
OpenStax-CNX module: m10021 1

Using Assembly and a TI DSP
∗

Ricardo Radaelli-Sanchez

Douglas L. Jones

This work is produced by OpenStax-CNX and licensed under the

Creative Commons Attribution License 1.0†

Abstract

The intent of this laboratory module is to familiarize you with the basics of the debugging environment
and assembly code for the TI-54x DSP. In this module, you will be working with code that �lters signals
using FIR (�nite impulse response) �lters.

1 Processor Overview

The evaluation board assumed for this module at each station includes a Texas-Instruments 320C549 DSP
chip which contains the primary core systems: internal memory, the central processing unit (CPU),
and address generation logic. For more information about the DSP chip itself, look at the TMS320C54x

Reference Set, Volume 1: CPU and Peripherals.

1.1 Memory

The TI TMS320C54x architecture's addressing is divided up into three separate memory spaces: program
memory, data memory, and I/O memory. All three memory spaces are 16 bits wide. The data and I/O spaces
are both 64K words long; the program memory space is 8M words long, although accessing program memory
past 64K words requires special instructions. The TI TMS320C549 DSP itself has 32K words of on-board
memory; the DSP evaluation board provides another 256K words of external memory. More information
about the DSP's memory map is available in the Core File Documentation which should be available from
your lab instructor.

The TMS 320C549 DSP uses memory mapped registers; all of the DSP's registers are mapped into the
DSP's data memory space between 0000h and 005Fh. Special opcodes are provided to speed access to these
memory-mapped registers.

1.2 Arithmetic Logic Unit

The central processing unit contains the fundamental components for mathematical and logical operations on
data, including a 17x17-bit multiplier, 40-bit adder, 40-bit arithmetic logic unit (ALU), and barrel-
shifter. It also contains necessary registers for performing these operations including two 40-bit accumu-
lators (A and B) and a 16-bit temporary storage register (T).

∗Version 2.15: Sep 13, 2004 10:43 am +0000
†http://creativecommons.org/licenses/by/1.0

http://cnx.org/content/m10021/2.15/



OpenStax-CNX module: m10021 2

1.3 Address Generation Unit

The address generation logic section is divided into separate program and data address generators and is
responsible for fetching program instructions as well as reading and writing data to and from memory. The
program address generation logic (PAGEN) contains (and maintains) the program counter (PC)
register as well as other necessary registers for repeating code. For data memory manipulation, the data
address generation logic (DAGEN) is used and maintains the necessary registers including the auxiliary
registers AR0 .. AR7 acting as "pointers" to data memory, and control registers such as the circular bu�er
register (BK).

2 Basics of Assembly Code

We will introduce the TI TMS320C549 assembly language by showing an example of assembly language
code. This code calls the "core.asm" �le to initialize and control the six-channel surround-sound board, and
then copies the signal from channel 1 of the six-channel board's A/D converter to channels 1-3 of the D/A
converters, and the signal from channel 2 of the A/D to channels 4-6 of the D/A. Your laboratory assistant
should have a similar �le for you to use; this code block is provided here for example purposes only.

http://cnx.org/content/m10021/2.15/



OpenStax-CNX module: m10021 3

thru.asm

1 .copy "v:\54x\dsplib\core.asm"
2

3 .sect ".text"

4 main

5 ; Your initialization goes here.

6

7 loop

8 ; Wait for a new block of 64 samples to come in

9 WAITDATA

10

11 ; BlockLen = the number of samples that come from WAITDATA (64)

12 stm #BlockLen-1, BRC ; Repeat BlockLen=64 times

13 rptb block-1 ; ...from here to the ``block'' label

14

15 ld *AR6,16, A ; Receive ch1

16 mar *+AR6(2) ; Rcv data is in every other word

17 ld *AR6,16, B ; Receive ch2

18 mar *+AR6(2) ; Rcv data is in every other word

19

20 ; Code to process samples goes here.

21

22 sth a, *AR7+ ; Store into output buffer, ch1

23 sth a, *AR7+ ; ch2

24 sth a, *AR7+ ; ch3

25

26 sth b, *AR7+ ; Store into output buffer, ch4

27 sth b, *AR7+ ; ch5

28 sth b, *AR7+ ; ch6

29

30 block

31 b loop

Figure 1

2.1 Assembly �elds

Take a moment to look at the assembly code listed above. Note that anything following a semicolon is a
comment and is ignored during the assembly process; for example, line 5 contains only a comment. You
should also notice that there are primarily three columns in the code. The �rst column is reserved for labels
used to refer to a location during the assembly process. The second column contains either assembly
directives or instructions. Directives are commands for the assembler to use during the compilation

http://cnx.org/content/m10021/2.15/



OpenStax-CNX module: m10021 4

process, to assign a label for example, and do not show up in the �nal compiled code. Instructions on the
other hand are what the processor will actually execute. The third column is reserved for operands for the
directives or instructions.

2.2 Sections of assembly code

Line 3 of this code contains the directive .sect ".text" The .sect directive tells the assembler that the
following lines are to be placed in memory in the section named in its operand. There are several sections
de�ned in the assembly process; they are used to de�ne locations in memory at which certain pieces of code
or data must be placed.

There are two important sections you should pay special attention to: .text, in which all of your program
code must be placed, and .data, in which your program's data will be placed. The sect ".text" directive
tells the assembler to place the following code or data in program memory starting at 6000h; the sect

".data" directive tells the assembler to place following code or data in data memory starting at 1000h in
memory. 1

A third important section to be aware of is the .scratch section. Data placed in this short section (32
words from 0060h to 007Fh in the data memory space; of these, the �rst 6 locations are used by the core �le
and cannot be used by your code) can be accessed quickly using opcodes, such as stm, which are intended
to access the memory-mapped registers.

Although the thru.asm code does not include a .data section, your �nal FIR implementation will have
such a section to de�ne where to place the states or past input samples in addition to initializing memory
for the �lter coe�cients. In the linking process this data section is assigned starting at the location 1000h

in data memory.

2.3 Core �le basics

For this class, you will use the provided core.asm �le which initializes and con�gures the DSP and supports
the use of the D/A and A/D converters on the six-channel board as well as the serial port on the DSP
evaluation board itself. For this lab, you will be using only the D/A and A/D. If your laboratory assistant
or lab materials have not told you where to obtain this �le, you should ask for assistance at this time.

To describe the core �le in more detail, let's analyze the thru code in thru.asm (Figure 1: thru.asm).
In this �le, line 1 copies the core �le into the source �le. All of the �les you write for this class should

begin with this line.
Line 3 tells the assembler that all of the following code should be placed in the ".text" section. The

".text" section is internal program RAM, and begins at 6000h. Your code will begin somewhat after this,
because the core �le code appears before your code in the assembled object �le.

Line 4 is the label "main." The "core" code jumps to this label once initialization is complete. Any
initialization that is required, such as setting address registers, should go between the "main" label and the
"loop" label on line 7.

Line 8 is a call to the WAITDATA macro. Note that this macro overwrites the B accumulator, so don't
expect B to stay the same across calls to WAITDATA! This macro sets AR6 to the address of the input bu�er,
and AR7 to the address of the output bu�er.

Since WAITDATA accumulates a block of 64 samples before it returns, Lines 12-13 set up a loop that
executes for BlockLen times. (The minus one is required, because on the TI DSP a repeat loop runs one
more time than the number speci�ed.) Line 12 sets the BRC register, the Block Repeat Counter, to 63,
and Line 13 tells the DSP to loop from the next location in memory (the ld instruction on Line 15) to the
location immediately before the label "block." When you use the rptb instruction, don't forget to include
the -1; otherwise, the DSP will execute an extra instruction at the end of the loop.

1Certain data, including the coe�cients for the "firs" instruction described later, must be placed in the ".text" section as
it is required to be located in program memory.

http://cnx.org/content/m10021/2.15/



OpenStax-CNX module: m10021 5

Lines 15-18 read A/D channel 1 into accumulator "A," and A/D channel 2 into accumulator "B." Note
that the input data is stored in alternate memory locations. The instruction ld *AR6,16,A loads the memory
location pointed to by AR6, the input bu�er pointer, into the high bits of A. (The 16 stands for a shift of
16 bits as A is loaded.) The instruction mar *+AR6(2) adds two to the value of AR6. The mar instruction
meansModify Address Register, and allows you to do an address-register update without doing any data
loads or stores.

Any code to process single samples, including code that you will work with in this lab, should be placed
at Line 20. The filter.asm �le you will work with in later modules has its sample-processing code at this
point, for example.

Lines 22-28 save the input (contained in accumulators A and B) into the output bu�er. The output
words are sequential in memory, so no mar directives are required; instead, the *AR7+ addressing mode is
used to increment AR7 after each word is written. The sth opcode writes the high-order 16 bits of A into
memory. The stl opcode is used to move the low-order 16 bits of the A accumulator into memory. Be
careful which you use; the two operations are easily confused, and this has resulted in many hard-to-�nd
bugs in past students' code.

Line 30 is the "block" label, designating the end of the repeat block. Line 31 is a branch (b opcode)
back to the "loop" label, sending the DSP back to before the call to WAITDATA to await a new block of 64
samples.

More complete documentation for the core �le is available from the Core File Documentation, which your
laboratory assistant should be able to provide you. This documentation includes information on the DSP
memory map, serial port, and extended-memory access instructions.

http://cnx.org/content/m10021/2.15/


