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Abstract

introduction to semiconductors, mainly looking at the behavior of electrons in a solid from a quantum

mechanical point of view.

If we only had to worry about simple conductors, life would not be very complicated, but on the other
hand we wouldn't be able to make computers, CD players, cell phones, i-Pods and a lot of other things
which we have found to be useful. We will now move on, and talk about another class of conductors called
semiconductors.

In order to understand semiconductors and in fact to get a more accurate picture of how metals, or
normal conductors actually work, we really have to resort to quantum mechanics. Electrons in a solid are
very tiny objects, and it turns out that when things get small enough, they no longer exactly following the
classical "Newtonian" laws of physics that we are all familiar with from everyday experience. It is not the
purpose of this course to teach you quantum mechanics, so what we are going to do instead is describe the
results which come from looking at the behavior of electrons in a solid from a quantum mechanical point of
view.

Solids (at least the ones we will be talking about, and especially semiconductors) are crystalline materials,
which means that they have their atoms arranged in a ordered fashion. We can take silicon (the most
important semiconductor) as an example. Silicon is a group IV element, which means it has four electrons
in its outer or valence shell. Silicon crystallizes in a structure called the diamond crystal lattice. This is
shown in Figure 1. Each silicon atom has four covalent bonds, arranged in a tetrahedral formation about
the atom center.
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Figure 1: Crystal structure of silicon

In two dimensions, we can schematically represent a piece of single-crystal silicon as shown in Figure 2.
Each silicon atom shares its four valence electrons with valence electrons from four nearest neighbors, �lling
the shell to 8 electrons, and forming a stable, periodic structure. Once the atoms have been arranged like
this, the outer valence electrons are no longer strongly bound to the host atom. The outer shells of all of
the atoms blend together and form what is called a band. The electrons are now free to move about within
this band, and this can lead to electrical conductivity as we discussed earlier.

Figure 2: A 2-D representation of a silicon crystal

This is not the complete story however, for it turns out that due to quantum mechanical e�ects, there is
not just one band which holds electrons, but several of them. What will follow is a very qualitative picture
of how the electrons are distributed when they are in a periodic solid, and there are necessarily some details
which we will be forced to gloss over. On the other hand this will give you a pretty good picture of what is
going on, and may enable you to have some understanding of how a semiconductor really works. Electrons
are not only distributed throughout the solid crystal spatially, but they also have a distribution in energy
as well. The potential energy function within the solid is periodic in nature. This potential function comes
from the positively charged atomic nuclei which are arranged in the crystal in a regular array. A detailed
analysis of how electron wave functions, the mathematical abstraction which one must use to describe
how small quantum mechanical objects behave when they are in a periodic potential, gives rise to an energy
distribution somewhat like that shown in Figure 3.
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Figure 3: Schematic of the �rst two bands in a periodic solid showing energy levels and bands

Firstly, unlike the case for free electrons, in a periodic solid, electrons are not free to take on any energy
value they wish. They are forced into speci�c energy levels called allowed states which are represented by
the cups in the �gure. The allowed states are not distributed uniformly in energy either. They are grouped
into speci�c con�gurations called energy bands. There are no allowed levels at zero energy and for some
distance above that. Moving up from zero energy, we then encounter the �rst energy band. At the bottom
of the band there are very few allowed states, but as we move up in energy, the number of allowed states
�rst increases, and then falls o� again. We then come to a region with no allowed states, called an energy
band gap. Above the band gap, another band of allowed states exists. This goes on and on, with any given
material having many such bands and band gaps. This situation is shown schematically in Figure 3, where
the small cups represent allowed energy levels, and the vertical axis represents electron energy.

It turns out that each band has exactly 2N allowed states in it, where N is the total number of atoms
in the particular crystal sample we are talking about. (Since there are 10 cups in each band in the �gure, it
must represent a crystal with just 5 atoms in it. Not a very big crystal at all!) Into these bands we must
now distribute all of the valence electrons associated with the atoms, with the restriction that we can only

put one electron into each allowed state. (This is the result of something called the Pauli exclusion
principle.) Since in the case of silicon there are 4 valence electrons per atom, we would just �ll up the
�rst two bands, and the next would be empty. (If we make the logical assumption that the electrons will �ll
in the levels with the lowest energy �rst, and only go into higher lying levels if the ones below are already
�lled.) This situation is shown in Figure 4.

Here, we have represented electrons as small black balls with a "-" sign on them. Indeed, the �rst two
bands are completely full, and the next is empty. What will happen if we apply an electric �eld to the sample
of silicon? Remember the diagram we have at hand right now is an energy based one, we are showing how
the electrons are distributed in energy, not how they are arranged spatially. On this diagram we can not
show how they will move about, but only how they will change their energy as a result of the applied �eld.
The electric �eld will exert a force on the electrons and attempt to accelerate them. If the electrons are
accelerated, then they must increase their kinetic energy. Unfortunately, there are no empty allowed states
in either of the �lled bands. An electron would have to jump all the way up into the next (empty) band in
order to take on more energy. In silicon, the gap between the top of the highest most occupied band and the
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lowest unoccupied band is 1.1 eV. (One eV is the potential energy gained by an electron moving across an
electrical potential of one volt.) The mean free path or distance over which an electron would normally
move before it su�ers a collision is only a few hundred angstroms ( ≈

(
300× 10−8

)
cm) and so you would

need a very large electric �eld (several hundred thousand volts
cm ) in order for the electron to pick up enough

energy to "jump the gap". This makes it appear that silicon would be a very bad conductor of electricity,
and in fact, very pure silicon is very poor electrical conductor.

Figure 4: Silicon, with �rst two bands full and the next empty

A metal is an element with an odd number of valence electrons so that a metal ends up with an upper
band which is just half full of electrons. This is illustrated in Figure 5. Here we see that one band is full,
and the next is just half full. This would be the situation for the Group III element aluminum for instance.
If we apply an electric �eld to these carriers, those near the top of the distribution can indeed move into
higher energy levels by acquiring some kinetic energy of motion, and easily move from one place to the next.
In reality, the whole situation is a bit more complex than we have shown here, but this is not too far from
how it actually works.
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Figure 5: Electron distribution for a metal or good conductor

So, back to our silicon sample. If there are no places for electrons to "move" into, then how does silicon
work as a "semiconductor"? Well, in the �rst place, it turns out that not all of the electrons are in the
bottom two bands. In silicon, unlike say quartz or diamond, the band gap between the top-most full band,
the next empty one is not so large. As we mentioned above it is only about 1.1 eV. So long as the silicon is
not at absolute zero temperature, some electrons near the top of the full band can acquire enough thermal
energy that they can "hop" the gap, and end up in the upper band, called the conduction band. This
situation is shown in Figure 6.
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Figure 6: Thermal excitation of electrons across the band gap

In silicon at room temperature, roughly 1010 electrons per cubic centimeter are thermally excited across
the band-gap at any one time. It should be noted that the excitation process is a continuous one. Electrons
are being excited across the band, but then they fall back down into empty spots in the lower band. On
average however, the 1010 in each cm3 of silicon is what you will �nd at any given instant. Now 10 billion
electrons per cubic centimeter seems like a lot of electrons, but lets do a simple calculation. The mobility of

electrons in silicon is about 1000 cm2

volt-sec . Remember, mobility times electric �eld yields the average velocity

of the carriers. Electric �eld has units of volts
cm , so with these units we get velocity in cm

sec as we should.) The
charge on an electron is 1.6× 10−19 coulombs. Thus from this equation1:

σ = nqµ

= 1010
(
1.6× 10−19

)
1000

= 1.6× 10−6 mhos
cm

(1)

If we have a sample of silicon 1 cm long by (1mm) (1mm) square, it would have a resistance of

R = L
σA

= 1
(1.6×10−6)0.12

= 62.5MΩ

(2)

which does not make it much of a "conductor". In fact, if this were all there was to the silicon story, we
could pack up and move on, because at any reasonable temperature, silicon would conduct electricity very
poorly.

1"Simple Conduction", (17) <http://cnx.org/content/m1000/latest/#sigmarel>
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