

 [image: Using Assembly and a TI DSP]

 Using Assembly and a TI DSP
By: Ricardo Radaelli-Sanchez and Douglas Jones
Online: <http://cnx.org/content/m10021/2.15/>
This module is copyrighted by Ricardo Radaelli-Sanchez and Douglas Jones.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/1.0
Module revised: 2004/09/13

Using Assembly and a TI DSP
By: Ricardo Radaelli-Sanchez and Douglas Jones
Online: <http://cnx.org/content/m10021/2.15/>
This module is copyrighted by Ricardo Radaelli-Sanchez and Douglas Jones.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/1.0
Module revised: 2004/09/13

Using Assembly and a TI DSP

Summary
The intent of this laboratory module is to familiarize you with the
basics of the debugging environment and assembly code for the
TI-54x DSP. In this module, you will be working with code that
filters signals using FIR (finite impulse response) filters.

1. Processor Overview

	The evaluation board assumed for this module at each station
	includes a Texas-Instruments 320C549 DSP chip which contains
	the primary core systems: internal memory, the central
	processing unit (CPU), and address
	generation logic. For more information about the DSP chip
	itself, look at the TMS320C54x Reference Set, Volume 1:
	CPU and Peripherals.

Memory

	 The TI TMS320C54x architecture's addressing is divided up
	 into three separate memory spaces: program memory, data
	 memory, and I/O memory. All three memory spaces are 16 bits
	 wide. The data and I/O spaces are both 64K words long; the
	 program memory space is 8M words long, although accessing
	 program memory past 64K words requires special instructions.
	 The TI TMS320C549 DSP itself has 32K words of on-board
	 memory; the DSP evaluation board provides another 256K words
	 of external memory. More information about the DSP's memory
	 map is available in the Core File Documentation
	 which should be available from your lab instructor.
	

	 The TMS 320C549 DSP uses memory mapped registers; all of the
	 DSP's registers are mapped into the DSP's data memory space
	 between 0000h and 005Fh. Special
	 opcodes are provided to speed access to these memory-mapped
	 registers.
	

Arithmetic Logic Unit

	 The central processing unit contains the fundamental
	 components for mathematical and logical operations on data,
	 including a 17x17-bit multiplier, 40-bit
	 adder, 40-bit arithmetic logic
	 unit (ALU), and
	 barrel-shifter. It also contains necessary
	 registers for performing these operations including two
	 40-bit accumulators (A and
	 B) and a 16-bit temporary storage register
	 (T).
	

Address Generation Unit

	 The address generation logic section is divided into
	 separate program and data address generators and is
	 responsible for fetching program instructions as well as
	 reading and writing data to and from memory. The
	 program address generation logic
	 (PAGEN) contains (and maintains) the
	 program counter (
 PC
)
	 register as well as other necessary registers for repeating
	 code. For data memory manipulation, the data address
	 generation logic (DAGEN) is used and
	 maintains the necessary registers including the auxiliary
	 registers AR0 .. AR7 acting as
	 "pointers" to data memory, and control registers such as the
	 circular buffer register
	 (
 BK
).
	

2. Basics of Assembly Code

	We will introduce the TI TMS320C549 assembly language by
	showing an example of assembly language code. This code calls
	the "core.asm" file to initialize and control the
	six-channel surround-sound board, and then copies the signal
	from channel 1 of the six-channel board's A/D converter to
	channels 1-3 of the D/A converters, and the signal from
	channel 2 of the A/D to channels 4-6 of the D/A. Your
	laboratory assistant should have a similar file for you to
	use; this code block is provided here for example purposes
	only.

thru.asm

	
	 1 	 .copy "v:\54x\dsplib\core.asm"
	 2
	 3	 .sect ".text"
	 4 main
	 5 ; Your initialization goes here.
	 6
	 7 loop
	 8 ; Wait for a new block of 64 samples to come in
	 9 WAITDATA
	 10	
	 11 ; BlockLen = the number of samples that come from WAITDATA (64)
	 12 stm #BlockLen-1, BRC	; Repeat BlockLen=64 times
	 13 rptb block-1		; ...from here to the ``block'' label
	 14
	 15 ld *AR6,16, A		; Receive ch1
	 16 mar *+AR6(2) ; Rcv data is in every other word
	 17 ld *AR6,16, B		; Receive ch2
	 18 mar *+AR6(2) ; Rcv data is in every other word
	 19
	 20 ; Code to process samples goes here.
	 21
	 22 sth a, *AR7+		; Store into output buffer, ch1
	 23 sth a, *AR7+		; ch2
	 24 sth a, *AR7+		; ch3
	 25
	 26 sth b, *AR7+		; Store into output buffer, ch4
	 27 sth b, *AR7+		; ch5
	 28 sth b, *AR7+		; ch6
	 29
	 30 block
	 31 b loop
	
	
Assembly fields

	 Take a moment to look at the assembly code listed above.
	 Note that anything following a semicolon is a comment and is
	 ignored during the assembly process; for example, line
	 5 contains only a comment. You should also notice
	 that there are primarily three columns in the code. The
	 first column is reserved for labels used to
	 refer to a location during the assembly process. The second
	 column contains either assembly directives or
	 instructions. Directives are commands for the
	 assembler to use during the compilation process, to assign a
	 label for example, and do not show up in the final compiled
	 code. Instructions on the other hand are what the processor
	 will actually execute. The third column is reserved for
	 operands for the directives or instructions.
	

Sections of assembly code

	 Line 3 of this code contains the directive
	 .sect ".text" The .sect directive
	 tells the assembler that the following lines are to be
	 placed in memory in the section named in its operand. There
	 are several sections defined in the assembly process; they
	 are used to define locations in memory at which certain
	 pieces of code or data must be placed.
	

	 There are two important sections you should pay special
	 attention to: .text, in which all of your
	 program code must be placed, and .data, in
	 which your program's data will be placed. The sect
	 ".text" directive tells the assembler to place the
	 following code or data in program memory starting at
	 6000h; the sect ".data" directive
	 tells the assembler to place following code or data in data
	 memory starting at 1000h in memory. [1]
	

	 A third important section to be aware of is the
	 .scratch section. Data placed in this short
	 section (32 words from 0060h to
	 007Fh in the data memory space; of these, the
	 first 6 locations are used by the core file and cannot be
	 used by your code) can be accessed quickly using opcodes,
	 such as stm, which are intended to access the
	 memory-mapped registers.
	

	 Although the thru.asm code does not include a
	 .data section, your final FIR implementation
	 will have such a section to define where to place the states
	 or past input samples in addition to initializing memory for
	 the filter coefficients. In the linking process this data
	 section is assigned starting at the location
	 1000h in data memory.
	

Core file basics

	 For this class, you will use the provided
	 core.asm file which initializes and configures
	 the DSP and supports the use of the D/A and A/D converters
	 on the six-channel board as well as the serial port on the
	 DSP evaluation board itself. For this lab, you will be using
	 only the D/A and A/D. If your laboratory assistant or lab
	 materials have not told you where to obtain this file, you
	 should ask for assistance at this time.
	

	 To describe the core file in more detail, let's analyze the
	 thru code in thru.asm.
	

	 In this file, line 1 copies the core file into
	 the source file. All of the files you write for this class
	 should begin with this line.
	

	 Line 3 tells the assembler that all of the
	 following code should be placed in the ".text"
	 section. The ".text" section is internal
	 program RAM, and begins at 6000h. Your code
	 will begin somewhat after this, because the core file code
	 appears before your code in the assembled object file.
	

	 Line 4 is the label "main." The "core" code
	 jumps to this label once initialization is complete. Any
	 initialization that is required, such as setting address
	 registers, should go between the "main" label and the "loop"
	 label on line 7.
	

	 Line 8 is a call to the
	
 WAITDATA
 macro. Note that this
	 macro overwrites the B accumulator, so don't expect B to
	 stay the same across calls to WAITDATA! This
	 macro sets AR6 to the address of the input buffer, and AR7
	 to the address of the output buffer.
	

	 Since WAITDATA accumulates a block of 64
	 samples before it returns, Lines 12-13 set up a
	 loop that executes for BlockLen times. (The minus one is
	 required, because on the TI DSP a repeat loop runs one more
	 time than the number specified.) Line 12 sets
	 the
 BRC
 register, the Block
	 Repeat Counter, to 63, and Line 13 tells
	 the DSP to loop from the next location in memory (the
	 ld instruction on Line 15) to the
	 location immediately before the label "block." When you use
	 the rptb instruction, don't forget to include
	 the -1; otherwise, the DSP will execute an extra instruction
	 at the end of the loop.
	

	 Lines 15-18 read A/D channel 1 into accumulator
	 "A," and A/D channel 2 into accumulator "B." Note that the
	 input data is stored in alternate memory locations. The
	 instruction ld *AR6,16,A loads the memory
	 location pointed to by AR6, the input buffer pointer, into
	 the high bits of A. (The 16 stands for a shift of 16 bits as
	 A is loaded.) The instruction mar *+AR6(2) adds
	 two to the value of AR6. The
 mar

	 instruction means Modify Address Register, and
	 allows you to do an address-register update without doing
	 any data loads or stores.
	

	 Any code to process single samples, including code that you
	 will work with in this lab, should be placed at Line
	 20. The filter.asm file you will work
	 with in later modules has its sample-processing code at this
	 point, for example.
	

	 Lines 22-28 save the input (contained in
	 accumulators A and B) into the output buffer. The output
	 words are sequential in memory, so no mar
	 directives are required; instead, the *AR7+
	 addressing mode is used to increment AR7 after each word is
	 written. The sth opcode writes the high-order
	 16 bits of A into memory. The stl opcode is
	 used to move the low-order 16 bits of the A accumulator into
	 memory. Be careful which you use; the two operations are
	 easily confused, and this has resulted in many hard-to-find
	 bugs in past students' code.
	

	 Line 30 is the "block" label, designating the
	 end of the repeat block. Line 31 is a branch
	 (b opcode) back to the "loop" label, sending
	 the DSP back to before the call to WAITDATA to
	 await a new block of 64 samples.
	

	 More complete documentation for the core file is available
	 from the Core File Documentation, which your
	 laboratory assistant should be able to provide you. This
	 documentation includes information on the DSP memory map,
	 serial port, and extended-memory access instructions.
	

[1] Certain data, including the coefficients for
	 the "firs" instruction described later, must be
	 placed in the ".text" section as it is required
	 to be located in program memory.

content/cover.png
Using Assembly
and a Tl DSP

