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Abstract

Details the Continuous-Time Fourier Transform.

1 Introduction

In this module, we will derive an expansion for any arbitrary continuous-time function, and in doing so,
derive the Continuous Time Fourier Transform (CTFT).

Since complex exponentials are eigenfunctions of linear time-invariant (LTI) systems, calculating the
output of an LTI system H given est as an input amounts to simple multiplication, where H (s) ∈ C is the
eigenvalue corresponding to s. As shown in the �gure, a simple exponential input would yield the output

y (t) = H (s) est (1)

Using this and the fact that H is linear, calculating y (t) for combinations of complex exponentials is also
straightforward.

c1e
s1t + c2e

s2t → c1H (s1) es1t + c2H (s2) es2t

∑
n

cne
snt →

∑
n

cnH (sn) esnt

The action of H on an input such as those in the two equations above is easy to explain. H indepen-
dently scales each exponential component esnt by a di�erent complex number H (sn) ∈ C. As such, if we
can write a function f (t) as a combination of complex exponentials it allows us to easily calculate the output
of a system.

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals
in terms of a set of simpler functions by superposition of a number of complex exponentials. Below we will
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present the Continuous-Time Fourier Transform (CTFT), commonly referred to as just the Fourier
Transform (FT). Because the CTFT deals with nonperiodic signals, we must �nd a way to include all real
frequencies in the general equations. For the CTFT we simply utilize integration over real numbers rather
than summation over integers in order to express the aperiodic signals.

2 Fourier Transform Synthesis

Joseph Fourier1 demonstrated that an arbitrary s (t) can be written as a linear combination of harmonic
complex sinusoids

s (t) =
∞∑

n=−∞
cne

jω0nt (2)

where ω0 = 2π
T is the fundamental frequency. For almost all s (t) of practical interest, there exists cn to

make (2) true. If s (t) is �nite energy ( s (t) ∈ L2 [0, T ]), then the equality in (2) holds in the sense of energy
convergence; if s (t) is continuous, then (2) holds pointwise. Also, if s (t) meets some mild conditions (the
Dirichlet conditions), then (2) holds pointwise everywhere except at points of discontinuity.

The cn - called the Fourier coe�cients - tell us "how much" of the sinusoid ejω0nt is in s (t). The formula
shows s (t) as a sum of complex exponentials, each of which is easily processed by an LTI system (since it
is an eigenfunction of every LTI system). Mathematically, it tells us that the set of complex exponentials{
∀n, n ∈ Z :

(
ejω0nt

)}
form a basis for the space of T-periodic continuous time functions.

2.1 Equations

Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve
deeper into the use of the superposition principle. Let sT (t) be a periodic signal having period T . We want
to consider what happens to this signal's spectrum as the period goes to in�nity. We denote the spectrum
for any assumed value of the period by cn (T ). We calculate the spectrum according to the Fourier formula
for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on Fourier
Series.)

cn =
1
T

∫ T

0

s (t) exp (−ßω0t) dt (3)

where ω0 = 2π
T and where we have used a symmetric placement of the integration interval about the origin

for subsequent derivational convenience. We vary the frequency index n proportionally as we increase the
period. De�ne

ST (f) ≡ Tcn =
1
T

∫ T

0

(ST (f) exp (ßω0t) dt(4)

making the corresponding Fourier Series

sT (t) =
∞∑
−∞

f (t) exp (ßω0t)
1
T

(5)

As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,

lim
T→∞

sT (t) ≡ s (t) =

∞∫
−∞

S (f) exp (ßω0t) df (6)

with

S (f) =

∞∫
−∞

s (t) exp (−ßω0t) dt (7)

1http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fourier.html

http://cnx.org/content/m10098/2.16/



OpenStax-CNX module: m10098 3

Continuous-Time Fourier Transform

F (Ω) =
∫ ∞
−∞

f (t) e−(iΩt)dt (8)

Inverse CTFT

f (t) =
1

2π

∫ ∞
−∞
F (Ω) eiΩtdΩ (9)

warning: It is not uncommon to see the above formula written slightly di�erent. One of the most
common di�erences is the way that the exponential is written. The above equations use the radial
frequency variable Ω in the exponential, where Ω = 2πf , but it is also common to include the more
explicit expression, i2πft, in the exponential. Click here for an overview of the notation used in
Connexion's DSP modules.

Example 1
We know from Euler's formula that cos (ωt) + sin (ωt) = 1−j

2 ejωt + 1+j
2 e−jωt.

3 CTFT De�nition Demonstration

Figure 1: Interact (when online) with a Mathematica CDF demonstrating Continuous Time Fourier
Transform. To Download, right-click and save as .cdf.
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4 Example Problems

Exercise 1 (Solution on p. 5.)

Find the Fourier Transform (CTFT) of the function

f (t) =

 e−(αt) if t ≥ 0

0 otherwise
(10)

Exercise 2 (Solution on p. 5.)

Find the inverse Fourier transform of the ideal lowpass �lter de�ned by

X (Ω) =

 1 if |Ω| ≤M
0 otherwise

(11)

5 Fourier Transform Summary

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using
a set of complex exponentials as a basis. The continuous time Fourier series synthesis formula expresses a
continuous time, periodic function as the sum of continuous time, discrete frequency complex exponentials.

f (t) =
∞∑

n=−∞
cne

jω0nt (12)

The continuous time Fourier series analysis formula gives the coe�cients of the Fourier series expansion.

cn =
1
T

∫ T

0

f (t) e−(jω0nt)dt (13)

In both of these equations ω0 = 2π
T is the fundamental frequency.
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Solutions to Exercises in this Module

Solution to Exercise (p. 4)
In order to calculate the Fourier transform, all we need to use is (8) (Continuous-Time Fourier Transform),
complex exponentials, and basic calculus.

F (Ω) =
∫∞
−∞ f (t) e−(iΩt)dt

=
∫∞

0
e−(αt)e−(iΩt)dt

=
∫∞

0
e(−t)(α+iΩ)dt

= 0− −1
α+iΩ

(14)

F (Ω) =
1

α+ iΩ
(15)

Solution to Exercise (p. 4)
Here we will use (9) (Inverse CTFT) to �nd the inverse FT given that t 6= 0.

x (t) = 1
2π

∫M
−M ei(Ω,t)dΩ

= 1
2π e

i(Ω,t)|Ω,Ω=eiw

= 1
πt sin (Mt)

(16)

x (t) =
M

π

(
sinc

Mt

π

)
(17)
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