measured in simplemathmol· dm –3scrollmol· dm -3. Another term that is used for concentration is boldboldmolarity (M) 

      

	Definition:  Empirical formula 
	
      
The empirical formula of a chemical compound gives the relative number of each type of atom in that compound. 

      

	Definition:  Molar mass 
	
      
Molar mass (M) is the mass of 1 mole of a chemical substance. The unit for molar mass is boldboldgrams per mole or simplemathg·mol–1scrollnormalg·mol-1. 

      

	Definition:  Mole 
	
      
The mole (abbreviation 'n') is the SI (Standard International) unit for 'amount of substance'. 

      

	Definition:  Molecular formula 
	
      
The molecular formula of a chemical compound gives the exact number of atoms of each element in one molecule of that compound. 

      

	Definition: Molar volume of gases
	1 mole of gas occupies simplemath22,4dm322,4dm3 at S.T.P.



Solutions
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Chapter 9. Sound



9.1. Introduction and key concepts*



Introduction



 Now that we have studied the basics of longitudinal waves, we are ready to study sound waves in detail.
 Have you ever thought about how amazing your sense of hearing is? It is actually pretty remarkable. There are many types of sounds: a car horn, a laughing baby, a barking dog, and somehow your brain can sort it all out. Though it seems complicated, it is rather simple to understand once you learn a very simple fact. Sound is a wave. So you can use everything you know about waves to explain sound.

Characteristics of a Sound Wave



 Since sound is a wave, we can relate the properties of sound to the properties of a wave. The basic properties of sound are: pitch, loudness and tone.
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Figure 9.1. 
Pitch and loudness of sound. Sound B has a lower pitch (lower frequency) than Sound A and is softer (smaller amplitude) than Sound C.

Pitch



 The frequency of a sound wave is what your ear understands as pitch. A higher frequency sound has a higher pitch, and a lower frequency sound has a lower pitch. In Figure 9.1 sound A has a higher pitch than sound B. For instance, the chirp of a bird would have a high pitch, but the roar of a lion would have a low pitch.
 The human ear can detect a wide range of frequencies. Frequencies from 20 to 20 000 Hz are audible to the human ear. Any sound with a frequency below 20 Hz is known as an infrasound and any sound with a frequency above 20 000 Hz is known as an ultrasound. 
 Table 9.1 lists the hearing ranges of some common animals compared to humans.
Table 9.1. Range of frequencies	 	lower frequency (Hz)	upper frequency (Hz)
	Humans	20	20 000
	Dogs	50	45 000
	Cats	45	85 000
	Bats	20	120 000
	Dolphins	0,25	200 000
	Elephants	5	10 000


 Investigation : Range of Wavelengths 



 Using the information given in Table 9.1, calculate the lower and upper wavelengths that each species can hear. Assume the speed of sound in air is . 


Loudness



 The amplitude of a sound wave determines its loudness or volume. A larger amplitude means a louder sound, and a smaller amplitude means a softer sound. In Figure 9.1 sound C is louder than sound B. The vibration of a source sets the amplitude of a wave. It transmits energy into the medium through its vibration. More energetic vibration corresponds to larger amplitude. The molecules move back and forth more vigorously.
 The loudness of a sound is also determined by the sensitivity of the ear. The human ear is more sensitive to some frequencies than to others. The volume we receive thus depends on both the amplitude of a sound wave and whether its frequency lies in a region where the ear is more or less sensitive.

Tone



 Tone is a measure of the quality of the sound wave. For example, the quality of the sound produced in a particular musical instruments depends on which
harmonics are superposed and in which proportions. The harmonics are determined by the standing waves that are produced in the instrument. For general interest see Physics of music, which explains the physics of music in greater detail.
 The quality (timbre) of the sound heard depends on the pattern of the incoming vibrations, i.e. the shape of the sound wave. The more irregular the vibrations, the more jagged is the shape of the sound wave and the harsher is the sound heard.


Speed of Sound



 The speed of sound depends on the medium the sound is travelling in. Sound travels faster in solids than in liquids, and faster in liquids than in gases. This is because the density of solids is higher than that of liquids which means that the particles are closer together. Sound can be transmitted more easily.
 The speed of sound also depends on the temperature of the medium. The hotter the medium is, the faster its particles move and therefore the quicker the sound will travel through the medium. When we heat a substance, the particles in that substance have more kinetic energy and vibrate or move faster. Sound can therefore be transmitted more easily and quickly in hotter substances.
 Sound waves are pressure waves. The speed of sound will therefore be influenced by the pressure of the medium through which it is travelling. At sea level the air pressure is higher than high up on a mountain. Sound will travel faster at sea level where the air pressure is higher than it would at places high above sea level.
	 Definition:  Speed of sound 
	 
     The speed of sound in air, at sea level, at a temperature of 21∘C and under normal atmospheric conditions, is . 
      



 Sound frequency and amplitude 



 Study the following diagram representing a musical note.
Redraw the diagram for a note

 	 with a higher pitch


	 that is louder


	 that is softer




 [image: Sound frequency and amplitude]
Figure 9.2. 

Click here for the solution


 



9.2. Applications*



Physics of the Ear and Hearing [For Interest Only]



 [image: Physics of the Ear and Hearing [For Interest Only]]

Figure 9.3. 
Diagram of the human ear.

 The human ear is divided into three main sections: the outer, middle,
and inner ear. Let's follow the journey of a sound wave from the pinna (outermost part) to the auditory nerve (innermost part) which transmits a signal to the brain. The pinna is the part of the ear we typically think of when we refer to the ear. Its main
function is to collect and focus an incident sound wave. The wave
then travels through the ear canal until it meets the eardrum. The
pressure fluctuations of the sound wave make the eardrum vibrate.
The three very small bones of the middle ear, the malleus (hammer),
the incus (anvil), and the stapes (stirrup), transmit the signal through
to the elliptical window. The elliptical window is the beginning of the
inner ear. From the elliptical window the sound waves are transmitted through the liquid
in the inner ear and interpreted as sounds by the brain.
The inner ear, made of the semicircular canals, the cochlea,
and the auditory nerve, is filled with fluid. The fluid allows the body to
detect quick movements and maintain balance. The snail-shaped cochlea
is covered in nerve cells. There are more than 25 000 hairlike
nerve cells. Different nerve cells vibrate with different
frequencies. When a nerve cell vibrates, it releases electrical impulses
to the auditory nerve. The impulses are sent to the brain through the
auditory nerve and understood as sound.

Ultrasound



 Ultrasound is sound with a frequency that is higher than 20 kHz. Some animals, such as dogs, dolphins, and bats, have an upper limit that is greater than that of the human ear and can hear ultrasound.

Table 9.2. Different uses of ultrasound and the frequencies applicable.	Application	Lowest Frequency (kHz)	Highest Frequency (kHz)
	Cleaning (e.g. Jewelery)	20	40
	Material testing for flaws	50	500
	Welding of plastics	15	40
	Tumour ablation	250	2000


 The most common use of ultrasound is to create images, and has industrial and medical applications. The use of ultrasound to create images is based on the reflection and transmission of a wave at a boundary. When an ultrasound wave travels inside an object that is made up of different materials such as the human body, each time it encounters a boundary, e.g. between bone and muscle, or muscle and fat, part of the wave is reflected and part of it is transmitted. The reflected rays are detected and used to construct an image of the object.
 Ultrasound in medicine can visualise muscle and soft tissue, making them useful for scanning the organs, and is commonly used during pregnancy. Ultrasound is a safe, non-invasive method of looking inside the human body.
 Ultrasound sources may be used to generate local heating in biological tissue, with applications in physical therapy and cancer treatment. Focussed ultrasound sources may be used to break up kidney stones.
 Ultrasonic cleaners, sometimes called supersonic cleaners, are used at frequencies from 20-40 kHz for jewellery, lenses and other optical parts, watches, dental instruments, surgical instruments and industrial parts.
These cleaners consist of containers with a fluid in which the object to be cleaned is placed. Ultrasonic waves are then sent into the fluid. The main mechanism for cleaning action in an ultrasonic cleaner is actually the energy released from the collapse of millions of microscopic bubbles occurring in the liquid of the cleaner.
Interesting Fact 
Ultrasound generator/speaker systems are sold with claims that they frighten away rodents and insects, but there is no scientific evidence that the devices work; controlled tests have shown that rodents quickly learn that the speakers are harmless.



 In echo-sounding the reflections from ultrasound pulses that are bounced off objects (for example the bottom of the sea, fish etc.) are picked up. The reflections are timed and since their speed is known, the distance to the object can be found. This information can be built into a picture of the object that reflects the ultrasound pulses.

SONAR



 
        
 [image: SONAR]
Figure 9.4. 


      
 Ships on the ocean make use of the reflecting properties of sound waves to determine the depth of the ocean. A sound wave is transmitted and bounces off the seabed. Because the speed of sound is known and the time lapse between sending and receiving the sound can be measured, the distance from the ship to the bottom of the ocean can be determined, This is called sonar, which stands from Sound Navigation And Ranging.
Echolocation



 Animals like dolphins and bats make use of sounds waves to find their way. Just like ships on the ocean, bats use sonar to navigate. Ultrasound waves that are sent out are reflected off the objects around the animal. Bats, or dolphins, then use the reflected sounds to form a “picture” of their surroundings. This is called echolocation.
Exercise 1.:  SONAR 
 
         A ship sends a signal to the bottom of the ocean to determine the depth of the ocean. The speed of sound in sea water is . If the signal is received 1,5 seconds later, how deep is the ocean at that point? 

        

 	  Identify what is given and what is being asked: : 
        
(9.1)


        

	  Calculate the distance: : 
        
(9.2)


        
        









Intensity of Sound (Not Included in CAPS - Advanced)



Advanced Section
This section is more advanced than required and is best revisited for interest only when you are comfortable with concepts like power and logarithms.


 Intensity is one indicator of amplitude. Intensity is the energy transmitted over a unit of area each second.
 Intensity 



 Intensity is defined as:
(9.3)

 By the definition of intensity, we can see that the units of intensity are
(9.4)


 The unit of intensity is the decibel (symbol: dB). This reduces to an SI equivalent of W·m–2.
 The average threshold of hearing is . Below this intensity, the sound is too soft for the ear to hear. The threshold of pain is . Above this intensity a sound is so loud it becomes uncomfortable for
the ear.
 Notice that there is a factor of 1012 between the thresholds of
hearing and pain. This is one reason we define the decibel (dB) scale.
 In this way we can compress the whole hearing intensity scale into a
range from 0 dB to 120 dB.
Table 9.3. Examples of sound intensities.	
                  Source
                	Intensity (dB)	
                  Times greater than hearing threshold
                
	 	 	 
	Rocket Launch	180	
                  
                    1018
                  
                
	Jet Plane	140	
                  
                    1014
                  
                
	Threshold of Pain	120	
                  
                    1012
                  
                
	Rock Band	110	
                  
                    1011
                  
                
	Subway Train	90	
                  
                    109
                  
                
	Factory	80	
                  
                    108
                  
                
	City Traffic	70	
                  
                    107
                  
                
	Normal Conversation	60	
                  
                    106
                  
                
	Library	40	
                  
                    104
                  
                
	Whisper	20	
                  
                    102
                  
                
	Threshold of hearing	0	0


 Notice that there are sounds which exceed the threshold
of pain. Exposure to these sounds can cause immediate damage to hearing.
In fact, exposure to sounds from
80 dB and above can damage hearing over time. Measures
can be taken to avoid damage, such as wearing earplugs
or ear muffs. Limiting exposure time and
increasing distance between you and the source are also
important steps for protecting your hearing.
 Discussion : Importance of Safety Equipment 



 Working in groups of 5, discuss the importance of safety equipment such as ear protectors for workers in loud environments, e.g. those who use jack hammers or direct aeroplanes to their parking bays. Write up your conclusions in a one page report. Some prior research into the importance of safety equipment might be necessary to complete this group discussion. 


Summary



 	 Sound waves are longitudinal waves


	 The frequency of a sound is an indication of how high or low the pitch of the sound is.


	 The human ear can hear frequencies from 20 to 20 000 Hz.
Infrasound waves have frequencies lower than 20 Hz.
Ultrasound waves have frequencies higher than 20 000 Hz.


	 The amplitude of a sound determines its loudness or volume.


	 The tone is a measure of the quality of a sound wave.


	 The speed of sound in air is around . It is dependent on the temperature, height above sea level and the phase of the medium through which it is travelling.


	 Sound travels faster when the medium is hot.


	 Sound travels faster in a solid than a liquid and faster in a liquid than in a gas.


	 Sound travels faster at sea level where the air pressure is higher.


	 The intensity of a sound is the energy transmitted over a certain area. Intensity is a measure of frequency.


	 Ultrasound can be used to form pictures of things we cannot see, like unborn babies or tumors.


	 Echolocation is used by animals such as dolphins and bats to “see” their surroundings by using ultrasound.


	 Ships use sonar to determine how deep the ocean is or to locate shoals of fish.





Exercises



 	 Choose a word from column B that best describes the concept in column A.

Table 9.4. 	Column A	Column B
	pitch of sound	amplitude
	loudness of sound	frequency
	quality of sound	speed
	 	waveform


Click here for the solution

	 A tuning fork, a violin string and a loudspeaker are producing sounds. This is because they are all in a state of:

 	 compression


	 rarefaction


	 rotation


	 tension


	 vibration




Click here for the solution

	 What would a drummer do to make the sound of a drum give a note of lower pitch?

 	 hit the drum harder


	 hit the drum less hard


	 hit the drum near the edge


	 loosen the drum skin


	 tighten the drum skin




Click here for the solution

	 What is the approximate range of audible frequencies for a healthy human?

 	 0.2 Hz → 200 Hz


	 2 Hz → 2 000 Hz


	 20 Hz → 20 000 Hz


	 200 Hz → 200 000 Hz


	 2 000 Hz → 2 000 000 Hz




Click here for the solution

	 X and Y are different wave motions. In air, X travels much faster than Y but has a much shorter wavelength. Which types of wave motion could X and Y be?

Table 9.5. 	 	X	Y
	A	microwaves	red light
	B	radio	infra red
	C	red light	sound
	D	sound	ultraviolet
	E	ultraviolet	radio


Click here for the solution

	 Astronauts are in a spaceship orbiting the moon. They see an explosion on the surface of the moon. Why can they not hear the explosion?

 	 explosions do not occur in space


	 sound cannot travel through a vacuum


	 sound is reflected away from the spaceship


	 sound travels too quickly in space to affect the ear drum


	 the spaceship would be moving at a supersonic speed




Click here for the solution

	 A man stands between two cliffs as shown in the diagram and claps his hands once.

 [image: Exercises]

Figure 9.5. 


Assuming that the velocity of sound is , what will be the time interval between the two loudest echoes?

 	 


	 


	 


	 1 s


	 




Click here for the solution

	 A dolphin emits an ultrasonic wave with frequency of 0,15 MHz. The speed of the ultrasonic wave in water is . What is the wavelength of this wave in water?

 	 0,1 mm


	 1 cm


	 10 cm


	 10 m


	 100 m




Click here for the solution

	 The amplitude and frequency of a sound wave are both increased. How are the loudness and pitch of the sound affected?

Table 9.6. 	 	loudness	pitch
	A	increased	raised
	B	increased	unchanged
	C	increased	lowered
	D	decreased	raised
	E	decreased	lowered


Click here for the solution

	 A jet fighter travels slower than the speed of sound. Its speed is said to be:

 	 Mach 1


	 supersonic


	 subsonic


	 hypersonic


	 infrasonic




Click here for the solution

	 A sound wave is different from a light wave in that a sound wave is:

 	 produced by a vibrating object and a light wave is not.


	 not capable of traveling through a vacuum.


	 not capable of diffracting and a light wave is.


	 capable of existing with a variety of frequencies and a light wave has a single frequency.




Click here for the solution

	 At the same temperature, sound waves have the fastest speed in:

 	 rock


	 milk


	 oxygen


	 sand




Click here for the solution

	 Two sound waves are traveling through a container of nitrogen gas. The first wave has a wavelength of 1,5 m, while the second wave has a wavelength of 4,5 m. The velocity of the second wave must be:

 	  the velocity of the first wave.


	  the velocity of the first wave.


	 the same as the velocity of the first wave.


	 three times larger than the velocity of the first wave.


	 nine times larger than the velocity of the first wave.




Click here for the solution

	 Sound travels at a speed of 340 m·s–1. A straw is 0,25 m long. The standing wave set up in such a straw with one end closed has a wavelength of 1,0 m. The standing wave set up in such a straw with both ends open has a wavelength of 0,50 m.

 	 calculate the frequency of the sound created when you blow across the straw with the bottom end closed.


	 calculate the frequency of the sound created when you blow across the straw with the bottom end open.




Click here for the solution

	 A lightning storm creates both lightning and thunder. You see the lightning almost immediately since light travels at . After seeing the lightning, you count 5 s and then you hear the thunder. Calculate the distance to the location of the storm.
Click here for the solution


	 A person is yelling from a second story window to another person standing at the garden gate, 50 m away. If the speed of sound is 344 m·s–1, how long does it take the sound to reach the person standing at the gate?
Click here for the solution


	 A piece of equipment has a warning label on it that says, "Caution! This instrument produces 140 decibels." What safety precaution should you take before you turn on the instrument?
Click here for the solution


	 What property of sound is a measure of the amount of energy carried by a sound wave?
Click here for the solution


	 Person 1 speaks to person 2. Explain how the sound is created by person 1 and how it is possible for person 2 to hear the conversation.
Click here for the solution


	 Sound cannot travel in space. Discuss what other modes of communication astronauts can use when they are outside the space shuttle?
Click here for the solution


	 An automatic focus camera uses an ultrasonic sound wave to focus on objects. The camera sends out sound waves which are reflected off distant objects and return to the camera. A sensor detects the time it takes for the waves to return and then determines the distance an object is from the camera. If a sound wave (speed = 344 m·s–1) returns to the camera 0,150 s after leaving the camera, how far away is the object?
Click here for the solution


	 Calculate the frequency (in Hz) and wavelength of the annoying sound made by a mosquito when it beats its wings at the average rate of 600 wing beats per second. Assume the speed of the sound waves is 344 m·s–1.Click here for the solution


	 How does halving the frequency of a wave source affect the speed of the waves?
Click here for the solution


	 Humans can detect frequencies as high as 20 000 Hz. Assuming the speed of sound in air is 344 m·s–1, calculate the wavelength of the sound corresponding to the upper range of audible hearing.
Click here for the solution


	 An elephant trumpets at 10 Hz. Assuming the speed of sound in air is 344 m·s–1, calculate the wavelength of this infrasonic sound wave made by the elephant.
Click here for the solution


	 A ship sends a signal out to determine the depth of the ocean. The signal returns 2,5 seconds later. If sound travels at
1450 m.s–1 in sea water, how deep is the ocean at that point?
Click here for the solution






Glossary



	Definition:  Speed of sound 
	
     The speed of sound in air, at sea level, at a temperature of simplemath21∘Cscroll21∘normalC and under normal atmospheric conditions, is scroll3442ptnormalm·normals-1. 
      



Solutions


