Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Discrete-Time Fourier Analysis » DFT: Computational Complexity

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • OrangeGrove display tagshide tags

    This module is included inLens: Florida Orange Grove Textbooks
    By: Florida Orange GroveAs a part of collection: "Fundamentals of Electrical Engineering I"

    Click the "OrangeGrove" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Rice DSS - Braille display tagshide tags

    This module is included inLens: Rice University Disability Support Services's Lens
    By: Rice University Disability Support ServicesAs a part of collection: "Fundamentals of Electrical Engineering I"

    Comments:

    "Electrical Engineering Digital Processing Systems in Braille."

    Click the "Rice DSS - Braille" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Rice Digital Scholarship display tagshide tags

    This collection is included in aLens by: Digital Scholarship at Rice University

    Click the "Rice Digital Scholarship" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Bookshare

    This module is included inLens: Bookshare's Lens
    By: Bookshare - A Benetech InitiativeAs a part of collection: "Fundamentals of Electrical Engineering I"

    Comments:

    "Accessible versions of this collection are available at Bookshare. DAISY and BRF provided."

    Click the "Bookshare" link to see all content affiliated with them.

  • Featured Content display tagshide tags

    This module is included inLens: Connexions Featured Content
    By: ConnexionsAs a part of collection: "Fundamentals of Electrical Engineering I"

    Comments:

    "The course focuses on the creation, manipulation, transmission, and reception of information by electronic means. It covers elementary signal theory, time- and frequency-domain analysis, the […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • Lens for Engineering

    This module and collection are included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

DFT: Computational Complexity

Module by: Don Johnson. E-mail the author

Summary: A brief explanation of calculation complexity and how the complexity of the discrete Fourier transform is order N squared.

We now have a way of computing the spectrum for an arbitrary signal: The Discrete Fourier Transform (DFT) computes the spectrum at NN equally spaced frequencies from a length- NN sequence. An issue that never arises in analog "computation," like that performed by a circuit, is how much work it takes to perform the signal processing operation such as filtering. In computation, this consideration translates to the number of basic computational steps required to perform the needed processing. The number of steps, known as the complexity, becomes equivalent to how long the computation takes (how long must we wait for an answer). Complexity is not so much tied to specific computers or programming languages but to how many steps are required on any computer. Thus, a procedure's stated complexity says that the time taken will be proportional to some function of the amount of data used in the computation and the amount demanded.

For example, consider the formula for the discrete Fourier transform. For each frequency we choose, we must multiply each signal value by a complex number and add together the results. For a real-valued signal, each real-times-complex multiplication requires two real multiplications, meaning we have 2N 2N multiplications to perform. To add the results together, we must keep the real and imaginary parts separate. Adding NN numbers requires N1 N1 additions. Consequently, each frequency requires 2N+2(N1)=4N2 2N 2 N1 4N 2 basic computational steps. As we have NN frequencies, the total number of computations is N(4N2) N 4N 2 .

In complexity calculations, we only worry about what happens as the data lengths increase, and take the dominant term—here the 4N2 4 N2 term—as reflecting how much work is involved in making the computation. As multiplicative constants don't matter since we are making a "proportional to" evaluation, we find the DFT is an ON2 O N 2 computational procedure. This notation is read "order NN-squared". Thus, if we double the length of the data, we would expect that the computation time to approximately quadruple.

Exercise 1

In making the complexity evaluation for the DFT, we assumed the data to be real. Three questions emerge. First of all, the spectra of such signals have conjugate symmetry, meaning that negative frequency components ( k=N2+1N+1 k N2 1 N1 in the DFT) can be computed from the corresponding positive frequency components. Does this symmetry change the DFT's complexity? Secondly, suppose the data are complex-valued; what is the DFT's complexity now? Finally, a less important but interesting question is suppose we want KK frequency values instead of NN; now what is the complexity?

Solution

When the signal is real-valued, we may only need half the spectral values, but the complexity remains unchanged. If the data are complex-valued, which demands retaining all frequency values, the complexity is again the same. When only KK frequencies are needed, the complexity is OKN O K N .

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks