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Abstract

In this module we begin by discussing integrations of complex functions over complex curves and end

with Cauchy's Theorem.

1 Introduction

Our main goal is a better understanding of the partial fraction expansion of a given transfer function. With
respect to the example that closed the discussion of complex di�erentiation, see this equation 1 - In this
equation2, we found

(zI −B)−1 =
1

z − λ1
P1 +

1
(z − λ1)

2D1 +
1

z − λ2
P2

where the Pj and Dj enjoy the amazing properties

1.

BP1 = P1B

= λ1P1 +D1

(1)

and
BP2 = P2B = λ2P2

2.
P1 + P2 = I (2)

P1
2 = P1

P2
2 = P2

and
D1

2 = 0
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1"Complex Di�erentiation", (13) <http://cnx.org/content/m10276/latest/#eq13>
2"Complex Di�erentiation", (17) <http://cnx.org/content/m10276/latest/#eq17>
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3.

P1D1 = D1P1

= D1

(3)

and
P2D1 = D1P2 = 0

In order to show that this always happens, i.e., that it is not a quirk produced by the particular B in this
equation3, we require a few additional tools from the theory of complex variables. In particular, we need the
fact that partial fraction expansions may be carried out through complex integration.

2 Integration of Complex Functions Over Complex Curves

We shall be integrating complex functions over complex curves. Such a curve is parameterized by one
complex valued or, equivalently, two real valued, function(s) of a real parameter (typically denoted by t).
More precisely,

C ≡ {z (t) = x (t) + iy (t) | a ≤ t ≤ b}

For example, if x (t) = y (t) = t while a = 0 and b = 1, then C is the line segment joining 0 + i0 to 1 + i.
We now de�ne ∫

f (z) dz ≡
∫ b

a

f (z (t)) z′ (t) dt

For example, if C = { t+ it | 0 ≤ t ≤ 1} as above and f (z) = z then∫
zdz =

∫ 1

0

(t+ it) (1 + i) dt =
∫ 1

0

t− t+ i2tdt = i

while if C is the unit circle
{
eit | 0 ≤ t ≤ 2π

}
then∫

zdz =
∫ 2π

0

eitieitdt = i

∫ 2π

0

ei2tdt = i

∫ 2π

0

cos (2t) + isin (2t) dt = 0

Remaining with the unit circle but now integrating f (z) = 1
z we �nd∫

z−1dz =
∫ 2π

0

e−(it)ieitdt = 2πi

We generalize this calculation to arbitrary (integer) powers over arbitrary circles. More precisely, for
integer m and �xed complex a we integrate (z − a)m over

C (a, r) ≡
{
a+ reit | 0 ≤ t ≤ 2π

}
the circle of radius r centered at a. We �nd∫

(z − a)mdz =
∫ 2π

0

(
a+ reit − a

)m
rieitdt

= irm+1
∫ 2π

0
ei(m+1)tdt

(4)

∫
(z − a)mdz = irm+1

∫ 2π

0

cos ((m+ 1) t) + isin ((m+ 1) t) dt =

 2πi if m = −1

0 otherwise

3"Complex Di�erentiation", (13) <http://cnx.org/content/m10276/latest/#eq13>
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When integrating more general functions it is often convenient to express the integral in terms of its real
and imaginary parts. More precisely∫

f (z) dz =
∫
u (x, y) + iv (x, y) dx+ i

∫
u (x, y) + iv (x, y) dy

∫
f (z) dz =

∫
u (x, y) dx−

∫
v (x, y) dy + i

∫
v (x, y) dx+ i

∫
u (x, y) dy

∫
f (z) dz =

∫ b

a
u (x (t) , y (t)) x′ (t) − v (x (t) , y (t)) y′ (t) dt +

i
∫ b

a
u (x (t) , y (t)) y′ (t) + v (x (t) , y (t)) x′ (t) dt

The second line should invoke memories of:

Theorem 1: Green's Theorem
If C is a closed curve and M and N are continuously di�erentiable real-valued functions on Cin,
the region enclosed by C, then∫

Mdx+
∫
Ndy =

∫ ∫
∂N

∂x
− ∂M

∂y
dxdy

Applying this to the situation above, we �nd, so long as C is closed, that∫
f (z) dz = −

∫ ∫
∂v

∂x
+
∂u

∂y
dxdy + i

∫ ∫
∂u

∂x
+
∂v

∂y
dxdy

At �rst glance it appears that Green's Theorem only serves to muddy the waters. Recalling the Cauchy-
Riemann equations4 however we �nd that each of these double integrals is in fact identically zero! In brief,
we have proven:

Theorem 2: Cauchy's Theorem
If f is di�erentiable on and in the closed curve C then

∫
f (z) dz = 0.

Strictly speaking, in order to invoke Green's Theorem we require not only that f be di�erentiable but
that its derivative in fact be continuous. This however is simply a limitation of our simple mode of proof;
Cauchy's Theorem is true as stated.

This theorem, together with (4), permits us to integrate every proper rational function. More precisely,
if q = f

g where f is a polynomial of degree at most m− 1 and g is an mth degree polynomial with h distinct

zeros at {λj | j = {1, . . . , h}} with respective multiplicities of {mj | j = {1, . . . , h}} we found that

q (z) =
h∑
j=1

mj∑
k=1

qj,k

(z − λj)k
(5)

Observe now that if we choose rj so small that λj is the only zero of g encircled by Cj ≡ C (λj , rj) then by
Cauchy's Theorem ∫

q (z) dz =
mj∑
k=1

qj,k

∫
1

(z − λj)k
dz

In (4) we found that each, save the �rst, of the integrals under the sum is in fact zero. Hence,∫
q (z) dz = 2πiqj,1 (6)

4"Complex Di�erentiation": Section Cauchy-Reimann Equations <http://cnx.org/content/m10276/latest/#sec4>
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With qj,1 in hand, say from this equation5 or residue, one may view (6) as a means for computing the
indicated integral. The opposite reading, i.e., that the integral is a convenient means of expressing qj,1, will
prove just as useful. With that in mind, we note that the remaining residues may be computed as integrals
of the product of q and the appropriate factor. More precisely,∫

q (z) (z − λj)k−1
dz = 2πiqj,k (7)

One may be led to believe that the precision of this result is due to the very special choice of curve and
function. We shall see ...

5"Complex Di�erentiation", (12) <http://cnx.org/content/m10276/latest/#eq12>
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