Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Signals and Systems » Introduction to Fourier Analysis

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.

Also in these lenses

  • Lens for Engineering

    This module and collection are included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

  • SigProc display tagshide tags

    This module is included inLens: Signal Processing
    By: Daniel McKennaAs a part of collection: "Fundamentals of Signal Processing"

    Click the "SigProc" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

  • richb's DSP display tagshide tags

    This collection is included inLens: richb's DSP resources
    By: Richard Baraniuk

    Comments:

    "My introduction to signal processing course at Rice University."

    Click the "richb's DSP" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.
Download
x

Download collection as:

  • PDF
  • EPUB (what's this?)

    What is an EPUB file?

    EPUB is an electronic book format that can be read on a variety of mobile devices.

    Downloading to a reading device

    For detailed instructions on how to download this content's EPUB to your specific device, click the "(what's this?)" link.

  • More downloads ...

Download module as:

  • PDF
  • EPUB (what's this?)

    What is an EPUB file?

    EPUB is an electronic book format that can be read on a variety of mobile devices.

    Downloading to a reading device

    For detailed instructions on how to download this content's EPUB to your specific device, click the "(what's this?)" link.

  • More downloads ...
Reuse / Edit
x

Collection:

Module:

Add to a lens
x

Add collection to:

Add module to:

Add to Favorites
x

Add collection to:

Add module to:

 

Introduction to Fourier Analysis

Module by: Richard Baraniuk. E-mail the author

Summary: Lists the four Fourier transforms and when to use them.

Fourier's Daring Leap

Fourier postulated around 1807 that any periodic signal (equivalently finite length signal) can be built up as an infinite linear combination of harmonic sinusoidal waves.

i.e. Given the collection

B = { e j 2 π T n t } n = - B = { e j 2 π T n t } n = -
(1)

any

f ( t ) L 2 [ 0 , T ) f ( t ) L 2 [ 0 , T )
(2)

can be approximated arbitrarily closely by

f ( t ) = n = - C n e j 2 π T n t . f ( t ) = n = - C n e j 2 π T n t .
(3)

Now, The issue of exact convergence did bring Fourier much criticism from the French Academy of Science (Laplace, Lagrange, Monge and LaCroix comprised the review committee) for several years after its presentation on 1807. It was not resolved for also a century, and its resolution is interesting and important to understand from a practical viewpoint. See more in the section on Gibbs Phenomena.

Fourier analysis is fundamental to understanding the behavior of signals and systems. This is a result of the fact that sinusoids are Eigenfunctions of linear, time-invariant (LTI) systems. This is to say that if we pass any particular sinusoid through a LTI system, we get a scaled version of that same sinusoid on the output. Then, since Fourier analysis allows us to redefine the signals in terms of sinusoids, all we need to do is determine how any given system effects all possible sinusoids (its transfer function) and we have a complete understanding of the system. Furthermore, since we are able to define the passage of sinusoids through a system as multiplication of that sinusoid by the transfer function at the same frequency, we can convert the passage of any signal through a system from convolution (in time) to multiplication (in frequency). These ideas are what give Fourier analysis its power.

Now, after hopefully having sold you on the value of this method of analysis, we must examine exactly what we mean by Fourier analysis. The four Fourier transforms that comprise this analysis are the Fourier Series, Continuous-Time Fourier Transform, Discrete-Time Fourier Transform and Discrete Fourier Transform. For this document, we will view the Laplace Transform and Z-Transform as simply extensions of the CTFT and DTFT respectively. All of these transforms act essentially the same way, by converting a signal in time to an equivalent signal in frequency (sinusoids). However, depending on the nature of a specific signal i.e. whether it is finite- or infinite-length and whether it is discrete- or continuous-time) there is an appropriate transform to convert the signal into the frequency domain. Below is a table of the four Fourier transforms and when each is appropriate. It also includes the relevant convolution for the specified space.

Table 1: Table of Fourier Representations
Transform Time Domain Frequency Domain Convolution
Continuous-Time Fourier Series L 2 0 T L 2 0 T l 2 Z l 2 Continuous-Time Circular
Continuous-Time Fourier Transform L 2 R L 2 L 2 R L 2 Continuous-Time Linear
Discrete-Time Fourier Transform l 2 Z l 2 L 2 0 2π L 2 0 2 Discrete-Time Linear
Discrete Fourier Transform l 2 0 N1 l 2 0 N 1 l 2 0 N1 l 2 0 N 1 Discrete-Time Circular

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Reuse / Edit:

Reuse or edit collection (?)

Check out and edit

If you have permission to edit this content, using the "Reuse / Edit" action will allow you to check the content out into your Personal Workspace or a shared Workgroup and then make your edits.

Derive a copy

If you don't have permission to edit the content, you can still use "Reuse / Edit" to adapt the content by creating a derived copy of it and then editing and publishing the copy.

| Reuse or edit module (?)

Check out and edit

If you have permission to edit this content, using the "Reuse / Edit" action will allow you to check the content out into your Personal Workspace or a shared Workgroup and then make your edits.

Derive a copy

If you don't have permission to edit the content, you can still use "Reuse / Edit" to adapt the content by creating a derived copy of it and then editing and publishing the copy.