
Connexions module: m10548 1

Discrete Time Filter Design
∗

Michael Haag

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

Describes how to design a general �lter from the Z-Transform and it pole/zero plots.

1 Estimating Frequency Response from Z-Plane

One of the primary motivating factors for utilizing the z-transform and analyzing the pole/zero plots is due
to their relationship to the frequency response of a discrete-time system. Based on the position of the poles
and zeros, one can quickly determine the frequency response. This is a result of the correspondence between
the frequency response and the transfer function evaluated on the unit circle in the pole/zero plots. The
frequency response, or DTFT, of the system is de�ned as:

H (w) = H (z) |z,z=eiw

=
PM

k=0 bke−(iwk)PN
k=0 ake−(iwk)

(1)

Next, by factoring the transfer function into poles and zeros and multiplying the numerator and denominator
by eiw we arrive at the following equations:

H (w) = | b0
a0
|
∏M

k=1 |eiw − ck|∏N
k=1 |eiw − dk|

(2)

From (2) we have the frequency response in a form that can be used to interpret physical characteristics
about the �lter's frequency response. The numerator and denominator contain a product of terms of the
form |eiw − h|, where h is either a zero, denoted by ck or a pole, denoted by dk. Vectors are commonly used
to represent the term and its parts on the complex plane. The pole or zero, h, is a vector from the origin
to its location anywhere on the complex plane and eiw is a vector from the origin to its location on the unit
circle. The vector connecting these two points, |eiw − h|, connects the pole or zero location to a place on
the unit circle dependent on the value of w. From this, we can begin to understand how the magnitude of
the frequency response is a ratio of the distances to the poles and zero present in the z-plane as w goes from
zero to pi. These characteristics allow us to interpret |H (w) | as follows:

|H (w) | = | b0
a0
|
∏

”distances from zeros”∏
”distances from poles”

(3)
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2 Drawing Frequency Response from Pole/Zero Plot

Let us now look at several examples of determining the magnitude of the frequency response from the
pole/zero plot of a z-transform. If you have forgotten or are unfamiliar with pole/zero plots, please refer
back to the Pole/Zero Plots1 module.

Example 1

In this �rst example we will take a look at the very simple z-transform shown below:

H (z) = z + 1 = 1 + z−1

H (w) = 1 + e−(iw)

For this example, some of the vectors represented by |eiw−h|, for random values of w, are explicitly
drawn onto the complex plane shown in the �gure below. These vectors show how the amplitude of
the frequency response changes as w goes from 0 to 2π, and also show the physical meaning of the
terms in (2) above. One can see that when w = 0, the vector is the longest and thus the frequency
response will have its largest amplitude here. As w approaches π, the length of the vectors decrease
as does the amplitude of |H (w) |. Since there are no poles in the transform, there is only this one
vector term rather than a ratio as seen in (2).

(a) Pole/Zero Plot (b) Frequency Response: |H(w)|

Figure 1: The �rst �gure represents the pole/zero plot with a few representative vectors graphed while
the second shows the frequency response with a peak at +2 and graphed between plus and minus π.

Example 2

For this example, a more complex transfer function is analyzed in order to represent the system's
frequency response.

H (z) =
z

z − 1
2

=
1

1− 1
2z
−1

H (w) =
1

1− 1
2e
−(iw)

1"Understanding Pole/Zero Plots on the Z-Plane" <http://cnx.org/content/m10556/latest/>
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Below we can see the two �gures described by the above equations. The Figure 2(a) (Pole/Zero
Plot) represents the basic pole/zero plot of the z-transform, H (w). Figure 2(b) (Frequency Re-
sponse: |H(w)|) shows the magnitude of the frequency response. From the formulas and statements
in the previous section, we can see that when w = 0 the frequency will peak since it is at this value
of w that the pole is closest to the unit circle. The ratio from (2) helps us see the mathematics
behind this conclusion and the relationship between the distances from the unit circle and the poles
and zeros. As w moves from 0 to π, we see how the zero begins to mask the e�ects of the pole and
thus force the frequency response closer to 0.

(a) Pole/Zero Plot (b) Frequency Response: |H(w)|

Figure 2: The �rst �gure represents the pole/zero plot while the second shows the frequency response
with a peak at +2 and graphed between plus and minus π.

3 Interactive Filter Design Illustration

This media object is a LabVIEW VI. Please view or download it at
<http://cnx.org/content/m10548/2.10/DFD_Utility.llb>

Figure 3: Digital �lter design LabVIEW virtual instrument by NI from
http://cnx.org/content/m13115/latest/2.

4 Conclusion

In conclusion, using the distances from the unit circle to the poles and zeros, we can plot the frequency
response of the system. As w goes from 0 to 2π, the following two properties, taken from the above
equations, specify how one should draw |H (w) |.
While moving around the unit circle...

2http://cnx.org/content/m13115/latest/
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1. if close to a zero, then the magnitude is small. If a zero is on the unit circle, then the frequency
response is zero at that point.

2. if close to a pole, then the magnitude is large. If a pole is on the unit circle, then the frequency response
goes to in�nity at that point.
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