
  
    
  
Chapter 2. Sparsity and Compressibilty



2.1. Introduction to vector spaces*

Summary
This module provides a brief review of some of the key concepts in vector spaces that will be required in developing the theory of compressive sensing.



 For much of its history, signal processing has focused on signals produced by physical systems. Many natural and man-made systems can be modeled as linear. Thus, it is natural to consider signal models that complement this kind of linear structure. This notion has been incorporated into modern signal processing by modeling signals as vectors living in an appropriate vector space. This captures the linear structure that we often desire, namely that if we add two signals together then we obtain a new, physically meaningful signal. Moreover, vector spaces allow us to apply intuitions and tools from geometry in R3, such as lengths, distances, and angles, to describe and compare signals of interest. This is useful even when our signals live in high-dimensional or infinite-dimensional spaces.
 Throughout this course, we will treat signals as real-valued functions having domains that are either continuous or discrete, and either infinite or finite. These assumptions will be made clear as necessary in each chapter. In this course, we will assume that the reader is relatively comfortable with the key concepts in vector spaces. We now provide only a brief review of some of the key concepts in vector spaces that will be required in developing the theory of compressive sensing (CS).  For a more thorough review of vector spaces see this introductory course in Digital Signal Processing.
 We will typically be concerned with normed vector spaces, i.e., vector spaces endowed with a norm. In the case of a discrete, finite domain, we can view our signals as vectors in an N-dimensional Euclidean space, denoted by RN. When dealing with vectors in RN, we will make frequent use of the ℓp norms, which are defined for p∈[1,∞] as
(2.1)

 In Euclidean space we can also consider the standard inner product in RN, which we denote
(2.2)

 This inner product leads to the ℓ2 norm: .
 In some contexts it is useful to extend the notion of ℓp norms to the case where p<1. In this case, the “norm” defined in Equation 2.1 fails to satisfy the triangle inequality, so it is actually a quasinorm. We will also make frequent use of the notation ∥x∥0:=| supp (x)|, where  denotes the support of x and | supp (x)| denotes the cardinality of  supp (x). Note that ∥·∥0 is not even a quasinorm, but one can easily show that
(2.3)

 justifying this choice of notation. The ℓp (quasi-)norms have notably different properties for different values of p. To illustrate this, in Figure 2.1 we show the unit sphere, i.e.,  induced by each of these norms in R2. Note that for p<1 the corresponding unit sphere is nonconvex (reflecting the quasinorm's violation of the triangle inequality).
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Figure 2.1. 
Unit spheres in R2 for the ℓp norms with p=1,2,∞, and for the ℓp quasinorm with .

 We typically use norms as a measure of the strength of a signal, or the size of an error. For example, suppose we are given a signal x∈R2 and wish to approximate it using a point in a one-dimensional affine space A. If we measure the approximation error using an ℓp norm, then our task is to find the  that minimizes . The choice of p will have a significant effect on the properties of the resulting approximation error. An example is illustrated in Figure 2.2. To compute the closest point in A to x using each ℓp norm, we can imagine growing an ℓp sphere centered on x until it intersects with A. This will be the point  that is closest to x in the corresponding ℓp norm. We observe that larger p tends to spread out the error more evenly among the two coefficients, while smaller p leads to an error that is more unevenly distributed and tends to be sparse. This intuition generalizes to higher dimensions, and plays an important role in the development of CS theory.
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Figure 2.2. 
Best approximation of a point in R2 by a a one-dimensional subspace using the ℓp norms for p=1,2,∞, and the ℓp quasinorm with .


2.2. Bases and frames*

Summary
This module provides an overview of bases and frames in finite-dimensional Hilbert spaces.



 A set  is called a basis for a finite-dimensional vector space V if the vectors in the set span V and are linearly independent. This implies that each vector in the space can be represented as a linear combination of this (smaller, except in the trivial case) set of basis vectors in a unique fashion. Furthermore, the coefficients of this linear combination can be found by the inner product of the signal and a dual set of vectors. In discrete settings, we will only consider real finite-dimensional Hilbert spaces where V=RN and I={1,...,N}.
 Mathematically, any signal x∈RN may be expressed as,
(2.4)

 where our coefficients are computed as ai=〈x,ψi〉 and  are the vectors that constitute our dual basis. Another way to denote our basis and its dual is by how they operate on x. Here, we call our dual basis  our synthesis basis (used to reconstruct our signal by Equation 2.4) and Ψ is our analysis basis.
 An orthonormal basis (ONB) is defined as a set of vectors  that form a basis and whose elements are orthogonal and unit norm. In other words, 〈ψi,ψj〉=0 if i≠j and one otherwise. In the case of an ONB, the synthesis basis is simply the Hermitian adjoint of analysis basis ().
 It is often useful to generalize the concept of a basis to allow for sets of possibly linearly dependent vectors, resulting in what is known as a frame. More formally, a frame is a set of vectors  in Rd, d<n corresponding to a matrix Ψ∈Rd×n, such that for all vectors x∈Rd,
(2.5)
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 with 0<A≤B<∞. Note that the condition A>0 implies that the rows of Ψ must be linearly independent. When A is chosen as the largest possible value and B as the smallest for these inequalities to hold, then we call them the (optimal) frame bounds. If A and B can be chosen as A=B, then the frame is called A-tight, and if A=B=1, then Ψ is a Parseval frame. A frame is called equal-norm, if there exists some λ>0 such that ∥Ψi∥2=λ for all i=1,...,N, and it is unit-norm if λ=1. Note also that while the concept of a frame is very general and can be defined in infinite-dimensional spaces, in the case where Ψ is a d×N matrix A and B simply correspond to the smallest and largest eigenvalues of ΨΨT, respectively.
 Frames can provide richer representations of data due to their redundancy: for a given signal x, there exist infinitely many coefficient vectors α such that x=Ψα. In particular, each
choice of a dual frame  provides a different choice of
a coefficient vector α. More formally, any frame satisfying
(2.6)

 is called an (alternate) dual frame. The particular choice  is referred to as the canonical dual frame. It is also known as the Moore-Penrose pseudoinverse. Note that since A>0 requires Ψ to have linearly independent rows, we ensure that ΨΨT is invertible, so that  is well-defined. Thus, one way to obtain a set of feasible coefficients is via
(2.7)

 One can show that this sequence is the smallest coefficient sequence in ℓ2 norm, i.e., ∥αd∥2≤∥α∥2 for all α such that x=Ψα.
 Finally, note that in the sparse approximation literature, it is also common for a basis or frame to be referred to as a dictionary or overcomplete dictionary respectively, with the dictionary elements being called atoms.



2.3. Sparse representations*

Summary
This module provides an overview of sparsity and sparse representations, giving examples for both 1-D and 2-D signals.



	1-D signal models
	2-D signal models
	References


 Transforming a signal to a new basis or frame may allow us to represent a signal more concisely. The resulting compression is useful for reducing data storage and data transmission, which can be quite expensive in some applications. Hence, one might wish to simply transmit the analysis coefficients obtained in our basis or frame expansion instead of its high-dimensional correlate. In cases where the number of non-zero coefficients is small, we say that we have a sparse representation. Sparse signal models allow us to achieve high rates of compression and in the case of compressive sensing, we may use the knowledge that our signal is sparse in a known basis or frame to recover our original signal from a small number of measurements. For sparse data, only the non-zero coefficients need to be stored or transmitted in many cases; the rest can be assumed to be zero).
 Mathematically, we say that a signal x is K-sparse when it has at most K nonzeros, i.e., ∥x∥0≤K. We let
(2.8)
        
          ΣK
          =
          {x : ∥x∥0 ≤ K}
        
      
 denote the set of all K-sparse signals. Typically, we will be dealing with signals that are not themselves sparse, but which admit a sparse representation in some basis Ψ. In this case we will still refer to x as being K-sparse, with the understanding that we can express x as x=Ψα where ∥α∥0≤K.
 Sparsity has long been exploited in signal processing and approximation theory for tasks such as compression 1, 7, 9 and denoising 2, and in statistics and learning theory as a method for avoiding overfitting 10. Sparsity also figures prominently in the theory of statistical estimation and model selection 4, 8, in the study of the human visual system 6, and has been exploited heavily in image processing tasks, since the multiscale wavelet transform 5 provides nearly sparse representations for natural images. Below, we briefly describe some one-dimensional (1-D) and two-dimensional (2-D) examples.
1-D signal models



 We will now present an example of three basis expansions that yield different levels of sparsity for the same signal. A simple periodic signal is sampled and represented as a periodic train of weighted impulses (see Figure 2.3). One can interpret sampling as a basis expansion where our elements in our basis are impulses placed at periodic points along the time axis. We know that in this case, our dual basis consists of sinc functions used to reconstruct our signal from discrete-time samples. This representation contains many non-zero coefficients, and due to the signal's periodicity, there are many redundant measurements. Representing the signal in the Fourier basis, on the other hand, requires only two non-zero basis vectors, scaled appropriately at the positive and negative frequencies (see Figure 2.3). Driving the number of coefficients needed even lower, we may apply the discrete cosine transform (DCT) to our signal, thereby requiring only a single non-zero coefficient in our expansion (see Figure 2.3). The DCT equation is  with k=0,⋯,N–1, xn the input signal, and N the length of the transform.
	  [image: 1-D signal models](a)

	  [image: 1-D signal models](b)
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Figure 2.3. 
Cosine signal in three representations: (a) Train of impulses (b) Fourier basis (c) DCT basis


2-D signal models



 This same concept can be extended to 2-D signals as well. For instance, a binary picture of a nighttime sky is sparse in the standard pixel domain because most of the pixels are zero-valued black pixels. Likewise, natural images are characterized by large smooth or textured regions and relatively few sharp edges. Signals with this structure are known to be very nearly sparse when represented using a multiscale wavelet transform 5. The wavelet transform consists of recursively dividing the image into its low- and high-frequency components. The lowest frequency components provide a coarse scale approximation of the image, while the higher frequency components fill in the detail and resolve edges. What we see when we compute a wavelet transform of a typical natural image, as shown in Figure 2.4, is that most coefficients are very small. Hence, we can obtain a good approximation of the signal by setting the small coefficients to zero, or thresholding the coefficients, to obtain a K-sparse representation. When measuring the approximation error using an ℓp norm, this procedure yields the best K-term approximation of the original signal, i.e., the best approximation of the signal using only K basis elements.[1]
	  [image: 2-D signal models](a)
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Figure 2.4. 
Sparse representation of an image via a multiscale wavelet transform. (a) Original image. (b) Wavelet representation. Large coefficients are represented by light pixels, while small coefficients are represented by dark pixels. Observe that most of the wavelet coefficients are close to zero.

 Sparsity results through this decomposition because in most natural images most pixel values vary little from their neighbors. Areas with little contrast difference can be represent with low frequency wavelets. Low frequency wavelets are created through stretching a mother wavelet and thus expanding it in space. On the other hand, discontinuities, or edges in the picture, require high frequency wavelets, which are created through compacting a mother wavelet. At the same time, the transitions are generally limited in space, mimicking the properties of the high frequency compacted wavelet. See "Compressible signals" for an example.
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2.4. Compressible signals*

Summary
This module describes compressible signals, i.e., signals that can be well-approximated by sparse signals.



	Compressibility and K-term approximation
	Compressibility and ℓp spaces
	References


Compressibility and K-term approximation



 An important assumption used in the context of compressive sensing (CS) is that signals exhibit a degree of structure. So far the only structure we have considered is sparsity, i.e., the number of non-zero values the signal has when representation in an orthonormal basis Ψ. The signal is considered sparse if it has only a few nonzero values in comparison with its overall length.
 Few structured signals are truly sparse; rather they are compressible. A signal is compressible if its sorted coefficient magnitudes in Ψ decay rapidly. To consider this mathematically, let x be a signal which is compressible in the basis Ψ:
(2.9)
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 where α are the coefficients of x in the basis Ψ. If x is compressible, then the magnitudes of the sorted coefficients αs observe a power law decay:
(2.10)
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 We define a signal as being compressible if it obeys this power law decay. The larger q is, the faster the magnitudes decay, and the more compressible a signal is. Figure 2.5 shows images that are compressible in different bases.
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Figure 2.5. 
The image in the upper left is a signal that is compressible in space. When the pixel values are sorted from largest to smallest, there is a sharp descent. The image in the lower left is not compressible in space, but it is compressible in wavelets since its wavelet coefficients exhibit a power law decay.

 Because the magnitudes of their coefficients decay so rapidly, compressible signals can be represented well by K≪N coefficients. The best K-term approximation of a signal is the one in which the K largest coefficients are kept, with the rest being zero. The error between the true signal and its K term approximation is denoted the K-term approximation error σK(x), defined as
(2.11)

 For compressible signals, we can establish a bound with power law decay as follows:
(2.12)
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 In fact, one can show that σK(x)2 will decay as K–r if and only if the sorted coefficients αi decay as i–r+1/2 1.
Figure 2.6 shows an image and its K-term approximation.
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Figure 2.6. 
Sparse approximation of a natural image. (a) Original image. (b) Approximation of image obtained by keeping only the largest 10% of the wavelet coefficients. Because natural images are compressible in a wavelet domain, approximating this image it in terms of its largest wavelet coefficients maintains good fidelity.


Compressibility and ℓp spaces



 A signal's compressibility is related to the ℓp space to which the signal belongs. An infinite sequence x(n) is an element of an ℓp space for a particular value of p if and only if its ℓp norm is finite:
(2.13)

 The smaller p is, the faster the sequence's values must decay in order to converge so that the norm is bounded. In the limiting case of p=0, the “norm” is actually a pseudo-norm and counts the number of non-zero values. As p decreases, the size of its corresponding ℓp space also decreases. Figure 2.7 shows various ℓp unit balls (all sequences whose ℓp norm is 1) in 3 dimensions.
 [image: ]

Figure 2.7. 
As the value of p decreases, the size of the corresponding ℓp space also decreases. This can be seen visually when comparing the the size of the spaces of signals, in three dimensions, for which the ℓp norm is less than or equal to one. The volume of these ℓp “balls” decreases with p.

 Suppose that a signal is sampled infinitely finely, and call it x[n]. In order for this sequence to have a bounded ℓp norm, its coefficients must have a power-law rate of decay with q>1/p. Therefore a signal which is in an ℓp space with p≤1 obeys a power law decay, and is therefore compressible.
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