
  
    
  
Chapter 8. Publishing with MATLAB



8.1. Generating Reports with MATLAB*



  [image: publishing]
 MATLAB includes an automatic report generator called publisher. The publisher publishes a script in several formats, including HTML, XML, MS Word and PowerPoint. The published file can contain the following:

 	Commentary on the code,

	MATLAB code,

	Results of the executed code, including the Command Window output and figures created by the code.



The publish Function



 The most basic syntax is publish('file','format') where the m-file is called and executed line by line then saved to a file in specified format. All published files are placed in the html directory although the published output might be a doc file.


Publishing with Editor



 The publisher is easily accessible from the Editor toolbar and file menu:

 
 [image: publishing]
Figure 8.1. 
Publish button on the Editor toolbar

 
 [image: publishing]
Figure 8.2. 
Publish item on the Editor file menu.
  


Example 8.1. 
 Write a simple script and publish it in an html file.

 Select File > New > Script to create an m-file. Once the editor is opened, type in the following code:
 x = [0:6];   % Create a row vector
y = 1.6*x;   % Compute y as a function of x
[x',y']     % Transpose vectors x and y
plot(x,y),title('Graph of y=f(x)'),xlabel('x'),ylabel('f(x)'),grid % Plot a graph
 Save the script as publishing.m and select File > Publish. An HTML file is generated as shown in the figure below:
 
 [image: Publishing]
Figure 8.3. 
A script published in html
  





The Double Percentage %% Sign 



 The scripts sometimes can be very long and their readability might be reduced. To improve the publishing result, sections are introduced by adding descriptive lines to the script preceded by %%. Consider the following example.


Example 8.2. 
 
Edit the script created in the example above to look like the code below:

 %% This file creates vectors, displays results and plots an x-y graph
x = [0:6];   % Create a row vector
y = 1.6*x;   % Compute y as a function of x
%% Tabulated data
[x',y']     % Transpose vectors x and y
%% Graph of y=f(x)
plot(x,y),title('Graph of y=f(x)'),xlabel('x'),ylabel('f(x)'),grid % Plot a graph
 Save the script, a new HTML file is generated as shown in the figure below:
 
 [image: Publishing]
Figure 8.4. 
An html file with sections
  





Summary of Key Points



 	MATLAB can generate reports containing  commentary on the code, MATLAB code and the results of the executed code,

	The publisher generates a script in several formats, including HTML, XML, MS Word and PowerPoint.

	The Double Percentage %% can be used to creates hyper-linked sections.





Solutions


Chapter 2. Getting Started



2.1. Essentials*



  [image: MATLAB Essentials]

 Learning a new skill, especially a computer program in this case, can be overwhelming. However, if we build on what we already know, the process can be handled rather effectively. In the preceding chapter we learned about MATLAB Graphical User Interface (GUI) and how to get help. Knowing the GUI, we will use basic math skills in MATLAB to solve linear equations and find roots of polynomials in this chapter.
Basic Computation



Mathematical Operators



 The evaluation of expressions is accomplished with arithmetic operators as we use them in scientific calculators. Note the addtional operators shown in the table below: 

Table 2.1. Operators	Operator	Name	Description
	+	Plus	Addition
	-	Minus	Subtraction
	*	Asterisk	Multiplication
	/	Forward Slash	Division
	\	Back Slash	Left Matrix Division
	^	Caret	Power
	.*	Dot Asterisk	Array multiplication (element-wise)
	./	Dot Slash	Right array divide (element-wise)
	.\	Dot Back Slash	Left array divide (element-wise)
	.^	Dot Caret	Array power (element-wise)



The backslash operator is used to solve linear systems of equations, see the section called “Linear Equations”.



Matrix is a rectangular array of numbers and formed by rows and columns. For example

. In this example A consists of 4 rows and 4 columns and therefore is a 4x4 matrix. (see  Wikipedia).



Row vector is a special matrix that contains only one row. In other words, a row vector is a 1xn matrix where n is the number of elements in the row vector. 



Column vector is also a special matrix. As the term implies, it contains only one column. A column vector is an nx1 matrix where n is the number of elements in the column vector.  



Array operations refer to element-wise calculations on the arrays, for example if x is an a by b matrix and y is a c by d matrix then x.*y can be performed only if a=c and b=d. Consider the following example, x consists of 2 rows and 3 columns and therefore it is a 2x3 matrix. Likewise, y has 2 rows and 3 columns and an array operation is possible.



and 



then 




Example 2.1. 
 The following figure illustrates a typical calculation in the Command Window.
 

 [image: Example]
Figure 2.1. 
Basic arithmetic in the command window.
  






Operator Precedence



 MATLAB allows us to build mathematical expressions with any combination of arithmetic operators. The order of operations are set by precedence levels in which MATLAB evaluates an expression from left to right. The precedence rules for MATLAB operators are shown in the list below from the highest precedence level to the lowest.
 

 	Parentheses ()

	Power (^)

	Multiplication (*), right division (/), left division (\)

	Addition (+), subtraction (-)





Mathematical Functions



 MATLAB has all of the usual mathematical functions found on a scientific calculator including square root, logarithm, and sine. 

Typing pi returns the number 3.1416. To find the sine of pi, type in sin(pi) and press enter.



The arguments in trigonometric functions are in radians. Multiply degrees by pi/180 to get radians. For example, to calculate sin(90), type in sin(90*pi/180).


 Warning
In MATLAB log returns the natural logarithm of the value. To find the ln of 10, type in log(10) and press enter, (ans = 2.3026).

 Warning
MATLAB accepts log10 for common (base 10) logarithm. To find the log of 10, type in log10(10) and press enter, (ans = 1).

 Practice the following examples to familiarize yourself with the common mathematical functions. Be sure to read the relevant help and doc pages for functions that are not self explanatory. 
Example 2.2. 
 Calculate the following quantities:

 	,

	
  50.5−1


	 for d=2



 MATLAB inputs and outputs are as follows:
 	 is entered by typing  2^3/(3^2-1) (ans = 1)

	
  50.5−1


is entered by typing sqrt(5)-1 (ans = 1.2361)

	 for d=2 is entered by typing pi/4*2^2 (ans = 3.1416)





Example 2.3. 
 Calculate the following exponential and logarithmic quantities:

 	
  ⅇ2


	
  ln(510)


	
  log(105)




 MATLAB inputs and outputs are as follows:
 	exp(2)

(ans =

    7.3891)

	log((5^10))

(ans =

   16.0944)

	log10(10^5)

(ans =

     5)





Example 2.4. 
 
Calculate the following trigonometric quantities:

 	

	
  tan(45)


	
  sin(π)+cos(45)




 MATLAB inputs and outputs are as follows:
 	cos(pi/6) (ans =

    0.8660)

	tan(45*pi/180) (ans =

    1.0000)

	sin(pi)+cos(45*pi/180) (ans =

    0.7071)






The format Function



 The format function is used to control how the numeric values are displayed in the Command Window. The short format is set by default and the numerical results are displayed with 4 digits after the decimal point (see the examples above). The long format produces 15 digits after the decimal point.

Example 2.5. 
 Calculate  and display results in short and long formats.

 The short format is set by default:
 >> theta=tan(pi/3)

theta =

    1.7321

>> 
 And the long format is turned on by typing format long:
 >> theta=tan(pi/3)

theta =

    1.7321

>> format long
>> theta

theta =

   1.732050807568877



Variables



 In MATLAB, a named value is called a variable. MATLAB comes with several predefined variables. For example, the name pi refers to the mathematical quantity π, which is approximately pi ans = 3.1416

 Warning
MATLAB is case-sensitive, which means it distinguishes between upper- and lowercase letters (e.g. data, DATA and DaTa are three different variables). Command and function names are also case-sensitive. Please note that when you use the command-line help, function names are given in upper-case letters (e.g., CLEAR) only to emphasize them. Do not use upper-case letters when running functions and commands.


Declaring Variables



 Variables in MATLAB are generally represented as matrix quantities. Scalars and vectors are special cases of matrices having size 1x1 (scalar), 1xn (row vector) or nx1 (column vector).

Declaration of a Scalar



 The term scalar as used in linear algebra refers to a real number. Assignment of scalars in MATLAB is easy, type in the variable name followed by = symbol and a number: 
Example 2.6. 
 
a = 1

 
 [image: Example1]
Figure 2.2. 
Assignment of a scalar quantity.
  




Declaration of a Row Vector



 Elements of a row vector are separated with blanks or commas.
Example 2.7. 
 Let's type the following at the command prompt:
 b = [1 2 3 4 5]

 
 [image: Example2]
Figure 2.3. 
Assignment of a row vector quantity.
  

 We can also use the Variable Editor to assign a row vector. In the menu bar, select File > New > Variable. This action will create a variable called unnamed which is displayed in the workspace. By clicking on the title unnamed, we can rename it to something more descriptive. By double-clicking on the variable, we can open the Variable Editor and type in the values into spreadsheet looking table.    
 
 [image: Example2a]
Figure 2.4. 
Assignment of a row vector by using the Variable Editor.
  




Declaration of a Column Vector



 Elements of a column vector is ended by a semicolon:
Example 2.8. 
 c = [1;2;3;4;5;]

 
 [image: Example3]
Figure 2.5. 
Assignment of a column vector quantity.
  

 Or by transposing a row vector with the ' operator:
 c = [1 2 3 4 5]'
 
 [image: Example3a]
Figure 2.6. 
Assignment of a column vector quantity by transposing a row vector with the ' operator.
  

 Or by using the Variable Editor:
 
 [image: Example3b]
Figure 2.7. 
Assignment of a column vector quantity by using the Variable Editor.
  




Declaration of a Matrix



 Matrices are typed in rows first and separated by semicolons to create columns. Consider the examples below:

Example 2.9. 
 Let us type in a 2x5 matrix:
 
  d = [2 4 6 8 10; 1 3 5 7 9]

 
 [image: Example4]
Figure 2.8. 
Assignment of a 2x5 matrix.
  

 
 [image: Example4a]
Figure 2.9. 
Assignment of a matrix by using the Variable Editor.
  



Example 2.10. 
 
This example is a 5x2 matrix:

 
 [image: example4b]
Figure 2.10. 
Assignment of a 5x2 matrix.
  








Linear Equations



 Systems of linear equations are very important in engineering studies. In the course of solving a problem, we often reduce the problem to simultaneous equations from which the results are obtained. As you learned earlier, MATLAB stands for Matrix Laboratory and has features to handle matrices. Using the coefficients of simultaneous linear equations, a matrix can be formed to solve a set of simultaneous equations.  

Example 2.11. 
 
Let's solve the following simultaneous equations: 

(2.1)
  x+y=1

(2.2)
  2x−5y=9

 First, we will create a matrix for the left-hand side of the equation using the coefficients, namely 1 and 1 for the first and 2 and -5 for the second. The matrix looks like this: 
(2.3)

 The above matrix can be entered in the command window by typing A=[1 1; 2 -5].
 Second, we create a column vector to represent the right-hand side of the equation as follows:
(2.4)

 The above column vector can be entered in the command window by typing B= [1;9].
 To solve the simultaneous equation, we will use left division operator and issue the following command: C=A\B. These three steps are illustrated below:
 >> A=[1 1; 2 -5]

A =

     1     1
     2    -5

>> B= [1;9]

B =

     1
     9

>> C=A\B

C =

     2
    -1

>> 
 The result C indicating 2 and 1 are the values for x and y, respectively.



Polynomials



 In the preceding section, we briefly learned about how to use MATLAB to solve linear equations. Equally important in engineering problem solving is the application of polynomials. Polynomials are functions that are built by simply adding together (or subtracting) some power functions. (see  Wikipedia).
(2.5)
  ax2+bx+c=0

(2.6)
  f(x)=ax2+bx+c

 The coeffcients of a polynominal are entered as a row vector beginning with the highest power and including the ones that are equal to 0. 
Example 2.12. 
 Create a row vector for the following function: 
  y=2x4+3x3+5x2+x+10

 Notice that in this example we have 5 terms in the function and therefore the row vector will contain 5 elements. p=[2 3 5 1 10]



Example 2.13. 
 
Create a row vector for the following function: 

  y=3x4+4x2−5


 In this example, coefficients for the terms involving power of 3 and 1 are 0. The row vector still contains 5 elements as in the previous example but this time we will enter two zeros for the coefficients with power of 3 and 1: p=[3 0 4 0 -5]. 


The polyval Function



 We can evaluate a polynomial p for a given value of x using the syntax polyval(p,x) where p contains the coefficients of polynomial and x is the given number.
Example 2.14. 
 Evaluate f(x) at 5.

(2.7)
  f(x)=3x2+2x+1

 The row vector representing f(x) above is p=[3 2 1]. To evaluate f(x) at 5, we type in: polyval(p,5). The following shows the Command Window output:
 >> p=[3 2 1]

p =

     3     2     1

>> polyval(p,5)

ans =

    86

>> 



The roots Function



 Consider the following equation:
(2.8)
  ax2+bx+c=0

 Probably you have solved this type of equations numerous times. In MATLAB, we can use the roots function to find the roots very easily. 
Example 2.15. 
 Find the roots for the following:

(2.9)
  0.6x2+0.3x−0.9=0

 To find the roots, first we enter the coefficients of polynomial in to a row vector p with p=[0.6 0.3 -0.9] and issue the r=roots(p) command. The following shows the command window output:
 >> p=[0.6 0.3 -0.9]

p =

    0.6000    0.3000   -0.9000

>> r=roots(p)

r =

   -1.5000
    1.0000

>> 




Splitting a Statement



 You will soon find out that typing long statements in the Command Window or in the the Text Editor makes it very hard to read and maintain your code. To split a long statement over multiple lines simply enter three periods "..." at the end of the line and carry on with your statement on the next line.

Example 2.16. 
 The following command window output illustrates the use of three periods:

 >> sin(pi)+cos(45*pi/180)-sin(pi/2)+cos(45*pi/180)+tan(pi/3)

ans =

    2.1463

>> sin(pi)+cos(45*pi/180)-sin(pi/2)...
+cos(45*pi/180)+tan(pi/3)

ans =

    2.1463

>> 



Comments



 Comments are used to make scripts more "readable". The percent symbol % separates the comments from the code. Examine the following examples:


Example 2.17. 
 The long statements are split to make it easier to read. However, despite the use of descriptive variable names, it is hard to understand what this script does, see the following Command Window output:

 t_water=80;         
t_outside=15;       
inner_dia=0.05;     
thickness=0.006;    
Lambda_steel=48;    
AlfaInside=2800;    
AlfaOutside=17;     
thickness_insulation=0.012;     
Lambda_insulation=0.03;         

r_i=inner_dia/2                                         
r_o=r_i+thickness                                       
r_i_insulation=r_o                                      
r_o_insulation=r_i_insulation+thickness_insulation      
AreaInside=2*pi*r_i
AreaOutside=2*pi*r_o
AreaOutside_insulated=2*pi*r_o_insulation
AreaM_pipe=(2*pi*(r_o-r_i))/log(r_o/r_i)                
AreaM_insulation=(2*pi*(r_o_insulation-r_i_insulation)) ...
    /log(r_o_insulation/r_i_insulation)    
TotalResistance=(1/(AlfaInside*AreaInside))+ ...
    (thickness/(Lambda_steel*AreaM_pipe))+(1/(AlfaOutside*AreaOutside))
TotalResistance_insulated=(1/(AlfaInside*AreaInside))+ ...
    (thickness/(Lambda_steel*AreaM_pipe))+(thickness_insulation ...
    /(Lambda_insulation*AreaM_insulation))+(1/(AlfaOutside*AreaOutside_insulated))
Q_dot=(t_water-t_outside)/(TotalResistance*1000) 
Q_dot_insulated=(t_water-t_outside)/(TotalResistance_insulated*1000)
PercentageReducttion=((Q_dot-Q_dot_insulated)/Q_dot)*100


Example 2.18. 
 The following is an edited version of the above including numerous comments:

 % Problem 16.06
% Problem Statement
% Calculate the percentage reduction in heat loss when a layer of hair felt
% is wrapped around the outside surface (see problem 16.05)

format short

% Input Values
t_water=80;         % Water temperature [C]
t_outside=15;       % Atmospheric temperature [C]
inner_dia=0.05;     % Inner diameter [m]
thickness=0.006;    % [m]
Lambda_steel=48;    % Thermal conductivity of steel [W/mK]
AlfaInside=2800;    % Heat transfer coefficient of inside [W/m2K]
AlfaOutside=17;     % Heat transfer coefficient of outside [W/m2K]
% Neglect radiation
% Additional layer
thickness_insulation=0.012;     % [m]
Lambda_insulation=0.03;         % Thermal conductivity of insulation [W/mK]


% Output Values
% Q_dot=(t_water-t_outside)/TotalResistance
% TotalResistance=(1/(AlfaInside*AreaInside))+(thickness/(Lambda_steel*AreaM))+ ...
(1/(AlfaOutside*AreaOutside)
% Calculating the unknown terms
r_i=inner_dia/2                                         % Inner radius of pipe [m]
r_o=r_i+thickness                                       % Outer radius of pipe [m]
r_i_insulation=r_o                                      % Inner radius of insulation [m]
r_o_insulation=r_i_insulation+thickness_insulation      % Outer radius of pipe [m]
AreaInside=2*pi*r_i
AreaOutside=2*pi*r_o
AreaOutside_insulated=2*pi*r_o_insulation
AreaM_pipe=(2*pi*(r_o-r_i))/log(r_o/r_i)                % Logarithmic mean area for pipe
AreaM_insulation=(2*pi*(r_o_insulation-r_i_insulation)) ...
    /log(r_o_insulation/r_i_insulation)    % Logarithmic mean area for insulation
TotalResistance=(1/(AlfaInside*AreaInside))+(thickness/ ...
    (Lambda_steel*AreaM_pipe))+(1/(AlfaOutside*AreaOutside))
TotalResistance_insulated=(1/(AlfaInside*AreaInside))+(thickness/ ...
    (Lambda_steel*AreaM_pipe))+(thickness_insulation/(Lambda_insulation*AreaM_insulation)) ...
    +(1/(AlfaOutside*AreaOutside_insulated))
Q_dot=(t_water-t_outside)/(TotalResistance*1000) % converting into kW
Q_dot_insulated=(t_water-t_outside)/(TotalResistance_insulated*1000) % converting into kW
PercentageReducttion=((Q_dot-Q_dot_insulated)/Q_dot)*100




Basic Operations



Table 2.2. Basic operations.	Command	Meaning
	sum	Sum of array elements
	prod	Product of array elements
	sqrt	Square root
	log10	Common logarithm (base 10)
	log	Natural logarithm
	max	Maximum elements of array
	min	Minimum elements of array
	mean	Average or mean value of arrays
	std	Standard deviation



Special Characters



Table 2.3. Special Characters	Character	Meaning
	=	Assignment
	( )	Prioritize operations
	[ ]	Construct array
	:	Specify range of array elements
	,	Row element separator in an array
	;	Column element separator in an array
	...	Continue statement to next line
	.	Decimal point, or structure field separator
	%	Insert comment line into code



Summary of Key Points



 	MATLAB has the common functions found on a scientific calculator and can be operated in a similar way,

	MATLAB can store values in variables. Variables are case sensitive and some variables are reserved by MATLAB (e.g. pi stores 3.1416),

	Variable Editor can be used to enter or manipulate matrices,

	The coefficients of simultaneous linear equations and polynomials are used to form a row vector. MATLAB then can be used to solve the equations,

	The format function is used to control the number of digits displayed,

	Three periods "..." at the end of the line is used to split a long statement over multiple lines,

	The percent symbol % separates the comments from the code, anything following % symbol is ignored by MATLAB.





2.2. Problem Set*



 
Determine the value of each of the following.
  
Exercise 1.
 
   
  6×7+42−24




>> (6*7)+4^2-2^4

(ans = 42)
  



Exercise 2.
 
   



>> ((3^2+2^3)/(4^5-5^4))+((sqrt(64)-5^2)/(4^5+5^6+7^8))

(ans =  0.0426)
  



Exercise 3.
 
   

  log(102)+105

  



>> log10(10^2)+10^5

(ans = 100002)
  



Exercise 4.
 
   
    
  ⅇ2+23−ln(ⅇ2)

  



>> exp(2)+2^3-log(exp(2))

(ans = 13.3891)
  



Exercise 5.
 
   
    
  



>> sin(2*pi)+cos(pi/4)

(ans = 0.7071)
  



Exercise 6.
 
   
    
  



>> tan(pi/3)+cos(270*pi/180)+sin(270*pi/180)+cos(pi/3)

(ans = 1.2321)
  



Exercise 7.
 
   Solve the following system of equations:



  2x+4y=1






  x+5y=2

  




 
>> A=[2 4; 1 5]

A =

     2     4
     1     5

>> B=[1; 2]

B =

     1
     2

>> Solution=A\B

Solution =

   -0.5000
    0.5000


  



Exercise 8.
 
   Evaluate y at 5.



  y=4x4+3x2−x

  



 
>> p=[4 0 3 -1 0]

p =

     4     0     3    -1     0

>> polyval(p,5)

ans =

        2570

>> 


  



Exercise 9.
 
   Given below is Load-Gage Length data for a type 304 stainless steel that underwent a tensile test. Original specimen diameter is 12.7 mm. 
[4] 


Table 2.4. 	Load [kN]	Gage Length [mm]
	0.000	50.8000
	4.890	50.8102
	9.779	50.8203
	14.670	50.8305
	19.560	50.8406
	24.450	50.8508
	27.620	50.8610
	29.390	50.8711
	32.680	50.9016
	33.950	50.9270
	34.580	50.9524
	35.220	50.9778
	35.720	51.0032
	40.540	51.816
	48.390	53.340
	59.030	55.880
	65.870	58.420
	69.420	60.960
	69.670 (maximum)	61.468
	68.150	63.500
	60.810 (fracture)	66.040 (after fracture)




The engineering stress is defined as

, where P is the load [N] on the sample with an original cross-sectional area A [
  m2
] and the engineering strain is defined as 
, where 
  Δl
 is the change in length and 
  l
 is the initial length.





Compute the stress and strain values for each of the measurements obtained in the tensile test.
  
  
  



 First, we need to enter the data sets. Because it is rather a large table, using Variable Editor is more convenient. See the figures below:

 [image: Load]
Figure 2.10. 
Load in Newtons
  



 [image: Length]
Figure 2.10. 
Extension length in mm.
  





 Next, we will calculate the cross-sectional area.
 

Area=pi/4*(0.0127^2)

Area =

  1.2668e-004


 
 Now, we can find the Stress values with the following, note that we are obtaining results in MPa:
 
Sigma=(Load_N./Area)*10^(-6)

Sigma =

         0
   38.6022
   77.1964
  115.8065
  154.4086
  193.0108
  218.0351
  232.0076
  257.9792
  268.0047
  272.9780
  278.0302
  281.9773
  320.0269
  381.9955
  465.9888
  519.9844
  548.0085
  549.9820
  537.9830
  480.0403



 
For strain calculation, we will first find the change in length:
 

Delta_L=Length_mm-50.800

Delta_L =

         0
    0.0102
    0.0203
    0.0305
    0.0406
    0.0508
    0.0610
    0.0711
    0.1016
    0.1270
    0.1524
    0.1778
    0.2032
    1.0160
    2.5400
    5.0800
    7.6200
   10.1600
   10.6680
   12.7000
   15.2400



 Now we can determine Strain with the following:
 

Epsilon=Delta_L./50.800

Epsilon =

         0
    0.0002
    0.0004
    0.0006
    0.0008
    0.0010
    0.0012
    0.0014
    0.0020
    0.0025
    0.0030
    0.0035
    0.0040
    0.0200
    0.0500
    0.1000
    0.1500
    0.2000
    0.2100
    0.2500
    0.3000



 
The final results can be tabulated as foolows:
 

[Sigma Epsilon]

ans =

         0         0
   38.6022    0.0002
   77.1964    0.0004
  115.8065    0.0006
  154.4086    0.0008
  193.0108    0.0010
  218.0351    0.0012
  232.0076    0.0014
  257.9792    0.0020
  268.0047    0.0025
  272.9780    0.0030
  278.0302    0.0035
  281.9773    0.0040
  320.0269    0.0200
  381.9955    0.0500
  465.9888    0.1000
  519.9844    0.1500
  548.0085    0.2000
  549.9820    0.2100
  537.9830    0.2500
  480.0403    0.3000








Solutions


Chapter 6. Numerical Integration



6.1. Computing the Area Under a Curve*



  [image: Plot]

 
This chapter essentially deals with the problem of computing the area under a curve. First, we will employ a basic approach and form trapezoids under a curve. From these trapezoids, we can calculate the total area under a given curve. This method can be tedious and is prone to errors, so in the second half of the chapter, we will utilize a built-in MATLAB function to carry out numerical integration. 
  
A Basic Approach



 There are various methods to calculating the area under a curve, for example,  Rectangle Method,  Trapezoidal Rule and  Simpson's Rule. The following procedure is a simplified method.   
 Consider the curve below:

 
 [image: integration]
Figure 6.1. 
Numerical integration
  

 Each segment under the curve can be calculated as follows:
(6.1)

 Therefore, if we take the sum of the area of each trapezoid, given the limits, we calculate the total area under a curve. Consider the following example.

Example 6.1. 
 
Given the following data, plot an x-y graph and determine the area under a curve between x=3 and x=30

Table 6.1. Data Set	Index	x [m]	y [N]
	1	3	27.00
	2	10	14.50
	3	15	9.40
	4	20	6.70
	5	25	5.30
	6	30	4.50


 First, let us enter the data set. For x, issue the following command x=[3,10,15,20,25,30];. And for y, y=[27,14.5,9.4,6.7,5.3,4.5];. If yu type in [x',y'], you will see the following tabulated result. Here we transpose row vectors with ' and displaying them as columns:
 ans =

    3.0000   27.0000
   10.0000   14.5000
   15.0000    9.4000
   20.0000    6.7000
   25.0000    5.3000
   30.0000    4.5000
 Compare the data set above with the given information in the question.



 To plot the data type the following:
 plot(x,y),title('Distance-Force Graph'),xlabel('Distance[m]'),ylabel('Force[N]'),grid
 The following figure is generated:
 
 [image: integration]
Figure 6.2. 
Distance-Force Graph
  



 To compute dx for consecutive x values, we will use the index for each x value, see the given data in the question.:
 dx=[x(2)-x(1),x(3)-x(2),x(4)-x(3),x(5)-x(4),x(6)-x(5)];
 dy is computed by the following command:
 dy=[0.5*(y(2)+y(1)),0.5*(y(3)+y(2)),0.5*(y(4)+y(3)),0.5*(y(5)+y(4)),0.5*(y(6)+y(5))];
 dx and dy can be displayed with the following command: [dx',dy']. The result will look like this:

 [dx',dy']

ans =

    7.0000   20.7500
    5.0000   11.9500
    5.0000    8.0500
    5.0000    6.0000
    5.0000    4.9000
 Our results so far are shown below
Table 6.2. x, y and corresponding differential elements	x [m]	y [N]	dx [m]	dy [N]
	3	27.00	 	 
	10	14.50	7.00	20.75
	15	9.40	5.00	11.95
	20	6.70	5.00	8.05
	25	5.30	5.00	6.00
	30	4.50	5.00	4.90


 If we multiply dx by dy, we find da for each element under the curve. The differential area da=dx*dy, can be computed using the 'term by term multiplication' technique in MATLAB as follows:
 da=dx.*dy

da =

  145.2500   59.7500   40.2500   30.0000   24.5000
 Each value above represents an element under the curve or the area of trapezoid. By taking the sum of array elements, we find the total area under the curve.
 sum(da)

ans =

  299.7500
 The following illustrates all the steps and results of our MATLAB computation. 
Table 6.3. Computation of the approximate area under a curve	x [m]	y [N]	dx [m]	dy [N]	dA [Nm]
	3	27.00	 	 	 
	10	14.50	7.00	20.75	145.25
	15	9.40	5.00	11.95	59.75
	20	6.70	5.00	8.05	40.25
	25	5.30	5.00	6.00	30.00
	30	4.50	5.00	4.90	24.50
	 	 	 	 	299.75




The Trapezoidal Rule



 Sometimes it is rather convenient to use a numerical approach to solve a definite integral. The trapezoid rule allows us to approximate a definite integral using trapezoids.

The trapz Command



 Z = trapz(Y) computes an approximation of the integral of Y using the trapezoidal method.


 Now, let us see a typical problem.

Example 6.2. 
 Given

,

an analytical solution would produce 39. Use trapz command and solve it 

 	Initialize variable x as a row vector, from 2 with increments of 0.1 to 5: x=2:.1:5;  

	Declare variable y as y=x^2;. Note the following error prompt: ??? Error using ==> mpower
Inputs must be a scalar and a square matrix. This is because x is a vector quantity and MATLAB is expecting a scalar input for y. Because of that, we need to compute y as a vector and to do that we will use the dot operator as follows: y=x.^2;. This tells MATLAB to create vector y by taking each x value and raising its power to 2. 

	Now we can issue the following command to calculate the first area, the output will be as follows:



 area1=trapz(x,y)

area1 =

   39.0050
 Notice that this numerical value is slightly off. So let us increase the number of increments and calculate the area again: 
 x=2:.01:5;
y=x.^2;
area2=trapz(x,y)

area2 =

   39.0001
 Yet another increase in the number of increments:
 x=2:.001:5;
y=x.^2;
area3=trapz(x,y)

area3 =

   39.0000


Example 6.3. 
 Determine the value of the following integral:
 
 	Initialize variable x as a row vector, from 0 with increments of pi/100 to pi: x=0:pi/100:pi;  

	Declare variable y as y=sin(x);

	Issue the following command to calculate the first area, the output will be as follows:



 area1=trapz(x,y)

area1 =

    1.9998
 let us increase the increments as above:
 x=0:pi/1000:pi;
y=sin(x);
area2=trapz(x,y)

area2 =

    2.0000


Summary of Key Points



 	In its simplest form, numerical integration involves calculating the areas of segments that make up the area under a curve,

	MATLAB has built-in functions to perform numerical integration,

	Z = trapz(Y) computes an approximation of the integral of Y using the trapezoidal method.





6.2. Problem Set*



Exercise 1.
 
   Let the function y defined by 
  y=cos(x)
. Plot this function over the interval [-pi,pi]. Use numerical integration techniques to estimate the integral of y over [0, pi] and over [-pi,pi].
  



 	Plotting: 

x=-pi:pi/100:pi;
y=cos(x);
plot(x,y),title('Graph of y=cos(x)'),xlabel('x'),ylabel('y'),grid


	Area calculation 1:  

>> x=0:pi/100:pi;
>> y=cos(x);
>> area1=trapz(x,y)

area1 =

  1.1796e-016


	Area calculation 2:  

>> x=-pi:pi/100:pi;
>> y=cos(x);
>> area2=trapz(x,y)

area2 =

  1.5266e-016













  



Exercise 2.
 
   Let the function y defined by 
  y=0.04x2−2.13x+32.58
. Plot this function over the interval [3,30]. Use numerical integration techniques to estimate the integral of y over [3,30].
  



 	Plotting: 
>> x=3:.1:30;
>> y=0.04*(x.^2)-2.13.*x+32.58;
>> plot(x,y), title('Graph of ...
y=.04*(x^2)-2.13*x+32.58'),xlabel('x'),ylabel('y'),grid


	Area calculation:  

>> area=trapz(x,y)

area =

  290.3868





  



Exercise 3.
 
   A 2000-liter tank is full of lube oil. It is known that if lube oil is drained from the tank, the mass flow rate will decrease from the maximum when the tank level is at the highest. The following data were collected when the tank was drained. 
 
Table 6.4. Data	Time [min]	Mass Flow [kg/min]
	0	50.00
	5	48.25
	10	46.00
	15	42.50
	20	37.50
	25	30.50
	30	19.00
	35	9.00





Write a script to estimate the amount of oil drained in 35 minutes.
  



 clc
t=linspace(0,35,8)                  % Data entry for time [min]
m=[50 48.25 46 42.5 37.5 30.5 19 9] % Data entry for mass flow [kg/min]
% Calculate time intervals
dt=[t(2)-t(1),t(3)-t(2),t(4)-t(3),...
t(5)-t(4),t(6)-t(5),t(7)-t(6),t(8)-t(7)]
% Calculate mass out  
dm=[0.5*(m(2)+m(1)),0.5*(m(3)+m(2)),0.5*(m(4)+m(3)),0.5*(m(5)+...
m(4)),0.5*(m(6)+m(5)),0.5*(m(7)+m(6)),0.5*(m(8)+m(7))]
% Calculate differential areas 
da=dt.*dm;  
% Tabulate time and mass flow                         
[t',m']
% Tabulate time intervals, mass out and differential areas                             
[dt',dm',da']
% Calculate the amount of oil drained [kg] in 35 minutes                       
Oil_Drained=sum(da)                 


The output is:
 
ans =

         0   50.0000
    5.0000   48.2500
   10.0000   46.0000
   15.0000   42.5000
   20.0000   37.5000
   25.0000   30.5000
   30.0000   19.0000
   35.0000    9.0000


ans =

    5.0000   49.1250  245.6250
    5.0000   47.1250  235.6250
    5.0000   44.2500  221.2500
    5.0000   40.0000  200.0000
    5.0000   34.0000  170.0000
    5.0000   24.7500  123.7500
    5.0000   14.0000   70.0000


Oil_Drained =

  1.2663e+003


  



Exercise 4.
 
   
A gas is expanded in an engine cylinder, following the law PV1.3=c. The initial pressure is 2550 kPa and the final pressure is 210 kPa. If the volume at the end of expansion is 0.75 m3, compute the work done by the gas.
[9] 

  



 
clc
disp('A gas is expanded in an engine cylinder, following the law PV^1.3=c')
disp('The initial pressure is 2550 kPa and the final pressure is 210 kPa.')
disp('If the volume at the end of expansion is 0.75 m3,')
disp('Compute the work done by the gas.')
disp(' ')               % Display blank line
n=1.3;
P_i=2550;               % Initial pressure
P_f=210;                % Final pressure
V_f=.75;                % Final volume
V_i=(P_f*(V_f^n)/P_i)^(1/n); % Initial volume
c=P_f*V_f^n;
v=V_i:.001:V_f;         % Creating a row vector for volume, v
p=c./(v.^n);            % Computing pressure for volume
WorkDone=trapz(v,p)     % Integrating p*dv


The output is:
 
A gas is expanded in an engine cylinder, following the law PV^1.3=c
The initial pressure is 2550 kPa and the final pressure is 210 kPa.
If the volume at the end of expansion is 0.75 m3,
Compute the work done by the gas.
 

WorkDone =

  409.0666






Exercise 5.
 
   A force F acting on a body at a distance s from a fixed point is given by
.
Write a script to compute the work done when the body moves from the position where s=1 to that where s=10. [10]

  





 clc
disp('A force F acting on a body at a distance s from a fixed point is given by')
disp('F=3*s+(1/(s^2)) where s is the distance in meters')
disp('Compute the total work done in moving') 
disp('From the position where s=1 to that where s=10.')
disp(' ')                     % Display blank line
s=1:.001:10;     % Creating a row vector for distance, s
F=3.*s+(1./(s.^2));    % Computing Force for s
WorkDone=trapz(s,F) % Integrating F*ds over 1 to 10 meters.


The output is:
 A force F acting on a body at a distance s from a fixed point is given by
F=3*s+(1/(s^2)) where s is the distance in meters
Compute the total work done in moving
From the position where s=1 to that where s=10.
 

WorkDone =

  149.4000



  



Exercise 6.
 
   
The pressure p and volume v of a given mass of gas are connected by the relation

 where a, b and k are constants. Express p in terms of v, and write a script to compute the work done by the gas in expanding from an initial volume to a final volume. [11]




Test your solution with the following input:


a: 0.01


b: 0.001


The initial pressure [kPa]: 100


The initial volume [m3]: 1


The final volume [m3]: 2





 clc                           % Clear screen
disp('This script computes the work done by')
disp('The gas in expanding from volume v1 to v2')
disp(' ')                     % Display blank line
a=input('Enter the constant a: ');                                     
b=input('Enter the constant b: ');
p_i=input('Enter the initial pressure [kPa]: ');
v_i=input('Enter the initial volume [m3]: ');
v_f=input('Enter the final volume [m3]: ');
k=(p_i+(a/(v_i^2))*(v_i-b)); % Calculating constant k
v=v_i:.001:v_f;              % Creating a row vector for volume
p=(k./(v-b))-(a./(v.^2));    % Computing pressure for volume
WorkDone=trapz(v,p);         % Integrating p*dv
disp(' ')                    % Display blank line
str = ['The work done by the gas in expanding from ', num2str(v_i),...
 ' m3 to ' num2str(v_f), ' m3 is ', num2str(WorkDone), ' kW.'];
disp(str);


The output is:
 This script computes the work done by
The gas in expanding from volume v1 to v2
 
Enter the constant a: .01
Enter the constant b: .001
Enter the initial pressure [kPa]: 100
Enter the initial volume [m3]: 1
Enter the final volume [m3]: 2
 
The work done by the gas in expanding from 1 m3 to 2 m3 is 69.3667 kW.

 





Solutions



    
      [image: A Brief Introduction to Engineering Computation with MATLAB]
    

  Chapter 3. Graphics



3.1. Plotting in MATLAB*



  [image: GraphingWithMATLAB]

 A picture is worth a thousand words, particularly visual representation of data in engineering is very useful. MATLAB has powerful graphics tools and there is a very helpful section devoted to graphics in MATLAB Help: Graphics. Students are encouraged to study that section; what follows is a brief summary of the main plotting features. 
Two-Dimensional Plots



The plot Statement



 Probably the most common method for creating a plot is by issuing plot(x, y) statement where function y is plotted against x.
Example 3.1. 
 Type in the following statement at the MATLAB prompt: 
 x=[-pi:.1:pi]; y=sin(x); plot(x,y);
 After we executed the statement above, a plot named Figure1 is generated:
 
 [image: Plot]
Figure 3.1. 
Graph of sin(x)
  



 Having variables assigned in the Workspace, x and y=sin(x) in our case, we can also select x and y, and right click on the selected variables. This opens a menu from which we choose plot(x,y). See the figure below.
 
 [image: PlotFromWorkspace]
Figure 3.2. 
Creating a plot from Workspace.
  


Annotating Plots



 Graphs without labels are incomplete and labeling elements such as plot title, labels for x and y axes, and legend should be included. Using up arrow, recall the statement above and add the annotation commands as shown below.

 x=[-pi:.1:pi];y=sin(x);plot(x,y);title('Graph of y=sin(x)');xlabel('x');ylabel('sin(x)');grid on
 Run the file and compare your result with the first one.
 
 [image: sinxLabels]
Figure 3.3. 

     Graph of sin(x) with Labels.
  


Type in the following at the MATLAB prompt and learn additional commands to annotate plots:
 

help gtext
help legend
help zlabel




Superimposed Plots



 If you want to merge data from two graphs, rather than create a new graph from scratch, you can superimpose the two using a simple trick:

 % This script generates sin(x) and cos(x) plot on the same graph
% initialize variables
x=[-pi:.1:pi];      %create a row vector from -pi to +pi with .1 increments
y0=sin(x);          %calculate sine value for each x
y1=cos(x);          %calculate cosine value for each x
% Plot sin(x) and cos(x) on the same graph
plot(x,y0,x,y1);
title('Graph of sin(x) and cos(x)'); %Title of graph
xlabel('x');                %Label of x axis
ylabel('sin(x), cos(x)');   %Label of y axis
legend('sin(x)','cos(x)');  %Insert legend in the same order as y0 and y1 calculated
grid on                     %Graph grid is turned
 
 [image: sinxLabelsLegend]
Figure 3.4. 

     Graph of sin(x) and cos(x) in the same plot with labels and legend.
  


Multiple Plots in a Figure



 Multiple plots in a single figure can be generated with subplot in the Command Window. However, this time we will use the built-in Plot Tools. Before we initialize that tool set, let us create the necessary variables using the following script: 
 % This script generates sin(x) and cos(x) variables
clc                 %Clears command window
clear all           %Clears the variable space
close all           %Closes all figures
X1=[-2*pi:.1:2*pi];  %Creates a row vector from -2*pi to 2*pi with .1 increments
Y1=sin(X1);          %Calculates sine value for each x
Y2=cos(X1);          %Calculates cosine value for each x
Y3=Y1+Y2;            %Calculates sin(x)+cos(x)
Y4=Y1-Y2;            %Calculates sin(x)-cos(x)

 Note that the above script clears the command window and variable workspace. It also closes any open Figures. After running the script, we will have X1, Y1, Y2, Y3 and Y4 loaded in the workspace. Next, select File > New > Figure, a new Figure window will open. Click "Show Plot Tools and Dock Figure" on the tool bar.
 
 [image: PlotTools]
Figure 3.5. 
Plot Tools
  



 Under New Subplots > 2D Axes, select four vertical boxes that will create four subplots in one figure. Also notice, the five variables we created earlier are listed under Variables.
 
 [image: Plot Tools]
Figure 3.6. 
Creating four sub plots.
  



 After the subplots have been created, select the first supblot and click on "Add Data". In the dialog box, set X Data Source to X1 and Y Data Source to Y1. Repeat this step for the remaining subplots paying attention to Y Data Source (Y2, Y3 and Y4 need to be selected in the subsequent steps while X1 is always the X Data Source).

 
 [image: PlotTools]
Figure 3.7. 
Adding data to axes.
  



 Next, select the first item in "Plot Browser" and activate the "Property Editor". Fill out the fields as shown in the figure below. Repeat this step for all subplots.
 
 [image: PlotTools]
Figure 3.8. 
Using "Property Editor".
  



 Save the figure as sinxcosx.fig in the current directory.
 
 [image: PlotTools]
Figure 3.9. 
The four subplots generated with "Plot Tools".
  



 
 [image: SubPlot]
Figure 3.10. 
The four subplots in a single figure.
  



Three-Dimensional Plots



 3D plots can be generated from the Command Window as well as by GUI alternatives. This time, we will go back to the Command Window.

The plot3 Statement



 With the X1,Y1,Y2 and Y2 variables still in the workspace, type in plot3(X1,Y1,Y2) at the MATLAB prompt. A figure will be generated, click "Show Plot Tools and Dock Figure".

 
 [image: Plot]
Figure 3.11. 
A raw 3D figure is generated with plot3.
  



 Use the property editor to make the following changes.
 
 [image: Plot]
Figure 3.12. 
3D Property Editor.
  

 The final result should look like this:
 
 [image: Plot]
Figure 3.13. 
3D graph of x, sin(x), cos(x)
  


 Use help or doc commands to learn more about 3D plots, for example, image(x), surf(x) and mesh(x).

Generate Code



 A code can be generated to reproduce the plots. To initialize this process, recall sinxcosx.fig and select File > Generate Code.

 
 [image: GenerateCode]
Figure 3.14. 
Generating code to reproduce a plot.
  



 
 [image: GenerateCode]
Figure 3.15. 
M-Code generation in progress.
  

 function createfigure2(X1, Y1, Y2, Y3, Y4)
%CREATEFIGURE2(X1,Y1,Y2,Y3,Y4)
%  X1:  vector of x data
%  Y1:  vector of y data
%  Y2:  vector of y data
%  Y3:  vector of y data
%  Y4:  vector of y data

%  Auto-generated by MATLAB on 05-Oct-2011 12:43:49

% Create figure
figure1 = figure;

% Create axes
axes1 = axes('Parent',figure1,'YGrid','on','XGrid','on',...
    'Position',[0.13 0.791155913978495 0.775 0.11741935483871]);
box(axes1,'on');
hold(axes1,'all');

% Create title
title('Graph of sin(x)');

% Create xlabel
xlabel('x');

% Create ylabel
ylabel('Sin(x)');

% Create plot
plot(X1,Y1,'Parent',axes1,'DisplayName','Y1 vs X1');

% Create axes
axes2 = axes('Parent',figure1,'YGrid','on','XGrid','on',...
    'Position',[0.13 0.572069892473118 0.775 0.11741935483871]);
box(axes2,'on');
hold(axes2,'all');

% Create title
title('Graph of cos(x)');

% Create xlabel
xlabel('x');

% Create ylabel
ylabel('Cos(x)');

% Create plot
plot(X1,Y2,'Parent',axes2,'DisplayName','Y2 vs X1');

% Create axes
axes3 = axes('Parent',figure1,'YGrid','on','XGrid','on',...
    'Position',[0.13 0.352983870967742 0.775 0.11741935483871]);
box(axes3,'on');
hold(axes3,'all');

% Create title
title('Graph of sin(x)+cos(x)');

% Create xlabel
xlabel('x');

% Create ylabel
ylabel('Cos(x)+Sin(x)');

% Create plot
plot(X1,Y3,'Parent',axes3,'DisplayName','Y3 vs X1');

% Create axes
axes4 = axes('Parent',figure1,'YGrid','on','XGrid','on',...
    'Position',[0.13 0.133897849462366 0.775 0.11741935483871]);
box(axes4,'on');
hold(axes4,'all');

% Create title
title('Graph of sin(x)-cos(x)');

% Create xlabel
xlabel('x');

% Create ylabel
ylabel('Sin(x)-Cos(x)');

% Create plot
plot(X1,Y4,'Parent',axes4,'DisplayName','Y4 vs X1');
 As you can see, the file assumes you are using the same variables originally used to create the graph, therefore the variables need to be  passed as arguments in the future executions of the generated code.

Summary of Key Points



 	plot(x, y) and plot3(X1,Y1,Y2) statements create 2- and 3-D graphs respectively,

	Plots at minimum should contain the following elements: title, xlabel, ylabel and legend,

	Annotated plots can be easily generated with GUI Plot Tools,

	MATLAB can generate code to reproduce plots.





3.2. Problem Set*



Exercise 1.
 
   Plot 
  y=a+bx
, using the specified coefficients and ranges (use increments of 0.1): 


 	
  a=2
, 
  b=0.3


for 

  0≤x≤5


	
  a=3
, 
  b=0
 for

  0≤x≤10



	
  a=4
,
 
  b=-0.3
 for 
  0≤x≤15












 	
 
a=2; b=.3; x=[0:.1:5]; y=a+b*x; 
plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid




	
 
a=3; b=.0; x=[0:.1:10]; y=a+b*x; 
plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid




	
 
a=2; b=.3; x=[0:.1:5]; y=a+b*x; 
plot(x,y),title('Graph of y=a+bx'),xlabel('x'),ylabel('y'),grid








  



Exercise 2.
 
   Plot the following functions, using increments of 0.01 and 
  a=6
, 
  b=0.8
, 
  0≤x≤5
: 


 	
  y=a+xb



	
  y=axb



	

  y=asin(x)











 	
 
a=6; b=.8; x=[0:.01:5]; y=a+x.^b; 
plot(x,y),title('Graph of y=a+x^b'),xlabel('x'),ylabel('y'),grid


 [image: 2a]



	
 
a=6; b=.8; x=[0:.01:5]; y=a*x.^b; 
plot(x,y),title('Graph of y=ax^b'),xlabel('x'),ylabel('y'),grid


 [image: 2a]


	
 
a=6; x=[0:.01:5]; y=a*sin(x); 
plot(x,y),title('Graph of y=a*sin(x)'),xlabel('x'),ylabel('y'),grid


 [image: 2a]





  



Exercise 3.
 
   Plot function



for



using increments of





  



 x = pi/100:pi/100:10*pi;
y = sin(x)./x;
plot(x,y),title('Graph of y=sin(x)/x'),xlabel('x'),ylabel('y'),grid


 [image: PlotExercise]
Figure 3.15. 
Graph of 



  



Exercise 4.
 
   Data collected from Boyle's Law experiment are as follows:

Table 3.1. 	Volume [cm^3]	Pressure [Pa]
	7.34	100330
	7.24	102200
	7.14	103930
	7.04	105270
	6.89	107400
	6.84	108470
	6.79	109400
	6.69	111140
	6.64	112200




Plot a graph of Pressure vs Volume, annotate your graph.
  



 Pressure=[100330,102200,103930,105270,107400,108470,109400,111140,112200];
Volume=[7.34,7.24,7.14,7.04,6.89,6.84,6.79,6.69,6.64];
plot(Volume, Pressure),title('Pressure Volume Graph'),xlabel('Volume'),ylabel('Pressure'),grid


 [image: PV Graph]

  



Exercise 5.
 
   The original data collected from Boyle's
[5] 
experiment are as follows:

Table 3.2. 	Volume [tube-inches]	Pressure [inches-Hg]
	12	29.125
	10	35.000
	8	43.688
	6	58.250
	5	70.000
	4	87.375
	3	116.500




Plot a graph of Pressure vs Volume, annotate your graph.
  



 >> P=[29.125,35,43.688,58.25,70,87.375,116.5];
>> V=[12,10,8,6,5,4,3];
>> plot(V,P),title('Pressure Volume Graph'),xlabel('Volume'),ylabel('Pressure'),grid


 [image: PV Graph]



Exercise 6.
 
   Display the two plots created earlier in one plot.
  



 [image: PV Graph]
  



Exercise 7.
 
   A tensile test of SAE 1020 steel produced the data below
[6] 
experiment are as follows:

Table 3.3. 	Extension [mm]	Load [kN]
	0.00	0.0
	0.09	1.9
	0.31	6.1
	0.47	9.4
	2.13	11.0
	5.05	11.7
	10.50	12.0
	16.50	11.9
	23.70	10.7
	27.70	9.3
	34.50	8.1




Plot a graph of Load vs Extension, annotate your graph.
  
  



 Extension=[0.00,0.09,0.31,0.47,2.13,5.05,10.50,16.50,23.70,27.70,34.50];
Load=[0.0,1.9,6.1,9.4,11.0,11.7,12.0,11.9,10.7,9.3,8.1];

plot(Extension, Load),title('Load versus Extension Curve'),xlabel('Extension'),ylabel('Load'),grid


 [image: LoadVsExtension]
  



Exercise 8.
 
   Given below is Stress-Strain data for a type 304 stainless steel.
[7] 
experiment are as follows:

Table 3.4. 	Stress [MPa]	Strain [mm/mm]
	0.0	0.0000
	38.6	0.0002
	77.2	0.0004
	115.8	0.0006
	154.4	0.0008
	193.0	0.0010
	218.0	0.0012
	232.0	0.0014
	258.0	0.0020
	268.0	0.0025
	273.0	0.0030
	278.0	0.0035
	282.0	0.0040
	320.0	0.0200
	382.0	0.0500
	466.0	0.1000
	520.0	0.1500
	548.0	0.2000
	550.0	0.2100
	538.0	0.2500
	480.0	0.3000




Plot a graph of Stress vs Strain, annotate your graph.
  
  
  



The data can be entered using Variable Editor:




 [image: variables]




Then execute the following:


 plot(Strain,Stress),title('Stress versus Strain Curve'),xlabel('Strain [mm/mm]'),ylabel('Stress [mPa]'),grid




 [image: StressStrain]






Solutions


Preface



 In my tenth year at the Institute, I dedicate this book to the BCIT community.



 The primary purpose of writing a book and distributing it free-of-charge is to extend my gratitude to  BCIT. I am particularly thrilled to do it with this textbook because it is a product of many learning opportunities BCIT has offered me over a period of several years. What follows is a brief background on how this book came to be.
 My post-secondary teaching career began on 22 January 2001 at the Pacific Marine Training Campus of BCIT when I logged on to a Unix workstation to instruct in the Propulsion Plant Simulator. That has been a major milestone in many ways in my professional life. While learning inner workings of Unix operating system (OS), I also made a discovery and that discovery profoundly changed my view on how I thought the world operated. The discovery was the GNU/Linux OS and open source software (OSS) movement through several books, most notably Just for Fun: The Story of an Accidental Revolutionary[1]  and The Cathedral and the Bazaar[2]. I was convinced that the collective power of connected individuals around the world and the global infrastructure of the Internet had the potential to change the ways the world functioned. 



 In the last 10 years, BCIT has allowed me to study various subjects through its Professional Development (PD) programs for which I am very grateful. I learned a great deal in PD courses and in one of the recent ones, I had two déjà vu moments similar to my discovery of OSS movement. The first one occurred when I began reading The Wealth of Networks[3] and the second one when I found about  Connexions. The former was a confirmation of my 10-year old discovery and the latter is what I am using to write this book. Connexions is a web-based curricular content authoring and publishing technology that I believe has a growing potential for writing and distributing free-of-charge learning materials.

 Thus, motivation for this book stems from the notions that were generated by the OSS movement. The book was written to pay a small token of appreciation to BCIT and I hope it will be a contribution to the open educational resources repository. 
 

Serhat Beyenir


North Vancouver, B. C. 


25 October 2011



[1]  
    
  Just for Fun: The Story of an Accidental Revolutionary
  by L. Torvalds and D. Diamond, New York: HarperCollins Publishers. © 2001

  

[2]  
    
  The Cathedral and the Bazaar
  by E. S. Raymond, Sebastopol: O’Reilly Media. © 1999

  

[3]  
    
  The Wealth of Networks
  by Y. Benkler, New Haven: Yale University Press. © 2006

  



