Connexions module: m10419

VECTOR SPACE*

Phil Schniter

This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License †

Abstract

This module introduces vector space.

- A vector space consists of the following four elements:
 - a. A set of vectors V,
 - b. A field of scalars \mathbb{F} (where, for our purposes, \mathbb{F} is either \mathbb{R} or \mathbb{C}),
 - c. The operations of vector addition "+" (i.e., $+: V \times V \rightarrow V$)
 - d. The operation of scalar multiplication "." $(i.e., \cdot : \mathbb{F} \times V \to V)$

for which the following properties hold. (Assume $x \wedge y \wedge z \in V$ and $\alpha \wedge \beta \in \mathbb{F}$.)

Properties	Examples
commutativity	x + y = y + x
associativity –	(x+y) + z = x + (y+z)
	$(\alpha\beta)x = \alpha(\beta x)$
distributivity –	$\alpha \cdot (x+y) = (\alpha \cdot x) + (\alpha \cdot y)$
	$(\alpha + \beta) x = \alpha x + \beta x$
additive identity	$\forall x \in V : (\exists 0, 0 \in V : (x + 0 = x))$
additive inverse	$\forall x \in V : (\exists -x, (-x) \in V : (x + -x = 0))$
multiplicative identity	$\forall x \in V : (1 \cdot x = x)$

Table 1

Important examples of vector spaces include

Properties	Examples
real N -vectors	$V=\mathbb{R}^N,\mathbb{F}=\mathbb{R}$
complex N -vectors	$V=\mathbb{C}^N,\mathbb{F}=\mathbb{C}$
sequences in " l_p "	$V = \left\{ x [n] \mid \exists n \in \mathbb{Z} : \left(\sum_{n=-\infty}^{\infty} (x[n])^p < \infty \right) \right\}, \mathbb{F} = \mathbb{C}$
functions in " \mathcal{L}_p "	$V = \left\{ f(t) \mid \int_{-\infty}^{\infty} (f(t))^{p} dt < \infty \right\}, \mathbb{F} = \mathbb{C}$

^{*}Version 2.13: Oct 18, 2005 4:34 pm GMT-5

 $^{^\}dagger {\rm http://creative commons.org/licenses/by/1.0}$

Connexions module: m10419 2

Table 2

where we have assumed the usual definitions of addition and multiplication. From now on, we will denote the arbitrary vector space $(V, \mathbb{F}, +, \cdot)$ by the shorthand V and assume the usual selection of $(\mathbb{F}, +, \cdot)$. We will also suppress the "·" in scalar multiplication, so that $\alpha \cdot x$ becomes αx .

• A subspace of V is a subset $M \subset V$ for which

a.
$$\forall x, y, x \in M \land y \in M : ((x + y) \in M)$$

b. $\forall x \in M \land \alpha \in \mathbb{F} : (\alpha x \in M)$

NOTE: Note that every subspace must contain 0, and that V is a subspace of itself.

• The **span** of set $S \subset V$ is the subspace of V containing all linear combinations of vectors in S. When $S = \{x_0, \ldots, x_{N-1}\},$

$$\operatorname{span}(S) := \left\{ \sum_{i=0}^{N-1} \alpha_i x_i \mid \alpha_i \in \mathbb{F} \right\}$$

- A subset of linearly-independent vectors $\{x_0, \ldots, x_{N-1}\} \subset V$ is called a **basis for V** when its span equals V. In such a case, we say that V has **dimension**N. We say that V is **infinite-dimensional**¹ if it contains an infinite number of linearly independent vectors.
- V is a **direct sum** of two subspaces M and N, written $V = M \oplus N$, iff every $x \in V$ has a **unique** representation x = m + n for $m \in M$ and $n \in N$.

NOTE: Note that this requires $M \cap N = \{0\}$

 $^{^{1}}$ The definition of an infinite-dimensional basis would be complicated by issues relating to the convergence of infinite series. Hence we postpone discussion of infinite-dimensional bases until the Hilbert Space (<http://cnx.org/content/m10434/latest/>) section.