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Abstract

In this module we begin by discussing integrations of complex functions over complex curves and end

with Cauchy’s Theorem.

1 Introduction

Our main goal is a better understanding of the partial fraction expansion of a given transfer function. With
respect to the example that closed the discussion of complex differentiation, see this equation ! - In this

equation?, we found
1 P+ 1 Dy + 1 P.
Z—A (z—\)? PN

(:I-B)' =

where the P; and D; enjoy the amazing properties

1.
BP, = P B
(1)
= MNP +D;
and
BP, = Po,B = XD,
2.
P+P =1 (2)
P?=P
P’ =P,
and
D=0
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Dy = DiP
= Dl

and
PoDi =D{P,=0

In order to show that this always happens, i.e., that it is not a quirk produced by the particular B in this
equation®, we require a few additional tools from the theory of complex variables. In particular, we need the
fact that partial fraction expansions may be carried out through complex integration.

2 Integration of Complex Functions Over Complex Curves

We shall be integrating complex functions over complex curves. Such a curve is parameterized by one
complex valued or, equivalently, two real valued, function(s) of a real parameter (typically denoted by t).
More precisely,

C={z{t)=xz@)+iy(t)|a<t<b}

For example, if = (t) = y (t) =t while a = 0 and b = 1, then C is the line segment joining 0 + 40 to 1 + 1.
We now define

/f(Z)dzE/abf(Z(t))Z’(t)dt

For example, if C = {t +it |0 <t <1} as above and f (z) = z then

1 1
/zdz:/ (t+z’t)(1+i)dt:/ b=t i2edt =i
0 0

while if C' is the unit circle { e | 0 < ¢ <27} then

2m 2m 2m
/ zdz = / etietdt = z/ etdt = z/ cos (2t) + dsin (2t) dt = 0
0 0 0

Remaining with the unit circle but now integrating f (z) = % we find

27
/z_ldz :/ e~ et dt = 2mi
0

We generalize this calculation to arbitrary (integer) powers over arbitrary circles. More precisely, for
integer m and fixed complex a we integrate (z — a)™ over

C(a,r) = {a—l—reit |0<t< 271'}
the circle of radius r centered at a. We find

[(z—a)"dz = fozﬂ (a+re’ —a)"riettdt

jrmtl fo% ei(m+1)t gy

27 Imi f — 1
/ (z —a)"dz = ir™™! / cos ((m 4 1)t) +isin ((m + 1) t) dt = et m
0 0 otherwise
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When integrating more general functions it is often convenient to express the integral in terms of its real
and imaginary parts. More precisely

/f(z)dz:/u(m,y)+iv(m,y)dw+i/u(w,y)—i—iv(a:,y)dy

/f(z)dz:/u(x,y)dx—/v(:v,y)dy—l—i/v(m,y)dx—i—i/u(x,y)dy

[ f(2)dz = u®),ym)e @) - o@®).y0))y@)d  +
[ u(@ ),y @)y @) +v®)y <>> /() dt

The second line should invoke memories of:

Theorem 1: Green’s Theorem
If C is a closed curve and M and N are continuously differentiable real-valued functions on Cjy,
the region enclosed by C, then

/de—l—/Ndy—//aN 6—dedy

Applying this to the situation above, we find, so long as C'is closed, that

/f(z) //—+—dxdy+z// +—d:1:dy

At first glance it appears that Green’s Theorem only serves to muddy the waters. Recalling the Cauchy-
Riemann equations® however we find that each of these double integrals is in fact identically zero! In brief,
we have proven:

Theorem 2: Cauchy’s Theorem
If f is differentiable on and in the closed curve C then [ f(z)dz = 0.

Strictly speaking, in order to invoke Green’s Theorem we require not only that f be differentiable but
that its derivative in fact be continuous. This however is simply a limitation of our simple mode of proof;
Cauchy’s Theorem is true as stated.

This theorem, together with (4), permits us to integrate every proper rational function. More precisely,
ifg= L where f is a polynomial of degree at most m — 1 and g is an mth degree polynomial with A distinct
zeros at {\; | j ={1,...,h}} with respective multiplicities of {m; | j = {1,...,h}} we found that

¢(2)=>" ‘“7; (5)

%
j=1k=1 (2= X))

Observe now that if we choose r; so small that A; is the only zero of g encircled by C; = C (A;,r;) then by

Cauchy’s Theorem
z)dz = q; / ——dz
/ Z S PR

In (4) we found that each, save the first, of the integrals under the sum is in fact zero. Hence,

<.

/q (2) dz = 2mig; 1 (6)
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With g;; in hand, say from this equation® or residue, one may view (6) as a means for computing the
indicated integral. The opposite reading, i.e., that the integral is a convenient means of expressing ¢; 1, will
prove just as useful. With that in mind, we note that the remaining residues may be computed as integrals
of the product of ¢ and the appropriate factor. More precisely,

/q (2) (z — )\j)kfldz = 2mig; i (7

One may be led to believe that the precision of this result is due to the very special choice of curve and
function. We shall see ...
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