Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » ECE 454 and ECE 554 Supplemental reading » Filtering in the Frequency Domain

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • OrangeGrove display tagshide tags

    This module is included inLens: Florida Orange Grove Textbooks
    By: Florida Orange GroveAs a part of collection: "Fundamentals of Electrical Engineering I"

    Click the "OrangeGrove" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Rice DSS - Braille display tagshide tags

    This module is included inLens: Rice University Disability Support Services's Lens
    By: Rice University Disability Support ServicesAs a part of collection: "Fundamentals of Electrical Engineering I"

    Comments:

    "Electrical Engineering Digital Processing Systems in Braille."

    Click the "Rice DSS - Braille" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Rice Digital Scholarship display tagshide tags

    This module is included in aLens by: Digital Scholarship at Rice UniversityAs a part of collections: "Discrete-Time Fourier Analysis", "Fundamentals of Electrical Engineering I"

    Click the "Rice Digital Scholarship" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Bookshare

    This module is included inLens: Bookshare's Lens
    By: Bookshare - A Benetech InitiativeAs a part of collection: "Fundamentals of Electrical Engineering I"

    Comments:

    "Accessible versions of this collection are available at Bookshare. DAISY and BRF provided."

    Click the "Bookshare" link to see all content affiliated with them.

  • Featured Content display tagshide tags

    This module is included inLens: Connexions Featured Content
    By: ConnexionsAs a part of collection: "Fundamentals of Electrical Engineering I"

    Comments:

    "The course focuses on the creation, manipulation, transmission, and reception of information by electronic means. It covers elementary signal theory, time- and frequency-domain analysis, the […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • Lens for Engineering

    This module is included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

  • SigProc display tagshide tags

    This module is included inLens: Signal Processing
    By: Daniel McKennaAs a part of collection: "Fundamentals of Signal Processing"

    Click the "SigProc" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Filtering in the Frequency Domain

Module by: Don Johnson. E-mail the author

Summary: Investigation of different aspects of filtering in the frequency domain, particularly the use of discrete Fourier transforms.

Because we are interested in actual computations rather than analytic calculations, we must consider the details of the discrete Fourier transform. To compute the length-NN DFT, we assume that the signal has a duration less than or equal to NN. Because frequency responses have an explicit frequency-domain specification in terms of filter coefficients, we don't have a direct handle on which signal has a Fourier transform equaling a given frequency response. Finding this signal is quite easy. First of all, note that the discrete-time Fourier transform of a unit sample equals one for all frequencies. Since the input and output of linear, shift-invariant systems are related to each other by Yei2πf=Hei2πfXei2πf Y 2 f H 2 f X 2 f , a unit-sample input, which has Xei2πf=1 X 2 f 1 , results in the output's Fourier transform equaling the system's transfer function.

Exercise 1

This statement is a very important result. Derive it yourself.

Solution

The DTFT of the unit sample equals a constant (equaling 1). Thus, the Fourier transform of the output equals the transfer function.

In the time-domain, the output for a unit-sample input is known as the system's unit-sample response, and is denoted by hn h n . Combining the frequency-domain and time-domain interpretations of a linear, shift-invariant system's unit-sample response, we have that hn h n and the transfer function are Fourier transform pairs in terms of the discrete-time Fourier transform.

hnHei2πf h n H 2 f
(1)

Returning to the issue of how to use the DFT to perform filtering, we can analytically specify the frequency response, and derive the corresponding length-NN DFT by sampling the frequency response.

k ,k=0N1:Hk=Hei2πkN k k 0 N 1 H k H 2 k N
(2)
Computing the inverse DFT yields a length-NN signal no matter what the actual duration of the unit-sample response might be. If the unit-sample response has a duration less than or equal to NN (it's a FIR filter), computing the inverse DFT of the sampled frequency response indeed yields the unit-sample response. If, however, the duration exceeds NN, errors are encountered. The nature of these errors is easily explained by appealing to the Sampling Theorem. By sampling in the frequency domain, we have the potential for aliasing in the time domain (sampling in one domain, be it time or frequency, can result in aliasing in the other) unless we sample fast enough. Here, the duration of the unit-sample response determines the minimal sampling rate that prevents aliasing. For FIR systems — they by definition have finite-duration unit sample responses — the number of required DFT samples equals the unit-sample response's duration: Nq N q .

Exercise 2

Derive the minimal DFT length for a length-qq unit-sample response using the Sampling Theorem. Because sampling in the frequency domain causes repetitions of the unit-sample response in the time domain, sketch the time-domain result for various choices of the DFT length NN.

Solution

In sampling a discrete-time signal's Fourier transform LL times equally over 0 2π 0 2 to form the DFT, the corresponding signal equals the periodic repetition of the original signal.

Sk i =sniL S k i s n i L
(3)
To avoid aliasing (in the time domain), the transform length must equal or exceed the signal's duration.

Exercise 3

Express the unit-sample response of a FIR filter in terms of difference equation coefficients. Note that the corresponding question for IIR filters is far more difficult to answer: Consider the example.

Solution

The difference equation for an FIR filter has the form

yn= m =0q b m xnm y n m 0 q b m x n m
(4)
The unit-sample response equals
hn= m =0q b m δnm h n m 0 q b m δ n m
(5)
which corresponds to the representation described in a problem of a length-qq boxcar filter.

For IIR systems, we cannot use the DFT to find the system's unit-sample response: aliasing of the unit-sample response will always occur. Consequently, we can only implement an IIR filter accurately in the time domain with the system's difference equation. Frequency-domain implementations are restricted to FIR filters.

Another issue arises in frequency-domain filtering that is related to time-domain aliasing, this time when we consider the output. Assume we have an input signal having duration N x N x that we pass through a FIR filter having a length- q+1 q 1 unit-sample response. What is the duration of the output signal? The difference equation for this filter is

yn= b0 xn++ b q xnq y n b0 x n b q x n q
(6)
This equation says that the output depends on current and past input values, with the input value qq samples previous defining the extent of the filter's memory of past input values. For example, the output at index N x N x depends on x N x x N x (which equals zero), x N x 1 x N x 1 , through x N x q x N x q . Thus, the output returns to zero only after the last input value passes through the filter's memory. As the input signal's last value occurs at index N x 1 N x 1 , the last nonzero output value occurs when nq= N x 1 n q N x 1 or n=q+ N x 1 n q N x 1 . Thus, the output signal's duration equals q+ N x q N x .

Exercise 4

In words, we express this result as "The output's duration equals the input's duration plus the filter's duration minus one.". Demonstrate the accuracy of this statement.

Solution

The unit-sample response's duration is q+1 q 1 and the signal's N x N x . Thus the statement is correct.

The main theme of this result is that a filter's output extends longer than either its input or its unit-sample response. Thus, to avoid aliasing when we use DFTs, the dominant factor is not the duration of input or of the unit-sample response, but of the output. Thus, the number of values at which we must evaluate the frequency response's DFT must be at least q+ N x q N x and we must compute the same length DFT of the input. To accommodate a shorter signal than DFT length, we simply zero-pad the input: Ensure that for indices extending beyond the signal's duration that the signal is zero. Frequency-domain filtering, diagrammed in Figure 1, is accomplished by storing the filter's frequency response as the DFT Hk H k , computing the input's DFT Xk X k , multiplying them to create the output's DFT Yk=HkXk Y k H k X k , and computing the inverse DFT of the result to yield yn y n .

Figure 1: To filter a signal in the frequency domain, first compute the DFT of the input, multiply the result by the sampled frequency response, and finally compute the inverse DFT of the product. The DFT's length must be at least the sum of the input's and unit-sample response's duration minus one. We calculate these discrete Fourier transforms using the fast Fourier transform algorithm, of course.
Figure 1 (sys13.png)

Before detailing this procedure, let's clarify why so many new issues arose in trying to develop a frequency-domain implementation of linear filtering. The frequency-domain relationship between a filter's input and output is always true: Yei2πf=Hei2πfXei2πf Y 2 f H 2 f X 2 f . The Fourier transforms in this result are discrete-time Fourier transforms; for example, Xei2πf=nxne(i2πfn) X 2 f n x n 2 f n . Unfortunately, using this relationship to perform filtering is restricted to the situation when we have analytic formulas for the frequency response and the input signal. The reason why we had to "invent" the discrete Fourier transform (DFT) has the same origin: The spectrum resulting from the discrete-time Fourier transform depends on the continuous frequency variable ff. That's fine for analytic calculation, but computationally we would have to make an uncountably infinite number of computations.

Note:

Did you know that two kinds of infinities can be meaningfully defined? A countably infinite quantity means that it can be associated with a limiting process associated with integers. An uncountably infinite quantity cannot be so associated. The number of rational numbers is countably infinite (the numerator and denominator correspond to locating the rational by row and column; the total number so-located can be counted, voila!); the number of irrational numbers is uncountably infinite. Guess which is "bigger?"
The DFT computes the Fourier transform at a finite set of frequencies — samples the true spectrum — which can lead to aliasing in the time-domain unless we sample sufficiently fast. The sampling interval here is 1K 1 K for a length-KK DFT: faster sampling to avoid aliasing thus requires a longer transform calculation. Since the longest signal among the input, unit-sample response and output is the output, it is that signal's duration that determines the transform length. We simply extend the other two signals with zeros (zero-pad) to compute their DFTs.

Example 1

Suppose we want to average daily stock prices taken over last year to yield a running weekly average (average over five trading sessions). The filter we want is a length-5 averager (as shown in the unit-sample response), and the input's duration is 253 (365 calendar days minus weekend days and holidays). The output duration will be 253+51=257 253 5 1 257 , and this determines the transform length we need to use. Because we want to use the FFT, we are restricted to power-of-two transform lengths. We need to choose any FFT length that exceeds the required DFT length. As it turns out, 256 is a power of two ( 28=256 2 8 256 ), and this length just undershoots our required length. To use frequency domain techniques, we must use length-512 fast Fourier transforms.

Figure 2: The blue line shows the Dow Jones Industrial Average from 1997, and the red one the length-5 boxcar-filtered result that provides a running weekly of this market index. Note the "edge" effects in the filtered output.
Figure 2 (sig23.png)

Figure 2 shows the input and the filtered output. The MATLAB programs that compute the filtered output in the time and frequency domains are


	Time Domain 
	h = [1 1 1 1 1]/5; 
	y = filter(h,1,[djia zeros(1,4)]);

	Frequency Domain
	h = [1 1 1 1 1]/5; 
	DJIA = fft(djia, 512);
	H = fft(h, 512);
	Y = H.*X;
	y = ifft(Y);
      

Note:

The filter program has the feature that the length of its output equals the length of its input. To force it to produce a signal having the proper length, the program zero-pads the input appropriately.
MATLAB's fft function automatically zero-pads its input if the specified transform length (its second argument) exceeds the signal's length. The frequency domain result will have a small imaginary component — largest value is 2.2×10-112.2-11 — because of the inherent finite precision nature of computer arithmetic. Because of the unfortunate misfit between signal lengths and favored FFT lengths, the number of arithmetic operations in the time-domain implementation is far less than those required by the frequency domain version: 514 versus 62,271. If the input signal had been one sample shorter, the frequency-domain computations would have been more than a factor of two less (28,696), but far more than in the time-domain implementation.

An interesting signal processing aspect of this example is demonstrated at the beginning and end of the output. The ramping up and down that occurs can be traced to assuming the input is zero before it begins and after it ends. The filter "sees" these initial and final values as the difference equation passes over the input. These artifacts can be handled in two ways: we can just ignore the edge effects or the data from previous and succeeding years' last and first week, respectively, can be placed at the ends.

Collection Navigation

Content actions

Download:

Collection as:

EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks