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Chapter 1

Introduction1

In 1990, it was estimated that Cray Research's installed base of approximately 200 machines spent 40% of
all CPU cycles computing the fast Fourier transform (FFT) [58]. With each machine worth about USD$25
million, the performance of the FFT was of prime importance.

Today, use of the FFT is even more pervasive, and it is counted among the 10 algorithms that have had
the greatest in�uence on the development and practice of science and engineering in the 20th century [25].
Huge numbers of mobile smartphones, tablets and PCs [80], [34], most of which are equipped with single-
instruction, multiple-data (SIMD) [32], [35] microprocessors, compute the FFT on a large scale for a plethora
of sound, video and image processing applications. In the space of a few years, mobile applications have
become a part of many people's everyday lives [49].

This thesis shows that the key to optimizing the performance of the split-radix FFT algorithms on SIMD
microprocessors is latency and spatial locality optimizations, and in some cases, a variant of the split-radix
FFT called the conjugate-pair algorithm [50], [64], [72], [95]. It is also shown that extensive machine speci�c
calibration may be super�uous.

1.1 Hypotheses

FFTW [44], [47], [59], SPIRAL [41], [93], [91] and UHFFT [5], [8], [3], [84], [82] are state of the art FFT
libraries that employ automatic empirical optimization. SPIRAL automatically performs machine-speci�c
optimizations at compile time, and FFTW and UHFFT automatically adapt to a machine at run-time. Aside
from the use of automatic optimization, a common denominator among these libraries is the use of large
straight line blocks of code and optimized memory locality.

The hypotheses outlined below test whether good heuristics and model-based optimization can be used
in the place of automatic empirical optimization.

1.1.1 Hypothesis 1: Accessing memory in sequential �streams� is critical for best

performance

Large FFT exhibit poor temporal locality, and when computing these transforms on microprocessor based
systems that feature a cache, best performance is typically achieved when �streaming� sequential data through
the CPU. Hypothesis 1 is tested in Implementation Details (Chapter 3) with replicated coe�cient lookup
tables that trade-o� increased memory size for better spatial locality, and in Streaming FFT (Chapter 5) by
topologically sorting a directed acyclic graph (DAG) of sub-transforms to again improve spatial locality.

1This content is available online at <http://cnx.org/content/m43792/1.2/>.
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2 CHAPTER 1. INTRODUCTION

1.1.2 Hypothesis 2: The conjugate-pair algorithm is faster than the ordinary

split-radix algorithm

Hypothesis 2 is based on the idea that memory bandwidth is a bottleneck, and on the fact that the conjugate-
pair algorithm requires only half the number of twiddle factor loads. This hypothesis is tested in Split-radix
vs. conjugate-pair (Section 7.6: Split-radix vs. conjugate-pair), where a highly optimized implementation
of the conjugate-pair algorithm is benchmarked against an equally highly optimized implementation of the
ordinary split-radix algorithm.

1.1.3 Hypothesis 3: The performance of an FFT can be predicted based on

characteristics of the underlying machine and the compiler

Exploratory experiments suggest that good results can be obtained without empirical techniques, and that
certain parameters can be predicted based on the characteristics of the underlying machine and the compiler
used. Hypothesis 3 is tested in Results and Discussion (Chapter 7) by building a model that predicts perfor-
mance, and by benchmarking FFTW against an implementation that does not require extensive calibration,
on 18 di�erent machines.

1.2 Scope

In investigating the hypotheses, the scope of this work has been limited in several ways:

1. It is limited to single-threaded complex 1D FFTs, because multi-dimensional, multi-threaded or multi-
processor FFTs (or any combination thereof) are ultimately decomposed into 1D components running
on a single core, and all other things being equal, it is the performance of these 1D components running
on a single microprocessor core that determines the overall performance of a given multi-threaded
implementation;

2. It is limited to transforms that operate on vectors of length 2m where m ∈ N0, because these are the
easiest to compute on machines, and consequently the most often used by applications. This excludes
the prime-factor algorithm [88], [105], and the Radar [101] and Bluestein [15], [88], [99] algorithms for
prime sizes;

3. It is limited to the split-radix [27], [30], [77], [107], [111] and conjugate-pair [50], [64], [72], [95] algo-
rithms. The Winograd algorithm [26], [30], [54], [109] is excluded because of its low performance on
systems where multiplication costs about the same as addition;

4. It is limited to out-of-place transforms, because they are generally faster than in-place transforms,
except at the boundaries of the cache [7];

5. The benchmark experiments are limited to the Intel x86 and ARM machines, because it is estimated
that 92% of the microprocessors in the rapidly expanding mobile market are ARM devices [34], while
Intel's share of the worldwide PC and mobile PC microprocessors markets is estimated to be 79.3%
and 84.4%, respectively [80].

1.3 Contributions

The contributions of this work are summarized as follows:

1. Three methods of computing the conjugate-pair algorithm on SIMD microprocessors are described in
Streaming FFT (Chapter 5);

2. The source code for the high-performance SIMD FFT library developed in this thesis is publicly
available under a permissive open source licence on github.2

2http://github.com/anthonix/s�t
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1.4 Organization

This work is divided into two parts. The �rst part, Chapters 1-4, encompasses the relevant background,
while the second part, Chapters 5-8, is concerned with contributions that challenge the state of the art.

A brief overview of the contents of each chapter:

2. Algorithms (Chapter 2) provides an overview of FFT algorithms from the mathematical perspective;
3. Implementation details (Chapter 3) complements the mathematical perspective of the previous chapter

with a more focused view of the low level details that are relevant to e�cient implementation on SIMD
microprocessors;

4. Existing libraries (Chapter 4) reviews existing state of the art libraries, with reference to algorithms
and implementation details of the previous chapters;

5. Streaming FFT (Chapter 5) describes SFFT, a library for SIMD microprocessors that is, in many
cases, faster than the state of the art FFT libraries reviewed in Existing libraries (Chapter 4);

6. Benchmark methods (Chapter 6) describes the benchmarking methods used to evaluate performance
and accuracy of various FFT implementations throughout this work;

7. Results and discussion (Chapter 7) presents the results of benchmarks on 18 di�erent machines, as well
as the results of model-based optimization experiments, with reference to earlier chapters and other
related work;

8. Conclusions and future work (Chapter 8) concludes the work with a review of the hypotheses, a
summary of the contributions, and some idea for directions that future work might take.

Available for free at Connexions <http://cnx.org/content/col11438/1.2>
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Chapter 2

Algorithms1

E�cient computation of the fast Fourier transform (FFT) requires an understanding of the computation at
every level of abstraction, from the high-level algorithmic view down to the low-level details of the target
machine (or failing that, a lot of time to code all known FFT algorithms and exhaustively search the
con�guration space). This chapter provides an overview of FFT from the mathematical perspective.

Fast Fourier transform algorithms are derived from the discrete Fourier transform (DFT), which is for-
mally de�ned as [17]:

Xk =
N−1∑
n=0

ωnkN xn (2.1)

where k = 0, · · · , N − 1 and ωN is the primitive root-of-unity, de�ned as e−2π
√
−1/N (often referred to as

a �twiddle factor� in the context of fast Fourier transforms). Xk and xn are sequences of complex numbers,
Xk being the outputs in the frequency domain, and xn being the inputs in the time or space domain.

A source of mild confusion in the FFT literature is the sign of the twiddle factor [79]; the de�nition in
(2.1) is considered to be the engineers view of the discrete Fourier transform, where the goal is to compute
the coe�cients of a discrete Fourier series. Mathematicians, on the other hand, typically view the DFT as a
method of evaluating a polynomial at the powers of a primitive root of unity, and thus consider (2.1) to be
an inverse DFT [79]. Cooley and Tukey [20], Fiduccia [33] and Bernstein [13] are notable examples of those
who adopt the mathematicians convention. This work adopts the engineer's view of a DFT, and thus the
inverse discrete Fourier transform (IDFT) is de�ned by the following equation:

xn =
1
N

N−1∑
k=0

ω−nkN Xk (2.2)

where n = 0, · · · , N − 1. It should be noted that in some implementations, such as FFTW and the
implementation presented in this thesis, the IDFT is actually non-normalised for reasons of e�ciency; i.e.,
IFFT (FFT (x)) = Nx, thus avoiding division of each of the samples in time by N [45].

2.1 Cooley-Tukey

In 1965 James Cooley and John Tukey published a description of an economical algorithm for computing
the DFT that became known as the Cooley-Tukey FFT, or simply the FFT due to its overwhelming pop-
ularity [20]. A later investigation by Heideman, Johnson and Burrus [55] revealed that the algorithm had
actually been discovered several times in various forms prior to Cooley and Tukey, most notably by Gauss
sometime around 1805 [18].

1This content is available online at <http://cnx.org/content/m43799/1.1/>.
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6 CHAPTER 2. ALGORITHMS

The algorithm recursively divides a transform of size N = N1N2 into smaller DFTs of size N1 and N2

(where N is highly composite), reducing the time complexity from O(n2) to O(nlogn) by exploiting common
factors.

As the algorithm recursively divides a DFT, either N1 or N2 is typically a small factor, and is known as
the radix. Small N1 characterizes the algorithm as being decimation-in-time (DIT), otherwise the algorithm
is decimation-in-frequency (DIF). If the radix changes between stages, then the algorithm is referred to as
`mixed-radix'.

For example, a radix-2 decimation-in-time algorithm decomposes (2.1) into a sum over the even indices
(n = 2n2) and a sum over the odd indices (n = 2n2 + 1):

Xk =
N/2−1∑
n2=0

ω
(2n2)k
N x2n2 +

N/2−1∑
n2=0

ω
(2n2+1)k
N x2n2+1 (2.3)

The trigonometric coe�cient in the second sum can be expanded to ω2n2k
N ωkN , and the term now common

to both sums is simpli�ed using the identity ωmnkN = ωnkN/m. Because one of the trigonometric coe�cients in
the second sum is constant with respect to the index variable, it may be factored out to obtain:

Xk =
N/2−1∑
n2=0

ωn2k
N/2 x2n2 + ωkN

N/2−1∑
n2=0

ωn2k
N/2 x2n2+1 (2.4)

where the two sums are now DFTs of the even indexed terms (x2n2) and the odd indexed terms (x2n2+1),
which are combined with twiddle factor ωkN .

In order to compute the transform more e�ciently, the Cooley-Tukey algorithm divides Xk into two
halves, and exploits the periodicity of sub-transforms and symmetries in the trigonometric coe�cients.
Firstly, (2.4) is rewritten as two halves with Ek substituted for the even sub-transform, and Ok substituted
for the odd sub-transform:

Xk = Ek + ωkNOk

Xk+N/2 = Ek+N/2 + ω
k+N/2
N Ok+N/2

(2.5)

where k = 0, · · · , N/2− 1. Because of the periodicity property of the outputs of a DFT, Ek = Ek+N/2 and
Ok = Ok+N/2, (2.5) simpli�es thus:

Xk = Ek + ωkNOk

Xk+N/2 = Ek + ω
k+N/2
N Ok

(2.6)

And �nally, by exploiting symmetries in the complex exponential function, namely that ω
k+N/2
N = −ωkN ,

the radix-2 DIT FFT can be expressed as:

Xk = Ek + ωkNOk

Xk+N/2 = Ek − ωkNOk
(2.7)

which makes it clear that each pair of outputs share common computation, approximately halving the
number of arithmetic operations when compared to the DFT. But since the even and odd terms in (2.7) are
themselves DFTs that can be computed with the FFT, the savings compound with each stage of recursion.
The total number of real arithmetic operations required to compute the radix-2 FFT can be expressed with
the following recurrence relation:

T (n) = {
2T (n/2) + 5n− 6 for n ≥ 2

0 for n = 1
(2.8)

which is in Θ (nlogn).

Available for free at Connexions <http://cnx.org/content/col11438/1.2>
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2.2 Split-radix

In 1968 a derivitive of the Cooley-Tukey algorithm broke the record for the lowest number of arithmetic
operations for computing the DFT [31], [78], [108]. The algorithm was initially discovered by Yavne [112],
but was not widely cited until 1984 when it was rediscovered by Duhamel and Hollman [28] and became
known as the split-radix algorithm.

The split-radix algorithm improves the arithmetic complexity of the Cooley-Tukey algorithm by further
decomposing the odd parts into odd-odd and odd-even parts, while the even parts are left alone because
they have no multiplicative factor. More formally, (2.1) can be re-written as three sums:

Xk =
∑N/2−1
n2=0 ω2n2k

N x2n2 +
∑N/4−1
n4=0 ω

(4n4+1)k
N x4n4+1 +

∑N/4−1
n4=0 ω

(4n4+3)k
N x4n4+3

(2.9)

where n = 4n4 = 2n2. As with the Cooley-Tukey radix-2 example in "Cooley-Tukey" (Section 2.1: Cooley-
Tukey), the trigonometric coe�cients are expanded and simpli�ed, and the terms constant with respect to
the index variables factored out:

Xk =
∑N/2−1
n2=0 ωn2k

N/2 x2n2 + ωkN
∑N/4−1
n4=0 ωn4k

N/4 x4n4+1 + ω3k
N

∑N/4−1
n4=0 ωn4k

N/4 x4n4+3
(2.10)

By substituting the even sum with Uk (where k = 0, · · · , N/2−1) and the odd sums with Zk and Z
'

k (where
k = 0, · · · , N/4− 1), (2.10) is simpli�ed:

Xk = Uk + ωkNZk + ω3k
N Z

'

k (2.11)

Computation can be factored out of (2.11) by again exploiting periodicity in the sub-transforms and sym-
metries in the twiddle factors. (2.11) is �rst expressed as an equation of four parts:

Xk = Uk + ωkNZk + ω3k
N Z

'

k

Xk+N/2 = Uk+N/2 + ω
k+N/2
N Zk+N/2 + ω

3(k+N/2)
N Z '

k+N/2

Xk+N/4 = Uk+N/4 + ω
k+N/4
N Zk+N/4 + ω

3(k+N/4)
N Z '

k+N/4

Xk+3N/4 = Uk+3N/4 + ω
k+3N/4
N Zk+3N/4 + ω

3(k+3N/4)
N Z '

k+3N/4

(2.12)

where k = 0, · · · , N/4 − 1. The periodicity properties of the sub-transforms can be expressed with the
relationships Uk = Uk+N/2, Zk = Zk+N/4 and Z '

k = Z '

k+N/4. These are used to simplify (2.12) thus:

Xk = Uk + ωkNZk + ω3k
N Z

'

k

Xk+N/2 = Uk + ω
k+N/2
N Zk + ω

3(k+N/2)
N Z '

k

Xk+N/4 = Uk+N/4 + ω
k+N/4
N Zk + ω

3(k+N/4)
N Z '

k

Xk+3N/4 = Uk+N/4 + ω
k+3N/4
N Zk + ω

3(k+3N/4)
N Z '

k

(2.13)

Symmetries in the complex exponential function are again used to expose common computation among each
part of the equation; hence

Xk = Uk +
(
ωkNZk + ω3k

N Z
'

k

)
Xk+N/2 = Uk −

(
ωkNZk + ω3k

N Z
'

k

)
Xk+N/4 = Uk+N/4 − i

(
ωkNZk − ω3k

N Z
'

k

)
Xk+3N/4 = Uk+N/4 + i

(
ωkNZk − ω3k

N Z
'

k

) (2.14)

Available for free at Connexions <http://cnx.org/content/col11438/1.2>



8 CHAPTER 2. ALGORITHMS

which, when recursively applied to the sub-transforms, results in the following recurrence relation for real
arithmetic operations:

T (n) = {
T (n/2) + 2T (n/4) + 6n− 4 for n ≥ 2

0 for n = 1
(2.15)

The exact solution T (n) = 4nlog2n − 6n + 8 for n ≥ 2 was the best arithmetic complexity of all known
FFT algorithms for over 30 years, until Van Buskirk was able to break the record in 2004 [76], as described
in "Tangent" (Section 2.3: Tangent).

Van Buskirk's arithmetic complexity breakthrough was based on a variant of the split-radix algorithm
known as the �conjugate-pair� algorithm [65] or the �−1 exponent� split-radix algorithm [13], [79]. In 1989
the conjugate-pair algorithm was published with the claim that it had broken the record set by Yavne in 1968
for the lowest number of arithmetic operations for computing the DFT [65]. Unfortunately the reduction
in the number of arithmetic operations was due to an error in the author's analysis, and the algorithm
was subsequently proven to have an arithmetic count equal to the original split-radix algorithm [51], [96],
[73]. Despite initial claims about the arithmetic savings being discredited, the conjugate-pair algorithm
has been used to reduce twiddle factor loads in software implementations of the FFT and fast Hartley
transform (FHT) [65], and the algorithm was also recently used as the basis for an algorithm that does
reduce the arithmetic operation count, as described in "Tangent" (Section 2.3: Tangent).

The di�erence between the conjugate-pair algorithm and the split-radix algorithm is in the decomposition
of odd elements. In the standard split-radix algorithm, the odd elements are decomposed into two parts:
x4n4+1 and x4n4+3 (see (2.10)), while in the conjugate-pair algorithm, the last sub-sequence is cyclically
shifted by −4, where negative indices wrap around (i.e., x−1 = xN−1). The result of this cyclic shift is that
twiddle factors are now conjugate pairs. Formally, the conjugate-pair algorithm is de�ned as:

Xk =
∑N/2−1
n2=0 ωn2k

N/2 x2n2 + ωkN
∑N/4−1
n4=0 ωn4k

N/4 x4n4+1 + ω−kN
∑N/4−1
n4=0 ωn4k

N/4 x4n4−1
(2.16)

As with the ordinary split-radix algorithm, a DIT decomposition of the conjugate-pair algorithm can be
expressed as a system of equations:

Xk = Uk +
(
ωkNZk + ω−kN Z '

k

)
Xk+N/2 = Uk −

(
ωkNZk + ω−kN Z '

k

)
Xk+N/4 = Uk+N/4 − i

(
ωkNZk − ω

−k
N Z '

k

)
Xk+3N/4 = Uk+N/4 + i

(
ωkNZk − ω

−k
N Z '

k

) (2.17)

where k = 0, · · · , N/4 − 1. As can be seen, the trigonometric coe�cients are conjugates � a feature that
can be exploited to reduce twiddle factor loads.

2.3 Tangent

In 2004, some thirty years after Yavne set the record for the lowest arithmetic operation count, Van Buskirk
posted software to Usenet that had asymptotically reduced the arithmetic operation count by about 6%.
Three papers were subsequently published [76], [13], [62] with di�ering explanations on how to achieve the
lowest arithmetic operation count initially demonstrated by Van Buskirk.

Although all three papers describe algorithms that achieve the lowest arithmetic operation count in the
same way, and thus can be considered to be di�erent views of the same algorithm, all three papers refer to
the algorithms by di�erent names. Lundy and Van Buskirk [76] refer to their algorithm as �scaled odd tail
FFT�, Bernstein [13] describes an algorithm named �tangent FFT�, while Johnson and Frigo [62] refer to
the algorithm by various names. Many works have cited Johnson and Frigo for the algorithm [19]. Of these

Available for free at Connexions <http://cnx.org/content/col11438/1.2>



9

names, �tangent FFT� is used in this work because it is the most descriptive; scaling the twiddle factors into
tangent form was the linchpin of Van Buskirk's breakthrough in arithmetic complexity.

Bernstein expresses a DIF decomposition of the tangent FFT in a very concise but somewhat obscure
polynomial form that was �rst practised by Fiduccia [33]. In order to be consistent with earlier sections,
a DIT decomposition of the tangent FFT using linear functions will be described in this section.2 While
the polynomial form is more elegant and concise, expressing the FFT in terms of linear functions has the
advantage of mapping to software or hardware more directly.

The key to the tangent FFT is Van Buskirk's observation that if the trigonometric constant ωkN =
cosθ+isinθ is factored as (1 + itanθ) cosθ or (cotθ + i) sinθ, the multiplication by cosθ or sinθ can sometimes
be absorbed elsewhere in the computation, assuming the constants are precomputed, and the remaining
multiplication by constants of the form ± (1 + itanθ) or ± (cotθ + i) now only costs four �oating point
operations instead of six, assuming the usual scheme of complex multiplication using four multiply and two
add operations.

Firstly, consider the conjugate-pair FFT being recursively scaled by a wavelet sN,k:

Xk

sN,k
= Uk

(
sN/2,k

sN,k

)
+ ωkN

(
sN/4,k

sN,k

)
Zk + ω−kN

(
sN/4,k

sN,k

)
Z '

k (2.18)

for k = 0, · · · , N/4 − 1, and where Uk is evaluated with Xk/sN/2,k, and Zk and Z '

k are evaluated with
Xk/sN/4,k.

The wavelet is crafted such that it is periodic in k (i.e., sN,k = sN,k+N/4) and ω
k
N

(
sN/4,k/sN,k

)
is of the

form ± (1 + itanθ) or ± (cotθ + i). Bernstein de�nes the wavelet as [13]:

sN,k =
∏
`≥0

max{
∣∣∣∣cos(4`2πk

N

)∣∣∣∣ , ∣∣∣∣sin(4`2πk
N

)∣∣∣∣} (2.19)

Multiplying Zk and Z
'

k by the scaled constants saves a total of four �oating point operations, while scaling
Uk costs four operations, resulting in no gain or loss. But the cost of scaling the result back to Xk is
about 2N real operations. In order to realize a reduction in the number of �oating point operations, the
split-radix FFT is decomposed further, so that the extra operations can be absorbed into constants in the
sub-transform. Starting with the unscaled split-radix FFT (see (2.9)), the sum over the x2n2 terms is itself
decomposed with a split-radix decomposition into x4n4 , x8n8+2 and x8n8+6, resulting in a DFT of �ve sums:

Xk =
∑N/4−1
n4=0 ω4n4k

N x4n4 +
∑N/8−1
n8=0 ω

(8n8+2)k
N x8n8+2 +

∑N/8−1
n8=0 ω

(8n8+6)k
N x8n8+6

+
∑N/4−1
n4=0 ω

(4n4+1)k
N x4n4+1 +

∑N/4−1
n4=0 ω

(4n4+3)k
N x4n4+3 (2.20)

where n = 4n4 = 8n8. As with earlier decompositions, invariants are factored out to obtain:

Xk =
∑N/4−1
n4=0 ω4n4k

N x4n4 + ω2k
N

∑N/8−1
n8=0 ωn8k

N/8 x8n8+2 + ω6k
N

∑N/8−1
n8=0 ωn8k

N/8 x8n8+6

+ ωkN
∑N/4−1
n4=0 ωn4k

N/4 x4n4+1 + ω3k
N

∑N/4−1
n4=0 ωn4k

N/4 x4n4+3 (2.21)

Following from the conjugate-pair split-radix algorithm, x8n8+6 is shifted cyclically by −8 and x4n4+3 is

2Although derived di�erently, the underlying structure presented here is identical to the network transpose of Bernstein's
tangent FFT. In contrast to Johnson and Frigo's algorithm of four sub-transforms, the view presented here uses only one
sub-transform and a scaled split-radix transform.
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10 CHAPTER 2. ALGORITHMS

shifted cyclically by −4 to obtain:

Xk =
∑N/4−1
n4=0 ω4n4k

N x4n4 + ω2k
N

∑N/8−1
n8=0 ωn8k

N/8 x8n8+2 + ω−2k
N

∑N/8−1
n8=0 ωn8k

N/8 x8n8−2

+ ωkN
∑N/4−1
n4=0 ωn4k

N/4 x4n4+1 + ω−kN
∑N/4−1
n4=0 ωn4k

N/4 x4n4−1 (2.22)

where x−n = xN−n. Note that the sums over x8n8+2 and x8n8−2 are multiplied by constants that are now
conjugate pairs, as are the sums over x4n4+1 and x4n4−1.

The sum over x4n4 is now substituted with Uk (where k = 0, · · · , N/4− 1), while the sums over x8n8+2

and x8nn−2 are respectively substituted with Yk and Y
'

k (where k = 0, · · · , N/8−1) and the sums over x4n4+1

and x4n4−1 respectively substituted with Zk and Z
'

k (where k = 0, · · · , N/4− 1), simplifying (2.22) thus:

Xk = Uk + ω2k
N Yk + ω−2k

N Y '

k + ωkNZk + ω−kN Z '

k (2.23)

As with earlier examples, computation is factored out of (2.23) by exploiting periodicity in the sub-transforms
and symmetries in the twiddle factors. (2.23) is �rst expressed as a parametric equation of eight parts:

Xk+pN = Uk+pN + ω
2(k+pN)
N Yk+pN + ω

−2(k+pN)
N Y '

k+pN + ωk+pNN Zk+pN + ω
−(k+pN)
N Z '

k+pN
(2.24)

where k = 0, · · · , N/8− 1 and ∀p ∈ {0, 1
2 ,

1
4 ,

3
4 ,

1
8 ,

3
8 ,

5
8 ,

7
8}. By exploiting periodicity in the sub-transforms:

Uk = Uk+N/4

Yk = Yk+N/8

Y '

k = Y '

k+N/8

Zk = Zk+N/4

Z '

k = Z '

k+N/4

(2.25)

and the following symmetries in the twiddle factors:

ω2k
N = ω

2(k+N/2)
N = −ω2(k+N/4)

N = −ω2(k+3N/4)
N

= −iω2(k+N/8)
N = iω

2(k+3N/8)
N = −iω2(k+5N/8)

N

= iω
2(k+7N/8)
N

ω−2k
N = ω

−2(k+N/2)
N = −ω−2(k+N/4)

N = −ω−2(k+3N/4)
N

= iω
−2(k+N/8)
N = −iω−2(k+3N/8)

N = iω
−2(k+5N/8)
N

= −iω−2(k+7N/8)
N

ωkN = −ωk+N/2N = −iωk+N/4N = iω
k+3N/4
N

ω−kN = −ω−(k+N/2)
N = iω

−(k+N/4)
N = −iω−(k+3N/4)

N

ω
k+N/8
N = −iωk+3N/8

N = −ωk+5N/8
N = iω

k+7N/8
N

ω
−(k+N/8)
N = iω

−(k+3N/8)
N = −ω−(k+5N/8)

N = −iω−(k+7N/8)
N

(2.26)
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(2.24) is rewritten thus:

Xk = Uk +
(
ω2k
N Yk + ω−2k

N Y '

k

)
+
(
ωkNZk + ω−kN Z '

k

)
Xk+N/2 = Uk +

(
ω2k
N Yk + ω−2k

N Y '

k

)
−
(
ωkNZk + ω−kN Z '

k

)
Xk+N/4 = Uk −

(
ω2k
N Yk + ω−2k

N Y '

k

)
− i
(
ωkNZk − ω

−k
N Z '

k

)
Xk+3N/4 = Uk −

(
ω2k
N Yk + ω−2k

N Y '

k

)
+ i
(
ωkNZk − ω

−k
N Z '

k

)
Xk+N/8 = Uk+N/8 − i

(
ω2k
N Yk − ω

−2k
N Y '

k

)
+
(
ω
k+N/8
N Zk+N/8 + ω

−(k+N/8)
N Z '

k+N/8

)
Xk+3N/8 = Uk+N/8 + i

(
ω2k
N Yk − ω

−2k
N Y '

k

)
− i
(
ω
k+N/8
N Zk+N/8 − ω

−(k+N/8)
N Z '

k+N/8

)
Xk+5N/8 = Uk+N/8 − i

(
ω2k
N Yk − ω

−2k
N Y '

k

)
−
(
ω
k+N/8
N Zk+N/8 + ω

−(k+N/8)
N Z '

k+N/8

)
Xk+7N/8 = Uk+N/8 + i

(
ω2k
N Yk − ω

−2k
N Y '

k

)
+ i
(
ω
k+N/8
N Zk+N/8 − ω

−(k+N/8)
N Z '

k+N/8

)

(2.27)

By applying terms with the appropriate scaling, viz. αN,k = sN/4,k/sN,k, βN,k = sN/8,k/sN/2,k, γN,k =
sN/4,k+N/8/sN,k+N/8, δN,k = sN/2,k/sN,k and εN,k = sN/2,k+N/8/sN,k+N/8, (2.27) now becomes:

Xk/sN,k = UkαN,k +
(
βN,kω

2k
N Yk + βN,kω

−2k
N Y '

k

)
δN,k +(

αN,kω
k
NZk + αN,kω

−k
N Z '

k

)
Xk+N/2/sN,k = UkαN,k+

(
βN,kω

2k
N Yk + βN,kω

−2k
N Y '

k

)
δN,k−(

αN,kω
k
NZk + αN,kω

−k
N Z '

k

)
Xk+N/4/sN,k = UkαN,k−

(
βN,kω

2k
N Yk + βN,kω

−2k
N Y '

k

)
δN,k−

i
(
αN,kω

k
NZk − αN,kω

−k
N Z '

k

)
Xk+3N/4/sN,k = UkαN,k −(

βN,kω
2k
N Yk + βN,kω

−2k
N Y '

k

)
δN,k + i

(
αN,kω

k
NZk − αN,kω

−k
N Z '

k

)
Xk+N/8/sN,k =

Uk+N/8γN,k−i
(
βN,kω

2k
N Yk − βN,kω

−2k
N Y '

k

)
εN,k+

(
γN,kω

k+N/8
N Zk+N/8 + γN,kω

−(k+N/8)
N Z '

k+N/8

)
Xk+3N/8/sN,k =

Uk+N/8γN,k+i
(
βN,kω

2k
N Yk − βN,kω

−2k
N Y '

k

)
εN,k−i

(
γN,kω

k+N/8
N Zk+N/8 − γN,kω

−(k+N/8)
N Z '

k+N/8

)
Xk+5N/8/sN,k =

Uk+N/8γN,k−i
(
βN,kω

2k
N Yk − βN,kω

−2k
N Y '

k

)
εN,k−

(
γN,kω

k+N/8
N Zk+N/8 + γN,kω

−(k+N/8)
N Z '

k+N/8

)
Xk+7N/8/sN,k =

Uk+N/8γN,k+i
(
βN,kω

2k
N Yk − βN,kω

−2k
N Y '

k

)
εN,k+i

(
γN,kω

k+N/8
N Zk+N/8 − γN,kω

−(k+N/8)
N Z '

k+N/8

)

(2.28)

Assuming that the scaling factors are absorbed into precomputed twiddle factors where possible (e.g.,
αN,kω

k
N is a single precomputed constant), computing (2.28) requires about (68/8)N real operations, in

contrast to (72/8)N operations for (2.27). Further assuming that operations are skipped in the cases where
precomputed constants are of the form ±1 or ±i, a further 28 real operations are saved in (2.28). Thus the
arithmetic cost of (2.28) can be expressed with the following recurrence relation:

T (n) = {

3T (n/4) + 2T (n/8) +max{n− 12, 0}+ 7.5n− 16 for n ≥ 8

16 for n = 4

4 for n = 2

0 for n = 1

(2.29)

Bernstein gives the exact solution of (2.29) as [13]:

T (n) = (34/9)nlog2n− (142/27)n

− (2/9) (−1)log2nlog2n+ (7/27) (−1)log2n + 7
(2.30)

for n ≥ 2.
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(2.28) is scaled by sN,k, but if the application is convolution in frequency, the scaling could be absorbed
into the �lter, and the cost of scaling the results back to Xk avoided. Otherwise, a split-radix FFT can be
used to change basis, absorbing the scaling into the twiddle factors of the x4n4+1 and x4n4−1 terms:

Xk = Uk +
(
sN,kω

k
NZk + sN,kω

−k
N Z '

k

)
Xk+N/2 = Uk −

(
sN,kω

k
NZk + sN,kω

−k
N Z '

k

)
Xk+N/4 = Uk+N/4 − i

(
sN,kω

k
NZk − sN,kω

−k
N Z '

k

)
Xk+3N/4 = Uk+N/4 + i

(
sN,kω

k
NZk − sN,kω

−k
N Z '

k

) (2.31)

where Zk and Z '

k are now recursively computed with the tangent FFT of (2.28), and the Uk terms are
themselves computed with (2.31). The arithmetic cost of computing the tangent FFT in the traditional
basis is thus expressed:

T ' (n) = {
T ' (n/2) + 2T (n/4) + 3n+max{3n− 16, 0} for n ≥ 4

4 for n = 2

0 for n = 1

(2.32)

giving rise to Van Buskirk's exact operation count of [76]:

T ' (n) = (34/9)nlog2n− (124/27)n− 2log2n

− (2/9) (−1)log2nlog2n+ (16/27) (−1)log2n + 8
(2.33)

for n ≥ 2.
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Chapter 3

Implementation Details1

This Chapter complements the mathematical perspective of Algorithms (Chapter 2) with a more focused
view of the low level details that are relevant to e�cient implementation on SIMD microprocessors. These
techniques are widely practised by today's state of the art implementations, and form the basis for more
advanced techniques presented in later chapters.

3.1 Simple programs

Fast Fourier transforms (FFTs) can be succinctly expressed as microprocessor algorithms that are depth
�rst recursive. For example, the Cooley-Tukey FFT (2.7) divides a size N transform into two size N/2
transforms, which in turn are divided into size N/4 transforms. This recursion continues until the base case
of two size 1 transforms is reached, where the two smaller sub-transforms are then combined into a size 2
sub-transform, and then two completed size 2 transforms are combined into a size 4 transform, and so on,
until the size N transform is complete.

Computing the FFT with such a depth �rst traversal has an important advantage in terms of memory
locality: at any point during the traversal, the two completed sub-transforms that compose a larger sub-
transform will still be in the closest level of the memory hierarchy in which they �t (see, i.a., [104] and [60]).
In contrast, a breadth �rst traversal of a su�ciently large transform could force data out of cache during
every pass (ibid.).

Many implementations of the FFT require a bit-reversal permutation of either the input or the output
data, but a depth �rst recursive algorithm implicitly performs the permutation during recursion. The bit-
reversal permutation is an expensive computation, and despite being the subject of hundreds of research
papers over the years, it can easily account for a large fraction of the FFTs runtime � more so for the
conjugate-pair algorithm with the rotated bit-reversal permutation. Such permutations will be encountered
in later sections, but for the mean time it should be noted that the algorithms in this chapter do not require
bit-reversal permutations � the input and output are in natural order.

1This content is available online at <http://cnx.org/content/m43793/1.4/>.
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14 CHAPTER 3. IMPLEMENTATION DETAILS

IF~N = 1
~~~~RETURN~x_0
~~ELSE

~~~~E_k_2 = 0, · · · , N/2− 1 ← DITFFT2_N/2 (x_2n_2)
~~~~O_k_2 = 0, · · · , N/2− 1 ← DITFFT2_N/2 (x_2n_2 + 1)
~~~~FOR~k = 0~to~N/2− 1
~~~~~~X_k ← E_k + ω _Nˆk O_k
~~~~~~X_k +N/2 ← E_k − ω _Nˆk O_k
~~~~END~FOR

~~~~RETURN~X_k
~~ENDIF

Listing 3.1: DITFFT2N (xn)

3.1.1 Radix-2

A recursive depth �rst implementation of the Cooley-Tukey radix-2 decimation-in-time (DIT) FFT is de-
scribed with pseudocode in p. ??, and an implementation coded in C with only the most basic optimization
� avoiding multiply operations where ω0

N is unity in the �rst iteration of the loop � is included in Appendix
1 (Chapter 9). Even when compiled with a state-of-the-art auto-vectorizing compiler,2 the code achieves
poor performance on modern microprocessors, and is useful only as a baseline reference.3

Implementation Machine Runtime

Danielson-Lanczos, 1942 [24] Human 140 minutes

Cooley-Tukey, 1965 [21] IBM 7094 ∼ 10.5 ms

Listing 1, Appendix 1 (p. ??), 2011 Macbook Air 4,2 ∼ 440 µs

Table 3.1: Performance of simple radix-2 FFT from a historical perspective, for size 64 real FFT

However it is worth noting that when considered from a historical perspective, the performance does seem
impressive � as shown in Table 3.1. The runtimes in Table 3.1 are approximate; the Cooley-Tukey �gure is
roughly extrapolated from the �oating point operations per second (FLOPS) count of a size 2048 complex
transform given in their 1965 paper [21]; and the speed of the reference implementation is derived from the
runtime of a size 64 complex FFT (again, based on the FLOPS count). Furthermore, the precision di�ers
between the results; Danielson and Lanczos computed the DFT to 3�5 signi�cant �gures (possibly with
the aid of slide rules or adding machines), while the other results were computed with the host machines'
implementation of single precision �oating point arithmetic.

The runtime performance of the FFT has improved by about seven orders of magnitude in 70 years, and
this can largely be attributed to the computing machines of the day being generally faster. The following
sections and chapters will show that the performance can be further improved by over two orders of magnitude
if the algorithm is enhanced with optimizations that are amenable to the underlying machine.

2Intel(R) C Intel(R) 64 Compiler XE for applications running on Intel(R) 64, Version 12.1.0.038 Build 20110811.
3Benchmark methods (Chapter 6) contains a full account of the benchmark methods.
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3.1.2 Split-radix

~~IF~N = 1
~~~~RETURN~x_0
~~ELSIF~N = 2
~~~~X_0 ← x_0 + x_1
~~~~X_1 ← x_0 − x_1
~~ELSE

~~~~U_k_2 = 0, · · · , N/2− 1 ← SPLITFFT_N/2 (x_2n_2)
~~~~Z_k_4 = 0, · · · , N/4− 1 ← SPLITFFT_N/4 (x_4n_4 + 1)
~~~~Z_k_4 = 0, · · · , N/4− 1ˆ' ← SPLITFFT_N/4 (x_4n_4 + 3)
~~~~FOR~k = 0~to~N/4− 1
~~~~~~X_k ← U_k + (ω _Nˆk Z_k + ω _Nˆ3k Z_kˆ')
~~~~~~X_k +N/2 ← U_k − (ω _Nˆk Z_k + ω _Nˆ3k Z_kˆ')
~~~~~~X_k +N/4 ← U_k +N/4 − i (ω _Nˆk Z_k − ω _Nˆ3k Z_kˆ')
~~~~~~X_k + 3N/4 ← U_k +N/4 + i (ω _Nˆk Z_k − ω _Nˆ3k Z_kˆ')
~~~~END~FOR

~~ENDIF

~~RETURN~X_k

Listing 3.2: SPLITFFTN (xn)

As was the case with the radix-2 FFT in the previous section, the split-radix FFT neatly maps from the
system of linear functions (2.14) to the pseudocode of p. ??, and then to the C implementation included in
Appendix 1 (Chapter 9).

p. ?? explicitly handles the base case for N = 2, to accommodate not only size 2 transforms, but also size
4 and size 8 transforms (and all larger transforms that are ultimately composed of these smaller transforms).
A size 4 transform is divided into two size 1 sub-transforms and one size 2 transform, which cannot be further
divided by the split-radix algorithm, and so it must be handled as a base case. Likewise with the size 8
transform that divides into one size 4 sub-transform and two size 2 sub-transforms: the size 2 sub-transforms
cannot be further decomposed with the split-radix algorithm.

Also note that two twiddle factors, viz. ωkN and ω3
Nk, are required for the split-radix decomposition;

this is an advantage compared to the radix-2 decomposition which would require four twiddle factors for the
same size 4 transform.

3.1.3 Conjugate-pair

From a pseudocode perspective, there is little di�erence between the ordinary split-radix algorithm and the
conjugate-pair algorithm (see p. ??). In line 10, the x4n4+3 terms have been shifted cyclically by −4 to
x4n4−1, and in lines 12-15, the coe�cient of Z '

k has been shifted cyclically from ω3k
N to ω−kN .
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~~IF~N = 1
~~~~RETURN~x_0
~~ELSIF~N = 2
~~~~X_0 ← x_0 + x_1
~~~~X_1 ← x_0 − x_1
~~ELSE

~~~~U_k_2 = 0, · · · , N/2− 1 ← CONJFFT_N/2 (x_2n_2)
~~~~Z_k_4 = 0, · · · , N/4− 1 ← CONJFFT_N/4 (x_4n_4 + 1)
~~~~Z_k_4 = 0, · · · , N/4− 1ˆ' ← CONJFFT_N/4 (x_4n_4− 1)
~~~~FOR~k = 0~to~N/4− 1
~~~~~~X_k ← U_k + (ω _Nˆk Z_k + ω _Nˆ−k Z_kˆ')
~~~~~~X_k +N/2 ← U_k − (ω _Nˆk Z_k + ω _Nˆ−k Z_kˆ')
~~~~~~X_k +N/4 ← U_k +N/4 − i (ω _Nˆk Z_k − ω _Nˆ−k Z_kˆ')
~~~~~~X_k + 3N/4 ← U_k +N/4 + i (ω _Nˆk Z_k − ω _Nˆ−k Z_kˆ')
~~~~END~FOR

~~ENDIF

~~RETURN~X_k

Listing 3.3: CONJFFTN (xn)

The source code (p. ??) has a few subtle di�erences that are not revealed in the pseudocode. The
pseudocode in p. ?? requires an array of complex numbers xn for input, but the source code (p. ??) requires
a reference to an array of complex numbers with a stride4 � this avoids copying xn into three separate arrays,
viz. x2n2 , x4n4+1 and x4n4−1, with every invocation of p. ??. The subtle complication arises due to the
cyclic shifting of the x4n4−1 term; the negative shifting results in pointers that reference data before the start
of the array. Rather than immediately wrapping the references around to end of the array such that they
always point to valid data, the recursion proceeds until the base cases are reached before any adjustment is
performed. Once at the leaves of the recursion, any pointers that reference data lying before the start of the
input array are incremented by N elements,5 so as to point to the correct data.

4A stride of n would indicate that only every nth term is being referred to.
5In this case, N refers to the size of the outer most transform rather than the size of the sub-transform.
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~~IF~N = 1
~~~~RETURN~x_0
~~ELSIF~N = 2
~~~~X_0 ← x_0 + x_1
~~~~X_1 ← x_0 − x_1
~~ELSE

~~~~U_k_2 = 0, · · · , N/2− 1 ← TANGENTFFT4_N/2 (x_2n_2)
~~~~Z_k_4 = 0, · · · , N/4− 1 ← TANGENTFFT8_N/4 (x_4n_4 + 1)
~~~~Z_k_4 = 0, · · · , N/4− 1ˆ' ← TANGENTFFT8_N/4 (x_4n_4− 1)
~~~~FOR~k = 0~to~N/4− 1
~~~~~~X_k ← U_k + (ω _Nˆk s_N/4, k Z_k + ω _Nˆ−k s_N/4, k Z_kˆ')
~~~~~~X_k +N/2 ← U_k − (ω _Nˆk s_N/4, k Z_k + ω _Nˆ−k s_N/4, k Z_kˆ')
~~~~~~X_k +N/4 ← U_k +N/4 − i (ω _Nˆk s_N/4, k Z_k − ω _Nˆ−k s_N/4, k Z_kˆ')
~~~~~~X_k + 3N/4 ← U_k +N/4 + i (ω _Nˆk s_N/4, k Z_k − ω _Nˆ−k s_N/4, k Z_kˆ')
~~~~END~FOR

~~ENDIF

~~RETURN~X_k

Listing 3.4: TANGENTFFT4N (xn)
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~~IF~N = 1
~~~~RETURN~x_0
~~ELSIF~N = 2
~~~~X_0 ← x_0 + x_1
~~~~X_1 ← x_0 − x_1
~~ELSIF~N = 4
~~~~T_k_2 = 0, 1 ← TANGENTFFT8_2 (x_2n_2)
~~~~T_k_2 = 0, 1ˆ' ← TANGENTFFT8_2 (x_2n_2 + 1)
~~~~X_0 ← T_0 + T_0ˆ'
~~~~X_2 ← T_0 − T_0ˆ'
~~~~X_1 ← T_1 + T_1ˆ'
~~~~X_3 ← T_1 − T_1ˆ'
~~ELSE

~~~~U_k_4 = 0, · · · , N/4− 1 ← TANGENTFFT8_N/4 (x_4n_4)
~~~~Y _k_8 = 0, · · · , N/8− 1 ← TANGENTFFT8_N/8 (x_8n_8 + 2)
~~~~Y _k_8 = 0, · · · , N/8− 1ˆ' ← TANGENTFFT8_N/8 (x_8n_8− 2)
~~~~Z_k_4 = 0, · · · , N/4− 1 ← TANGENTFFT8_N/4 (x_4n_4 + 1)
~~~~Z_k_4 = 0, · · · , N/4− 1ˆ' ← TANGENTFFT8_N/4 (x_4n_4− 1)
~~~~FOR~k = 0~to~N/8− 1
~~~~~~α _N, k ← s_N/4, k / s_N, k
~~~~~~β _N, k ← s_N/8, k / s_N/2, k
~~~~~~γ _N, k ← s_N/4, k +N/8 / s_N, k +N/8
~~~~~~δ _N, k ← s_N/2, k/s_N, k
~~~~~~ε_N, k ← s_N/2, k +N/8/s_N, k +N/8
~~~~~~Ω _0 ← ω _Nˆk ∗ α _N, k
~~~~~~Ω _1 ← ω _Nˆk +N/8 ∗ γ _N, k
~~~~~~Ω _2 ← ω _Nˆ2k ∗ β _N, k
~~~~~~T_0 ←

(
Ω _2 Y _k + Ω _2 Y _k

)
∗ δ _N, k

~~~~~~T_1 ← i
(
Ω _2 Y _k − Ω _2 Y _k

)
∗ ε_N, k

~~~~~~X_k ← U_k ∗ α _N, k + T_0 +
(
Ω _0 Z_k + Ω _0 Z_kˆ'

)
~~~~~~X_k +N/2 ← U_k ∗ α _N, k + T_0 −

(
Ω _0 Z_k + Ω _0 Z_kˆ'

)
~~~~~~X_k +N/4 ← U_k ∗ α _N, k − T_0 − i

(
Ω _0 Z_k − Ω _0 Z_kˆ'

)
~~~~~~X_k + 3N/4 ← U_k ∗ α _N, k − T_0 + i

(
Ω _0 Z_k − Ω _0 Z_kˆ'

)
~~~~~~X_k +N/8 ← U_k +N/8 ∗ γ _N, k − T_1 +

(
Ω _1 Z_k +N/8 + Ω _0 Z_k +N/8ˆ'

)
~~~~~~X_k + 3N/8 ← U_k +N/8 ∗ γ _N, k + T_1 − i

(
Ω _1 Z_k +N/8 − Ω _0 Z_k +N/8ˆ'

)
~~~~~~X_k + 5N/8 ← U_k +N/8 ∗ γ _N, k − T_1 −

(
Ω _1 Z_k +N/8 + Ω _0 Z_k +N/8ˆ'

)
~~~~~~X_k + 7N/8 ← U_k +N/8 ∗ γ _N, k + T_1 + i

(
Ω _1 Z_k +N/8 − Ω _0 Z_k +N/8ˆ'

)
~~~~END~FOR

~~ENDIF

~~RETURN~Xˆk

Listing 3.5: TANGENTFFT8N (xn)

Available for free at Connexions <http://cnx.org/content/col11438/1.2>



19

3.1.4 Tangent

The tangent FFT is divided into two functions, described with pseudocode in p. ?? and p. ??. If the
tangent FFT is computed prior to convolution in the frequency domain, the convolution kernel can absorb
the �nal scaling and only p. ?? is required. Otherwise p. ?? is used as a wrapper around p. ?? to perform
the rescaling, and the result Xk is in the correct basis.

p. ?? is similar to p. ??, except that Zk and Z '

k are computed with p. ??, and thus scaled by 1/sN/4,k.
Because Zk and Z '

k are respectively multiplied by the coe�cients ωkN and ω−kN , the results are scaled into
the correct basis by absorbing sN/4,k into the coe�cients.

p. ?? is almost a 1:1 mapping of the system of linear equations (2.27), except that the base cases of
N = 1, 2, 4 are handled explicitly. In p. ??, the case of N = 4 is handled with two size 2 base cases, which
are combined into a size 4 FFT.

3.1.5 Putting it all together
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Figure 3.1: Speed of simple FFT implementations

The simple implementations covered in this section were benchmarked for sizes of transforms 22 through to
218 running on a Macbook Air 4,2 and the results are plotted in Figure 3.1. The speed of each transform is
measured in Cooley-Tukey giga�ops (CTGs), where a higher measurement indicates a faster transform.6

It can be seen from Figure 3.1 that although the conjugate-pair and split-radix algorithms have exactly
the same FLOP count, the conjugate-pair algorithm is substantially faster. The di�erence in speed can be
attributed to the fact that the conjugate-pair algorithm requires only one twiddle factor per size 4 sub-
transform, whereas the ordinary split-radix algorithm requires two.

6CTGs are an inverse time measurement. See Benchmark methods (Chapter 6) for a full explanation of the benchmarking
methods.
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Though the tangent FFT requires the same number of twiddle factors but uses fewer FLOPs compared
to the conjugate-pair algorithm, its performance is worse than the radix-2 FFT for most sizes of transform,
and this can be attributed to the cost of computing the scaling factors.

A simple analysis with a pro�ling tool reveals that each implementations' runtime is dominated by the
time taken to compute the coe�cients. Even in the case of the conjugate-pair algorithm, over 55% of the
runtime is spent calculating the complex exponential function. Eliminating this performance bottleneck is
the topic of the next section.

3.2 Precomputed coe�cients

The speed of p. ?? � p. ?? may be dramatically improved if the coe�cients are precomputed and stored in
a lookup table (LUT).

When computing an FFT of size N , p. ?? requires N/2 di�erent twiddle factors that correspond to
N/2 samples of a half rotation around the complex plane. Rather than storing N/2 complex numbers, the
symmetries of the sine and cosine waves that compose ωkN may be exploited to reduce the storage to N/4
real numbers � a 75% reduction in memory � by storing only one quadrant of a sine or cosine wave from
which the real and imaginary parts of any twiddle factor can be constructed. Such a scheme has advantages
in hardware implementations where LUT memory is a costly resource [90], but for modern microprocessor
implementations of the FFT, it is more advantageous to have a less complex indexing scheme and better
memory locality, rather than a smaller LUT.

As already mentioned, each transform of size N that is computed with p. ?? requires N/2 twiddle factors

from ω0
N through to ω

N/2
N , but the two sub-transforms of p. ?? require twiddle factors ranging from ω0

N/2

through to ω
N/4
N/2 . The twiddle factors of the sub-transforms can be obtained by downsampling the parent

transform's twiddle factors by a factor of 2, and because the downsampling factors are all powers of 2, simple
shift operations can be used to index any twiddle factor anywhere in the transform from one LUT.

Appendix 2 (Chapter 10) contains listings of source code that augment each of the simple implementations
from the previous section with LUTs of precomputed coe�cients. The modi�cations are fairly minor: each
implementation now has an initialization function that populates the LUT(s) based on the size of the
transform to be computed, and each transform function now has a parameter of log2 (stride), so as to
economically index the twiddle factors with little computation.
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Figure 3.2: Speed of FFTs with precomputed coe�cients

As Figure 3.2 shows, the speedup resulting from the precomputed twiddle LUT is dramatic � sometimes
more than a factor of 6 (cf. Figure 3.1). Interestingly, the ordinary split-radix algorithm is now faster
than the conjugate-pair algorithm, and inspection of the compiler output shows that this is due to the
more complicated addressing scheme at the leaves of the computation, and because the compiler lacks good
heuristics for complex multiplication by a conjugate. The performance of the tangent FFT is hampered by
the same problem, yet the tangent FFT has better performance, which can be attributed to the tangent
FFT having larger straight line blocks of code at the leaves of the computation (the tangent FFT has leaves
of size 4, while the split-radix and conjugate-pair FFTs have leaves of size 2).

3.3 Single instruction, multiple data

The performance of the programs in the previous section may be further improved by explicitly describing
the computation with SIMD intrinsics. Auto-vectorizing compilers, such as the Intel C compiler used to
compile the previous examples, can extract some data-level parallelism and generate SIMD code from a
scalar description of a computation, but better results can be obtained when using vector intrinsics to
explicitly specify the parallel computation.

Intrinsics are an alternative to inline assembly code when the compiler fails to meet performance con-
straints. In most cases an intrinsic function directly maps to a single instruction on the underlying machine,
and so intrinsics provide many of the advantages of inline assembler code. But in contrast to inline assembler
code, the compiler uses its detailed knowledge of the intrinsic semantics to provide better optimizations and
handle tasks such as register allocation.

Almost all desktop and handheld machines now have processors that implement some sort of SIMD
extension to the instruction set. All major Intel processors since the Pentium III have implemented SSE,
an extension to the x86 architecture that introduced 4-way single precision �oating point computation with
a new register �le consisting of eight 128-bit SIMD registers � known as XMM registers. The AMD64
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architecture doubled the number of XMM registers to 16, and Intel followed by implementing 16 XMM
registers in the Intel 64 architecture. SSE has since been expanded with support for other data types and
new instructions with the introduction of SSE2, SSE3, SSSE3 and SSE4. Most notably, SSE2 introduced
support for double precision �oating point arithmetic and thus Intel's �rst attempt at SIMD extensions,
MMX, was e�ectively deprecated. Intel's recent introduction of the sandybridge micro-architecture heralded
the �rst implementation of AVX � a major upgrade to SSE that doubled the size of XMM registers to 256
bits (and renamed them YMM registers), enabling 8-way single precision and 4-way double precision �oating
point arithmetic.

Another notable example of SIMD extensions implemented in commodity microprocessors is the NEON
extension to the ARMv7 architecture. The Cortex family of processors that implement ARMv7 are widely
used in mobile, handheld and tablet computing devices such as the iPad, iPhone and Canon PowerShot A470,
and the NEON extensions provide these embedded devices with the performance required for processing audio
and video codecs as well as graphics and gaming workloads.

Compared to SSE and AVX, NEON has some subtle di�erences that can greatly improve performance if
used properly. First, it has dual length SIMD vectors that are aliased over the same registers; a pair of 64-bit
registers refers to the lower and upper half of one 128-bit register � in contrast, the AVX extension increases
the size of SSE registers to 256-bit, but the SSE registers are only aliased over the lower half of the AVX
registers. Second, NEON can interleave and de-interleave data during vector load or store operations, for up
to four vectors of four elements interleaved together. In the context of FFTs, the interleaving/de-interleaving
instructions can be used to reduce or eliminate vector permutations or shu�es.

3.3.1 Split format vs. interleaved format

In the previous examples, the data was stored in interleaved format (i.e., the real and imaginary parts
composing each element of complex data are stored adjacently in memory), but operating on the data in
split format (i.e., the real parts of each element are stored in one contiguous array, while the imaginary parts
of each element are stored contiguously in another array) can simplify the computation when using SIMD.
The case of complex multiplication illustrates this point.

~~static~inline~__m128~MUL_INTERLEAVED(__m128~a,~__m128~b)~{

~~~~__m128~re,~im;

~~~~re~=~_mm_shuffle_ps(a,a,_MM_SHUFFLE(2,2,0,0));

~~~~re~=~_mm_mul_ps(re,~b);

~~~~im~=~_mm_shuffle_ps(a,a,_MM_SHUFFLE(3,3,1,1));

~~~~b~=~_mm_shuffle_ps(b,b,_MM_SHUFFLE(2,3,0,1));

~~~~im~=~_mm_mul_ps(im,~b);

~~~~im~=~_mm_xor_ps(im,~_mm_set_ps(0.0f,~-0.0f,~0.0f,~-0.0f));

~~~~return~_mm_add_ps(re,~im);

~~}

Listing 3.6: SSE multiplication with interleaved complex data

3.3.1.1 Interleaved format complex multiplication

The function in p. ?? takes complex data in two 4-way single precision SSE registers (a and b) and performs
complex multiplication, returning the result in a single precision SSE register. The SSE intrinsic functions
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are pre�xed with `_mm_', and the SSE data type corresponding to a single 128-bit single precision register is
`__m128'.

When operating with interleaved data, each SSE register contains two complex numbers. Two shu�e
operations at lines 3 and 5 are used to replicate the real and imaginary parts (respectively) of the two
complex numbers in input a. At line 4, the real and imaginary parts of the two complex numbers in b are
each multiplied with the real parts of the complex numbers in a. A third shu�e is used to swap the real
and imaginary parts of the complex numbers in b, before being multiplied with the imaginary parts of the
complex numbers in a � and the exclusive or operation at line 8 is used to selectively negate the sign of the
real parts in this result. Finally, the two intermediate results stored in the re and im registers are added. In
total, seven SSE instructions are used to multiply two pairs of single precision complex numbers.

3.3.1.2 Split format complex multiplication

~~typedef~struct~_reg_t~{

~~~~__m128~re,~im;

~~}~reg_t;

~

~~static~inline~reg_t~MUL_SPLIT(reg_t~a,~reg_t~b)~{

~~~~reg_t~r;

~~~~r.re~=~_mm_sub_ps(_mm_mul_ps(a.re,b.re),_mm_mul_ps(a.im,b.im));

~~~~r.im~=~_mm_add_ps(_mm_mul_ps(a.re,b.im),_mm_mul_ps(a.im,b.re));

~~~~return~r;

~~}

Listing 3.7: SSE multiplication with split complex data

The function in p. ?? takes complex data in two structs of SSE registers, performs the complex multiplication
of each element of the vectors, and returns the result in a struct of SSE registers. Each struct is composed of
a register containing the real parts of four complex numbers, and another register containing the imaginary
parts � so the function in p. ?? is e�ectively operating on vectors twice as long as the function in p. ??.
The bene�t of operating in split format is obvious: the shu�e operations that were required in p. ?? are
avoided because the real and imaginary parts can be implicitly swapped at the instruction level, rather
than by awkwardly manipulating SIMD registers at the data level of abstraction. Thus, p. ?? computes
complex multiplication for vectors twice as long while using one less SSE instruction � not to mention other
advantages such as reducing chains of dependent instructions. The only disadvantage to the split format
approach is that twice as many registers are needed to compute a given operation � this might preclude the
use of a larger radix or force register paging for some kernels of computation.

3.3.1.3 Fast interleaved format complex multiplication

p. ?? is fast method of interleaved complex multiplication that may be used in situations where one of the
operands can be unpacked prior to multiplication � in such cases the instruction count is reduced from 7
instructions to 4 instructions (cf. p. ??). This method of complex multiplication lends itself especially well
to the conjugate-pair algorithm where the same twiddle factor is used twice � by doubling the size of the
twiddle factor LUT, the multiplication instruction count is reduced from 14 instructions to 8 instructions.
Furthermore, large chains of dependent instructions are reduced, and in practice the actual performance gain
can be quite impressive.
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Operand a in p. ?? has been replaced with two operands in p. ??: re and im � these operands have been
unpacked, as was done in lines 3 and 5 of p. ??. Furthermore, line 8 of p. ?? is also avoided by performing
the selective negation during unpacking.

~~static~inline~__m128

~~MUL_UNPACKED_INTERLEAVED(__m128~re,~__m128~im,~__m128~b)~{

~~~~re~=~_mm_mul_ps(re,~b);

~~~~im~=~_mm_mul_ps(im,~b);

~~~~im~=~_mm_shuffle_ps(im,im,_MM_SHUFFLE(2,3,0,1));

~~~~return~_mm_add_ps(re,~im);

~~}

Listing 3.8: SSE multiplication with partially unpacked interleaved data

3.3.2 Vectorized loops

The performance of the FFTs in the previous sections can be increased by explicitly vectorizing the loops.
The Macbook Air 4,2 used to compile and run the previous examples has a CPU that implements SSE and
AVX, but for the purposes of simplicity, SSE intrinsics are used in the following examples. The loop of the
radix-2 implementation is used as an example in p. ??.

~~for(k=0;k<N/2;k++)~{
~~~~~data_t~Ek~=~out[k];

~~~~~data_t~Ok~=~out[(k+N/2)];

~~~~~data_t~w~=~LUT[k�log2stride];

~~~~~out[k]~~~~~~~~=~Ek~+~w~*~Ok;

~~~~~out[(k+N/2)~]~=~Ek~-~w~*~Ok;

~~~}

Listing 3.9: Inner loop of radix-2 Cooley-Tukey FFT

Each iteration of the loop in p. ?? accesses two elements of complex data in the array out, and one complex
element from the twiddle factor LUT. Over multiple iterations of the loop, out is accessed contiguously in two
places, but the LUT is accessed with a non-unit stride in all sub-transforms except the outer transform. Some
vector machines can perform what are known as vector scatter or gather memory operations � where a vector
gather could be used in this case to gather elements from the LUT that are separated by a stride. But SSE
only supports contiguous or streaming access to memory. Thus, to e�ciently compute multiple iterations
of the loop in parallel, the twiddle factor LUT is replaced with an array of LUTs � each corresponding to a
sub-transform of a particular size. In this way, all memory accesses for the parallelized loop are contiguous
and no memory bandwidth is wasted.
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~~for(k=0;k<N/2;k+=4)~{
~~~~__m128~Ok_re~=~_mm_load_ps((float~*)&out[k+N/2]);

~~~~__m128~Ok_im~=~_mm_load_ps((float~*)&out[k+N/2+2]);

~~~~__m128~w_re~=~_mm_load_ps((float~*)&LUT[log2stride][k]);

~~~~__m128~w_im~=~_mm_load_ps((float~*)&LUT[log2stride][k+2]);

~~~~__m128~Ek_re~=~_mm_load_ps((float~*)&out[k]);

~~~~__m128~Ek_im~=~_mm_load_ps((float~*)&out[k+2]);

~~~~__m128~wOk_re~=

~~~~~~_mm_sub_ps(_mm_mul_ps(Ok_re,w_re),_mm_mul_ps(Ok_im,w_im));

~~~~__m128~wOk_im~=

~~~~~~_mm_add_ps(_mm_mul_ps(Ok_re,w_im),_mm_mul_ps(Ok_im,w_re));

~~~~_mm_store_ps((float~*)(out+k),~_mm_add_ps(Ek_re,~wOk_re));

~~~~_mm_store_ps((float~*)(out+k+2),~_mm_add_ps(Ek_im,~wOk_im));

~~~~_mm_store_ps((float~*)(out+k+N/2),~_mm_sub_ps(Ek_re,~wOk_re));

~~~~_mm_store_ps((float~*)(out+k+N/2+2),~_mm_sub_ps(Ek_im,~wOk_im));

~~}

Listing 3.10: Vectorized inner loop of Cooley-Tukey radix-2 FFT

p. ?? computes the loop of p. ?? using split format data and a vector length of four (i.e., it computes
four iterations at once). Note that the vector load and store operations used in p. ?? require that the
memory accesses are 16-byte aligned � this is a fairly standard proviso for vector memory operations, and
use of the correct memory alignment attributes and/or memory allocation routines ensures that memory is
always correctly aligned.

Some FFT libraries require the input to be in split format (i.e., the real parts of each element are stored
in one contiguous array, while the imaginary parts are stored contiguously in another array) for the purposes
of simplifying the computation, but this con�icts with many other libraries and use cases of the FFT � for
example, Apple's vDSP library operates in split format, but many examples require the use of un-zip/zip
functions on the input/output data (see Usage Case 2: Fast Fourier Transforms in ). A compromise is to
convert interleaved format data to split format on the �rst pass of the FFT, computing most of the FFT
with split format sub-transforms, and converting the data back to interleaved format as it is processed on
the last pass.
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Figure 3.3: Speed of FFTs with vectorized loops

Appendix 3 (Chapter 11) contains listings of FFTs with vectorized loops. The input and output of the
FFTs is in interleaved format, but the computation of the inner loops is performed on split format data. At
the leaves of the transform there are no loops, so the computation falls back to scalar arithmetic.

Figure 3.3 summarizes the performance of the listings in Appendix 3 (Chapter 11). Interestingly, the
radix-2 FFT is faster than both the conjugate-pair and ordinary split-radix algorithms until size 4096 trans-
forms, and this is due to the conjugate-pair and split-radix algorithms being more complicated at the leaves
of the computation. The radix-2 algorithm only has to deal with one size of sub-transform at the leaves, but
the split-radix algorithms have to handle special cases for two sizes, and furthermore, a larger proportion
of the computation takes place at the leaves with the split-radix algorithms. The conjugate-pair algorithm
is again slower than the ordinary split-radix algorithm, which can (again) be attributed to the compiler's
relatively degenerate code output when computing complex multiplication with a conjugate.

Overall, performance improves with the use of explicit vector parallelism, but still falls short of the state
of the art. The next section characterizes the remaining performance bottlenecks.
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3.4 The performance bottleneck
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Figure 3.4: Memory access pattern of straight line blocks of code in a size 64 radix-2 FFT

The memory access patterns of an FFT are the biggest obstacle to performance on modern microprocessors.
To illustrate this point, Figure 3.4 visualizes the memory accesses of each straight line block of code in a size
64 radix-2 DIT FFT (the source code of which is provided in Appendix 3 (Chapter 11)).

The vertical axis of Figure 3.4 is memory. Because the diagram depicts a size 64 transform there are 64
rows, each corresponding to a complex word in memory. Because the transform is out-of-place, there are
input and output arrays for the data. The input array contains the data �in time�, while the output array
contains the result �in frequency�. Rather than show 128 rows � 64 for the input and 64 for the output � the
input array's address space has been aliased over the output array's address space, where the orange code
indicates an access to the input array and the green and blue codes for accesses to the output array.

Each column along the horizontal axis represents the memory accesses sampled at each kernel (i.e.,
butter�y) of the computation, which are all straight line blocks of code. The �rst column shows two orange
and one blue memory operations, and these correspond to a radix-2 computation at the leaves reading two
elements from the input data, and writing two elements into the output array. The second column shows a
similar radix-2 computation at the leaves: two elements of data are read from the input at addresses 18 and
48, the size 2 DFT computed, and the results written to the output array at addresses 2 and 3.

There are columns that do not indicate accesses to the input array, and these are the blocks that are
not at the leaves of the computation. They load data from some locations in the output, performing the
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computation, and store the data back to the same locations in the output array.
There are two problems that Figure 3.4 illustrates. The �rst is that the accesses to the input array � the

samples �in time" � are indeed very decimated, as might be expected with a decimation-in-time algorithm.
Second, it can be observed that the leaves of the computation are rather ine�cient, because there are large
numbers of straight line blocks of code performing scalar memory accesses, and no loops of more than a few
iterations (i.e., the leaves of the computation are not taking advantage of the machine's SIMD capability).

Figure 3.3 in the previous section showed that the vectorized radix-2 FFT was faster than the split-
radix algorithms up to size 4096 transforms; a comparison between Figure 3.4 and Figure 3.5 helps explain
this phenomenon. The split-radix algorithm spends more time computing the leaves of the computation
(blue), so despite the split-radix algorithms being more e�cient in the inner loops of SIMD computation, the
performance has been held back by higher proportion of very small straight line blocks of code (corresponding
to sub-transforms smaller than size 4) performing scalar memory accesses at the leaves of the computation.

Because the addresses of memory operations at the leaves are a function of variables passed on the stack,
it is very di�cult for a hardware prefetch unit to keep these leaves supplied with data, and thus memory
latency becomes an issue. In later chapters, it is shown that increasing the size of the base cases at the leaves
improves performance.
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Figure 3.5: Memory access pattern of straight line blocks of code in a size 64 split-radix FFT
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Chapter 4

Existing Libraries1

Owing to the importance of e�ciently computing FFTs in signal processing and other areas, there have been
many implementations for microprocessors; FFTW's benchmark software, for example, includes a collection
of 25 di�erent FFT implementations. However, of the many implementations, only a few have competed
with the state of the art over the last �fteen years. Since its �rst release in 1997, FFTW has risen to become
one of the most well known fast Fourier transform libraries. Other libraries reviewed in this chapter are
SPIRAL, UHFFT, djb�t, Apple vDSP, MatrixFFT, and Intel IPP.

4.1 The �Fastest Fourier transform in the west� (FFTW)

FFTW [46], [48], [63] is an implementation of the DFT that attempts to automatically adapt to the hardware
in order to maximise performance, and its development in 1997 was predicated on the idea that it had become
too complicated to optimize the performance of the fast Fourier transform for modern microprocessors.

The latest release of FFTW, version 3.3, generates a library of over 150 �codelets� at compile time. The
codelets are fragments of machine-independent straight-line code derived from DFT algorithms, including
the Cooley-Tukey [22] algorithm and its derivatives the split-radix [29], [113], conjugate-pair [63], [66] and
mixed-radix algorithms. Radar [102] and Bluestein [16], [89], [100] algorithms are used for sizes that are
prime, and the prime-factor algorithm [89], [106] for sizes that are factored by co-primes. At runtime, a
plan for a speci�c problem, e.g., 1024 point 1D forward double precision out-of-place DFT, is generated by
searching the huge space of possible codelet con�gurations for the best solution.

The codelet generator operates in four phases: creation, simpli�cation, scheduling, and unparsing (code
generation). During creation, the codelet generator produces a representation of the computation in the
form of a DAG. The DAG is expressed in terms of complex numbers [61], and can be viewed as a linear
network [23]. In the simpli�cation stage, algebraic transformations and common subexpression elimination
rewriting rules [103] are applied to each node of the DAG, which is then topologically sorted to produce a
schedule. In a 2008 paper [61], Johnson and Frigo contend that �the compiler needs help with such long
blocks of code", and an earlier paper from 1999 [46] is cited to support the hypothesis that compilers are not
capable of e�ciently allocating registers and scheduling code for hard-coded blocks of about size 64, which
compares an earlier version of FFTW compiled with an older compiler2 to an FFT from Sun's Performance
Library. There is no mention of re-testing the aforementioned hypothesis with more advanced compilers.

FFTW has several modes available for searching the con�guration space of codelets. In �patient� mode,
FFTW uses dynamic programming to evaluate the runtime of almost all combinations of possible plans.
As the runtime of many sub-problems is repeatedly evaluated while searching the con�guration space, the
results of locally optimized sub-problems are cached, reducing runtime of the planner while producing results
very close to that of an exhaustive search.

1This content is available online at <http://cnx.org/content/m43809/1.1/>.
2Sun WorkShop Compilers 4.2 30 Oct 1996 C 4.2
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30 CHAPTER 4. EXISTING LIBRARIES

In �estimate� mode, FFTW minimizes a heuristic cost that is a function of a particular con�guration's
count of �oating point operations and extraneous memory operations (for bu�ering and transposes). Com-
pared to patient mode, the runtime of the planner is reduced by several orders of magnitude, at the expense
of runtime performance while executing the plan. For executing plans of 1D complex transforms on a Pow-
erPC G5, the median and peak di�erence in runtime performance between patient and estimate modes was
20% and 72%, respectively. This result is used by Frigo and Johnson to support the hypothesis that there
is no longer any correlation between operation counts and runtime performance on modern machines [48].

Frigo and Johnson discuss a small number of planner solutions in their 2005 paper on the design of
FFTW3 [48], and conclude that �we do not really understand the planner's choices because we cannot
predict what plans will be produced. Indeed, this is the whole point of implementing a planner.� They
do not mention the use of more rigorous methods, such as machine learning, for the purposes of predicting
performance.

FFTW supports computation of complex DFTs with SIMD extensions by means of two-way parallel
computation of real DFTs [61]. The Vienna MAP vectorizer [37], [68], [70] has also been coupled with
FFTW to produce a high-performance FFT library for the IBM Blue Gene/L supercomputer [86] that is up
to 80% faster than the best-performing scalar FFT codes generated by FFTW [74].

4.2 Daniel Bernstein's FFT (djb�t)

In 1997, Daniel Bernstein noticed that it was not di�cult to write code that out-performed FFTW [14].
He had written 86 lines of unscheduled code that computed a size 256 single precision transform in about
35000 Pentium cycles � faster than FFTW. After spending a few more days doing �some casual instruction
scheduling,� he could compute the same transform with about 24000 Pentium cycles (ibid.).

These performance results directly contradicted the assumption that predicated FFTW: that it was too
hard to predict the performance of FFT code on modern microprocessors. Development of djb�t continued
until 1999, and it had succeeded in becoming the fastest library for computing FFTs on most Pentium and
SPARC machines.

Bernstein's FFT is notable for having been the �rst publicly available library to exploit the advantages of
the conjugate-pair or �-1 exponent� algorithm. After Bernstein demonstrated the advantages of the algorithm
in djb�t, Frigo and Johnson followed with an implementation in FFTW [63].

4.3 SPIRAL

SPIRAL [42], [94], [92] attempts to automatically optimize code for signal processing functions such as the
discrete Fourier transform. SPIRAL's goal is to automatically optimize signal processing functions at the
push of a button, with results that are as good as hand-optimized codes.

In contrast to FFTW, SPIRAL's optimization is performed at compile time, and thus the generated
code is less portable. Another point of di�erence is in the search methods: while FFTW uses dynamic
programming, SPIRAL uses a wide range of techniques that include machine learning [92], [94].

Franchetti and Puschel argue that vectorization is best performed at the algorithm level of abstraction
by manipulating Kronecker product expressions through mathematical identities [38], and this is the basis
for a rewriting system [43] that vectorizes for short vector machines [36], [40], [68].

In [43], SPIRAL is slower than FFTW 3.1 for 2-way double-precision power of two transforms, but
SPIRAL is fastest for 4-way single-precision power of two transforms where 16 ≤ n ≤ 128. SPIRAL
generates code that is characterized by large basic blocks and single-threaded performance does not scale
beyond sizes of about 4096 points. Indeed, source code is only publicly available for sizes 2 through to 8192
points [2].
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4.4 UHFFT

UHFFT [6], [9], [4], [85], [83], like FFTW, generates a library of codelets which are assembled into transforms
by a planner. The planner uses dynamic programming to search an exponential space of possible algorithms,
factors and schedules, relying on codelet timings to predict transform execution times [4].

UHFFT uses the mixed-radix and split-radix [29], [113] algorithms for power of two sizes, the prime-factor
algorithm [89], [106] for sizes that are factored by co-primes, and the Radar [102] algorithm for sizes that
are prime.

UHFFT generates a schedule from a DAG which has been topologically sorted, mainly to optimize
memory reuse distance [4]. The schedule is then unparsed to C code.

Scalar results on Itanium2 and Opteron show that UHFFT's dynamic programming approach can choose
a plan having performance within 10% of the actual optimal plan. For power of two sizes, UHFFT's perfor-
mance was typically worse than FFTW or Intel MKL, while UHFFT was faster than FFTW for prime-factor
and prime sizes (ibid.).

4.5 Intel Integrated Performance Primitives (IPP)

Of the closed source FFT implementations, the IPP library [57] provides the best results for most sizes of
DFT on machines with Intel processors. IPP includes a number of di�erent FFT implementations that appear
to be hand optimized for di�erent machine con�gurations, and in contrast to FFTW, IPP deterministically
chooses the best code to run based on the capabilities of the machine and the OS � achieving results that
are typically superior to FFTW.

Because IPP is closed source, there is no publicly available information regarding the algorithms and
techniques used.

4.6 Apple vDSP

The Apple Accelerate libraries contain a wide range of computationally intensive functions that have been
optimized for vector computation on PowerPC, x86 and ARM architectures. Within the Accelerate library,
vDSP is a collection of DSP functions that includes the FFT.

The vDSP implementation of the FFT is distinctive among the other libraries reviewed in this chapter in
that it only operates on data that is stored in split format (where the real and imaginary parts of complex
numbers are stored in separate arrays). However, many applications have data that is already in interleaved
format (where the real and imaginary part of each complex number are stored adjacent in memory), or
require data in interleaved format, and so vDSP provides un-zip/zip functions for converting data to/from
split format.

The Apple vDSP library is notable for having very good FFT performance on ARM NEON devices, while
its x86 performance is average (comparable with FFTW �estimate� mode performance).

As with IPP, vDSP is only distributed in binary form and thus little can be said about the algorithms
and techniques employed.

4.7 MatrixFFT

MatrixFFT is a library for e�ciently computing large transforms of more than 218 points on Apple hardware,
with sustained processing rates reportedly being as high as 40 CTGs for very large single precision transforms.
Large scale FFTs have been used in areas such as image processing (with images of over 109 pixels) and
experimental mathematics (for extreme-precision computation of π).

MatrixFFT uses the four-step algorithm to decompose a transform into smaller sub-transforms that �t
in the cache [10], and computes the smaller sub-transforms with Apple vDSP. Interestingly, MatrixFFT has
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better performance � in many cases � while using interleaved format to store the data, even though the
interleaved format must be converted to split format before using vDSP [97].

MatrixFFT includes a calibration utility that evaluates the various implementation parameters for each
size of transform on a given machine, which can then be used to re-compile the library so that it achieves
best performance on that particular machine.

MatrixFFT is freely available and distributed in source code form by Apple [56].
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Chapter 5

Streaming FFT1

This chapter describes SFFT: a high-performance FFT library for SIMD microprocessors that is, in many
cases, faster than the state of the art FFT libraries reviewed in Existing libraries (Chapter 4).

Implementation details (Chapter 3) described some simple implementations of the FFT and concluded
with an analysis of the performance bottlenecks. The implementations presented in this chapter are designed
to improve spatial locality, and utilize larger straight line blocks of code at the leaves, corresponding to sub-
transforms of sizes 8 through to 64, in order to reduce latency and stack overheads.

In distinct contrast to the simple FFT programs of Chapter 3 (Chapter 3), this chapter employs meta-
programming. Rather than describe FFT programs, we describe programs that statically elaborate the FFT
into a DAG of nodes representing the computation, apply some optimizing transformations to the graph, and
then generate code. Many other auto-vectorization techniques, such as those employed by SPIRAL, operate
at the instruction level [75], but the techniques presented in this chapter vectorize blocks of computation at
the algorithm level of abstraction, thus enabling some of the algorithms structure to be utilized.

Three types of implementation are described in this chapter, and the performance of each depends on
the parameters of the transform to be computed and the characteristics of the underlying machine. For a
given machine and FFT to be computed (which has parameters such as length and precision), the fastest
con�guration is selected from among a small set of up to eight possible FFT con�gurations � a much smaller
space compared to FFTW's exhaustive search of all possible FFTs. The fastest con�guration is easily selected
by timing each of the possible options, but it is shown in Results and discussion (Chapter 7) that it is also
possible to use machine learning to build a classi�er that will predict the fastest based on attributes such as
the size of the cache.

SFFT comprises three types of conjugate-pair implementation, which are:

1. Fully hard-coded FFTs;
2. Four-step FFTs with hard-coded sub-transforms;
3. FFTs with hard-coded leaves.

5.1 Fully hard-coded

Statically elaborating a DAG that represents a depth-�rst recursive FFT is much like computing a depth-�rst
recursive FFT: instead of performing computation at the leaves of the recursion and where smaller DFTs
are combined into one, a node representing the computation is appended to the end of a list, and the list of
nodes, i.e., a topological ordering of the DAG, is later translated into a program that can be compiled and
executed.

Emitting code with a vector length of 1 (i.e., scalar code or vector code where only one complex element
�ts in a vector register) is relatively simple and is described in "Vector length 1" (Section 5.1.1: Vector length

1This content is available online at <http://cnx.org/content/m43791/1.3/>.
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1). For vector lengths above 1, vectorizing the topological ordering of nodes poses some subtle challenges,
and these details are described in "Other vector lengths" (Section 5.1.2: Other vector lengths). The fully
hard-coded FFTs described in this section are generally only practical for smaller sizes of transforms, typically
where N ≤ 128, however these techniques are expanded in later sections to scale the performance to larger
sizes.

5.1.1 Vector length 1

A VL of 1 implies that the computation is essentially scalar, and only one complex element can �t in a vector
register. An example of such a scenario is when using interleaved double-precision �oating-point arithmetic
on an SSE2 machine: one 128-bit XMM register is used to store two 64-bit �oats that represent the real and
imaginary parts of a complex number.

When V L = 1, the process of generating a program for a hard-coded FFT is as follows:

1. Elaborate a topological ordering of nodes, where each node represents either a computation at the leaves
of the transform, or a computation in the body of the transform (i.e., where smaller sub-transforms
are combined into a larger transform);

2. Write the program header to output, including a list of variables that correspond to registers used by
the nodes;

3. Traverse the list of nodes in order, and for each node, emit a statement that performs the computation
represented by the given node. If a node is the last node to use a variable, a statement storing the
variable to its corresponding location in memory is also emitted;

4. Write the program footer to output.

5.1.1.1 Elaborate

p. ?? is a function, written in C++, that performs the �rst task in the process. As mentioned earlier, elabo-
rating a topological ordering of nodes with a depth-�rst recursive structure is much like actually computing
an FFT with a depth-�rst recursive program (cf. Listing 3 in Appendix 2 (p. ??)). Table 5.1 lists the nodes
contained in the list `ns' after elaborating a size-8 transform by invoking elaborate(8, 0, 0, 0).

Available for free at Connexions <http://cnx.org/content/col11438/1.2>



35

~~CSplitRadix::elaborate(int~N,~int~ioffset,~int~offset,~int~stride)~{

~~~~if(N~>~4)~{
~~~~~~elaborate(N/2,~ioffset,~offset,~stride+1);

~~~~~~if(N/4~>=~4)~{
~~~~~~~~elaborate(N/4,~ioffset+(1�stride),~offset+(N/2),~stride+2);

~~~~~~~~elaborate(N/4,~ioffset-(1�stride),~offset+(3*N/4),~stride+2);

~~~~~~}else{

~~~~~~~~CNodeLoad~*n~=~new~CNodeLoad(this,~4,~ioffset,~stride,~0);

~~~~~~~~ns.push_back(assign_leaf_registers(n));

~~~~~~}

~~~~~~for(int~k=0;k<N/4;k++)~{
~~~~~~~~CNodeBfly~*n~=~new~CNodeBfly(this,~4,~k,~stride);

~~~~~~~~ns.push_back(assign_body_registers(n,k,N);

~~~~~~}

~~~~}else~if(N==4)~{

~~~~~~CNodeLoad~*n~=~new~CNodeLoad(this,~4,~ioffset,~stride,~1);

~~~~~~ns.push_back(assign_leaf_registers(n));

~~~~}else~if(N==2)~{

~~~~~~CNodeLoad~*n~=~new~CNodeLoad(this,~2,~ioffset,~stride,~1);

~~~~~~ns.push_back(assign_leaf_registers(n));

~~~~}

~~}

Listing 5.1: Elaborate function for hard-coded conjugate-pair FFT

A transform is divided into sub-transforms with recursive calls at lines 4, 6 and 7, until the base cases
of size 2 or size 4 are reached at the leaves of the elaboration. As well as the size-2 and size-4 base cases,
which are handled at lines 20-21 and 17-18 (respectively), there is a special case where two size-2 base cases
are handled in parallel at lines 9-10. This special case of handling two size-2 base cases as a larger size-4
node ensures that larger transforms are composed of nodes that are homogeneous in size � this is of little
utility when emitting V L = 1 code, but it is exploited in "Other vector lengths" (Section 5.1.2: Other vector
lengths) where the topological ordering of nodes is vectorized. The second row of Table 5.1 is just such a
special case, since two size-2 leaf nodes are being computed, and thus the size is listed as 2(x2).

The elaborate function modi�es the class member variable `ns' at lines 10, 14, 18 and 21, where it
appends a new node to the back of the list. After the function returns, the ns list represents a topological
ordering of the computation with CNodeLoad and CNodeBfly nodes. The nodes of type CNodeLoad represent
leaf computations: these computations load elements from the input array and perform a small amount of
leaf computation, leaving the result in a set of registers. The CNodeBfly nodes represent computations in
the body of the transform: these use a twiddle factor to perform a butter�y computation on a vector of
registers, leaving the result in the same registers.

Available for free at Connexions <http://cnx.org/content/col11438/1.2>



36 CHAPTER 5. STREAMING FFT

Type Size Addresses Registers Twiddle

CNodeLoad 4 {0,4,2,6} {0,1,2,3}

CNodeLoad 2(x2) {1,5,7,3} {4,5,6,7}

CNodeBfly 4 {0,2,4,6} ω0
8

CNodeBfly 4 {1,3,5,7} ω1
8

Table 5.1: VL-1 size-8 conjugate-pair transform nodes

The constructor for a CNodeLoad object computes input array addresses for the load operations using the
input array o�set (ioffset), the input array stride, the size of the node (the nodes instantiated at lines 9
and 17 are size-4, and the node instantiated at line 20 is size-2) and a �nal parameter that is non-zero if the
node is a single node (the nodes instantiated at lines 17 and 20 are single nodes, while the node instantiated
at line 9 is composed of two size-2 nodes).

As the newly instantiated CNodeLoad objects are appended to the back of ns at lines 10, 14 and 21, the
assign_leaf_registers function assigns registers to the outputs of each instance. Registers are identi�ed
with integers beginning at zero, and when each register is created it is assigned an identi�er from an auto-
incrementing counter (Rcounter). This function also maintains a map of registers to node pointers, referred
to as rmap, where the node for a given register is the last node to reference that register.

The constructor for a CNodeBfly object uses k and stride to compute a twiddle factor for the new
instance of a butter�y computation node. When the new instance of CNodeBfly is appended to the end of
ns at line 14, the assign_body_registers function assigns registers Ri to a node of size Nnode with the
following logic:

Ri = Rcounter −N + k + i× N

4
(5.1)

where i = 0, · · · , Nnode − 1 and Rcounter is the auto-incrementing register counter. The
assign_body_registers functions also updates the map of registers to node pointers by setting rmap [Ri]
to point to the new instance of CNodeBfly.

5.1.1.2 Emitting code

~~void~sfft_dcf8_hc(sfft_plan_t~*p,~const~void~*vin,~void~*vout)~{

~~~~const~SFFT_D~*in~=~vin;

~~~~SFFT_D~*out~=~vout;

~~~~SFFT_R~r0,r1,r2,r3,r4,r5,r6,r7;

~

~~~~L_4(in+0,in+8,in+4,in+12,&r0,&r1,&r2,&r3);

~~~~L_2(in+2,in+10,in+14,in+6,&r4,&r5,&r6,&r7);

~~~~K_0(&r0,&r2,&r4,&r6);

~~~~S_4(r0,r2,r4,r6,out+0,out+4,out+8,out+12);

~~~~K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r1,&r3,&r5,&r7);

~~~~S_4(r1,r3,r5,r7,out+2,out+6,out+10,out+14);

~~}

Listing 5.2: Hard-coded VL-1 size-8 FFT
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Given a list of nodes, it is a simple process to emit C code that can be compiled to actually compute the
transform.

The example in p. ?? would be emitted from the list of four nodes in Table 5.1. Lines 1�4 are emitted
from a function that generates a header, and line 13 is emitted from a function that generates a footer. Lines
6�11 are generated based on the list of nodes.

p. ?? contains references to several types, functions and macros that use upper-case identi�ers � these
are primitive functions or types that have been prede�ned as inline functions or macros. A bene�t of using
primitives in this way is that the details speci�c to numerical representation and the underlying machine
have been abstracted away; thus, the same function can be compiled for a variety of types and machines by
simply including a di�erent header �le with di�erent primitives. p. ??, for example, could be compiled for
double-precision arithmetic on an SSE2 machine by including sse_double.h, or it could be compiled with
much slower scalar arithmetic by including scalar.h. The same code can even be used, without modi�cation,
to compute forward and backwards transforms, by using C preprocessor directives to conditionally alter the
macros.

In order to accommodate mixed numerical representations, the signature of the outermost function ref-
erences data with void pointers. In the case of the double-precision example in p. ??, SFFT_D would be
de�ned to be double in the appropriate header �le, and the void pointers are then cast to SFFT_D pointers.

The size-8 transform in Table 5.1 uses 8 registers, and thus a declaration of 8 registers of type SFFT_R

has been emitted at line 4 in p. ??. In the case of double-precision arithmetic on a SSE2 machine, SFFT_R
is de�ned as __m128d in sse_double.h.

The �rst two rows of Table 5.1 correspond to lines 6 and 7 of p. ??, respectively. The L_4 primitive
is used to compute the size-4 leaf node in the �rst row of the table. The second row is a load/leaf node
of size 2(x2), indicating two size-2 nodes in parallel, which is computed with the L_2 primitive. The input
addresses in the table are the addresses of complex words, while the addresses in the generated code refer
to the real and imaginary parts of a complex word, and thus the addresses from Table 5.1 are multiplied by
a factor of 2 to obtain the addresses in p. ??.

The �nal two CNodeBfly nodes of Table 5.1 correspond to the K_0 and K_N sub-transform (a.k.a. butter�y)
primitives at lines 8 and 10, respectively. Because the node in the third row of Table 5.1 has a twiddle factor
of ω0

8 (i.e., unity), the computation requires no multiplication, and the K_0 primitive is used for this special
case. The K_N primitive at line 10 does require a twiddle factor, which is passed to K_N as two vector literals
that represent the twiddle factor in unpacked form.2 Fast interleaved complex multiplication (Section 3.3.1.3:
Fast interleaved format complex multiplication) describes how interleaved complex multiplication is faster if
one operand is pre-unpacked.

After each node is processed, the registers that have been used by it are checked in a map (rmap) that
maps each register to the last node to have used that register. If the current node is the last node to have
used a register, the register is stored to memory. In the case of the transform in p. ??, four registers are
stored with an instance of the S_4 primitive at lines 9 and 11. In contrast to the load operations at the leaves,
which are decimated-in-time and thus e�ectively pseudo-random memory accesses, the store operations are
to linear regions of memory, the addresses of which can be determined from each register's integer identi�er.
The store address o�set for data in register Ri is simply i× 2× V L.

5.1.2 Other vector lengths

If V L > 1, the list of nodes that results from the elaborate function in p. ?? is vectorized. Broadly
speaking, CNodeLoad objects that operate on adjacent memory locations are collected together and computed
in parallel. After each such computation, each position in a vector register contains an element that belongs
to a di�erent node. Transposes are then used to transform sets of vector registers such that each register
contains elements from one node. Finally, the CNodeBfly objects can be easily computed in parallel, as they
were with VL-1 because the elements in each vector register correspond to one node.

2For the purposes of brevity, the precision has been truncated to only a few decimal places.
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5.1.2.1 Overview

Table 5.2 lists the nodes that represent a VL-1 size-16 transform. A VL of 2 implies that each vector register
contains 2 complex words, and load operations on each of the 4 addresses in the �rst row of Table 5.2 will
also load the complex words in the adjacent memory locations. Note that the complex words that would be
incidentally loaded in the upper half of the VL-2 registers are the complex words that the third CNodeLoad

object at row 5 would have loaded. This is exploited to load and compute the �rst and third CNodeLoad

objects in parallel.

Type Size Addresses Registers Twiddle

CNodeLoad 4 {0,8,4,12} {0,1,2,3}

CNodeLoad 2(x2) {2,10,14,6} {4,5,6,7}

CNodeBfly 4 {0,2,4,6} ω0
16

CNodeBfly 4 {1,3,5,7} ω2
16

CNodeLoad 4 {1,9,5,13} {8,9,10,11}

CNodeLoad 4 {15,7,3,11} {12,13,14,15}

CNodeBfly 4 {0,4,8,12} ω0
16

CNodeBfly 4 {1,5,9,13} ω1
16

CNodeBfly 4 {2,6,10,14} ω2
16

CNodeBfly 4 {3,7,11,15} ω3
16

Table 5.2: VL-1 size-16 conjugate-pair transform nodes

Type Sizes Addresses Registers Twiddles

Load {4,4} {{0,1},{8,9},{4,5},{12,13}} {{0,1},{2,3},{8,9},{10,11}}

Load {2(x2),4} {{2,3},{10,11},{14,15},{6,7}} {{4,5},{6,7},{14,15},{12,13}}

B�y {4,4} {{0,1},{2,3},{4,5},{6,7}} { ω0
16, ω

2
16 }

B�y {4,4} {{0,1},{4,5},{8,9},{12,13}} { ω0
16, ω

1
16 }

B�y {4,4} {{2,3},{6,7},{10,11},{14,15}} { ω2
16, ω

3
16 }

Table 5.3: VL-2 size-16 conjugate-pair transform nodes

The second CNodeLoad object computes two size-2 leaf transforms in parallel, while the last CNodeLoad
object computes a size-4 leaf transform. Because the size-4 transform is composed of two size-2 transforms,
and memory addresses of the fourth CNodeLoad are adjacent (although permuted), some of the computation
can be computed in parallel.

If the CNodeLoad objects at rows 1 and 5 are computed in parallel, the output will be four VL-2 registers:
{{0,8}, {1,9}, {2,10}, {3,11}} � i.e., the �rst register contains what would have been register 0 in the lower
half, and what would have been register 8 in the top half etc. Similarly, computing rows 2 and 6 in parallel
would yield four VL-2 registers: {{4,14}, {5,15}, {6,12}, {7,13}} � note the permutation of the upper halves
in this case. These registers are transposed to {{0,1}, {2,3}, {8,9}, {10,11}} and {{4,5}, {6,7}, {14,15},
{12,13}}, as in row 1 and 2 of Table 5.3.

With the transposed VL-2 registers, it is now possible to compute CNodeBfly nodes in parallel. For
example, rows 2 and 3 of Table 5.2 can be computed in parallel on four VL-2 registers represented by {{0,1},
{2,3}, {4,5}, {6,7}}, as in row 3 of Table 5.3.
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5.1.2.2 Implementation

p. ?? is a C++ implementation of the vectorize_loads function. This function modi�es a topological
ordering of nodes (the class member variable ns) and uses two other functions: find_parallel_loads, which
searches forward from the current node to �nd another CNodeLoad that shares adjacent memory addresses;
and merge_loads(a,b), which adds the addresses, registers and type of b to a. Type introspection is used
at lines 7 and 36 (and in other Listings), to di�erentiate between the two types of object.

p. ?? is a C++ implementation of the vectorize_ks function. For each CNodeBfly node, the function
searches forward for another CNodeBfly that does not have a register dependence. Once found, the registers
of the latter node are added to the former node, and the latter node erased. Finally, at line 19, the registers
of the vectorized CNodeBfly node are merged using a perfect shu�e, which is then recursively applied on
each half of the list. The e�ect is a merge that works for any power of 2 vector length.

~~void~CSplitRadix::vectorize_ks()~{

~~~~vector<CNodeHardCoded~*>::iterator~i;
~~~~for(i=ns.begin();~i~!=~ns.end();++i)~{

~~~~~~if(!(*i)->type().compare(``blockbfly''))~{
~~~~~~~~vector<CNodeHardCoded~*>::iterator~j~=~i+1,~pj~=~i;
~~~~~~~~int~count~=~1;

~~~~~~~~while(j~!=~ns.end()~&&~count~<~VL)~{
~~~~~~~~~~if(!(*j)->type().compare(``blockbfly'')~&&~!register_dependence(*i,~*j))~{
~~~~~~~~~~~~(*i)->rs.insert(~(*i)->rs.end(),~(*j)->rs.begin(),~(*j)->rs.end());
~~~~~~~~~~~~ns.erase(j);

~~~~~~~~~~~~count++;

~~~~~~~~~~~~j~=~pj+1;

~~~~~~~~~~}else~{

~~~~~~~~~~~~pj~=~j;~++j;

~~~~~~~~~~}

~~~~~~~~}

~~~~~~~~(*i)->merge_rs();
~~~~~~}

~~~~}

~~}

Listing 5.3: Body node vectorization
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~~CNodeLoad~*

~~CSplitRadix::find_parallel_load(vector<CNodeHardCoded*>::iterator~i){
~~~~CNodeLoad~*b~=~(CNodeLoad~*)(*i);

~~~~for(int~k=0;k<((N>2)?4:2);k++)~{
~~~~~~vector<CNodeHardCoded~*>::iterator~j~=~i+1;
~~~~~~while(j~!=~ns.end())~{

~~~~~~~~if(!(*j)->type().compare(``blockload''))~{
~~~~~~~~~~CNodeLoad~*b2~=~(CNodeLoad~*)(*j);

~~~~~~~~~~if(b2->iaddrs[k]~>~b->iaddrs[0]~&&~b2->iaddrs[k]~<~b->iaddrs[0]+VL)~{
~~~~~~~~~~~~ns.erase(j);

~~~~~~~~~~~~return~b2;

~~~~~~~~~~}

~~~~~~~~~~++j;

~~~~~~~~}

~~~~~~}

~~~~}

~~~~return~NULL;

~~}

~~void~CSplitRadix::merge_loads(CNodeLoad~*b1,~CNodeLoad~*b2)~{

~~~~for(int~i=0;i<b1->size;i++)~{
~~~~~~for(int~j=0;j<b2->iaddrs.size();j++)~{
~~~~~~~~if(b2->iaddrs[j]~>~b1->iaddrs[i]~&&~b2->iaddrs[j]~<~b1->iaddrs[i]+VL)~{
~~~~~~~~~~b1->iaddrs.push_back(b2->iaddrs[j]);
~~~~~~~~~~b1->rs.push_back(b2->rs[j]);
~~~~~~~~~~if(rmap[b2->rs[j]]~==~b2)~rmap[b2->rs[j]]~=~b1;
~~~~~~~~}

~~~~~~}

~~~~}

~~~~b1->types.push_back(b2->types[0]);
~~}

~~void~CSplitRadix::vectorize_loads()~{

~~~~vector<CNodeHardCoded~*>::iterator~i;
~~~~for(i=ns.begin();~i~!=~ns.end();++i)~{

~~~~~~if(!(*i)->type().compare(``blockload''))~{
~~~~~~~~while(CNodeLoad~*b2~=~find_parallel_load(i))

~~~~~~~~~~merge_loads((CNodeLoad~*)(*i),~b2);

~~~~~~}

~~~~}

~~}

Listing 5.4: Leaf node vectorization

If vectorize_loads and vectorize_ks are invoked with V L = 2 on the topological ordering of nodes in
Table 5.2, the result is the vectorized node list shown in Table 5.3. As in "Emitting code" (Section 5.1.1.2:
Emitting code), emitting code is a fairly simple process, and p. ?? is the code emitted from the node list in
. There are only a few di�erences to note about the emitted code when V L > 1.
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1. The register identi�ers in line 4 of p. ?? consist of a list of two integers delimited with an underscore.
The integers listed in each register's name are the VL-1 registers that were subsumed to create the
larger register (cf. VL-1 code in p. ??);

2. The leaf primitives (lines 6 and 7 in p. ??) have a list of underscore delimited integers in the name,
where each integer corresponds to the type of sub-transform to be computed on that position in the
vector registers. For example, the L_4_4 primitive is named to indicate a size-4 leaf operation on
the lower and upper halves of the vector registers, while the L_2_4 primitive performs two size-2 leaf
operations on the lower half of the registers and a size-4 leaf operation on the upper halves;

3. The body node primitives (K_N) and store primitives (S_4) are unchanged because they perform the
same operation on each element of the vector registers. This is as a result of the register transposes
that were previously performed on the outputs of the leaf primitives.

void~sfft_fcf16_hc(sfft_plan_t~*p,~const~void~*vin,~void~*vout)~{

~~const~SFFT_D~*in~=~vin;

~~SFFT_D~*out~=~vout;

~~SFFT_R~r0_1,r2_3,r4_5,r6_7,r8_9,r10_11,r12_13,r14_15;

~

~~L_4_4(in+0,in+16,in+8,in+24,&r0_1,&r2_3,&r8_9,&r10_11);

~~L_2_4(in+4,in+20,in+28,in+12,&r4_5,&r6_7,&r14_15,&r12_13);

~~K_N(VLIT4(0.7071,0.7071,1,1),

~~~~~~VLIT4(0.7071,-0.7071,0,-0),

~~~~~~&r0_1,&r2_3,&r4_5,&r6_7);

~~K_N(VLIT4(0.9239,0.9239,1,1),

~~~~~~VLIT4(0.3827,-0.3827,0,-0),

~~~~~~&r0_1,&r4_5,&r8_9,&r12_13);

~~S_4(r0_1,r4_5,r8_9,r12_13,out+0,out+8,out+16,out+24);

~~K_N(VLIT4(0.3827,0.3827,0.7071,0.7071),

~~~~~~VLIT4(0.9239,-0.9239,0.7071,-0.7071),

~~~~~~&r2_3,&r6_7,&r10_11,&r14_15);

~~S_4(r2_3,r6_7,r10_11,r14_15,out+4,out+12,out+20,out+28);

}

Listing 5.5: Hard-coded VL-2 size-16 FFT

5.1.2.3 Scalability

So far, hard-coded transforms of vector length 1 and 2 have been presented. On Intel machines, VL-1 can be
used to compute double-precision transforms with SSE2, while VL-2 can be used to compute double-precision
transforms with AVX and single-precision transforms with SSE. The method of vectorization presented in
this chapter scales above VL-2, and has been successfully used to compute VL-4 single-precision transforms
with AVX.

The leaf primitives were coded by hand in all cases; VL-1 required L_2 and L_4, while VL-2 required
L_2_2, L_2_4, L_4_2 and L_4_4. In the case of VL-4, not all permutations of possible leaf primitive were
required � only 11 out of 16 were needed for the transforms that were generated.

It is an easy exercise to code the leaf primitives for V L ≤ 4 by hand, but for future machines that
might feature vector lengths larger than 4, the leaf primitives could be automatically generated (in fact,

Available for free at Connexions <http://cnx.org/content/col11438/1.2>



42 CHAPTER 5. STREAMING FFT

"Other vector lengths" (Section 5.3.5: Other vector lengths) is concerned with automatic generation of leaf
sub-transforms at another level of scale).

5.1.2.4 Constraints

For a transform of size N and leaf node size of S (S = 4 in the examples in this chapter), the following
constraint must be satis�ed:

N/V L ≥ S (5.2)

If this constraint is not satis�ed, the size of either VL or S must be reduced. In practice, VL and S are small
relative to the size of most transforms, and thus these corner cases typically only occur for very small sized
transforms. Such an example is a size-2 transform when V L = 2 and S = 4, where in this case the transform
is too small to be computed with SIMD operations and should be computed with scalar arithmetic instead.

5.1.3 Performance
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Figure 5.1: Performance of hard-coded FFTs on a Macbook Air 4,2. (a) Single-precision, SSE (VL-2)
(b) Double-precision, SSE (VL-1) (c) Single-precision, AVX (VL-4) (d) Double-precision, AVX (VL-2)

Figure 5.1 shows the results of a benchmark for transforms of size 4 through to 1024 running on a Macbook
Air 4,2. The speed of FFTW 3.3 running in estimate and patient modes is also shown for comparison.

FFTW running in patient mode evaluates a huge con�guration space of parameters, while the hard-coded
FFT required no calibration.
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A variety of vector lengths are represented, and the hard-coded FFTs have good performance while
N/V L ≤ 128. After this point, performance drops o� and other techniques should be used. The following
sections use the hard-coded FFT as a foundation for scaling to larger sizes of transforms.

5.2 Hard-coded four-step

This section presents an implementation of the four-step algorithm [11] that leverages hard-coded sub-
transforms to compute larger transforms. The implementation uses an implicit memory transpose (along
with vector register transposes) and scales particularly well with VL. In contrast to the fully hard-coded
implementation in the previous section, the four-step implementation requires no new leaf primitives as VL
increases, i.e., the code is much the same when V L > 1 as it is when V L = 1.

5.2.1 The four-step algorithm

A transform of size N is decomposed into a two-dimensional array of size n1×n2 where N = n1n2. Selecting
n1 = n2 =

√
N (or close) often obtains the best performance results [11]. When either of the factors is larger

than the other, it is the larger of the two factors that will determine performance, because the larger factor
e�ectively brings the memory wall closer. The four steps of the algorithm are:

1. Compute n1 FFTs of length n2 along the columns of the array;
2. Multiply each element of the array with ωijN , where i and j are the array coordinates;
3. Transpose the array;
4. Compute n2 FFTs of length n1 along the columns of the array.

For this out-of-place implementation, steps 2 and 3 are performed as part of step 1. Step 1 reads data from
the input array and computes the FFTs, but before storing the data in the �nal pass, it is multiplied by the
twiddle factors from step 2. After this, the data is stored to rows in the output array, and thus the transpose
of step 3 is performed implicitly. Step 4 is then computed as usual: FFTs are computed along the columns
of the output array.

This method of computing the four-step algorithm in two steps requires only minor modi�cations in
order to support multiple vector lengths: with V L > 1, multiple columns are read and computed in parallel
without modi�cation of the code, but before storing multiple columns of data to rows, a register transpose
is required.

5.2.2 Vector length 1

When V L = 1, three hard-coded FFTs are elaborated.

1. FFT of length n2 with stride n1 × 2 for the �rst column of step 1;
2. FFT of length n2 with stride n1 × 2 and twiddle multiplications on outputs � for all other columns of

step 1;
3. FFT of length n1 with stride n2 × 2 for columns in step 4.

In order to generate the code for the four-step sub-transforms, some minor modi�cations are made to the
fully hard-coded code generator that was presented in the previous section.

The �rst FFT is used to handle the �rst column of step 1, where there are no twiddle factor multiplications
because one of the array coordinates for step 2 is zero, and thus ω0

N is unity. This FFT may be elaborated
as in "Vector length 1" (Section 5.1.1: Vector length 1) with the addition of a stride factor for the input
address calculation. The second FFT is elaborated as per the �rst FFT, but with the addition of twiddle
factor multiplications on each register prior to the store operations. The third FFT is elaborated as per the
�rst FFT, but with strided input and output addresses.
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const~SFFT_D~__attribute__~((aligned(32)))~*LUT;

const~SFFT_D~*pLUT;

void~sfft_dcf64_fs_x1_0(sfft_plan_t~*p,~const~void~*vin,~void~*vout){

~~const~SFFT_D~*in~=~vin;

~~SFFT_D~*out~=~vout;

~~SFFT_R~r0,r1,r2,r3,r4,r5,r6,r7;

~~L_4(in+0,in+64,in+32,in+96,&r0,&r1,&r2,&r3);

~~L_2(in+16,in+80,in+112,in+48,&r4,&r5,&r6,&r7);

~~K_0(&r0,&r2,&r4,&r6);

~~S_4(r0,r2,r4,r6,out+0,out+4,out+8,out+12);

~~K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r1,&r3,&r5,&r7);

~~S_4(r1,r3,r5,r7,out+2,out+6,out+10,out+14);

}

void~sfft_dcf64_fs_x1_n(sfft_plan_t~*p,~const~void~*vin,~void~*vout){

~~const~SFFT_D~*in~=~vin;

~~SFFT_D~*out~=~vout;

~~SFFT_R~r0,r1,r2,r3,r4,r5,r6,r7;

~~L_4(in+0,in+64,in+32,in+96,&r0,&r1,&r2,&r3);

~~L_2(in+16,in+80,in+112,in+48,&r4,&r5,&r6,&r7);

~~K_0(&r0,&r2,&r4,&r6);

~~r2~=~MUL(r2,LOAD(pLUT+4),LOAD(pLUT+6));

~~r4~=~MUL(r4,LOAD(pLUT+12),LOAD(pLUT+14));

~~r6~=~MUL(r6,LOAD(pLUT+20),LOAD(pLUT+22));

~~S_4(r0,r2,r4,r6,out+0,out+4,out+8,out+12);

~~K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r1,&r3,&r5,&r7);

~~r1~=~MUL(r1,LOAD(pLUT+0),LOAD(pLUT+2));

~~r3~=~MUL(r3,LOAD(pLUT+8),LOAD(pLUT+10));

~~r5~=~MUL(r5,LOAD(pLUT+16),LOAD(pLUT+18));

~~r7~=~MUL(r7,LOAD(pLUT+24),LOAD(pLUT+26));

~~S_4(r1,r3,r5,r7,out+2,out+6,out+10,out+14);

~~pLUT~+=~28;

}

void~sfft_dcf64_fs_x2(sfft_plan_t~*p,~const~void~*vin,~void~*vout){

~~const~SFFT_D~*in~=~vin;

~~SFFT_D~*out~=~vout;

~~SFFT_R~r0,r1,r2,r3,r4,r5,r6,r7;

~~L_4(in+0,in+64,in+32,in+96,&r0,&r1,&r2,&r3);

~~L_2(in+16,in+80,in+112,in+48,&r4,&r5,&r6,&r7);

~~K_0(&r0,&r2,&r4,&r6);

~~S_4(r0,r2,r4,r6,out+0,out+32,out+64,out+96);

~~K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r1,&r3,&r5,&r7);

~~S_4(r1,r3,r5,r7,out+16,out+48,out+80,out+112);

}

void~sfft_dcf64_fs(sfft_plan_t~*p,~const~void~*vin,~void~*vout)~{

~~const~SFFT_D~*in~=~vin;

~~SFFT_D~*out~=~vout;

~~pLUT~=~~LUT;

~~int~i;

~~sfft_dcf64_fs_x1_0(p,~in,~out);

~~for(i=1;i<8;i++)~sfft_dcf64_fs_x1_n(p,~in+(i*2),~out+(i*16));
~~for(i=0;i<8;i++)~sfft_dcf64_fs_x2(p,~out+(i*2),~out+(i*2));
}

Listing 5.6: Hard-coded four-step VL-1 size-64 FFT
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5.2.2.1 Example

p. ?? is a VL-1 size-64 hard-coded four-step FFT. Before it can be used, an initialization procedure (not
shown) allocates and populates the LUT at line 1 with the twiddle factors that are required for the step 2
multiplications. Line 44 shows the main function that executes the �rst sub-transform on the �rst column
(line 49), and the second sub-transform on all remaining columns (line 50). Finally, the sub-transforms
corresponding to step 4 of the four-step algorithm are executed on all columns in line 51.

The twiddle factor multiplication that corresponds to step 2 of the four-step algorithm takes place in lines
21-23 and lines 26-29. The �rst register is not multiplied with a twiddle factor because the �rst row of twiddle
factors are ω0

N (i.e., unity). The other registers are multiplied with two registers loaded from the LUT, which
are the unpacked real and imaginary parts (see Fast interleaved complex multiplication (Section 3.3.1.3: Fast
interleaved format complex multiplication) for details about unpacked complex multiplication).
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5.2.3 Other vector lengths

const~SFFT_D~__attribute__~((aligned(32)))~*LUT;

const~SFFT_D~*pLUT;

void~sfft_fcf64_fs_x1(sfft_plan_t~*p,~const~void~*vin,~void~*vout)~{

~~const~SFFT_D~*in~=~vin;

~~SFFT_D~*out~=~vout;

~~SFFT_R~r0,r1,r2,r3,r4,r5,r6,r7;

~~L_4(in+0,in+64,in+32,in+96,&r0,&r1,&r2,&r3);

~~L_2(in+16,in+80,in+112,in+48,&r4,&r5,&r6,&r7);

~~K_0(&r0,&r2,&r4,&r6);

~~K_N(VLIT4(0.7071,0.7071,0.7071,0.7071),

~~~~~~VLIT4(0.7071,-0.7071,0.7071,-0.7071),&r1,&r3,&r5,&r7);

~~r1~=~MUL(r1,LOAD(pLUT+0),LOAD(pLUT+4));

~~TX2(r0,r1);

~~r2~=~MUL(r2,LOAD(pLUT+8),LOAD(pLUT+12));

~~r3~=~MUL(r3,LOAD(pLUT+16),LOAD(pLUT+20));

~~TX2(r2,r3);

~~r4~=~MUL(r4,LOAD(pLUT+24),LOAD(pLUT+28));

~~r5~=~MUL(r5,LOAD(pLUT+32),LOAD(pLUT+36));

~~TX2(r4,r5);

~~r6~=~MUL(r6,LOAD(pLUT+40),LOAD(pLUT+44));

~~r7~=~MUL(r7,LOAD(pLUT+48),LOAD(pLUT+52));

~~TX2(r6,r7);

~~S_4(r0,r2,r4,r6,out+0,out+4,out+8,out+12);

~~S_4(r1,r3,r5,r7,out+16,out+20,out+24,out+28);

~~pLUT~+=~56;

}

void~sfft_fcf64_fs_x2(sfft_plan_t~*p,~const~void~*vin,~void~*vout)~{

~~const~SFFT_D~*in~=~vin;

~~SFFT_D~*out~=~vout;

~~SFFT_R~r0,r1,r2,r3,r4,r5,r6,r7;

~~L_4(in+0,in+64,in+32,in+96,&r0,&r1,&r2,&r3);

~~L_2(in+16,in+80,in+112,in+48,&r4,&r5,&r6,&r7);

~~K_0(&r0,&r2,&r4,&r6);

~~K_N(VLIT4(0.7071,0.7071,0.7071,0.7071),

~~~~~~VLIT4(0.7071,-0.7071,0.7071,-0.7071),&r1,&r3,&r5,&r7);

~~S_4(r0,r2,r4,r6,out+0,out+32,out+64,out+96);

~~S_4(r1,r3,r5,r7,out+16,out+48,out+80,out+112);

}

void~sfft_fcf64_fs(sfft_plan_t~*p,~const~void~*vin,~void~*vout)~{

~~const~SFFT_D~*in~=~vin;

~~SFFT_D~*out~=~vout;

~~pLUT~=~~LUT;

~~int~i;

~~for(i=0;i<4;i++)~sfft_fcf64_fs_x1(p,~in+(i*4),~out+(i*32));
~~for(i=0;i<4;i++)~sfft_fcf64_fs_x2(p,~out+(i*4),~out+(i*4));
}

Listing 5.7: Hard-coded four-step VL-2 size-64 FFT
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For V L > 1, the FFTs along the columns are computed in parallel. Thus, in step 1, n1/V L FFTs are
computed along the columns of the array with stride = 2 × V L, and in step 4, n2/V L FFTs are computed
along the columns with stride = 2× V L.

An implication of computing the �rst column in parallel with other columns is that the �rst column is
now multiplied by unity twiddle factors, and thus only two sub-transforms are used instead of three.

The only other di�erence when V L > 1 is that the registers need to be transposed before storing columns
to rows (the implicit transpose that corresponds to step 3). To accomplish this when generating code,
n = V L store operations are latched before the transpose and store code is emitted.

5.2.3.1 Example

p. ?? implements a VL-2 size-64 hard-coded four-step FFT. The main function (line 39) computes 8 FFTs
along the columns for step 1 at line 44, and 8 FFTs along the columns for step 4 at line 45. There are only 4
iterations of the loop in each case because two sub-transforms are computed in parallel with each invocation
of the sub-transform function.

In the function corresponding to the sub-transforms of step 1 (line 3), two store operations are latched
(lines 23 and 24) before emitting code, which includes the preceding transposes (the TX2 operations) and
twiddle factor multiplications (lines 13�22).

5.2.4 Performance
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Figure 5.2: Performance of hard-coded four-step FFTs on a Macbook Air 4,2. (a) Single-precision, SSE
(VL-2) (b) Double-precision, SSE (VL-1) (c) Single-precision, AVX (VL-4) (d) Double-precision, AVX
(VL-2)
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Figure 5.2 shows the results of a benchmark for transforms of size 16 through to 8192 running on a Macbook
Air 4,2. The speed of FFTW 3.3 running in estimate and patient modes is also shown for contrast.

The results show that the performance of the four-step algorithm improves as the length of the vector
increases, but, as was the case with the hard-coded FFTs in "Fully hard-coded" (Section 5.1: Fully hard-
coded), the performance of the hard-coded four-step FFTs is limited to a certain range of transform size.

5.3 Hard-coded leaves

The performance of the fully hard-coded transforms presented in "Fully hard-coded" (Section 5.1: Fully
hard-coded) only scales while N/V L ≤ 128. This section presents techniques that are similar to those found
in the fully hard-coded transforms, but applied at another level of scale in order to scale performance to
larger sizes.

5.3.1 Vector length 1

The fully hard-coded transforms in "Fully hard-coded" (Section 5.1: Fully hard-coded) used two primitives
at the leaves: a size-4 sub-transform (L_4) and a double size-2 sub-transform (L_2). These sub-transforms
loaded four elements of data from the input array, performed a small amount of computation, and stored
the four results to the output array.

Performance is scaled to larger transforms by using larger sub-transforms at the leaves of the compu-
tation. These are automatically generated using fully hard-coded transforms, and thus the size of the leaf
computations is easily parametrized, which is just as well, because the optimal leaf size is dependent on the
size of the transform, the compiler, and the target machine.

The process of elaborating a topological ordering of nodes representing a hard-coded leaf transform of
size N with leaf sub-transforms of size Nleaf is as follows:

1. Elaborate a size Nleaf sub-transform;
2. Elaborate a two size Nleaf/2 sub-transforms as one sub-transform;
3. Elaborate the main transform using the sub-transforms from steps 1 and 2 as the leaves of the com-

putation.

The node lists for steps 1 and 2 are elaborated using the fully hard-coded elaborate function from p. ??,
but because the leaf sub-transform in step 2 is actually two sub-transforms of size Nleaf/2, the elaborate

function is invoked twice with di�erent o�set parameters:

1. elaborate(Nleaf/2, 0, 0, 1) ;
2. elaborate(Nleaf/2, −1, Nleaf/2, 1) ;

The code corresponding to steps 1 and 2 is emitted slightly di�erently than was the case with the fully
hard-coded transforms. Instead of hard coding the input array indices, the indices are themselves loaded
from an array that is precomputed when the transform is initialized.

The node list corresponding to the main transform in step 3 is elaborated as in the function in p. ??,
but with some minor change. First, the recursion terminates with leaf nodes of size Nleaf . Second, because
the loops in the body of the sub-transform will be at least 2 ×Nleaf iterations, the loop for the body sub-
transforms (line 12 of p. ??) is not statically unrolled. Instead only one node is added to the list of nodes,
and the loop is computed dynamically.
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void~sfft_dcf64_hcl16_4_e(offset_t~*is,const~SFFT_D~*in,SFFT_D~*out){

~~SFFT_R~r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15;

~~L_4(in+is[0],in+is[1],in+is[2],in+is[3],&r0,&r1,&r2,&r3);

~~L_2(in+is[4],in+is[5],in+is[6],in+is[7],&r4,&r5,&r6,&r7);

~~K_0(&r0,&r2,&r4,&r6);

~~K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r1,&r3,&r5,&r7);

~~L_4(in+is[8],in+is[9],in+is[10],in+is[11],&r8,&r9,&r10,&r11);

~~L_4(in+is[12],in+is[13],in+is[14],in+is[15],&r12,&r13,&r14,&r15);

~~K_0(&r0,&r4,&r8,&r12);

~~S_4(r0,r4,r8,r12,out+0,out+8,out+16,out+24);

~~K_N(VLIT2(0.9239,0.9239),VLIT2(0.3827,-0.3827),&r1,&r5,&r9,&r13);

~~S_4(r1,r5,r9,r13,out+2,out+10,out+18,out+26);

~~K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r2,&r6,&r10,&r14);

~~S_4(r2,r6,r10,r14,out+4,out+12,out+20,out+28);

~~K_N(VLIT2(0.3827,0.3827),VLIT2(0.9239,-0.9239),&r3,&r7,&r11,&r15);

~~S_4(r3,r7,r11,r15,out+6,out+14,out+22,out+30);

}

void~sfft_dcf64_hcl16_4_o(offset_t~*is,const~SFFT_D~*in,SFFT_D~*out){

~~SFFT_R~r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15;

~~L_4(in+is[0],in+is[1],in+is[2],in+is[3],&r0,&r1,&r2,&r3);

~~L_2(in+is[4],in+is[5],in+is[6],in+is[7],&r4,&r5,&r6,&r7);

~~K_0(&r0,&r2,&r4,&r6);

~~S_4(r0,r2,r4,r6,out+0,out+4,out+8,out+12);

~~K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r1,&r3,&r5,&r7);

~~S_4(r1,r3,r5,r7,out+2,out+6,out+10,out+14);

~~L_4(in+is[8],in+is[9],in+is[10],in+is[11],&r8,&r9,&r10,&r11);

~~L_2(in+is[12],in+is[13],in+is[14],in+is[15],&r12,&r13,&r14,&r15);

~~K_0(&r8,&r10,&r12,&r14);

~~S_4(r8,r10,r12,r14,out+16,out+20,out+24,out+28);

~~K_N(VLIT2(0.7071,0.7071),VLIT2(0.7071,-0.7071),&r9,&r11,&r13,&r15);

~~S_4(r9,r11,r13,r15,out+18,out+22,out+26,out+30);

}

void~sfft_dcf64_hcl16_4_X_4(SFFT_D~*data,~int~N,~SFFT_D~*LUT){

~~X_4(data,~N,~LUT);

}

void~sfft_dcf64_hcl16_4(sfft_plan_t~*p,~const~void~*vin,~void~*vout){

~~const~SFFT_D~*in~=~vin;

~~SFFT_D~*out~=~vout;

~~p->is~=~p->is_base;
~~sfft_dcf64_hcl16_4_e(p->is,in,out+0);
~~p->is~+=~16;~~sfft_dcf64_hcl16_4_o(p->is,in,out+32);
~~sfft_dcf64_hcl16_4_X_4(out+0,32,p->ws[0]);
~~p->is~+=~16;~~sfft_dcf64_hcl16_4_e(p->is,in,out+64);
~~p->is~+=~16;~~sfft_dcf64_hcl16_4_e(p->is,in,out+96);
~~sfft_dcf64_hcl16_4_X_4(out+0,64,p->ws[1]);
}

Listing 5.8: Hard-coded VL-1 size-64 FFT with size-16 leaves
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5.3.1.1 Example

p. ?? is a size-64 hard-coded leaf transform with size-16 leaves. The �rst function (lines 1�17) is a size-16
leaf sub-transform, while the second (lines 18�32) consists of two size-8 leaf sub-transforms in parallel. The
main function (lines 36�46) invokes four leaf sub-transforms (lines 40, 41, 43 and 44), and two loops of body
sub-transforms (lines 42 and 45).

The �rst parameter to the leaf functions (see lines 1 and 18) is a pointer into an array of precomputed
indices for the input data array. At lines 41 and 43�44, the array is incremented before subsequent calls to
the leaf functions, and at line 39 the pointer is reset to the base of the array so that the transform can be
used repeatedly.

The function used for the body sub-transforms (lines 33�35) is a wrapper for a primitive that computes
a radix-2/4 butter�y. The last parameter to this function is a pointer to a precomputed LUT of twiddle
factors for a sub-transform of size N (the second parameter).

5.3.2 Improving memory locality in the leaves

Size Input array addresses

16 {0, 64, 32, 96, 16, 80, 112, 48, 8, 72, 40, 104, 120, 56, 24, 88}

8(x2) {4, 68, 36, 100, 20, 84, 116, 52, 124, 60, 28, 92, 12, 76, 108, 44}

16 {2, 66, 34, 98, 18, 82, 114, 50, 10, 74, 42, 106, 122, 58, 26, 90}

16 {126, 62, 30, 94, 14, 78, 110, 46, 6, 70, 38, 102, 118, 54, 22, 86}

16 {1, 65, 33, 97, 17, 81, 113, 49, 9, 73, 41, 105, 121, 57, 25, 89}

8(x2) {5, 69, 37, 101, 21, 85, 117, 53, 125, 61, 29, 93, 13, 77, 109, 45}

16 {127, 63, 31, 95, 15, 79, 111, 47, 7, 71, 39, 103, 119, 55, 23, 87}

8(x2) {3, 67, 35, 99, 19, 83, 115, 51, 123, 59, 27, 91, 11, 75, 107, 43}

Table 5.4: Size-16 leaf nodes in VL-1 size-128 hard-coded leaf FFT

Table 5.4 lists the addresses of data loaded by each of the size-16 leaf nodes in a size-128 transform. It
is di�cult to improve the locality of accesses within a leaf sub-transform (doing so would require the use
of expensive transposes), but the order of the leaf sub-transforms can be changed to yield better locality
between sub-transforms.

Size Input array addresses

16 {0, 64, 32, 96, 16, 80, 112, 48, 8, 72, 40, 104, 120, 56, 24, 88}

16 {1, 65, 33, 97, 17, 81, 113, 49, 9, 73, 41, 105, 121, 57, 25, 89}

16 {2, 66, 34, 98, 18, 82, 114, 50, 10, 74, 42, 106, 122, 58, 26, 90}

8(x2) {3, 67, 35, 99, 19, 83, 115, 51, 123, 59, 27, 91, 11, 75, 107, 43}

8(x2) {4, 68, 36, 100, 20, 84, 116, 52, 124, 60, 28, 92, 12, 76, 108, 44}

8(x2) {5, 69, 37, 101, 21, 85, 117, 53, 125, 61, 29, 93, 13, 77, 109, 45}

16 {126, 62, 30, 94, 14, 78, 110, 46, 6, 70, 38, 102, 118, 54, 22, 86}

16 {127, 63, 31, 95, 15, 79, 111, 47, 7, 71, 39, 103, 119, 55, 23, 87}

Table 5.5: Sorted size-16 leaf nodes in VL-1 size-128 hard-coded leaf FFT
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Table 5.5 is the list of nodes from Table 5.4 after the rows have been sorted according to the minimum
address in each row. There are now three distinct groups in the list: the �rst three sub-transforms of size-
16, the second three sub-transforms of 2x size-8, and the �nal two sub-transforms of size-16. The memory
accesses are now linear between consecutive sub-transforms, though the second and third groups operate on
a permuted ordering of the addresses.

The pattern exhibited by Table 5.5 can be exploited to access the data stored in the input array with
better locality, as Figures Figure 5.3 and Figure 5.4 show. Figure 5.3 depicts the memory access pattern
of an FFT with size-16 hard-coded leaves, while Figure 5.4 depicts the same FFT with sorted hard-coded
leaves.

To compute the FFT with sorted leaves, the leaf sub-transforms and the body sub-transforms are split
into two separate lists, and the entire list of leaf sub-transforms is computed before any of the body sub-
transforms. There is, however, a cost associated with this re-arrangement: each leaf sub-transform's o�set
into the output array is not easy to compute because the o�sets are now essentially decimated-in-frequency,
and thus they are now pre-computed. Overall, the trade-o� is justi�ed because the output memory accesses
within each leaf sub-transform are still linear.
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Figure 5.3: Memory access pattern of the straight line blocks of code in a VL-1 size-128 hard-coded
leaf FFT
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Figure 5.4: Memory access pattern of the straight line blocks of code in a VL-1 size-128 hard-coded
leaf FFT after leaf node sorting
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The leaf transforms can be computed in three loops. The �rst and third loops compute size-Nleaf sub-
transforms, while the second loop computes size-Nleaf/2 sub-transforms. The size of the three loops i0, i1
and i2 are:

i0 = b N
3×Nleaf

c+ 1 (5.3)

i1 = b N

3×Nleaf
c+ b

(
N

Nleaf
mod 3

)
× 1

2
c (5.4)

and

i2 = b N

3×Nleaf
c (5.5)

The transform can now be elaborated without leaf nodes, and the code for the three loops emitted in the
place of calls to individual leaf sub-transforms.

5.3.2.1 Example

p. ?? is the main function for the FFT that corresponds to the leaf node list in Table 5.5. The �rst and third
loops invoke size-16 sub-transforms at lines 8 and 16, and the second loop invokes 2x size-8 sub-transforms
at line 12. Following the leaf sub-transforms, the body sub-transforms are called at lines 19-23.

void~sfft_dcf128_shl16_4(sfft_plan_t~*p,const~void~*vin,void~*vout){

~~const~SFFT_D~*in~=~vin;

~~SFFT_D~*out~=~vout;

~~offset_t~*is~=~p->is_base;
~~offset_t~*offsets~=~p->offsets_base;
~~int~i;

~~for(i=3;i>0;--i)~{
~~~~sfft_dcf128_shl16_4_e(is,~in,~out+offsets[0]);

~~~~is~+=~16;~offsets~+=~1;

~~}

~~for(i=3;i>0;--i)~{
~~~~sfft_dcf128_shl16_4_o(is,~in,~out+offsets[0]);

~~~~is~+=~16;~offsets~+=~1;

~~}

~~for(i=2;i>0;--i)~{
~~~~sfft_dcf128_shl16_4_e(is,~in,~out+offsets[0]);

~~~~is~+=~16;~offsets~+=~1;

~~}

~~sfft_dcf128_shl16_4_X_4(out+0,~32,~p->ws[0]);
~~sfft_dcf128_shl16_4_X_4(out+0,~64,~p->ws[1]);
~~sfft_dcf128_shl16_4_X_4(out+128,~32,~p->ws[0]);
~~sfft_dcf128_shl16_4_X_4(out+192,~32,~p->ws[0]);
~~sfft_dcf128_shl16_4_X_4(out+0,~128,~p->ws[2]);
}

Listing 5.9: Hard-coded VL-1 size-128 FFT with size-16 leaves (sub-transforms omitted)
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5.3.2.2 Scalability

In terms of code size, computing the leaf sub-transforms with three loops is economical. As the size of the
transform grows, the code size attributed to the leaf sub-transforms remains constant. However, as the size of
the transform begins to grow large (e.g., ≥ 65, 536), the instructions required for the body sub-transform calls
(lines 19-23 in p. ??) begins to dominate the overall program size. "Optimizing the hierarchical structure"
(Section 5.3.4: Optimizing the hierarchical structure) describes a method for compressing the code size of
the body sub-transform calls while maintaining performance.

Because the input array references between consecutive leaves are now linear, and like types of leaf sub-
transforms are grouped together, it is now possible to compute several leaf sub-transforms in parallel, which
is fully described in "Other vector lengths" (Section 5.3.5: Other vector lengths).

5.3.3 Body sub-transform radix

The radix of the body sub-transforms can be increased in order to reduce the number of passes over the data
and make better use of the cache. In practice, the body sub-transform radix is limited by the associativity
of the cache as the size of the transform increases. If the radix is greater than the associativity of the
nearest level of cache in which a sub-transform cannot �t, there will be cache misses for every iteration of
the sub-transform's loop, resulting in severely degraded performance.

All Intel SIMDmicroprocessors since the Netburst micro-architecture have had at least 8-way associativity
in all levels of cache, and thus increasing the radix from 4 to 8 is a sensible decision when targeting Intel
machines.

Just as the split-radix 2/4 algorithm requires two di�erent types of leaf sub-transforms, a split-radix 2/8
algorithm would require three, which increases the complexity of statically elaborating and generating code.
There is an alternative that does not require implementing three types of leaf sub-transform: where a size-N
body sub-transform divides into a size N/2 body sub-transform and two size N/4 sub-transforms, the size N
and size N/2 sub-transforms may be collected together and computed as a size-8 sub-transform. Thus the
transform is computed with two types of leaf sub-transform and two types of body sub-transform, instead of
three types of leaf sub-transform and one type of body sub-transform, as with the standard split-radix 2/8
algorithm.

For the size-128 tranform in p. ??, either the sub-transform at line 19 can be subsumed into the sub-
transform at line 20, or the sub-transform at line 20 can be subsumed into the sub-transform at line 23 �
but not both. The latter choice is better because it involves larger transforms.
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CBody~*CHardCodedLeaf::find_subsumable_sub_transform(

~~~~~~~vector<CNode~*>::reverse_iterator~i)~{
~~CBody~*first~=~(CBody~*)(*i);~~i++;

~~while(i~!=~bs.rend())~{

~~~~if(!((*i)->type().compare("body")))~{
~~~~~~CBody~*second~=~(CBody~*)(*i);

~~~~~~if(first->N~==~second->N*2~&&~first->offset~==~second->offset){
~~~~~~~~bs.erase((++i).base());

~~~~~~~~return~second;

~~~~~~}

~~~~}

~~~~++i;

~~}

~~return~NULL;

}

void~CHardCodedLeaf::increase_body_radix(void)~{

~~vector<CNode~*>::reverse_iterator~ri;
~~for(ri=bs.rbegin();~ri!=bs.rend();~++ri)~{

~~~~if(!((*ri)->type().compare("body")))~{
~~~~~~CBody~*n1~=~(CBody~*)(*ri);

~~~~~~CBody~*n2~=~find_subsumable_sub_transform(ri);

~~~~~~if(n2)~n1->size~*=~2;
~~~~}

~~}

}

Listing 5.10: Doubling the radix of body sub-transforms

The code in p. ?? iterates in reverse over a list of sub-transforms and doubles the radix of
the body sub-transforms. Because the list may include multiple types, type introspection at lines
6 and 20 �lters out all types that are not body sub-transforms. For each body sub-transform, the
increase_body_radix function searches upwards through the list for a subsumable body sub-transform
(using find_subsumable_sub_transform) and if a match is found, the smaller sub-transform is removed
from the list, and the size of the larger sub-transform is doubled.
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Figure 5.5: Memory access pattern of the straight line blocks of code in a VL-1 size-128 hard-coded
leaf FFT with sorted radix-2/4 and size-8 body sub-transforms
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Figure 5.5 depicts the memory access patterns of a size-128 transform where the outermost body sub-
transform has subsumed a smaller sub-transform to become a size-8 sub-transform. The columns from 33
onwards show the sub-transform accessing eight elements in the output data array (cf. Figure 5.4, which
shows the memory access patterns of the same transform prior to doubling the radix of the outer sub-
transform).

5.3.4 Optimizing the hierarchical structure

The largest transform that has been considered so far is size-128. As it stands, the hard-coded leaf approach
begins to generate code of unwieldy proportions as the size of the transform tends towards tens of thousands
or hundreds of thousands of points. This is due to the lists of statically elaborated body sub-transform calls,
e.g., a size-262,144 transform contains a lengthy list of 7279 such calls.

While long lists of statically elaborated calls are one extreme, the other is to compute the body sub-
transforms with a recursive program. The former option degrades performance for larger transforms, while
the latter option curbs performance for smaller transforms. A compromise is to somehow compress blocks
of statically elaborated sub-transform calls.

The approach presented here extracts the hierarchical structure from the sequence of body sub-transforms
and emits a set of functions that are neither too small (as in the case of a recursive program) nor too large
(as is the case with full static elaboration). This is accomplished by adapting the Sequitur algorithm [87],
which builds a grammar of rules from a sequence of symbols, and enforces two basic constraints:

1. no pair of adjacent symbols (referred to as a digram) appears more than once in the grammar;
2. every rule is used more than once.

The resulting grammar is an e�cient hierarchical representation of the original sequence. Additional con-
straints can be imposed to limit the maximum or minimum size of each rule, which enable the size of the
resulting functions to be tuned to be not too small and not too large.

To build the grammar, each body sub-transform is represented by a symbol consisting of the size and
o�set of the sub-transform. The radix is discarded, because it can be inferred from the size. Here are several
other details relevant to this particular application of Sequitur:

• A digram of two sub-transforms is deemed to match another digram when the size of each sub-transform
matches the size of the other digram's respective sub-transform and the relative o�sets between sub-
transforms within each digram match;

• Sub-transform o�sets are maintained to be always relative to the base of the containing rule � when a
rule is constructed, the o�sets of the symbols within that rule are adjusted to be relative to the base of
the new rule, and when a rule is subsumed (due to violation of constraint 2: every rule must be used
more than once), the o�sets are recomputed to be relative to the subsuming rule.
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void~sfft_dcf8192_shl16_8_4(sfft_plan_t~*p,~SFFT_D~*out)~{

~~X_4(out+0,~32,~p->ws[0]);
~~X_4(out+128,~32,~p->ws[0]);
~~X_4(out+192,~32,~p->ws[0]);
~~X_8(out+0,~128,~p->ws[2]);
}

void~sfft_dcf8192_shl16_8_5(sfft_plan_t~*p,~SFFT_D~*out)~{

~~X_8(out+0,~64,~p->ws[1]);
~~X_8(out+128,~64,~p->ws[1]);
}

void~sfft_dcf8192_shl16_8_9(sfft_plan_t~*p,~SFFT_D~*out)~{

~~X_8(out+0,~64,~p->ws[1]);
~~X_4(out+128,~32,~p->ws[0]);
~~X_4(out+192,~32,~p->ws[0]);
~~sfft_dcf8192_shl16_8_5(p,~out+256);

~~X_8(out+0,~256,~p->ws[3]);
}

void~sfft_dcf8192_shl16_8_13(sfft_plan_t~*p,~SFFT_D~*out)~{

~~sfft_dcf8192_shl16_8_4(p,~out+0);

~~sfft_dcf8192_shl16_8_5(p,~out+256);

~~sfft_dcf8192_shl16_8_4(p,~out+512);

~~sfft_dcf8192_shl16_8_4(p,~out+768);

~~X_8(out+0,~512,~p->ws[4]);
}

void~sfft_dcf8192_shl16_8_14(sfft_plan_t~*p,~SFFT_D~*out)~{

~~sfft_dcf8192_shl16_8_9(p,~out+0);

~~sfft_dcf8192_shl16_8_9(p,~out+512);

}

void~sfft_dcf8192_shl16_8_18(sfft_plan_t~*p,~SFFT_D~*out)~{

~~sfft_dcf8192_shl16_8_9(p,~out+0);

~~sfft_dcf8192_shl16_8_4(p,~out+512);

~~sfft_dcf8192_shl16_8_4(p,~out+768);

~~sfft_dcf8192_shl16_8_14(p,~out+1024);

~~X_8(out+0,~1024,~p->ws[5]);
}

void~sfft_dcf8192_shl16_8_22(sfft_plan_t~*p,~SFFT_D~*out)~{

~~sfft_dcf8192_shl16_8_13(p,~out+0);

~~sfft_dcf8192_shl16_8_14(p,~out+1024);

~~sfft_dcf8192_shl16_8_13(p,~out+2048);

~~sfft_dcf8192_shl16_8_13(p,~out+3072);

~~X_8(out+0,~2048,~p->ws[6]);
}

void~sfft_dcf8192_shl16_8_1(sfft_plan_t~*p,~SFFT_D~*out)~{

~~sfft_dcf8192_shl16_8_22(p,~out+0);

~~sfft_dcf8192_shl16_8_18(p,~out+4096);

~~sfft_dcf8192_shl16_8_18(p,~out+6144);

~~sfft_dcf8192_shl16_8_22(p,~out+8192);

~~sfft_dcf8192_shl16_8_22(p,~out+12288);

~~X_8(out+0,~8192,~p->ws[8]);
}

Listing 5.11: Optimized body sub-transforms for size-8192 FFT
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5.3.4.1 Example

A size-8192 hard-coded leaf FFT requires 229 calls to radix-2/4 and size-8 body sub-transforms. After
optimizing the sequence of calls with Sequitur, the compact set of functions shown in p. ?? replaces a
sequence of 229 calls.

Compared to the full list of statically elaborated calls, the optimized set of functions requires less code
space while achieving better performance; and compared to a recursive program, the optimized set of function
calls is faster (due to lower call and stack overhead) while trading o� an acceptably small amount of code
space.

5.3.4.2 Scalability

The technique presented in this section has been veri�ed for transforms ranging in size from 26 through to
225 (32 mega) points. The technique works well up until sizes of about 218 points, but for larger transforms
the elaboration and compile times begin to exceed 1 second or so, and the code size again begins to grow
large. For transforms larger than 218 points, a recursive program can be used until leaves of size 218 points
are reached, at which point the technique presented in this section is used.

5.3.5 Other vector lengths

The method of vectorizing the hard-coded leaf FFT is similar to that of the hard-coded FFT in "Other
vector lengths" (Section 5.1.2: Other vector lengths); the only di�erence here is the level of scale.

The hard-coded FFT was vectorized by collecting together primitive leaf operations that loaded data from
adjacent memory locations. The hard-coded leaf FFT has already been sorted such that consecutive leaf
sub-transforms load data from adjacent memory locations (see "Improving memory locality in the leaves"
(Section 5.3.2: Improving memory locality in the leaves)), so the task is easier in this case � at least in one
respect.

Size Input array addresses

16 {0, 64, 32, 96, 16, 80, 112, 48, 8, 72, 40, 104, 120, 56, 24, 88}

16 {1, 65, 33, 97, 17, 81, 113, 49, 9, 73, 41, 105, 121, 57, 25, 89}

16 {2, 66, 34, 98, 18, 82, 114, 50, 10, 74, 42, 106, 122, 58, 26, 90}

8(x2) {3, 67, 35, 99, 19, 83, 115, 51, 123, 59, 27, 91, 11, 75, 107, 43}

8(x2) {4, 68, 36, 100, 20, 84, 116, 52, 124, 60, 28, 92, 12, 76, 108, 44}

8(x2) {5, 69, 37, 101, 21, 85, 117, 53, 125, 61, 29, 93, 13, 77, 109, 45}

16 {126, 62, 30, 94, 14, 78, 110, 46, 6, 70, 38, 102, 118, 54, 22, 86}

16 {127, 63, 31, 95, 15, 79, 111, 47, 7, 71, 39, 103, 119, 55, 23, 87}

Table 5.6: Sorted size-16 leaf nodes in size-128 hard-coded leaf FFT, grouped for VL-2

Table 5.6 shows the sorted size-16 leaf sub-transforms for a size-128 transform with the rows divided into
VL-2 groups. Because each group of two leaf sub-transforms loads data from adjacent memory locations,
the group of sub-transforms can be loaded in parallel with vector memory operations, and all (or some) of
the computation done in parallel. The �rst, third and fourth groups in Table 5.6 contain leaf nodes of the
same size/type; these are the easiest vector leaf sub-transforms to compute, as described in "Homogeneous
leaf sub-transform vectors" (Section 5.3.5.1: Homogeneous leaf sub-transform vectors). The second group
of rows contains leaf sub-transforms of di�ering size/type, and computing these sub-transforms is covered
separately in "Heterogeneous leaf sub-transform vectors" (Section 5.3.5.2: Heterogeneous leaf sub-transform
vectors).
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5.3.5.1 Homogeneous leaf sub-transform vectors

void

sfft_fcf128_shl16_8_ee(offset_t~*is,const~SFFT_D~*in,SFFT_D~*out){

~~SFFT_R~r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15;

~~L_4(in+is[0],in+is[1],in+is[2],in+is[3],&r0,&r1,&r2,&r3);

~~L_2(in+is[4],in+is[5],in+is[6],in+is[7],&r4,&r5,&r6,&r7);

~~K_0(&r0,&r2,&r4,&r6);

~~K_N(VLIT4(0.7071,0.7071,0.7071,0.7071),

~~~~~~VLIT4(0.7071,-0.7071,0.7071,-0.7071),

~~~~~~&r1,&r3,&r5,&r7);

~~L_4(in+is[8],in+is[9],in+is[10],in+is[11],&r8,&r9,&r10,&r11);

~~L_4(in+is[12],in+is[13],in+is[14],in+is[15],&r12,&r13,&r14,&r15);

~~K_0(&r0,&r4,&r8,&r12);

~~K_N(VLIT4(0.9239,0.9239,0.9239,0.9239),

~~~~~~VLIT4(0.3827,-0.3827,0.3827,-0.3827),

~~~~~~&r1,&r5,&r9,&r13);

~~TX2(&r0,&r1);~TX2(&r4,&r5);~TX2(&r8,&r9);~TX2(&r12,&r13);

~~S_4(r0,r4,r8,r12,out0+0,out0+8,out0+16,out0+24);

~~S_4(r1,r5,r9,r13,out1+0,out1+8,out1+16,out1+24);

~~K_N(VLIT4(0.7071,0.7071,0.7071,0.7071),

~~~~~~VLIT4(0.7071,-0.7071,0.7071,-0.7071),

~~~~~~&r2,&r6,&r10,&r14);

~~K_N(VLIT4(0.3827,0.3827,0.3827,0.3827),

~~~~~~VLIT4(0.9239,-0.9239,0.9239,-0.9239),

~~~~~~&r3,&r7,&r11,&r15);

~~TX2(&r2,&r3);~TX2(&r6,&r7);~TX2(&r10,&r11);~TX2(&r14,&r15);

~~S_4(r2,r6,r10,r14,out0+4,out0+12,out0+20,out0+28);

~~S_4(r3,r7,r11,r15,out1+4,out1+12,out1+20,out1+28);

}

Listing 5.12: Homogeneous size-16 leaf sub-transform for VL-2 size-128 hard-coded leaf FFT

The vector leaf sub-transforms of a single size/type are handled in the same way as a VL-1 sub-transform,
with one di�erence: the vector registers must be transposed before the data is stored to memory in the
output array. In the example shown in p. ??, the transposes take place at lines 16 and 25.

Prior to the store operations, each position of the vector register (each position being a whole com-
plex word) contains an element belonging to each of the leaf sub-transforms composing the vectorized sub-
transform. Because each leaf sub-transform is stored sequentially to di�erent locations in memory with
aligned vector store operations, sets of registers are transposed such that each vector register contains ele-
ments from only one leaf sub-transform.
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5.3.5.2 Heterogeneous leaf sub-transform vectors

void

sfft_fcf128_shl16_8_eo(offset_t~*is,const~SFFT_D~*in,SFFT_D~*out){

~~SFFT_R~r0_1,r2_3,r4_5,r6_7,r8_9,r10_11,r12_13,r14_15,

r16_17,r18_19,r20_21,r22_23,r24_25,r26_27,r28_29,r30_31;

~~L_4_4(in+is[0],in+is[1],in+is[2],in+is[3],

~~~~~~&r0_1,&r2_3,&r16_17,&r18_19);

~~L_2_2(in+is[4],in+is[5],in+is[6],in+is[7],

~~~~~~&r4_5,&r6_7,&r20_21,&r22_23);

~~K_N(VLIT4(0.7071,0.7071,1,1),VLIT4(0.7071,-0.7071,0,-0),

~~~~~~&r0_1,&r2_3,&r4_5,&r6_7);

~~L_4_2(in+is[8],in+is[9],in+is[10],in+is[11],

~~~~~~~~&r8_9,&r10_11,&r28_29,&r30_31);

~~L_4_4(in+is[12],in+is[13],in+is[14],in+is[15],

~~~~~~~~&r12_13,&r14_15,&r24_25,&r26_27);

~~K_N(VLIT4(0.9239,0.9239,1,1),VLIT4(0.3827,-0.3827,0,-0),

~~~~~~&r0_1,&r4_5,&r8_9,&r12_13);

~~S_4(r0_1,r4_5,r8_9,r12_13,out0+0,out0+8,out0+16,out0+24);

~~K_N(VLIT4(0.3827,0.3827,0.7071,0.7071),

~~~~~~VLIT4(0.9239,-0.9239,0.7071,-0.7071),

~~~~~~&r2_3,&r6_7,&r10_11,&r14_15);

~~S_4(r2_3,r6_7,r10_11,r14_15,out0+4,out0+12,out0+20,out0+28);

~~K_N(VLIT4(0.7071,0.7071,1,1),VLIT4(0.7071,-0.7071,0,-0),

~~~~~~&r16_17,&r18_19,&r20_21,&r22_23);

~~S_4(r16_17,r18_19,r20_21,r22_23,out1+0,out1+4,out1+8,out1+12);

~~K_N(VLIT4(0.7071,0.7071,1,1),VLIT4(0.7071,-0.7071,0,-0),

~~~~~~&r24_25,&r26_27,&r28_29,&r30_31);

~~S_4(r24_25,r26_27,r28_29,r30_31,out1+16,out1+20,out1+24,out1+28);

}

Listing 5.13: Heterogeneous size-16 leaf sub-transform for VL-2 size-128 hard-coded leaf FFT

In the case of a vector comprising heterogeneous leaf sub-transforms, the data is transposed into separate
sub-transforms following the primitive leaf operations. The remainder of the computation is carried out
separately for each leaf sub-transform in the vector, and no further transposes are required.

When elaborating and generating code for VL-2 transforms, there are only two heterogeneous leaf sub-
transforms that might be required, but for other vector lengths the combinations are more complex. During
the elaboration process, each unique combination that is encountered in the sorted list of leaf sub-transforms
is elaborated into a function with repeated calls to the elaborate function, as was done in "Vector length
1" (Section 5.3.1: Vector length 1) in order to elaborate a sub-transform composed of two size Nleaf/2
sub-transforms.

p. ?? is an example of a heterogeneous size-16 VL-2 leaf sub-transform, where one size-16 leaf sub-
transform is loaded into the lower halves of the vector registers, and the data from another leaf sub-transform
composed of two size-8 sub-transforms is loaded into the upper halves. The primitive leaf operations at lines
5, 7, 11 and 13 transpose each sub-transform's data into separate vector registers, and the remainder of the
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computation is performed on each sub-transform separately. The size-16 sub-transform is stored to sequential
locations in memory at lines 17 and 21, while the sub-transform composed of two size-8 leaf sub-transforms
is stored to memory at lines 24 and 27.

5.3.6 Streaming stores

Some machines support streaming store or non-temporal store instructions; these instructions are used to
store data to locations that do not have temporal locality, and thus the cache can be bypassed. The hard-
coded leaf FFT described in the previous sections splits the computation into a pass of leaf sub-transforms
and several passes of body sub-transforms. For large transforms where the size of the data exceeds the
outermost level of cache, the non-temporal store instructions can be used in the leaf sub-transforms to
bypass the cache when storing data to the output array; this can greatly improve performance by keeping
other data in cache. The Intel SSE and AVX vector extensions both support streaming stores.

5.3.7 Performance
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Figure 5.6: Performance of hard-coded leaf FFTs on a Macbook Air 4,2. (a) Single-precision, SSE
(VL-2) (b) Double-precision, SSE (VL-1) (c) Single-precision, AVX (VL-4) (d) Double-precision, AVX
(VL-2)

Figure 5.6 shows the results of a benchmark for transforms of size 256 through to 262,144 running on
a Macbook Air 4,2. The speed of FFTW 3.3 running in estimate and patient modes is also shown for
comparison.

For each size of transform, precision and vector length (i.e., either SSE or AVX), several con�gurations of
hard-coded leaf FFT were generated: three con�gurations of leaf size (16, 32 and 64), and if the transform
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was larger than 32,768, an additional transform with size-16 leaves and streaming store instructions was also
generated. Before running the benchmark, the library was calibrated and the fastest con�guration selected
(details of the calibration are described in "Calibration" (Section 5.4.1.3: Calibration)).

For most sizes of transform, precision and vector length, SFFT is faster than FFTW running in patient
mode. For the transforms with memory requirements that are approximately at the limits of the cache,
FFTW running in patient mode is sometimes marginally faster than SFFT. Once the transforms exceed the
size of the cache, SFFT is again the fastest.

It is important to note that FFTW running in patient mode evaluates a huge con�guration space of
parameters (and thus takes a long time to calibrate), while SFFT has, in this case, only evaluated either
three or four con�gurations per transform.

5.4 In practice

SFFT is not itself an FFT library; the name refers to the elaboration program that reads a con�guration �le
and generates the code for an FFT library. The code for the FFT library is then built as any other library
would be.

5.4.1 Organization

As well as the generated code, there is infrastructure code which is common to all libraries generated by
SFFT. This can be broadly categorized into three parts: initialization, dispatch and calibration.

5.4.1.1 Initialization

Before an application can compute an FFT with SFFT, it must initialize a plan for the speci�c size, precision
and direction of FFT. The library may have several FFTs and con�gurations that can compute the requested
FFT, and it chooses the fastest option by timing each of the candidate con�gurations, which is at most 8 for
any size of transform � a very small space compared to FFTW's exhaustive search of all possible FFT algo-
rithms and con�gurations. Results and discussion (Chapter 7) describes an alternative to calibration, where
machine learning is used with data collected from benchmarks to build a model that predicts performance.

After determining which implementation and parameters will be used, the initialization code allocates
memory and populates any lookup tables that may be required. Before returning the plan to the application,
a function pointer in the plan is updated to point to the FFT that has just been initialized.

5.4.1.2 Dispatch

Applications do not invoke any of the FFTs within SFFT directly. Rather they invoke a dispatch function
on an initialized plan, which in turn transfers control to the correct FFT code within SFFT. The use of
a dispatch function is purely a matter of convenience, so that users only need to deal with a few simple
functions.

5.4.1.3 Calibration

SFFT contains calibration code to measure the performance of the possible con�gurations of FFT on the
target machine, which is at most 8 for each size of transform. Following calibration, the timing data is
written to a �le, which is then used by SFFT to select the fastest possible FFT for a given problem running
on that machine.

5.4.2 Usage

SFFT is used much like other FFT libraries:
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1. A plan for an FFT is initialized;
2. Using the plan, an FFT is computed (this step may be repeated many times);
3. The plan is destroyed.

The plan is initialized for a given size, precision and direction of transform, and may then be executed any
number of times on any data. Any number of plans can be simultaneously created and used.

~~int~n~=~1024;

~~double~complex~__attribute__~((aligned(32)))~*input,~*output;

~~input~=~_mm_malloc(n~*~sizeof(double~complex),~32);

~~output~=~_mm_malloc(n~*~sizeof(double~complex),~32);

~

~~for(i=0;i<n;i++)~input[i]~=~i;
~

~~sfft_plan_t~*p~=~sfft_init(i,~SFFT_FORWARD|SFFT_DOUBLE|SFFT_AVX);

~

~~if(p)~{

~

~~~~sfft_execute(p,~input,~output);

~~~~for(i=0;i<n;i++)
~~~~~~printf("%d~%f~%f\n",~i,~creal(output[i]),~cimag(output[i]));
~~~~sfft_free(p);

~

~~}else{

~~~~printf("Plan~unsupported\n");
~~}

Listing 5.14: SFFT example usage

In p. ??, a size-1024 transform is computed on double-precision data with AVX enabled. In lines 2-4,
the input and output arrays are allocated with 32 byte alignment, as is required for aligned AVX memory
operations. The plan is initialized at line 8, used to compute an FFT at line 12 (provided the requested plan
is supported), and �nally freed at line 20.

5.4.3 Other optimizations

In addition to generating a general-purpose library that can be calibrated for a machine and application at
runtime, there are several situations where the SFFT library can be specially optimized:

1. If the machine and application are �xed, a one time calibration can be performed and an optimized
library containing only the fastest transforms speci�c to the application and machine is generated;

2. If the application is �xed, an optimized library containing only the transforms speci�c to the application
is generated (and the library is calibrated the �rst time it is used on each machine);

3. If the machine is �xed, an optimized library containing only the transforms speci�c to the machine is
generated (and an application can use any transform without calibration).
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Chapter 6

Benchmark Methods1

This chapter describes the benchmarking methods used to evaluate the performance and accuracy of various
FFT implementations throughout this thesis.

The two architectures of interest are the Intel x86 architecture and the ARM architecture. A compre-
hensive set of results collected from a wide range of machines implementing these architectures is presented
in Results and discussion (Chapter 7), but throughout the rest of the thesis, benchmarks are performed on
an Apple Macbook Air 4,2; a widely available and currently state-of-the-art machine that is equipped with
an Intel Core i5-2557M. Table 6.1 summarizes the speci�cations of the machine.

For the x86 benchmarks, an existing framework called BenchFFT [1] was used. For the ARM benchmarks,
which were performed on iOS devices, there was no existing FFT benchmark software, and so an application
was written for this purpose, which is described in "ARM architecture" (Section 6.2: ARM architecture).

Macbook Air 4,2

CPU Dual-core Intel Core i5 (i5-2557M)

CPU clock 1.7 GHz (turbo to 2.7GHz with one core)

L1 cache 32KB I-cache & 32KB D-cache

L2 cache 256KB

L3 cache 3MB shared

Memory 4 GB of 1333 MHz DDR3 SDRAM

OS OS X 10.7.2

SIMD extensions SSE and AVX

Table 6.1: Speci�cations of the primary test machine

6.1 x86 architecture

The x86 benchmarks were performed with BenchFFT, a collection of FFT libraries and benchmarking
software assembled by Frigo and Johnson, the authors of FFTW [1]. The benchmarks in BenchFFT use
timing and calibration code from lmbench, a performance analysis tool written by Larry McVoy and Carl
Staelin [81].

1This content is available online at <http://cnx.org/content/m43804/1.2/>.
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6.1.1 Timing

BenchFFT measures the initialization time and runtime of an FFT separately. The initialization time
is measured only once, and thus outliers due to e�ects from external factors such as OS scheduling are
occasionally observed. Routines from lmbench are then used to calibrate the minimum number of FFT
iterations required for accurate measurement using the gettimeofday function. Finally, the time taken to
run the minimum number of iterations is measured eight times, from which the minimum time divided by
the number of iterations is used, in order to factor out e�ects from external factors.

The minimum time for a transform is then used to determine a scaled inverse time measurement, some-
times known as CTGs. CTG are de�ned as:

CTGs =
5Nlog2 (N)

109t
(6.1)

for complex transforms and

CTGs =
2.5Nlog2 (N)

109t
(6.2)

for real transforms, where t is the time taken to run one transform (in seconds). Unless the Cooley-Tukey
radix-2 algorithm is used, a measurement expressed in CTGs is not an actual FLOP count � it is a rough
measure of an algorithm's e�ciency relative to the radix-2 algorithm and the clock speed of the machine.

When a transform has several variants (such as direction or radix), BenchFFT reports the speed of the
FFT as being the fastest of the possible options.

6.1.2 Accuracy

To measure the accuracy of a transform, BenchFFT compares an FFT with an arbitrary-precision FFT
computed on the same inputs, and reports the relative RMS error. The inputs are pseudo-random in the
range [0.5, 0.5) and the arbitrary-precision FFT has over 40 decimal places of accuracy.

When a transform has several variants (such as direction or radix), BenchFFT reports the accuracy as
being worst of the results.

6.1.3 Compiling

Except where otherwise noted, ICC version 12.1.0 for OS X was used to compile 64-bit code. For OS X
builds, the compiler �ags used were �-O3�, while �-O3 -msse2� (or equivalent) was used for Linux builds. In
the cases where the FFT uses AVX, the code is compiled with �-xAVX� or �-mavx� (depending on compiler).

Some libraries included in the BenchFFT software have their own compilation scripts which override the
defaults, and in the case of commercial libraries (such as Intel IPP and Apple vDSP), the compiler �ags are
of little consequence because the libraries are distributed in binary form.

6.1.4 Data format

FFT libraries use interleaved format and/or complex format to store the data. In the case of interleaved
format, the real and imaginary parts of complex numbers are stored adjacently in memory, while in the case
of split format, the real and imaginary parts are stored in separate arrays.

The majority of FFT libraries use interleaved format to store data. In the case where the library supports
interleaved or split format, BenchFFT uses interleaved format. However there are a few libraries that only
support split format, and in theses cases it should be noted the results are not strictly comparable (Apple
vDSP is one such case).
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6.2 ARM architecture

There was no existing FFT benchmarking software for iOS on ARM devices, and so a benchmarking tool
was written. The tool runs the benchmarking in a thread of normal priority.

6.2.1 Compiling

The code was compiled with Apple clang compiler 3.0 for ARMv7 targets running iOS 5.0. The compiler
�ags used were �-O3 -mfpu=neon�.

6.2.2 Timing

The Apple A4 and A5 SoCs are built around the ARM Cortex-A8 and Cortex-A9 cores, which have hardware
cycle counters that can be used for precise timing. The cycle counter control registers can only be accessed
in kernel mode, and so the high resolution timer available through the mach_absolute_time function was
used instead.

For a given size of transform, a calibration routine determines the number of iterations that must be run
such that the total runtime is approximately one second. After calibration, each FFT to be evaluated is
run for the pre-determined number of iterations � this loop is run eight times, and the fastest time divided
by the number of iterations is taken to be the FFTs runtime. By running each FFT for approximately one
second, and repeating the measurement eight times to �nd the best time, the e�ects from external factors
such as OS scheduling are minimized. As with BenchFFT, the time is expressed in CTGs.
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Chapter 7

Results and Discussion1

In order to test the hypotheses set out in Introduction (Chapter 1), SFFT was benchmarked alongside
FFTW and other libraries on a wide range of machines, as per the methods set out in Benchmark methods
(Chapter 6). The majority of the data was collected on Linux machines populated with SSE capable Intel
microprocessors, with some additional data collected on small set of AVX and ARM NEON machines. The
results are divided into three sections: speed, accuracy and setup time, with an additional section detailing
a model that predicts SFFT's performance for di�erent con�gurations. Finally, the chapter concludes by
relating the results to other work.

Modelstring L1d L2 L3

Intel(R) Pentium(R) 4 CPU 2.80GHz 16 512 -

Intel(R) Pentium(R) D CPU 3.00GHz 16 1024 -

Intel(R) Pentium(R) M processor 1000MHz 32 1024 -

Intel(R) Xeon(TM) CPU 2.40GHz 16 2048 -

Intel(R) Xeon(R) CPU E5335 @ 2.00GHz 32 4096 -

Intel(R) Xeon(R) CPU X5355 @ 2.66GHz 32 8192 -

Intel(R) Xeon(R) CPU E5430 @ 2.66GHz 32 6144 -

Intel(R) Xeon(R) CPU X5560 @ 2.80GHz 32 256 8192

Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz 32 4096 -

Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz 32 4096 -

Intel(R) Core(TM)2 Duo CPU E6850 @ 3.00GHz 32 4096 -

Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz 32 6144 -

Intel(R) Core(TM)2 Duo CPU P8600 @ 2.40GHz 32 3072 -

Intel(R) Core(TM) i5 CPU 660 @ 3.33GHz 32 256 4096

Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz 32 256 8192

Table 7.1: Linux benchmark machines, listed with the size of each level of cache (in kilobytes)

Table 7.1 presents a summary of the Linux machines that were used to run benchmarks. The majority
of the machines were functioning as either lab workstations or servers in a University environment. The

1This content is available online at <http://cnx.org/content/m43790/1.2/>.
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benchmarks took approximately 12 hours to run, and while e�orts were made to reduce each machine's load
to a minimum, there were still transient system processes, such as log rotations and backups during the night
that have introduced noise into the results.

For the Linux benchmarks, both 32-bit and 64-bit statically-linked binaries for SFFT, FFTW 3.3 and
SPIRAL were compiled with icc 12.0.5, gcc 4.4.5 and clang 1.1. For the OS X benchmarks, 32-bit and 64-bit
binaries for SFFT, FFTW 3.3 and SPIRAL were compiled with icc 12.1.0, llvm-gcc 4.2.1 and clang 3.0. The
builds of SFFT and FFTW 3.3.1 for iOS 5 on ARM NEON were compiled with Apple clang 3.0.

Several binary libraries were also benchmarked: Intel IPP 7 and Apple Accelerate. Because these libraries
are only available in binary form, they are compared against the icc builds of SFFT, FFTW 3.3 and SPIRAL,
because icc generally produced the fastest code.

7.1 Speed

The speed results are presented in subsections according to the SIMD extensions: SSE, AVX and ARM
NEON.

7.1.1 SSE

x86_64, single x86_64, double i686, single i686, double
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c

g
c
c

c
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g

Figure 7.1: Performance comparison between SFFT and FFTW 3.3 in estimate mode on SSE machines
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x86_64, single x86_64, double i686, single i686, double
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Figure 7.2: Performance comparison between SFFT and FFTW 3.3 in patient mode on SSE machines
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x86_64, single x86_64, double i686, single i686, double
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Figure 7.3: Performance comparison between SFFT and SPIRAL on SSE machines. Although SPIRAL
is faster when compiled with clang 1.1, Figure 7.5 shows that SFFT is faster than SPIRAL when compiled
with clang 3.0

Figure 7.1 summarizes the speed performance of SFFT against FFTW 3.3 running in estimate mode on
Linux machines with SSE. Twelve heatmaps are used to present data from di�erent con�gurations. The
three rows in the grid correspond to the three di�erent compilers used, while the four columns correspond to
the four di�erent architecture and �oating-point precision pairs. Within each heatmap, the rows correspond
to di�erent machines, and the columns correspond to di�erent sizes of transform (21 through to 218). Shades
of green indicate that SFFT is faster for a particular point of data, while shades of yellow through to red
indicate that FFTW is faster; lighter shades indicate a small di�erence, while darker shades indicate a bigger
di�erence in performance. The scale for the colour map is computed separately for each of the 12 heatmaps
in the grid, so a particular colour in one heatmap is not directly comparable to the same colour in another
heatmap; the colours are only meant to indicate di�erences within each heatmap.

Similarily, Figure 7.2 compares SFFT to FFTW 3.3 running in patient mode, and Figure 7.3 compares
SFFT to SPIRAL. There are fewer columns in the heatmaps of Figure 7.3 because SPIRAL only computes
single-threaded FFTs for sizes 21 through to 213.
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7.1.1.1 FFTW 3.3 in estimate mode

Figure 7.1 shows that SFFT is faster than FFTW 3.3 running in estimate mode in almost all cases over a
range of Intel x86 machines that implement SSE. The horizontal streaks of yellow-red that can be seen in
some heatmaps are outliers and likely caused by transient system processes that were running while SFFT
was being benchmarked. Similar streaks appear at the same locations in Figures Figure 7.2 and Figure 7.3.

7.1.1.2 FFTW 3.3 in patient mode
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Figure 7.4: Performance of FFTs on recent Sandy Bridge machines, with x86_64 SSE binaries. Com-
piler: icc (a) Core i7-2600, single-precision (b) Core i7-2600, double-precision (c) Core i5-2557M, single-
precision (d) Core i5-2557M, double-precision

Figure 7.2 shows that SFFT is faster than FFTW 3.3 running in patient mode in the majority of cases over
a range of Intel x86 machines that implement SSE. SFFT was generally slightly slower than �tw3-patient
on older machines such as the Pentium 4's and the 1GHz Pentium M, while on the newer machines such
as the Sandy Bridge based Core i7-2600 and the Nehalem based Core i5-660, SFFT was clearly faster than
FFTW (see Figure 7.4). This could be explained by the fact that FFTW performs extensive instruction level
optimizations, such as scheduling, and that the older processors have smaller instruction and trace caches.
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7.1.1.3 SPIRAL
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Figure 7.5: Performance of clang-compiled x86_64 SSE FFTs on an Intel Core2 Duo P8600 (a) Single-
precision, clang 1.1 (b) Double-precision, clang 1.1 (c) Single-precision, clang 3.0 (d) Double-precision,
clang 3.0

The last row of Figure 7.3 shows that SFFT is generally slower than SPIRAL when both libraries are compiled
with clang 1.1. However, with more recent releases of clang, which do much more code optimization, the
situation is reversed, as shown in Figure 7.5. In some cases SPIRAL compiled with clang 3.0 is slower
than SPIRAL compiled with clang 1.1, while SFFT is generally faster when compiled with clang 3.0. This
demonstrates that the speed of automatically tuned SPIRAL code is speci�c to certain compilers.

SPIRAL's double-precision performance is slightly better than SFFT when compiled with icc or gcc,
while SFFT's single-precision code is faster than SPIRAL on recent machines, and of similar speed on older
machines.

7.1.2 AVX

Of the machines that were used for benchmarks, only two supported AVX: the Macbook Air 4,2 with an Intel
Core i5-2557M, and a Linux machine with an Intel Core i7-2600. Figure 7.6 shows that SFFT is clearly faster
than FFTW up until about 1024 points, while performance between the two is similar for larger transforms.

Results for Intel IPP are also plotted in Figure 7.6, but only for the Core i7-2600. IPP did not detect
the existence of AVX on the Core i5-2557M, and instead used SSE, as plotted in Figure 7.4. Apple vDSP
does not support AVX, and so SSE vDSP results for the Macbook Air 4,2's Core i5-2557M are also plotted
in Figure 7.4.
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Figure 7.6: Performance of FFTs on recent Sandy Bridge machines, with x86_64 AVX binaries. Com-
piler: icc (a) Core i7-2600, single-precision (b) Core i7-2600, double-precision (c) Core i5-2557M, single-
precision (d) Core i5-2557M, double-precision

7.1.3 ARM NEON
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Figure 7.7: Performance of single-precision FFTs on ARM NEON devices running iOS. Compiler:
Apple clang 3.0 (a) Apple A4 (ARM Cortex-A8) (b) Apple A5 (ARM Cortex-A9)
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SFFT and FFTW 3.3.1 were compiled with Apple clang 3.0 and benchmarked on an Apple iPod touch 4G
and an Apple iPad 2, which contain the Apple A4 and A5 SoCs respectively. The A4 implements the ARM
Cortex-A8, while the A5 implements the ARM Cortex-A9, both of which support ARM NEON.

Figure 7.7 shows that SFFT is easily faster than FFTW on both devices. This contradicts Frigo and
Johnson's claim that the performance of FFTW is portable, and tends to support the idea that it is possible
to write fast and portable code without exhaustive searches through the con�guration space of all possible
FFTs.

A considerable amount of e�ort was needed to work around several problems that were encountered when
targeting ARM NEON with Apple clang 3.0, and many of SFFT's primitive macros for NEON were written
in inline assembly code. Among the problems encountered when targeting ARM NEON with Apple clang
3.0:

1. There is no way of explicitly specifying memory alignment when using vector intrinsics;
2. Fused multiply-add/subtract intrinsics do not currently compile to the correct instructions because of

a bug in clang;
3. Clang's inline assembly front-end lacks the syntax and semantics to properly address the dual-size

aliased vector registers.

The above problems a�ect all FFT libraries equally, and it seems that portability depends critically on the
quality of the machine speci�c code and macros.

7.2 Accuracy
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Figure 7.8: Accuracy of FFTs on an Intel Core i7-2600. SFFT, FFTW and SPIRAL were compiled for
x86_64 with icc (a) SSE, single-precision (b) SSE, double-precision

The accuracy of each FFT was measured as per the methods in Benchmark methods (Chapter 6). The
accuracy of single and double precision FFTs on an Intel Core i7-2600 is plotted in Figure 7.8, and shows
that the relative RMS error for FFTW, SFFT and SPIRAL is within an acceptable range. Graphs for all
other machines are similar.
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7.3 Setup time
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Figure 7.9: Setup times of FFTs on an Intel Core i7-2600. SFFT, FFTW and SPIRAL were compiled
for x86_64 with icc (a) SSE, single-precision (b) SSE, double-precision

Figure 7.9 shows that FFTW, in patient mode, requires several orders of magnitude more time to initialize
as it searches for a fast FFT con�guration. SPIRAL has a very fast setup time, because it is entirely
statically elaborated and needs no dynamic initialization. The setup time for SFFT is comparable to FFTW
in estimate mode, though SFFT's setup time begins to increase for transforms larger than 8192 points. This
is likely because of repeated calls to the complex exponential function as twiddle factor LUTs are elaborated;
no e�ort was made to optimize this setup code, and it is likely that it would be much faster if the calls to
the complex exponential function were optimized.

Graphs for all other machines are similar.

7.4 Binary size

Compared to other libraries, SFFT produced larger binaries for the benchmarks, because there is currently
no optimization performed between transforms contained in the same library. For 64-bit single precision
binaries on OS X with AVX, the size of the SFFT benchmark was approximately 2.8 megabytes while the
size of the FFTW benchmark was 1.8 megabytes.

7.5 Predicting performance

For each size of transform on a particular machine, SFFT chooses the fastest con�guration from a set of up to
eight possible con�gurations. Small transforms have only one option, which is a fully hard-coded transform,
while larger transforms have up to eight, which could include the four-step transform, and several variants
of the hard-coded leaf transform, where each variant corresponds to a particular size of leaf sub-transform
and size of body sub-transform, and for size-16 leaf sub-transforms, a streaming store variant is included
too. The decision of exactly which con�guration to use depends on the size of transform, the compiler, and
the characteristics of the host machine.

For the benchmarks in this chapter, SFFT used a calibration routine to choose the fastest con�guration.
The calibration data was collected, along with some data about the machine and the compiler, and used to
train a classi�er.
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The data was processed into instances, with each instance having attributes for the size of the transform
and the precision, the size of each level of cache, the architecture and micro-architecture of the machine, the
SIMD extensions, the OS, the compiler used, and the CPU frequency. In total there were 3348 instances of
data, each of which had 12 attributes.

Weka [110] was used to experiment with several classi�ers, and a REPTree classi�er with bagging was
used to train a model. Using 10-fold cross-validation, the model correctly classi�ed 76.1% of the instances
with a weighted average precision of 74.8%, which tends to con�rm the existence of a relationship between
the characteristics of the machine and the performance of a particular FFT con�guration.

The accuracy of the classi�er is promising, and it has the potential to replace the calibration code in
SFFT. It is highly likely that if the noise in the data was reduced through the use of an isolated benchmarking
environment, the accuracy of the classi�er would increase. The accuracy would also likely bene�t from a
larger dataset collected from a larger range of benchmark machines.

7.6 Split-radix vs. conjugate-pair
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Figure 7.10: Ordinary split-radix versus conjugate-pair split-radix on an Intel Core i5-2557M. SFFT,
FFTW and SPIRAL were compiled for x86_64 with icc (a) SSE, single-precision (b) SSE, double-
precision

In order to quantify the gain in performance that might be attributable to the use of the conjugate-pair
algorithm, SFFT was retrospectively modi�ed to compute the FFT using the ordinary split-radix algorithm
as well as the conjugate-pair algorithm. The results of benchmarks between the two algorithms, as well as
FFTW and SPIRAL, are plotted in Figure 7.10.

Unexpectedly, the ordinary split-radix algorithm is faster than the conjugate-pair algorithm for some
smaller sizes of transform, but for transforms above a certain size, the conjugate-pair algorithm is faster by
a few hundred MFLOPS.

The performance advantage of the ordinary split-radix algorithm for smaller sizes of transforms is likely
due to shorter chains of dependent instructions where twiddle factors are loaded and used. Consider that
the ordinary split-radix algorithm separately loads two twiddle factors into two registers, and there are no
dependencies between these instructions, while the conjugate-pair algorithm must load one twiddle factor
and then duplicate it into another register, which does result in dependent instructions. Thus the ordinary
split-radix algorithm is faster for smaller transforms where memory bandwidth is not the limiting factor, but
when memory bandwidth does become the limiting factor, the conjugate-pair algorithm is faster.

In future, SFFT could exploit the performance advantage of the ordinary split-radix algorithm when
computing smaller sizes of transforms.
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7.7 Applications of this work

This section provides an overview of how the techniques presented in this thesis may be applied to the
prime-factor algorithm, sparse Fourier transforms, and multi-threaded transforms.

7.7.1 Prime-factor algorithm

The techniques presented in this work rely on the fact that FFTs operating on signal lengths that are a
power-of-two can be factored into smaller power-of-two length components, which are computed in parallel
by being evenly divided into a number of SIMD vector registers that are a power-of-two length.

The prime-factor algorithm factors other lengths of FFTs into components that are co-prime in length,
and ultimately small prime components, which do not evenly divide into the power-of-two length SIMD
registers, except in the special case where a SIMD register contains only one complex element (such is the
case with double-precision on SSE machines).

Because the prime components do not evenly divide into power-of-two length SIMD registers, the al-
gorithm level vectorization techniques presented in this work are not directly applicable. In contrast, the
auto-vectorization techniques used in SPIRAL [39], [69], [71] are performed at the instruction level, and are
applicable to the prime-factor algorithm, but as the results in Figure 7.4 show, the downside of SPIRAL's
lower level approach is that performance for power-of-two transforms scales poorly with the length of the
SIMD register.

7.7.2 Sparse Fourier transforms

The recently published Sparse FFT [53], [52] will bene�t from the techniques presented in this work because
the inner loops use small DFTs (e.g, 512 point for a certain 256k point sparse FFT), which are currently
computed with FFTW. Replacing FFTW with SFFT will almost certainly result in improved performance,
because SFFT is faster than both FFTW and Intel IPP for the applicable small sizes of transform on an
Intel Core i7-2600 (see Figure 7.6).

Version 2.0 of the Sparse FFT code is scalar, and would bene�t greatly from explicitly describing the
computation with SIMD intrinsics. However, a key di�erence between the sparse Fourier transform and
other FFTs is the use of conditional branches on the input signal data. This has performance implications
on all machines, but it is worth noting that some machines will be drastically a�ected by this, such as the
ARM Cortex-A8, where the SIMD pipeline is located behind the main pipeline, resulting in fast transfers
from the main CPU unit to the SIMD pipeline, but large penalties when SIMD registers or �ags are accessed
by the main CPU unit.
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7.7.3 Multi-threaded transforms
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Figure 7.11: Speed of multi-threaded four-step algorithm running on an Intel Core i5-2557M with
four threads. The algorithm decomposes transforms into smaller single-threaded components, which are
computed above with three di�erent implementations. All code was compiled with icc for x86_64 with
SSE.

MatrixFFT has recently shown that the four-step algorithm [12], designed to e�ciently use hierarchical or
external memory on Cray machines in the 1980's, is useful for computing large multi-threaded transforms on
modern machines, providing performance far surpassing that of FFTW's multi-threaded performance [98].

The four-step algorithm decomposes a transform of size N into a two-dimensional array of size n1 × n2

where N = n1n2, and n1 = n2 =
√
N (or close) often obtains the best performance.

The four-steps of the algorithm are:

1. Compute n1 FFTs of length n2 along the columns of the array;
2. Multiply each element of the array with ωijN , where i and j are the array coordinates;
3. Transpose the array;
4. Compute n2 FFTs of length n1 along the columns of the array.

Each step can be divided amongst a pool of threads, with a synchronisation barrier between the third
and fourth steps. The transforms in steps one and four operate on sequential data, and if they are small
enough, they are not subject to bandwidth limitations (and if they are not small enough, they can be further
decomposed with the four-step algorithm until they are small enough). The bandwidth bottleneck does not
disappear, but it is factored out into the transpose in step three, and because of this, the performance of
the small single-threaded 1D transforms used in steps one and four correlate with the overall multi-threaded
performance. A simple multi-threaded implementation of the four-step algorithm was benchmarked with
SFFT and FFTW transforms, and the results are shown in Figure 7.11, which tends to con�rm that the
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performance of single-threaded transforms for steps one and four translates to the overall multi-threaded
performance when using the four-step algorithm.

7.8 Similar work

Aside from Bernstein's FFT library, which was designed in the days of scalar microprocessors and has not
been updated since 1999, there have been a few other challenges to the automatically adaptive approach of
FFTW, but none present concrete results that de�nitively dismiss the idea. Most recently, Vasilios et al.
presented an approach that uses the characteristics of the host machine to choose good FFT parameters at
run time [67], but their approach has several issues that render it almost irrelevant. First, the approach uses
optimizations that only apply to scalar machines, viz. twiddle factor symmetries are exploited to compress
the twiddle LUTs, and arithmetic is avoided when twiddle factors contains zeros or ones. The vast majority
of microprocessors, even those found in mobile devices such as phones, feature SIMD extensions, and so an
approach that is limited to scalar arithmetic is of little consequence. Second, they benchmark the FFTs in a
most unusual way. Rather than repeat a large number of iterations of the FFT, they repeat a large number
of iterations of a binary that initializes and then executes only one FFT; such an approach is by no means
representative of applications where the performance of the FFT is a concern, and is more a measurement
of the initialization time rather than the FFT.
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Chapter 8

Conclusions and Future Work1

The results presented in this thesis show that vectorization at the algorithm level of abstraction produces
good performance results, the conjugate-pair algorithm is in many cases faster than the ordinary split-
radix algorithm, and that there are good heuristics for predicting the performance of the FFT on SIMD
microprocessors (i.e., the need for empirical optimization may be overstated).

This work concludes with a review of the hypotheses, a summary of the contributions, some ideas for
directions that future work might take, and a few �nal remarks.

8.1 Revisiting the hypotheses

This section discusses the hypotheses of Introduction (Chapter 1) with reference to the experiments in
Implementation details (Chapter 3) and Streaming FFT (Chapter 5) and the results in Results and discussion
(Chapter 7).

8.1.1 Hypothesis 1: Accessing memory in sequential �streams� is critical for best

performance

The simple implementation in Simple programs (Section 3.1: Simple programs) used a LUT to store precom-
puted coe�cients, but for every size of sub-transform that composes a particular transform, the LUT is ac-
cessed non-contiguously, with vector gather operations of varying strides. In Vectorized loops (Section 3.3.2:
Vectorized loops), vector intrinsics and a sequentially accessed LUT for each size of sub-transform are shown
to improve performance. Although the set of LUTs increases the memory footprint, the speed improves
markedly, by over 30% in many cases.

In Improving memory locality in the leaves (Section 5.3.2: Improving memory locality in the leaves),
a DAG representing the computation was topologically sorted so that accesses to the input data, which
are e�ectively pseudo-random for a decimation-in-time decomposition, are ordered into sequential streams.
Benchmark results in Results and discussion (Chapter 7) show that this technique, in tandem with several
others, achieves good results, being faster than FFTW in many cases.

The results from the above two cases con�rm the idea that accessing data in sequential streams provides
big performance gains, even in the somewhat counter-intuitive case where data is duplicated and more
memory is required.

1This content is available online at <http://cnx.org/content/m43808/1.2/>.
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8.1.2 Hypothesis 2: The conjugate-pair algorithm is faster than the ordinary

split-radix algorithm

Hypothesis 2 is based on the idea that memory bandwidth is a bottleneck, and on the fact that the conjugate-
pair algorithm requires only half the number of twiddle factor loads.

In Results and discussion (Chapter 7), a highly optimized implementation of the conjugate-pair algorithm
is benchmarked against an equally highly optimized implementation of the ordinary split-radix algorithm.
For smaller sizes of transform, the ordinary split-radix algorithm is faster, but above a certain size (4096 in
this case), the conjugate-pair algorithm is faster.

Thus, Hypothesis 2 is con�rmed with the proviso that the transform is larger than a particular size.

8.1.3 Hypothesis 3: The performance of an FFT can be predicted based on

characteristics of the underlying machine and the compiler

In Results and discussion (Chapter 7), SFFT and FFTW were benchmarked on sixteen x86 machines and
two ARM NEON machines, and SFFT was found to be as fast as, or faster than FFTW, suggesting that
the performance of an FFT running on a certain machine can be predicted and reasoned about, and that
extensive machine calibration might not be required.

In Predicting performance (Section 7.5: Predicting performance), a model was evaluated with 10-fold
cross-validation to have 74.8% precision when using characteristics of the underlying machine and the com-
piler to predict performance, further supporting the idea that the performance of the FFT on SIMD micro-
processors can be predicted and reasoned about.

8.2 Contributions

The contributions of this work are summarized as follows:

1. Three methods of computing the conjugate-pair algorithm on SIMD microprocessors are presented in
Streaming FFT (Chapter 5). The three techniques are suited for di�erent sizes of transform, but in
general, all techniques are amenable to algorithm level vectorization, and latency and memory locality
optimizations. These techniques are shown to produce results that are, in many cases, faster than state
of the art libraries such as FFTW and SPIRAL, but without extensive machine calibration;

2. The source code for the library developed in this thesis, SFFT, is publicly available under a permissive
open source license on github2 . A permissive open source license will hopefully ensure that SFFT is
developed further.

8.3 Future work

This section presents some ideas for future work that can be divided into four categories: measurement,
modelling, systems and applications.

8.3.1 Measurement

FFTW could be instrumented to collect data on the huge space of transforms it evaluates, which could then
be used to build more accurate models.

The existing FFT benchmarking infrastructure could be improved by detecting interruption by other
system processes and re-running the a�ected results. Benchmarks could then be run on a much wider range
of machines, under more controlled conditions, which would increase the accuracy of models built from the
data.

2http://github.com/anthonix/s�t
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8.3.2 Modelling

It might be possible to build a classi�er that predicts whether a transform is likely, given some threshold, to
be the fastest. The fastest is then selected from a subset of those that are likely to be the fastest, and thus
the number of transforms that must be evaluated during calibration is reduced, while sacri�cing little or no
performance.

8.3.3 Systems

SFFT could be extended to multi-dimensional, multi-threaded, real, large (megapoint and above) and arbi-
trary sized transforms. Additionally, support for other architectures such as POWER and Cell B.E. could
be added. Code could be optimized between transforms in a library, which would reduce binary size, but
there may be other e�ects.

8.3.4 Algorithms

So far, there have been no known attempts to seriously optimize the tangent FFT, and the results of
optimizing the tangent FFT to the same degree as the conjugate-pair FFT in this thesis would be very
interesting.

SFFT could be utilized in the sparse FFT algorithms which have recently been published, perhaps
improving their performance even further.

8.3.5 Applications

Applications such as the SETI@home client could be patched to support SFFT. The results of benchmarks
between SFFT, FFTW and other libraries, when used in real world applications such as SETI@home, would
be of great interest.

8.4 Final remarks

This thesis showed that high-performance computation of the FFT is by no means a solved problem, and
it is hoped that this work will serve as a catalyst or foundation for future e�orts that push e�ciency and
performance even further.
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Appendix 1 - Simple FFTs1

This Appendix contains source code listings corresponding to the simple implementations in Implementation
details (Chapter 3).

1This content is available online at <http://cnx.org/content/m43810/1.2/>.
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#include~<complex.h>
#include~<stdio.h>
#include~<stdlib.h>
#include~<math.h>
~

typedef~complex~float~data_t;

~

#define~W(N,k)~(cexp(-2.0f~*~M_PI~*~I~*~(float)k~/~(float)N))

~

void~ditfft2(data_t~*in,~data_t~*out,~int~stride,~int~N)~{

if(N~==~2)~{

out[0]~~~=~in[0]~+~in[stride];

out[N/2]~=~in[0]~-~in[stride];

}else{

ditfft2(in,~out,~stride~�~1,~N~�~1);

ditfft2(in+stride,~out+N/2,~stride~�~1,~N~�~1);

{ ~/*~k=0~->~no~multiplication~*/
data_t~Ek~=~out[0];

data_t~Ok~=~out[N/2];

out[0]~~~=~Ek~+~Ok;

out[N/2]~=~Ek~-~Ok;

}

~

int~k;

for(k=1;k<N/2;k++)~{
data_t~Ek~=~out[k];

data_t~Ok~=~out[(k+N/2)];

out[k]~~~~~~~~=~Ek~+~W(N,k)~*~Ok;

out[(k+N/2)~]~=~Ek~-~W(N,k)~*~Ok;

}

}

}

Listing 9.1: Simple radix-2 FFT
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#include~<complex.h>
#include~<stdio.h>
#include~<stdlib.h>
#include~<math.h>
~

typedef~complex~float~data_t;

~

#define~W(N,k)~(cexp(-2.0f~*~M_PI~*~I~*~(float)k~/~(float)N))

~

void~splitfft(data_t~*in,~data_t~*out,~int~stride,~int~N)~{

if(N~==~1)~{

out[0]~=~in[0];

}else~if(N~==~2)~{

out[0]~~~=~in[0]~+~in[stride];

out[N/2]~=~in[0]~-~in[stride];

}else{

splitfft(in,~out,~stride~�~1,~N~�~1);

splitfft(in+stride,~out+N/2,~stride~�~2,~N~�~2);

~~splitfft(in+3*stride,~out+3*N/4,~stride~�~2,~N~�~2);

{

data_t~Uk~~=~out[0];

data_t~Zk~~=~out[0+N/2];

data_t~Uk2~=~out[0+N/4];

data_t~Zdk~=~out[0+3*N/4];

out[0]~~~~~~~=~Uk~~+~(Zk~+~Zdk);

out[0+N/2]~~~=~Uk~~-~(Zk~+~Zdk);

out[0+N/4]~~~=~Uk2~-~I*(Zk~-~Zdk);

out[0+3*N/4]~=~Uk2~+~I*(Zk~-~Zdk);

}

int~k;

for(k=1;k<N/4;k++)~{
data_t~Uk~~=~out[k];

data_t~Zk~~=~out[k+N/2];

data_t~Uk2~=~out[k+N/4];

data_t~Zdk~=~out[k+3*N/4];

out[k]~~~~~~~=~Uk~~+~(W(N,k)*Zk~+~W(N,3*k)*Zdk);

out[k+N/2]~~~=~Uk~~-~(W(N,k)*Zk~+~W(N,3*k)*Zdk);

out[k+N/4]~~~=~Uk2~-~I*(W(N,k)*Zk~-~W(N,3*k)*Zdk);

out[k+3*N/4]~=~Uk2~+~I*(W(N,k)*Zk~-~W(N,3*k)*Zdk);

}

}

}

Listing 9.2: Simple split-radix FFT
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#include~<complex.h>
#include~<stdio.h>
#include~<stdlib.h>
#include~<math.h>
~

typedef~complex~float~data_t;

~

#define~W(N,k)~(cexp(-2.0f~*~M_PI~*~I~*~(float)k~/~(float)N))

~

void~conjfft(data_t~*base,~int~TN,

data_t~*in,~data_t~*out,~int~stride,~int~N)~{

if(N~==~1)~{

if(in~<~base)~in~+=~TN;
out[0]~=~in[0];

}else~if(N~==~2)~{

data_t~*i0~=~in,~*i1~=~in~+~stride;

if(i0~<~base)~i0~+=~TN;
if(i1~<~base)~i1~+=~TN;
out[0]~~~=~*i0~+~*i1;

out[N/2]~=~*i0~-~*i1;

}else{

conjfft(base,~TN,~in,~out,~stride~�~1,~N~�~1);

conjfft(base,~TN,~in+stride,~out+N/2,~stride~�~2,~N~�~2);

~~conjfft(base,~TN,~in-stride,~out+3*N/4,~stride~�~2,~N~�~2);

{

data_t~Uk~~=~out[0];

data_t~Zk~~=~out[0+N/2];

data_t~Uk2~=~out[0+N/4];

data_t~Zdk~=~out[0+3*N/4];

out[0]~~~~~~~=~Uk~~+~(Zk~+~Zdk);

out[0+N/2]~~~=~Uk~~-~(Zk~+~Zdk);

out[0+N/4]~~~=~Uk2~-~I*(Zk~-~Zdk);

out[0+3*N/4]~=~Uk2~+~I*(Zk~-~Zdk);

}

int~k;

for(k=1;k<N/4;k++)~{
data_t~Uk~~=~out[k];

data_t~Zk~~=~out[k+N/2];

data_t~Uk2~=~out[k+N/4];

data_t~Zdk~=~out[k+3*N/4];

data_t~w~=~W(N,k);

out[k]~~~~~~~=~Uk~~+~(w*Zk~+~conj(w)*Zdk);

out[k+N/2]~~~=~Uk~~-~(w*Zk~+~conj(w)*Zdk);

out[k+N/4]~~~=~Uk2~-~I*(w*Zk~-~conj(w)*Zdk);

out[k+3*N/4]~=~Uk2~+~I*(w*Zk~-~conj(w)*Zdk);

}

}

}

Listing 9.3: Simple conjugate-pair FFT
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#include~<stdio.h>
#include~<math.h>
#include~<stdlib.h>
#include~<complex.h>
~

typedef~complex~float~data_t;

~

#define~W(N,k)~(cexp(-2.0f~*~M_PI~*~I~*~(float)(k)~/~(float)(N)))

~

float

s(int~n,~int~k)~{

~~if~(n~<=~4)~return~1.0f;
~

~~int~k4~=~k~%~(n/4);

~

~~if~(k4~<=~n/8)~return~(s(n/4,k4)~*~cosf(2.0f~*~M_PI~*~(float)k4~/~(float)n));
~~return~(s(n/4,k4)~*~sinf(2.0f~*~M_PI~*~(float)k4~/~(float)n));

}

~

void~tangentfft8(data_t~*base,~int~TN,~data_t~*in,~data_t~*out,~int~stride,~int~N)~{

~~if(N~==~1)~{

if(in~<~base)~in~+=~TN;
out[0]~=~in[0];

~~}else~if(N~==~2)~{

data_t~*i0~=~in,~*i1~=~in~+~stride;

if(i0~<~base)~i0~+=~TN;
if(i1~<~base)~i1~+=~TN;
out[0]~~~=~*i0~+~*i1;

out[N/2]~=~*i0~-~*i1;

~~}else~if(N~==~4)~{

~~~~tangentfft8(base,~TN,~in,~out,~stride~�~1,~N~�~1);

~~~~tangentfft8(base,~TN,~in+stride,~out+2,~stride~�~1,~N~�~1);

~

~~~~data_t~temp1~=~out[0]~+~out[2];

~~~~data_t~temp2~=~out[0]~-~out[2];

~~~~out[0]~=~temp1;

~~~~out[2]~=~temp2;

~~~~temp1~=~out[1]~-~I*out[3];

~~~~temp2~=~out[1]~+~I*out[3];

~~~~out[1]~=~temp1;

~~~~out[3]~=~temp2;

~

~~}else{

~~~~tangentfft8(base,~TN,~in,~out,~stride~�~2,~N~�~2);

~~~~tangentfft8(base,~TN,~in+(stride*2),~out+2*N/8,~stride~�~3,~N~�~3);

~~~~tangentfft8(base,~TN,~in-(stride*2),~out+3*N/8,~stride~�~3,~N~�~3);

~~~~tangentfft8(base,~TN,~in+(stride),~out+4*N/8,~stride~�~2,~N~�~2);

~~~~tangentfft8(base,~TN,~in-(stride),~out+6*N/8,~stride~�~2,~N~�~2);

int~k;

~~~~for(k=0;k<N/8;k++)~{
~~~~~~float~s4~=~s(N/4,k)/s(N,k);

~~~~~~float~s4_n8~=~s(N/4,k+N/8)/s(N,k+N/8);

~

float~s2~~~~~=~s(N/2,k)/s(N,k);

float~s2_n8~=~s(N/2,k+N/8)/s(N,k+N/8);

~~~~

data_t~w0~=~W(N,k)*s4;

data_t~w1~=~W(N,k+N/8)*s4_n8;

data_t~w2~=~W(N,2*k)*s(N/8,k)/s(N/2,k);

~

~~~~~~data_t~zk_p~~~=~w0~~~~~~~*~out[k+4*N/8];

~~~~~~data_t~zk_n~~~=~conj(w0)~*~out[k+6*N/8];

~~~~~~data_t~zk2_p~~=~w1~~~~~~~*~out[k+5*N/8];

~~~~~~data_t~zk2_n~~=~conj(w1)~*~out[k+7*N/8];

~~~~~~data_t~uk~~~~~=~out[k]~~~~~~~~~~~~~~~~~~*~s4;

~~~~~~data_t~uk2~~~~=~out[k+N/8]~~~~~~~~~~~~~~*~s4_n8;

~~~~~~data_t~yk_p~~~=~w2~~~~~~~*~out[k+2*N/8];

~~~~~~data_t~yk_n~~~=~conj(w2)~*~out[k+3*N/8];

data_t~y0~=~(yk_p~+~yk_n)*s2;

data_t~y1~=~(yk_p~-~yk_n)*I*s2_n2;

~

~~~~~~out[k]~~~~~~~=~uk~+~y0~+~(zk_p~+~zk_n);

~~~~~~out[k+4*N/8]~=~uk~+~y0~-~(zk_p~+~zk_n);

~~~~~~out[k+2*N/8]~=~uk~-~y0~-~I*(zk_p~-~zk_n);

~~~~~~out[k+6*N/8]~=~uk~-~y0~+~I*(zk_p~-~zk_n);

~~~~~~out[k+1*N/8]~=~uk2~-~y1~+~~~(zk2_p~+~zk2_n);

~~~~~~out[k+3*N/8]~=~uk2~+~y1~-~I*(zk2_p~-~zk2_n);

~~~~~~out[k+5*N/8]~=~uk2~-~y1~-~~~(zk2_p~+~zk2_n);

~~~~~~out[k+7*N/8]~=~uk2~+~y1~+~I*(zk2_p~-~zk2_n);

~~~~}

~~}

~

}

~

void~tangentfft4(data_t~*base,~int~TN,

~data_t~*in,~data_t~*out,~int~stride,~int~N)~{

if(N~==~1)~{

if(in~<~base)~in~+=~TN;
out[0]~=~in[0];

}else~if(N~==~2)~{

data_t~*i0~=~in,~*i1~=~in~+~stride;

if(i0~<~base)~i0~+=~TN;
if(i1~<~base)~i1~+=~TN;
out[0]~~~=~*i0~+~*i1;

out[N/2]~=~*i0~-~*i1;

}else{

tangentfft4(base,~TN,~in,~out,~stride~�~1,~N~�~1);

tangentfft8(base,~TN,~in+stride,~out+N/2,~stride~�~2,~N~�~2);

~~tangentfft8(base,~TN,~in-stride,~out+3*N/4,~stride~�~2,~N~�~2);

{

data_t~Uk~~=~out[0];

data_t~Zk~~=~out[0+N/2];

data_t~Uk2~=~out[0+N/4];

data_t~Zdk~=~out[0+3*N/4];

out[0]~~~~~~~=~Uk~~+~(Zk~+~Zdk);

out[0+N/2]~~~=~Uk~~-~(Zk~+~Zdk);

out[0+N/4]~~~=~Uk2~-~I*(Zk~-~Zdk);

out[0+3*N/4]~=~Uk2~+~I*(Zk~-~Zdk);

}

int~k;

for(k=1;k<N/4;k++)~{
data_t~Uk~~=~out[k];

data_t~Zk~~=~out[k+N/2];

data_t~Uk2~=~out[k+N/4];

data_t~Zdk~=~out[k+3*N/4];

data_t~w~=~W(N,k)*s(N/4,k);

out[k]~~~~~~~=~Uk~~+~(w*Zk~+~conj(w)*Zdk);

out[k+N/2]~~~=~Uk~~-~(w*Zk~+~conj(w)*Zdk);

out[k+N/4]~~~=~Uk2~-~I*(w*Zk~-~conj(w)*Zdk);

out[k+3*N/4]~=~Uk2~+~I*(w*Zk~-~conj(w)*Zdk);

}

}

}

Listing 9.4: Simple tangent FFT

Available for free at Connexions <http://cnx.org/content/col11438/1.2>
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Available for free at Connexions <http://cnx.org/content/col11438/1.2>



Appendix 2 - FFTs with precomputed

LUTs1

This Appendix contains source code listings corresponding to the FFT implementations with precomputed
coe�cients in Implementation details (Chapter 3).

1This content is available online at <http://cnx.org/content/m43811/1.1/>.

Available for free at Connexions <http://cnx.org/content/col11438/1.2>
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#include~<math.h>
#include~<complex.h>
#include~<stdio.h>
#include~<stdlib.h>
~

typedef~complex~float~data_t;

~

#define~W(N,k)~(cexp(-2.0f~*~M_PI~*~I~*~(float)k~/~(float)N))

~

data_t~*LUT;

~

void~ditfft2(data_t~*in,~data_t~*out,~int~log2stride,~int~stride,~int~N)~{

if(N~==~2)~{

out[0]~~~=~in[0]~+~in[stride];

out[N/2]~=~in[0]~-~in[stride];

}else{

ditfft2(in,~out,~log2stride+1,~stride~�~1,~N~�~1);

ditfft2(in+stride,~out+N/2,~log2stride+1,~stride~�~1,~N~�~1);

{ ~/*~k=0~->~no~multiplication~*/
data_t~Ek~=~out[0];

data_t~Ok~=~out[N/2];

out[0]~~~=~Ek~+~Ok;

out[N/2]~=~Ek~-~Ok;

}

~

int~k;

for(k=1;k<N/2;k++)~{
data_t~Ek~=~out[k];

data_t~Ok~=~out[(k+N/2)];

data_t~w~=~LUT[k�log2stride];

out[k]~~~~~~~~=~Ek~+~w~*~Ok;

out[(k+N/2)~]~=~Ek~-~w~*~Ok;

}

}

}

~

void~fft_init(int~N)~{

LUT~=~malloc(N/2~*~sizeof(data_t));

int~i;

for(i=0;i<N/2;i++)~LUT[i]~=~W(N,i);
}

Listing 10.1: Simple radix-2 FFT with precomputed LUT

Available for free at Connexions <http://cnx.org/content/col11438/1.2>
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#include~<complex.h>
#include~<stdio.h>
#include~<stdlib.h>
~

typedef~complex~float~data_t;

~

#define~W(N,k)~(cexp(-2.0f~*~M_PI~*~I~*~(float)k~/~(float)N))

data_t~*LUT1;

data_t~*LUT3;

~

void~splitfft(data_t~*in,~data_t~*out,~int~log2stride,~int~stride,~int~N)~{

if(N~==~1)~{

out[0]~=~in[0];

}else~if(N~==~2)~{

out[0]~~~=~in[0]~+~in[stride];

out[N/2]~=~in[0]~-~in[stride];

}else{

splitfft(in,~out,~log2stride+1,~stride~�~1,~N~�~1);

splitfft(in+stride,~out+N/2,~log2stride+2,~stride~�~2,~N~�~2);

~~splitfft(in+3*stride,~out+3*N/4,~log2stride+2,~stride~�~2,~N~�~2);

{

data_t~Uk~~=~out[0];

data_t~Zk~~=~out[0+N/2];

data_t~Uk2~=~out[0+N/4];

data_t~Zdk~=~out[0+3*N/4];

out[0]~~~~~~~=~Uk~~+~(Zk~+~Zdk);

out[0+N/2]~~~=~Uk~~-~(Zk~+~Zdk);

out[0+N/4]~~~=~Uk2~-~I*(Zk~-~Zdk);

out[0+3*N/4]~=~Uk2~+~I*(Zk~-~Zdk);

}

int~k;

for(k=1;k<N/4;k++)~{
data_t~Uk~~=~out[k];

data_t~Zk~~=~out[k+N/2];

data_t~Uk2~=~out[k+N/4];

data_t~Zdk~=~out[k+3*N/4];

data_t~w1~=~LUT1[k�log2stride];

data_t~w3~=~LUT3[k�log2stride];

out[k]~~~~~~~=~Uk~~+~(w1*Zk~+~w3*Zdk);

out[k+N/2]~~~=~Uk~~-~(w1*Zk~+~w3*Zdk);

out[k+N/4]~~~=~Uk2~-~I*(w1*Zk~-~w3*Zdk);

out[k+3*N/4]~=~Uk2~+~I*(w1*Zk~-~w3*Zdk);

}

}

}

~

void~fft_init(int~N)~{

LUT1~=~malloc(N/4~*~sizeof(data_t));

LUT3~=~malloc(N/4~*~sizeof(data_t));

int~i;

for(i=0;i<N/4;i++)~LUT1[i]~=~W(N,i);
for(i=0;i<N/4;i++)~LUT3[i]~=~W(N,3*i);
}

Listing 10.2: Simple split-radix FFT with precomputed LUT

Available for free at Connexions <http://cnx.org/content/col11438/1.2>
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#include~<math.h>
#include~<complex.h>
#include~<stdio.h>
#include~<stdlib.h>
~

typedef~complex~float~data_t;

~

#define~W(N,k)~(cexp(-2.0f~*~M_PI~*~I~*~(float)k~/~(float)N))

data_t~*LUT;

~

void~conjfft(data_t~*base,~int~TN,

data_t~*in,~data_t~*out,~int~log2stride,~int~stride,~int~N)~{

if(N~==~1)~{

if(in~<~base)~in~+=~TN;
out[0]~=~in[0];

}else~if(N~==~2)~{

data_t~*i0~=~in,~*i1~=~in~+~stride;

if(i0~<~base)~i0~+=~TN;
if(i1~<~base)~i1~+=~TN;
out[0]~~~=~*i0~+~*i1;

out[N/2]~=~*i0~-~*i1;

}else{

conjfft(base,~TN,~in,~out,~log2stride+1,~stride~�~1,~N~�~1);

conjfft(base,~TN,~in+stride,~out+N/2,~log2stride+2,~stride~�~2,~N~�~2);

~~conjfft(base,~TN,~in-stride,~out+3*N/4,~log2stride+2,~stride~�~2,~N~�~2);

{

data_t~Uk~~=~out[0];

data_t~Zk~~=~out[0+N/2];

data_t~Uk2~=~out[0+N/4];

data_t~Zdk~=~out[0+3*N/4];

out[0]~~~~~~~=~Uk~~+~(Zk~+~Zdk);

out[0+N/2]~~~=~Uk~~-~(Zk~+~Zdk);

out[0+N/4]~~~=~Uk2~-~I*(Zk~-~Zdk);

out[0+3*N/4]~=~Uk2~+~I*(Zk~-~Zdk);

}

int~k;

for(k=1;k<N/4;k++)~{
data_t~Uk~~=~out[k];

data_t~Zk~~=~out[k+N/2];

data_t~Uk2~=~out[k+N/4];

data_t~Zdk~=~out[k+3*N/4];

data_t~w~=~LUT[k�log2stride];

out[k]~~~~~~~=~Uk~~+~(w*Zk~+~conj(w)*Zdk);

out[k+N/2]~~~=~Uk~~-~(w*Zk~+~conj(w)*Zdk);

out[k+N/4]~~~=~Uk2~-~I*(w*Zk~-~conj(w)*Zdk);

out[k+3*N/4]~=~Uk2~+~I*(w*Zk~-~conj(w)*Zdk);

}

}

}

void~fft_init(int~N)~{

LUT~=~malloc(N/4~*~sizeof(data_t));

int~i;

for(i=0;i<N/4;i++)~LUT[i]~=~W(N,i);
}

Listing 10.3: Simple conjugate-pair FFT with precomputed LUT

Available for free at Connexions <http://cnx.org/content/col11438/1.2>
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#include~<math.h>
#include~<complex.h>
#include~<stdio.h>
#include~<stdlib.h>
~

typedef~complex~float~data_t;

~

#define~W(N,k)~(cexp(-2.0f~*~M_PI~*~I~*~(float)(k)~/~(float)(N)))

~

float

s(int~n,~int~k)~{

~~if~(n~<=~4)~return~1.0f;
~

~~int~k4~=~k~%~(n/4);

~

~~if~(k4~<=~n/8)
return~(s(n/4,k4)~*~cosf(2.0f~*~M_PI~*~(float)k4~/~(float)n));

~~return~(s(n/4,k4)~*~sinf(2.0f~*~M_PI~*~(float)k4~/~(float)n));

}

~

data_t~*LUT,~*LUT0,~*LUT1,~*LUT2;

float~*s2,~*s4;

~

void~tangentfft8(data_t~*base,~int~TN,~data_t~*in,~data_t~*out,~int~log2stride,~

int~stride,~int~N)~{

~~if(N~==~1)~{

if(in~<~base)~in~+=~TN;
out[0]~=~in[0];

~~}else~if(N~==~2)~{

data_t~*i0~=~in,~*i1~=~in~+~stride;

if(i0~<~base)~i0~+=~TN;
if(i1~<~base)~i1~+=~TN;
out[0]~~~=~*i0~+~*i1;

out[N/2]~=~*i0~-~*i1;

~~}else~if(N~==~4)~{

~~~~tangentfft8(base,~TN,~in,~out,~log2stride+1,~stride~�~1,~N~�~1);

~~~~tangentfft8(base,~TN,~in+stride,~out+2,~log2stride+1,~stride~�~1,~N~�~1);

~

~~~~data_t~temp1~=~out[0]~+~out[2];

~~~~data_t~temp2~=~out[0]~-~out[2];

~~~~out[0]~=~temp1;

~~~~out[2]~=~temp2;

~~~~temp1~=~out[1]~-~I*out[3];

~~~~temp2~=~out[1]~+~I*out[3];

~~~~out[1]~=~temp1;

~~~~out[3]~=~temp2;

~

~~}else{

~~~~tangentfft8(base,~TN,~in,~out,~log2stride+2,~stride~�~2,~N~�~2);

~~~~tangentfft8(base,~TN,~in+(stride*2),~out+2*N/8,~log2stride+3,~stride~�~3,~N~�~3);

~~~~tangentfft8(base,~TN,~in-(stride*2),~out+3*N/8,~log2stride+3,~stride~�~3,~N~�~3);

~~~~tangentfft8(base,~TN,~in+(stride),~out+4*N/8,~log2stride+2,~stride~�~2,~N~�~2);

~~~~tangentfft8(base,~TN,~in-(stride),~out+6*N/8,~log2stride+2,~stride~�~2,~N~�~2);

int~k;

~~~~for(k=0;k<N/8;k++)~{
data_t~w0~=~LUT0[k�log2stride];

data_t~w1~=~LUT1[k�log2stride];

data_t~w2~=~LUT2[k�log2stride];

~

~~~~~~data_t~zk_p~~~=~w0~~~~~~~*~out[k+4*N/8];

~~~~~~data_t~zk_n~~~=~conj(w0)~*~out[k+6*N/8];

~~~~~~data_t~zk2_p~~=~w1~~~~~~~*~out[k+5*N/8];

~~~~~~data_t~zk2_n~~=~conj(w1)~*~out[k+7*N/8];

~~~~~~data_t~uk~~~~~=~out[k]~~~~~~~~~~~~~~~~~~*~s4[k�log2stride];

~~~~~~data_t~uk2~~~~=~out[k+N/8]~~~~~~~~~~~~~~*~s4[k+N/8~�~log2stride];

~~~~~~data_t~yk_p~~~=~w2~~~~~~~*~out[k+2*N/8];

~~~~~~data_t~yk_n~~~=~conj(w2)~*~out[k+3*N/8];

data_t~y0~=~(yk_p~+~yk_n)*s2[k�log2stride];

data_t~y1~=~(yk_p~-~yk_n)*I*s2[k+N/8~�~log2stride];

~

~~~~~~out[k]~~~~~~~=~uk~+~y0~+~(zk_p~+~zk_n);

~~~~~~out[k+4*N/8]~=~uk~+~y0~-~(zk_p~+~zk_n);

~~~~~~out[k+2*N/8]~=~uk~-~y0~-~I*(zk_p~-~zk_n);

~~~~~~out[k+6*N/8]~=~uk~-~y0~+~I*(zk_p~-~zk_n);

~~~~~~out[k+1*N/8]~=~uk2~-~y1~+~~~(zk2_p~+~zk2_n);

~~~~~~out[k+3*N/8]~=~uk2~+~y1~-~I*(zk2_p~-~zk2_n);

~~~~~~out[k+5*N/8]~=~uk2~-~y1~-~~~(zk2_p~+~zk2_n);

~~~~~~out[k+7*N/8]~=~uk2~+~y1~+~I*(zk2_p~-~zk2_n);

~~~~}

~~}

~

}

~

void~tangentfft4(data_t~*base,~int~TN,~data_t~*in,~data_t~*out,~int~log2stride,

int~stride,~int~N)~{

if(N~==~1)~{

if(in~<~base)~in~+=~TN;
out[0]~=~in[0];

}else~if(N~==~2)~{

data_t~*i0~=~in,~*i1~=~in~+~stride;

if(i0~<~base)~i0~+=~TN;
if(i1~<~base)~i1~+=~TN;
out[0]~~~=~*i0~+~*i1;

out[N/2]~=~*i0~-~*i1;

}else{

tangentfft4(base,~TN,~in,~out,~log2stride+1,~stride~�~1,~N~�~1);

tangentfft8(base,~TN,~in+stride,~out+N/2,~log2stride+2,~stride~�~2,~N~�~2);

~~tangentfft8(base,~TN,~in-stride,~out+3*N/4,~log2stride+2,~stride~�~2,~N~�~2);

{

data_t~Uk~~=~out[0];

data_t~Zk~~=~out[0+N/2];

data_t~Uk2~=~out[0+N/4];

data_t~Zdk~=~out[0+3*N/4];

out[0]~~~~~~~=~Uk~~+~(Zk~+~Zdk);

out[0+N/2]~~~=~Uk~~-~(Zk~+~Zdk);

out[0+N/4]~~~=~Uk2~-~I*(Zk~-~Zdk);

out[0+3*N/4]~=~Uk2~+~I*(Zk~-~Zdk);

}

int~k;

for(k=1;k<N/4;k++)~{
data_t~Uk~~=~out[k];

data_t~Zk~~=~out[k+N/2];

data_t~Uk2~=~out[k+N/4];

data_t~Zdk~=~out[k+3*N/4];

data_t~w~=~LUT[k�log2stride];

out[k]~~~~~~~=~Uk~~+~(w*Zk~+~conj(w)*Zdk);

out[k+N/2]~~~=~Uk~~-~(w*Zk~+~conj(w)*Zdk);

out[k+N/4]~~~=~Uk2~-~I*(w*Zk~-~conj(w)*Zdk);

out[k+3*N/4]~=~Uk2~+~I*(w*Zk~-~conj(w)*Zdk);

}

}

}

~

void~fft_init(int~N)~{

LUT0~=~malloc(N/8~*~sizeof(data_t));

LUT1~=~malloc(N/8~*~sizeof(data_t));

LUT2~=~malloc(N/8~*~sizeof(data_t));

~ LUT~=~malloc(N/4~*~sizeof(data_t));

~

s2~=~malloc(N/4~*~sizeof(float));

s4~=~malloc(N/4~*~sizeof(float));

~

int~i;

for(i=0;i<N/8;i++)~LUT0[i]~=~W(N,i)*s(N/4,i)/s(N,i);
for(i=0;i<N/8;i++)~LUT1[i]~=~W(N,i+N/8)*s(N/4,i+N/8)/s(N,i+N/8);
for(i=0;i<N/8;i++)~LUT2[i]~=~W(N,2*i)*s(N/8,i)/s(N/2,i);
for(i=0;i<N/4;i++)~LUT[i]~=~W(N,i)*s(N/4,i);
for(i=0;i<N/4;i++)~s4[i]~=~s(N/4,i)/s(N,i);
for(i=0;i<N/4;i++)~s2[i]~=~s(N/2,i)/s(N,i);
}

Listing 10.4: Simple tangent FFT with precomputed LUT

Available for free at Connexions <http://cnx.org/content/col11438/1.2>
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Available for free at Connexions <http://cnx.org/content/col11438/1.2>



Appendix 3 - FFTs with vectorized loops1

This Appendix contains source code listings corresponding to the vectorized FFT implementations in Im-
plementation details (Chapter 3).

1This content is available online at <http://cnx.org/content/m43812/1.1/>.

Available for free at Connexions <http://cnx.org/content/col11438/1.2>
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#include~<math.h>
#include~<complex.h>
#include~<stdio.h>
#include~<stdlib.h>
#include~<xmmintrin.h>
~

typedef~complex~float~data_t;

~

#define~W(N,k)~(cexp(-2.0f~*~M_PI~*~I~*~(float)(k)~/~(float)(N)))

~

data_t~**LUT;

~

void~ditfft2(data_t~*in,~data_t~*out,~int~log2stride,~int~stride,~int~N)~{

if(N~==~2)~{

out[0]~~~=~in[0]~+~in[stride];

out[N/2]~=~in[0]~-~in[stride];

}else~if(N~==~4){

ditfft2(in,~out,~log2stride+1,~stride~�~1,~N~�~1);

ditfft2(in+stride,~out+N/2,~log2stride+1,~stride~�~1,~N~�~1);

~~~~data_t~temp0~=~out[0]~+~out[2];

~~~~data_t~temp1~=~out[0]~-~out[2];

~~~~data_t~temp2~=~out[1]~-~I*out[3];

~~~~data_t~temp3~=~out[1]~+~I*out[3];

~~~~if(log2stride)~{

out[0]~=~creal(temp0)~+~creal(temp2)*I;

out[1]~=~creal(temp1)~+~creal(temp3)*I;

out[2]~=~cimag(temp0)~+~cimag(temp2)*I;

out[3]~=~cimag(temp1)~+~cimag(temp3)*I;

}else{

out[0]~=~temp0;

out[2]~=~temp1;

out[1]~=~temp2;

out[3]~=~temp3;

}

}else~if(!log2stride){

ditfft2(in,~out,~log2stride+1,~stride~�~1,~N~�~1);

ditfft2(in+stride,~out+N/2,~log2stride+1,~stride~�~1,~N~�~1);

~

int~k;

for(k=0;k<N/2;k+=4)~{
__m128~Ok_re~=~_mm_load_ps((float~*)&out[k+N/2]);

__m128~Ok_im~=~_mm_load_ps((float~*)&out[k+N/2+2]);

__m128~w_re~=~_mm_load_ps((float~*)&LUT[log2stride][k]);

__m128~w_im~=~_mm_load_ps((float~*)&LUT[log2stride][k+2]);

__m128~Ek_re~=~_mm_load_ps((float~*)&out[k]);

__m128~Ek_im~=~_mm_load_ps((float~*)&out[k+2]);

__m128~wOk_re~=~_mm_sub_ps(_mm_mul_ps(Ok_re,w_re),_mm_mul_ps(Ok_im,w_im));

__m128~wOk_im~=~_mm_add_ps(_mm_mul_ps(Ok_re,w_im),_mm_mul_ps(Ok_im,w_re));

__m128~out0_re~=~_mm_add_ps(Ek_re,~wOk_re);

__m128~out0_im~=~_mm_add_ps(Ek_im,~wOk_im);

__m128~out1_re~=~_mm_sub_ps(Ek_re,~wOk_re);

__m128~out1_im~=~_mm_sub_ps(Ek_im,~wOk_im);

_mm_store_ps((float~*)(out+k),~_mm_unpacklo_ps(out0_re,~out0_im));

_mm_store_ps((float~*)(out+k+2),~_mm_unpackhi_ps(out0_re,~out0_im));

_mm_store_ps((float~*)(out+k+N/2),~_mm_unpacklo_ps(out1_re,~out1_im));

_mm_store_ps((float~*)(out+k+N/2+2),~_mm_unpackhi_ps(out1_re,~out1_im));

}

}else{

ditfft2(in,~out,~log2stride+1,~stride~�~1,~N~�~1);

ditfft2(in+stride,~out+N/2,~log2stride+1,~stride~�~1,~N~�~1);

int~k;

for(k=0;k<N/2;k+=4)~{
__m128~Ok_re~=~_mm_load_ps((float~*)&out[k+N/2]);

__m128~Ok_im~=~_mm_load_ps((float~*)&out[k+N/2+2]);

__m128~w_re~=~_mm_load_ps((float~*)&LUT[log2stride][k]);

__m128~w_im~=~_mm_load_ps((float~*)&LUT[log2stride][k+2]);

__m128~Ek_re~=~_mm_load_ps((float~*)&out[k]);

__m128~Ek_im~=~_mm_load_ps((float~*)&out[k+2]);

__m128~wOk_re~=~_mm_sub_ps(_mm_mul_ps(Ok_re,w_re),_mm_mul_ps(Ok_im,w_im));

__m128~wOk_im~=~_mm_add_ps(_mm_mul_ps(Ok_re,w_im),_mm_mul_ps(Ok_im,w_re));

_mm_store_ps((float~*)(out+k),~_mm_add_ps(Ek_re,~wOk_re));

_mm_store_ps((float~*)(out+k+2),~_mm_add_ps(Ek_im,~wOk_im));

_mm_store_ps((float~*)(out+k+N/2),~_mm_sub_ps(Ek_re,~wOk_re));

_mm_store_ps((float~*)(out+k+N/2+2),~_mm_sub_ps(Ek_im,~wOk_im));

}

}

}

~

void~fft_init(int~N)~{

int~i;

#define~log2(x)~((int)(log(x)/log(2)))

int~n_luts~=~log2(N)-2;

LUT~=~malloc(n_luts~*~sizeof(data_t~*));

for(i=0;i<n_luts;i++)~{
int~n~=~N~/~pow(2,i);

LUT[i]~=~_mm_malloc(n/2~*~sizeof(data_t),~16);

int~j;

for(j=0;j<n/2;j+=4)~{
data_t~w[4];

int~k;

for(k=0;k<4;k++)~w[k]~=~W(n,j+k);
~

LUT[i][j]~~~=~creal(w[0])~+~creal(w[1])*I;

LUT[i][j+1]~=~creal(w[2])~+~creal(w[3])*I;

LUT[i][j+2]~=~cimag(w[0])~+~cimag(w[1])*I;

LUT[i][j+3]~=~cimag(w[2])~+~cimag(w[3])*I;

}

}

}

Listing 11.1: Radix-2 FFT with vectorized loops
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typedef~struct~_reg_t~{

__m128~re,~im;

}~reg_t;

~

static~inline~reg_t~MUL(reg_t~a,~reg_t~b)~{

reg_t~r;

r.re~=~_mm_sub_ps(_mm_mul_ps(a.re,b.re),_mm_mul_ps(a.im,b.im));

r.im~=~_mm_add_ps(_mm_mul_ps(a.re,b.im),_mm_mul_ps(a.im,b.re));

return~r;

}

static~inline~reg_t~MULJ(reg_t~a,~reg_t~b)~{

reg_t~r;

r.re~=~_mm_add_ps(_mm_mul_ps(a.re,b.re),_mm_mul_ps(a.im,b.im));

r.im~=~_mm_sub_ps(_mm_mul_ps(a.im,b.re),_mm_mul_ps(a.re,b.im));

return~r;

}

~

static~inline~reg_t~ADD(reg_t~a,~reg_t~b)~{

reg_t~r;

r.re~=~_mm_add_ps(a.re,b.re);

r.im~=~_mm_add_ps(a.im,b.im);

return~r;

}

static~inline~reg_t~SUB(reg_t~a,~reg_t~b)~{

reg_t~r;

r.re~=~_mm_sub_ps(a.re,b.re);

r.im~=~_mm_sub_ps(a.im,b.im);

return~r;

}

static~inline~reg_t~ADD_I(reg_t~a,~reg_t~b)~{

reg_t~r;

r.re~=~_mm_sub_ps(a.re,b.im);

r.im~=~_mm_add_ps(a.im,b.re);

return~r;

}

static~inline~reg_t~SUB_I(reg_t~a,~reg_t~b)~{

reg_t~r;

r.re~=~_mm_add_ps(a.re,b.im);

r.im~=~_mm_sub_ps(a.im,b.re);

return~r;

}

~

static~inline~reg_t~LOAD(float~*a)~{

reg_t~r;

r.re~=~_mm_load_ps(a);

r.im~=~_mm_load_ps(a+4);

return~r;

}

static~inline~void~STORE(float~*a,~reg_t~r)~{

_mm_store_ps(a,~r.re);

_mm_store_ps(a+4,~r.im);

}

static~inline~void~STOREIL(float~*a,~reg_t~r)~{

_mm_store_ps(a,~_mm_unpacklo_ps(r.re,~r.im));

_mm_store_ps(a+4,~_mm_unpackhi_ps(r.re,~r.im));

}

Listing 11.2: Vectorized math functions for split-radix implementations

Available for free at Connexions <http://cnx.org/content/col11438/1.2>
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#include~<math.h>
#include~<complex.h>
#include~<stdio.h>
#include~<stdlib.h>
#include~<xmmintrin.h>
~

typedef~complex~float~data_t;

~

#define~W(N,k)~(cexp(-2.0f~*~M_PI~*~I~*~(float)(k)~/~(float)(N)))

data_t~**LUT1;

data_t~**LUT3;

~

#include~"vecmath.h"

~

void~splitfft(data_t~*in,~data_t~*out,

int~log2stride,~int~stride,~int~N)~{

if(N~==~1)~{

out[0]~=~in[0];

}else~if(N~==~2)~{

out[0]~=~in[0]~+~in[stride];

out[1]~=~in[0]~-~in[stride];

}else~if(N~==~4)~{

splitfft(in,~out,~log2stride+1,~stride~�~1,~N~�~1);

splitfft(in+stride,~out+N/2,~log2stride+2,~stride~�~2,~N~�~2);

~~splitfft(in+3*stride,~out+3*N/4,~log2stride+2,~stride~�~2,~N~�~2);

data_t~temp0~=~out[0]~~+~(out[2]~+~out[3]);

data_t~temp1~=~out[0]~~-~(out[2]~+~out[3]);

data_t~temp2~=~out[1]~-~I*(out[2]~-~out[3]);

data_t~temp3~=~out[1]~+~I*(out[2]~-~out[3]);

~~~~if(log2stride)~{

~~ out[0]~=~creal(temp0)~+~creal(temp2)*I;

~~ out[1]~=~creal(temp1)~+~creal(temp3)*I;

~~ out[2]~=~cimag(temp0)~+~cimag(temp2)*I;

~~ out[3]~=~cimag(temp1)~+~cimag(temp3)*I;

~~ }else{

out[0]~=~temp0;

out[2]~=~temp1;

out[1]~=~temp2;

out[3]~=~temp3;

~~ }

}else~if(N~==~8)~{

splitfft(in,~out,~log2stride+1,~stride~�~1,~N~�~1);

splitfft(in+stride,~out+N/2,~log2stride+2,~stride~�~2,~N~�~2);

~~splitfft(in+3*stride,~out+3*N/4,~log2stride+2,~stride~�~2,~N~�~2);

data_t~o[8];

{

data_t~Uk~~=~creal(out[0])~+~creal(out[2])*I;

data_t~Zk~~=~out[4];

data_t~Uk2~~=~creal(out[1])~+~creal(out[3])*I;

data_t~Zdk~=~out[6];

o[0]~=~Uk~~+~(Zk~+~Zdk);

o[4]~=~Uk~~-~(Zk~+~Zdk);

o[2]~=~Uk2~-~I*(Zk~-~Zdk);

o[6]~=~Uk2~+~I*(Zk~-~Zdk);

}

{

data_t~Uk~=~cimag(out[0])~+~cimag(out[2])*I;

data_t~Zk~~=~out[5];

data_t~Uk2~=~cimag(out[1])~+~cimag(out[3])*I;

data_t~Zdk~=~out[7];

data_t~w1~=~LUT1[log2stride][1];

data_t~w3~=~LUT3[log2stride][1];

o[1]~=~Uk~~+~(w1*Zk~+~w3*Zdk);

o[5]~=~Uk~~-~(w1*Zk~+~w3*Zdk);

o[3]~=~Uk2~-~I*(w1*Zk~-~w3*Zdk);

o[7]~=~Uk2~+~I*(w1*Zk~-~w3*Zdk);

}

if(log2stride)~{

out[0]~=~creal(o[0])~+~creal(o[1])*I;

out[1]~=~creal(o[2])~+~creal(o[3])*I;

out[2]~=~cimag(o[0])~+~cimag(o[1])*I;

out[3]~=~cimag(o[2])~+~cimag(o[3])*I;

out[4]~=~creal(o[4])~+~creal(o[5])*I;

out[5]~=~creal(o[6])~+~creal(o[7])*I;

out[6]~=~cimag(o[4])~+~cimag(o[5])*I;

out[7]~=~cimag(o[6])~+~cimag(o[7])*I;

}else{

int~i;

for(i=0;i<8;i++)~out[i]~=~o[i];
}

}else~if(!log2stride){

~

splitfft(in,~out,~log2stride+1,~stride~�~1,~N~�~1);

splitfft(in+stride,~out+N/2,~log2stride+2,~stride~�~2,~N~�~2);

~~splitfft(in+3*stride,~out+3*N/4,~log2stride+2,~stride~�~2,~N~�~2);

int~k;

for(k=0;k<N/4;k+=4)~{
reg_t~Uk~~=~LOAD((float~*)&out[k]);

reg_t~Zk~~=~LOAD((float~*)&out[k+N/2]);

reg_t~Uk2~=~LOAD((float~*)&out[k+N/4]);

reg_t~Zdk~=~LOAD((float~*)&out[k+3*N/4]);

reg_t~w1~=~LOAD((float~*)&LUT1[log2stride][k]);

reg_t~w3~=~LOAD((float~*)&LUT3[log2stride][k]);

reg_t~w3Zdk~=~MUL(w3,~Zdk);

reg_t~w1Zk~=~MUL(w1,~Zk);

reg_t~sum~=~ADD(w1Zk,~w3Zdk);

reg_t~dif~=~SUB(w1Zk,~w3Zdk);

STOREIL((float~*)&out[k],~ADD(Uk,~sum));

STOREIL((float~*)&out[k+N/2],~SUB(Uk,~sum));

STOREIL((float~*)&out[k+N/4],~SUB_I(Uk2,~dif));

STOREIL((float~*)&out[k+3*N/4],~ADD_I(Uk2,~dif));

}

~

}else{

splitfft(in,~out,~log2stride+1,~stride~�~1,~N~�~1);

splitfft(in+stride,~out+N/2,~log2stride+2,~stride~�~2,~N~�~2);

~~splitfft(in+3*stride,~out+3*N/4,~log2stride+2,~stride~�~2,~N~�~2);

int~k;

for(k=0;k<N/4;k+=4)~{
reg_t~Uk~~=~LOAD((float~*)&out[k]);

reg_t~Zk~~=~LOAD((float~*)&out[k+N/2]);

reg_t~Uk2~=~LOAD((float~*)&out[k+N/4]);

reg_t~Zdk~=~LOAD((float~*)&out[k+3*N/4]);

reg_t~w1~=~LOAD((float~*)&LUT1[log2stride][k]);

reg_t~w3~=~LOAD((float~*)&LUT3[log2stride][k]);

reg_t~w3Zdk~=~MUL(w3,~Zdk);

reg_t~w1Zk~=~MUL(w1,~Zk);

reg_t~sum~=~ADD(w1Zk,~w3Zdk);

reg_t~dif~=~SUB(w1Zk,~w3Zdk);

STORE((float~*)&out[k],~ADD(Uk,~sum));

STORE((float~*)&out[k+N/2],~SUB(Uk,~sum));

STORE((float~*)&out[k+N/4],~SUB_I(Uk2,~dif));

STORE((float~*)&out[k+3*N/4],~ADD_I(Uk2,~dif));

}

}

}

~

void~fft_init(int~N)~{

#define~log2(x)~((int)(log(x)/log(2)))

int~n_luts~=~log2(N)-1;

LUT1~=~malloc(n_luts~*~sizeof(data_t~*));

LUT3~=~malloc(n_luts~*~sizeof(data_t~*));

int~i;

for(i=0;i<n_luts;i++)~{
int~n~=~N~/~pow(2,i);

LUT1[i]~=~_mm_malloc(n/4~*~sizeof(data_t),16);

LUT3[i]~=~_mm_malloc(n/4~*~sizeof(data_t),16);

if(n~==~8)~{

int~j;

for(j=0;j<n/4;j++)~{
LUT1[i][j]~=~W(n,j);

LUT3[i][j]~=~W(n,3*j);

}

}else{

int~j;

for(j=0;j<n/4;j+=4)~{
data_t~w1[4],~w3[4];

int~k;

for(k=0;k<4;k++)~w1[k]~=~W(n,j+k);
for(k=0;k<4;k++)~w3[k]~=~W(n,3*(j+k));
~

LUT1[i][j]~~~=~creal(w1[0])~+~creal(w1[1])*I;

LUT1[i][j+1]~=~creal(w1[2])~+~creal(w1[3])*I;

LUT1[i][j+2]~=~cimag(w1[0])~+~cimag(w1[1])*I;

LUT1[i][j+3]~=~cimag(w1[2])~+~cimag(w1[3])*I;

LUT3[i][j]~~~=~creal(w3[0])~+~creal(w3[1])*I;

LUT3[i][j+1]~=~creal(w3[2])~+~creal(w3[3])*I;

LUT3[i][j+2]~=~cimag(w3[0])~+~cimag(w3[1])*I;

LUT3[i][j+3]~=~cimag(w3[2])~+~cimag(w3[3])*I;

}

}

}

}

~

Listing 11.3: Split-radix FFT with vectorized loops
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#include~<math.h>
#include~<complex.h>
#include~<stdio.h>
#include~<stdlib.h>
#include~<xmmintrin.h>
~

typedef~complex~float~data_t;

~

#define~W(N,k)~(cexp(-2.0f~*~M_PI~*~I~*~(float)(k)~/~(float)(N)))

data_t~**LUT1;

~

#include~"vecmath.h"

~

data_t~*base;

int~TN;

~

void~conjfft(data_t~*in,~data_t~*out,

int~log2stride,~int~stride,~int~N)~{

if(N~==~1)~{

if(in~<~base)~in~+=~TN;
out[0]~=~in[0];

}else~if(N~==~2)~{

data_t~*i0~=~in,~*i1~=~in~+~stride;

if(i0~<~base)~i0~+=~TN;
if(i1~<~base)~i1~+=~TN;
out[0]~~~=~*i0~+~*i1;

out[N/2]~=~*i0~-~*i1;

}else~if(N~==~4)~{

conjfft(in,~out,~log2stride+1,~stride~�~1,~N~�~1);

conjfft(in+stride,~out+N/2,~log2stride+2,~stride~�~2,~N~�~2);

~~conjfft(in-stride,~out+3*N/4,~log2stride+2,~stride~�~2,~N~�~2);

data_t~temp0~=~out[0]~~+~(out[2]~+~out[3]);

data_t~temp1~=~out[0]~~-~(out[2]~+~out[3]);

data_t~temp2~=~out[1]~-~I*(out[2]~-~out[3]);

data_t~temp3~=~out[1]~+~I*(out[2]~-~out[3]);

~~~~if(log2stride)~{

~~ out[0]~=~creal(temp0)~+~creal(temp2)*I;

~~ out[1]~=~creal(temp1)~+~creal(temp3)*I;

~~ out[2]~=~cimag(temp0)~+~cimag(temp2)*I;

~~ out[3]~=~cimag(temp1)~+~cimag(temp3)*I;

~~ }else{

out[0]~=~temp0;

out[2]~=~temp1;

out[1]~=~temp2;

out[3]~=~temp3;

~~ }

}else~if(N~==~8)~{

conjfft(in,~out,~log2stride+1,~stride~�~1,~N~�~1);

conjfft(in+stride,~out+N/2,~log2stride+2,~stride~�~2,~N~�~2);

~~conjfft(in-stride,~out+3*N/4,~log2stride+2,~stride~�~2,~N~�~2);

data_t~o[8];

{

data_t~Uk~~=~creal(out[0])~+~creal(out[2])*I;

data_t~Zk~~=~out[4];

data_t~Uk2~~=~creal(out[1])~+~creal(out[3])*I;

data_t~Zdk~=~out[6];

o[0]~=~Uk~~+~(Zk~+~Zdk);

o[4]~=~Uk~~-~(Zk~+~Zdk);

o[2]~=~Uk2~-~I*(Zk~-~Zdk);

o[6]~=~Uk2~+~I*(Zk~-~Zdk);

}

{

data_t~Uk~=~cimag(out[0])~+~cimag(out[2])*I;

data_t~Zk~~=~out[5];

data_t~Uk2~=~cimag(out[1])~+~cimag(out[3])*I;

data_t~Zdk~=~out[7];

data_t~w1~=~LUT1[log2stride][1];

o[1]~=~Uk~~+~(w1*Zk~+~conj(w1)*Zdk);

o[5]~=~Uk~~-~(w1*Zk~+~conj(w1)*Zdk);

o[3]~=~Uk2~-~I*(w1*Zk~-~conj(w1)*Zdk);

o[7]~=~Uk2~+~I*(w1*Zk~-~conj(w1)*Zdk);

}

if(log2stride)~{

out[0]~=~creal(o[0])~+~creal(o[1])*I;

out[1]~=~creal(o[2])~+~creal(o[3])*I;

out[2]~=~cimag(o[0])~+~cimag(o[1])*I;

out[3]~=~cimag(o[2])~+~cimag(o[3])*I;

out[4]~=~creal(o[4])~+~creal(o[5])*I;

out[5]~=~creal(o[6])~+~creal(o[7])*I;

out[6]~=~cimag(o[4])~+~cimag(o[5])*I;

out[7]~=~cimag(o[6])~+~cimag(o[7])*I;

}else{

int~i;

for(i=0;i<8;i++)~out[i]~=~o[i];
}

}else~if(!log2stride){

~

conjfft(in,~out,~log2stride+1,~stride~�~1,~N~�~1);

conjfft(in+stride,~out+N/2,~log2stride+2,~stride~�~2,~N~�~2);

~~conjfft(in-stride,~out+3*N/4,~log2stride+2,~stride~�~2,~N~�~2);

int~k;

for(k=0;k<N/4;k+=4)~{
reg_t~Uk~~=~LOAD((float~*)&out[k]);

reg_t~Zk~~=~LOAD((float~*)&out[k+N/2]);

reg_t~Uk2~=~LOAD((float~*)&out[k+N/4]);

reg_t~Zdk~=~LOAD((float~*)&out[k+3*N/4]);

reg_t~w1~=~LOAD((float~*)&LUT1[log2stride][k]);

reg_t~w3Zdk~=~MULJ(Zdk,~w1);

reg_t~w1Zk~=~MUL(w1,~Zk);

reg_t~sum~=~ADD(w1Zk,~w3Zdk);

reg_t~dif~=~SUB(w1Zk,~w3Zdk);

STOREIL((float~*)&out[k],~ADD(Uk,~sum));

STOREIL((float~*)&out[k+N/2],~SUB(Uk,~sum));

STOREIL((float~*)&out[k+N/4],~SUB_I(Uk2,~dif));

STOREIL((float~*)&out[k+3*N/4],~ADD_I(Uk2,~dif));

}

~

}else{

conjfft(in,~out,~log2stride+1,~stride~�~1,~N~�~1);

conjfft(in+stride,~out+N/2,~log2stride+2,~stride~�~2,~N~�~2);

~~conjfft(in-stride,~out+3*N/4,~log2stride+2,~stride~�~2,~N~�~2);

int~k;

for(k=0;k<N/4;k+=4)~{
reg_t~Uk~~=~LOAD((float~*)&out[k]);

reg_t~Zk~~=~LOAD((float~*)&out[k+N/2]);

reg_t~Uk2~=~LOAD((float~*)&out[k+N/4]);

reg_t~Zdk~=~LOAD((float~*)&out[k+3*N/4]);

reg_t~w1~=~LOAD((float~*)&LUT1[log2stride][k]);

reg_t~w3Zdk~=~MULJ(Zdk,~w1);

reg_t~w1Zk~=~MUL(w1,~Zk);

reg_t~sum~=~ADD(w1Zk,~w3Zdk);

reg_t~dif~=~SUB(w1Zk,~w3Zdk);

STORE((float~*)&out[k],~ADD(Uk,~sum));

STORE((float~*)&out[k+N/2],~SUB(Uk,~sum));

STORE((float~*)&out[k+N/4],~SUB_I(Uk2,~dif));

STORE((float~*)&out[k+3*N/4],~ADD_I(Uk2,~dif));

}

}

}

~

void~fft_init(int~N)~{

#define~log2(x)~((int)(log(x)/log(2)))

int~n_luts~=~log2(N)-1;

LUT1~=~malloc(n_luts~*~sizeof(data_t~*));

int~i;

for(i=0;i<n_luts;i++)~{
int~n~=~N~/~pow(2,i);

LUT1[i]~=~_mm_malloc(n/4~*~sizeof(data_t),16);

if(n~==~8)~{

int~j;

for(j=0;j<n/4;j++)~{
LUT1[i][j]~=~W(n,j);

}

}else{

int~j;

for(j=0;j<n/4;j+=4)~{
data_t~w1[4];

int~k;

for(k=0;k<4;k++)~w1[k]~=~W(n,j+k);
~

LUT1[i][j]~~~=~creal(w1[0])~+~creal(w1[1])*I;

LUT1[i][j+1]~=~creal(w1[2])~+~creal(w1[3])*I;

LUT1[i][j+2]~=~cimag(w1[0])~+~cimag(w1[1])*I;

LUT1[i][j+3]~=~cimag(w1[2])~+~cimag(w1[3])*I;

}

}

}

TN~=~N;

~

}

~

Listing 11.4: Conjugate-pair FFT with vectorized loops
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Computing the fast Fourier transform on SIMD microprocessors

This thesis describes how to compute the fast Fourier transform (FFT) of a power-of-two length signal on
single-instruction, multiple-data (SIMD) microprocessors faster than or very close to the speed of state of
the art libraries such as FFTW (�Fastest Fourier Transform in the West�), SPIRAL and Intel Integrated
Performance Primitives (IPP). The conjugate-pair algorithm has advantages in terms of memory bandwidth,
and three implementations of this algorithm, which incorporate latency and spatial locality optimizations,
are automatically vectorized at the algorithm level of abstraction. Performance results on 2-way, 4-way
and 8-way SIMD machines show that the performance scales much better than FFTW or SPIRAL. The
implementations presented in this thesis are compiled into a high-performance FFT library called SFFT
(�Streaming Fast Fourier Transform�), and benchmarked against FFTW, SPIRAL, Intel IPP and Apple
Accelerate on sixteen x86 machines and two ARM NEON machines, and shown to be, in many cases, faster
than these state of the art libraries, but without having to perform extensive machine speci�c calibration,
thus demonstrating that there are good heuristics for predicting the performance of the FFT on SIMD
microprocessors (i.e., the need for empirical optimization may be overstated).
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