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Abstract

Discussion of Discrete-time Fourier Transforms. Topics include comparison with analog transforms
and discussion of Parseval's theorem.

The Fourier transform of the discrete-time signal s (n) is de�ned to be

S
(
ei2πf

)
=

∞∑
n=−∞

s (n) e−(i2πfn) (1)

Frequency here has no units. As should be expected, this de�nition is linear, with the transform of a
sum of signals equaling the sum of their transforms. Real-valued signals have conjugate-symmetric spectra:
S
(
e−(i2πf)

)
= S (ej2πf ).

Exercise 1 (Solution on p. 7.)

A special property of the discrete-time Fourier transform is that it is periodic with period one:
S
(
ei2π(f+1)

)
= S

(
ei2πf

)
. Derive this property from the de�nition of the DTFT.

Because of this periodicity, we need only plot the spectrum over one period to understand completely the
spectrum's structure; typically, we plot the spectrum over the frequency range

[
− 1

2 ,
1
2

]
. When the signal

is real-valued, we can further simplify our plotting chores by showing the spectrum only over
[
0, 1

2

]
; the

spectrum at negative frequencies can be derived from positive-frequency spectral values.
When we obtain the discrete-time signal via sampling an analog signal, the Nyquist frequency1 corre-

sponds to the discrete-time frequency 1
2 . To show this, note that a sinusoid having a frequency equal to the

Nyquist frequency 1
2Ts

has a sampled waveform that equals

cos
(

2π × 1
2Ts

nTs

)
= cos (πn) = (−1)n

The exponential in the DTFT at frequency 1
2 equals e−

i2πn
2 = e−(iπn) = (−1)n, meaning that discrete-time

frequency equals analog frequency multiplied by the sampling interval

fD = fATs (2)

∗Version 2.31: Jul 6, 2009 5:25 pm -0500
†http://creativecommons.org/licenses/by/1.0
1"The Sampling Theorem" <http://cnx.org/content/m0050/latest/#para1>
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fD and fA represent discrete-time and analog frequency variables, respectively. The aliasing �gure2 pro-
vides another way of deriving this result. As the duration of each pulse in the periodic sampling signal
pTs (t) narrows, the amplitudes of the signal's spectral repetitions, which are governed by the Fourier series
coe�cients3 of pTs (t), become increasingly equal. Examination of the periodic pulse signal4 reveals that as
∆ decreases, the value of c0, the largest Fourier coe�cient, decreases to zero: |c0| = A∆

Ts
. Thus, to maintain

a mathematically viable Sampling Theorem, the amplitude A must increase as 1
∆ , becoming in�nitely large

as the pulse duration decreases. Practical systems use a small value of ∆, say 0.1 · Ts and use ampli�ers to
rescale the signal. Thus, the sampled signal's spectrum becomes periodic with period 1

Ts
. Thus, the Nyquist

frequency 1
2Ts

corresponds to the frequency 1
2 .

Example 1
Let's compute the discrete-time Fourier transform of the exponentially decaying sequence s (n) =
anu (n), where u (n) is the unit-step sequence. Simply plugging the signal's expression into the
Fourier transform formula,

S
(
ei2πf

)
=

∑∞
n=−∞ anu (n) e−(i2πfn)

=
∑∞
n=0

(
ae−(i2πf)

)n (3)

This sum is a special case of the geometric series.

∞∑
n=0

αn = ∀α, |α| < 1 :
(

1
1− α

)
(4)

Thus, as long as |a| < 1, we have our Fourier transform.

S
(
ei2πf

)
=

1
1− ae−(i2πf)

(5)

Using Euler's relation, we can express the magnitude and phase of this spectrum.

|S
(
ei2πf

)
| = 1√

(1− acos (2πf))2 + a2sin2 (2πf)
(6)

∠
(
S
(
ei2πf

))
= −tan−1

(
asin (2πf)

1− acos (2πf)

)
(7)

No matter what value of a we choose, the above formulae clearly demonstrate the periodic nature
of the spectra of discrete-time signals. Figure 1 (Spectrum of exponential signal) shows indeed that
the spectrum is a periodic function. We need only consider the spectrum between − 1

2 and 1
2 to

unambiguously de�ne it. When a > 0, we have a lowpass spectrum�the spectrum diminishes as
frequency increases from 0 to 1

2�with increasing a leading to a greater low frequency content; for
a < 0, we have a highpass spectrum (Figure 2 (Spectra of exponential signals)).

2"The Sampling Theorem", Figure 2: aliasing <http://cnx.org/content/m0050/latest/#alias>
3"Complex Fourier Series", (10) <http://cnx.org/content/m0042/latest/#eqn2>
4"Complex Fourier Series", Figure 1 <http://cnx.org/content/m0042/latest/#pps>

http://cnx.org/content/m10247/2.31/
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Spectrum of exponential signal
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Figure 1: The spectrum of the exponential signal (a = 0.5) is shown over the frequency range [-2, 2],
clearly demonstrating the periodicity of all discrete-time spectra. The angle has units of degrees.

http://cnx.org/content/m10247/2.31/
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Spectra of exponential signals
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Figure 2: The spectra of several exponential signals are shown. What is the apparent relationship
between the spectra for a = 0.5 and a = −0.5?

Example 2
Analogous to the analog pulse signal, let's �nd the spectrum of the length-N pulse sequence.

s (n) =

 1 if 0 ≤ n ≤ N − 1

0 otherwise
(8)

The Fourier transform of this sequence has the form of a truncated geometric series.

S
(
ei2πf

)
=
N−1∑
n=0

e−(i2πfn) (9)

For the so-called �nite geometric series, we know that

N+n0−1∑
n=n0

αn = αn0
1− αN

1− α
(10)

for all values of α.

Exercise 2 (Solution on p. 7.)

Derive this formula for the �nite geometric series sum. The "trick" is to consider the di�erence
between the series' sum and the sum of the series multiplied by α.

Applying this result yields (Figure 3 (Spectrum of length-ten pulse).)

S
(
ei2πf

)
= 1−e−(i2πfN)

1−e−(i2πf)

= e−(iπf(N−1)) sin(πfN)
sin(πf)

(11)

http://cnx.org/content/m10247/2.31/
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The ratio of sine functions has the generic form of sin(Nx)
sin(x) , which is known as the discrete-time sinc

functiondsinc (x). Thus, our transform can be concisely expressed as S
(
ei2πf

)
= e−(iπf(N−1))dsinc (πf).

The discrete-time pulse's spectrum contains many ripples, the number of which increase with N , the pulse's
duration.

Spectrum of length-ten pulse

Figure 3: The spectrum of a length-ten pulse is shown. Can you explain the rather complicated
appearance of the phase?

The inverse discrete-time Fourier transform is easily derived from the following relationship:

∫ 1
2
− 1

2
e−(i2πfm)ei2πfndf =

 1 if m = n

0 if m 6= n

= δ (m− n)

(12)

Therefore, we �nd that∫ 1
2
− 1

2
S
(
ei2πf

)
ei2πfndf =

∫ 1
2
− 1

2

∑
mm s (m) e−(i2πfm)ei2πfndf

=
∑
mm s (m)

∫ 1
2
− 1

2
e(−(i2πf))(m−n)df

= s (n)

(13)

The Fourier transform pairs in discrete-time are

S
(
ei2πf

)
=
∑∞
n=−∞ s (n) e−(i2πfn)

s (n) =
∫ 1

2
− 1

2
S
(
ei2πf

)
ei2πfndf

(14)

http://cnx.org/content/m10247/2.31/
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The properties of the discrete-time Fourier transform mirror those of the analog Fourier transform. The
DTFT properties table 5 shows similarities and di�erences. One important common property is Parseval's
Theorem.

∞∑
n=−∞

(|s (n) |)2 =
∫ 1

2

− 1
2

(
|S
(
ei2πf

)
|
)2
df (15)

To show this important property, we simply substitute the Fourier transform expression into the frequency-
domain expression for power.∫ 1

2
− 1

2

(
|S
(
ei2πf

)
|
)2
df =

∫ 1
2
− 1

2

∑
nn s (n) e−(i2πfn)

∑
mm s (n)ei2πfmdf

=
∑

n,mn,m s (n) s (n)
∫ 1

2
− 1

2
ei2πf(m−n)df

(16)

Using the orthogonality relation (12), the integral equals δ (m− n), where δ (n) is the unit sample6. Thus,
the double sum collapses into a single sum because nonzero values occur only when n = m, giving Parseval's
Theorem as a result. We term

∑
nn s

2 (n) the energy in the discrete-time signal s (n) in spite of the fact that
discrete-time signals don't consume (or produce for that matter) energy. This terminology is a carry-over
from the analog world.

Exercise 3 (Solution on p. 7.)

Suppose we obtained our discrete-time signal from values of the product s (t) pTs (t), where the
duration of the component pulses in pTs (t) is ∆. How is the discrete-time signal energy related to
the total energy contained in s (t)? Assume the signal is bandlimited and that the sampling rate
was chosen appropriate to the Sampling Theorem's conditions.

5"Properties of the DTFT" <http://cnx.org/content/m0506/latest/>
6"Discrete-Time Signals and Systems", Figure 2: Unit sample <http://cnx.org/content/m10342/latest/#�g2>

http://cnx.org/content/m10247/2.31/
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Solutions to Exercises in this Module

Solution to Exercise (p. 1)

S
(
ei2π(f+1)

)
=

∑∞
n=−∞ s (n) e−(i2π(f+1)n)

=
∑∞
n=−∞ e−(i2πn)s (n) e−(i2πfn)

=
∑∞
n=−∞ s (n) e−(i2πfn)

= S
(
ei2πf

) (17)

Solution to Exercise (p. 4)

α

N+n0−1∑
n=n0

αn −
N+n0−1∑
n=n0

αn = αN+n0 − αn0

which, after manipulation, yields the geometric sum formula.
Solution to Exercise (p. 6)
If the sampling frequency exceeds the Nyquist frequency, the spectrum of the samples equals the analog
spectrum, but over the normalized analog frequency fT . Thus, the energy in the sampled signal equals the
original signal's energy multiplied by T .

http://cnx.org/content/m10247/2.31/


