
Connexions module: m0093 1

Subtleties of Source Coding
∗

Don Johnson

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

Some subtleties of coding, including self synchronization and a comparison of the Hu�man and Morse
codes.

In the Hu�man code, the bit sequences that represent individual symbols can have di�ering lengths so
the bitstream index m does not increase in lock step with the symbol-valued signal's index n. To capture
how often bits must be transmitted to keep up with the source's production of symbols, we can only compute

averages. If our source code averages
−

B (A) bits/symbol and symbols are produced at a rate R, the average

bit rate equals
−

B (A) R, and this quantity determines the bit interval duration T .

Exercise 1 (Solution on p. 4.)

Calculate what the relation between T and the average bit rate
−

B (A) R is.

A subtlety of source coding is whether we need "commas" in the bitstream. When we use an unequal
number of bits to represent symbols, how does the receiver determine when symbols begin and end? If you
created a source code that required a separation marker in the bitstream between symbols, it would be
very ine�cient since you are essentially requiring an extra symbol in the transmission stream.

note: A good example of this need is the Morse Code: Between each letter, the telegrapher needs
to insert a pause to inform the receiver when letter boundaries occur.

As shown in this example1, no commas are placed in the bitstream, but you can unambiguously decode
the sequence of symbols from the bitstream. Hu�man showed that his (maximally e�cient) code had the
pre�x property: No code for a symbol began another symbol's code. Once you have the pre�x property,
the bitstream is partially self-synchronizing: Once the receiver knows where the bitstream starts, we can
assign a unique and correct symbol sequence to the bitstream.

Exercise 2 (Solution on p. 4.)

Sketch an argument that pre�x coding, whether derived from a Hu�man code or not, will provide
unique decoding when an unequal number of bits/symbol are used in the code.

However, having a pre�x code does not guarantee total synchronization: After hopping into the middle of a
bitstream, can we always �nd the correct symbol boundaries? The self-synchronization issue does mitigate
the use of e�cient source coding algorithms.

∗Version 2.16: Dec 5, 2007 11:02 pm -0600
†http://creativecommons.org/licenses/by/1.0
1"Compression and the Hu�man Code", Example 1 <http://cnx.org/content/m0092/latest/#ex3>

http://cnx.org/content/m0093/2.16/

Connexions module: m0093 2

Exercise 3 (Solution on p. 4.)

Show by example that a bitstream produced by a Hu�man code is not necessarily self-synchronizing.
Are �xed-length codes self synchronizing?

Another issue is bit errors induced by the digital channel; if they occur (and they will), synchronization
can easily be lost even if the receiver started "in synch" with the source. Despite the small probabilities of
error o�ered by good signal set design and the matched �lter, an infrequent error can devastate the ability to
translate a bitstream into a symbolic signal. We need ways of reducing reception errors without demanding
that pe be smaller.

Example 1
The �rst electrical communications system�the telegraph�was digital. When �rst deployed in
1844, it communicated text over wireline connections using a binary code�the Morse code�to
represent individual letters. To send a message from one place to another, telegraph operators
would tap the message using a telegraph key to another operator, who would relay the message
on to the next operator, presumably getting the message closer to its destination. In short, the
telegraph relied on a network not unlike the basics of modern computer networks. To say it
presaged modern communications would be an understatement. It was also far ahead of some
needed technologies, namely the Source Coding Theorem. The Morse code, shown in Figure 1, was
not a pre�x code. To separate codes for each letter, Morse code required that a space�a pause�be
inserted between each letter. In information theory, that space counts as another code letter, which
means that the Morse code encoded text with a three-letter source code: dots, dashes and space.
The resulting source code is not within a bit of entropy, and is grossly ine�cient (about 25%).
Figure 1 shows a Hu�man code for English text, which as we know is e�cient.

http://cnx.org/content/m0093/2.16/

Connexions module: m0093 3

Morse and Hu�man Code Table

% Morse Code Hu�man Code

A 6.22 .- 1011

B 1.32 -... 010100

C 3.11 -.-. 10101

D 2.97 -.. 01011

E 10.53 . 001

F 1.68 ..-. 110001

G 1.65 �. 110000

H 3.63 11001

I 6.14 .. 1001

J 0.06 .� 01010111011

K 0.31 -.- 01010110

L 3.07 .-.. 10100

M 2.48 � 00011

N 5.73 -. 0100

O 6.06 � 1000

P 1.87 .�. 00000

Q 0.10 �.- 0101011100

R 5.87 .-. 0111

S 5.81 ... 0110

T 7.68 - 1101

U 2.27 ..- 00010

V 0.70 ...- 0101010

W 1.13 .� 000011

X 0.25 -..- 010101111

Y 1.07 -.� 000010

Z 0.06 �.. 0101011101011

Figure 1: Morse and Hu�man Codes for American-Roman Alphabet. The % column indicates the
average probability (expressed in percent) of the letter occurring in English. The entropy H (A) of the
this source is 4.14 bits. The average Morse codeword length is 2.5 symbols. Adding one more symbol for
the letter separator and converting to bits yields an average codeword length of 5.56 bits. The average
Hu�man codeword length is 4.35 bits.

http://cnx.org/content/m0093/2.16/

Connexions module: m0093 4

Solutions to Exercises in this Module

Solution to Exercise (p. 1)
T = 1

−
B(A)R

.

Solution to Exercise (p. 1)
Because no codeword begins with another's codeword, the �rst codeword encountered in a bit stream must
be the right one. Note that we must start at the beginning of the bit stream; jumping into the middle does
not guarantee perfect decoding. The end of one codeword and the beginning of another could be a codeword,
and we would get lost.
Solution to Exercise (p. 1)
Consider the bitstream . . .0110111. . . taken from the bitstream 0|10|110|110|111|. . .. We would decode the
initial part incorrectly, then would synchronize. If we had a �xed-length code (say 00,01,10,11), the situation
is much worse. Jumping into the middle leads to no synchronization at all!

http://cnx.org/content/m0093/2.16/

