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1 SUMMARY: AMPLITUDE FORMULAS

Type θ (ω) A (ω)

I − (Mω) h (M) + 2
∑M−1
n=0 h (n) cos ((M − n)ω)

II − (Mω) 2
∑N

2 −1
n=0 h (n) cos ((M − n)ω)

III − (Mω) + π
2 2

∑M−1
n=0 h (n) sin ((M − n)ω)

IV − (Mω) + π
2 2

∑N
2 −1
n=0 h (n) sin ((M − n)ω)

Table 1

where M = N−1
2

2 AMPLITUDE RESPONSE CHARACTERISTICS

To analyze or design linear-phase FIR �lters, we need to know the characteristics of the amplitude response
A (ω).

Type Properties

I

A (ω) is even about ω = 0 A (ω) = A (−ω)

A (ω) is even about ω = π A (π + ω) = A (π − ω)

A (ω) is periodic with 2π A (ω + 2π) = A (ω)

II

A (ω) is even about ω = 0 A (ω) = A (−ω)
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A (ω) is odd about ω = π A (π + ω) = −A (π − ω)

A (ω) is periodic with 4π A (ω + 4π) = A (ω)

III

A (ω) is odd about ω = 0 A (ω) = −A (−ω)

A (ω) is odd about ω = π A (π + ω) = −A (π − ω)

A (ω) is periodic with 2π A (ω + 2π) = A (ω)

IV

A (ω) is odd about ω = 0 A (ω) = −A (−ω)

A (ω) is even about ω = π A (π + ω) = A (π − ω)

A (ω) is periodic with 4π A (ω + 4π) = A (ω)

Table 2

Figure 1

3 EVALUATING THE AMPLITUDE RESPONSE

The frequency response Hf (ω) of an FIR �lter can be evaluated at L equally spaced frequencies between 0
and π using the DFT. Consider a causal FIR �lter with an impulse response h (n) of length-N , with N ≤ L.
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Samples of the frequency response of the �lter can be written as

H

(
2π
L
k

)
=
N−1∑
n=0

h (n) e(−i)
2π
L nk

De�ne the L-point signal {g (n) | 0 ≤ n ≤ L− 1} as

g (n) =

 h (n) if 0 ≤ n ≤ N − 1

0 if N ≤ n ≤ L− 1

Then

H

(
2π
L
k

)
= G (k) = DFTL (g (n))

where G (k) is the L-point DFT of g (n).

3.1 Types I and II

Suppose the FIR �lter h (n) is either a Type I or a Type II FIR �lter. Then we have from above

Hf (ω) = A (ω) e(−i)Mω

or
A (ω) = Hf (ω) eiMω

Samples of the real-valued amplitude A (ω) can be obtained from samples of the function Hf (ω) as:

A

(
2π
L
k

)
= H

(
2π
L
k

)
eiM

2π
L k = G (k)WMk

L

Therefore, the samples of the real-valued amplitude function can be obtained by zero-padding h (n), taking
the DFT, and multiplying by the complex exponential. This can be written as:

A

(
2π
L
k

)
= DFTL ([h (n) , 0L−N ])WMk

L (1)

3.2 Types III and IV

For Type III and Type IV FIR �lters, we have

Hf (ω) = ie(−i)MωA (ω)

or
A (ω) = (−i)Hf (ω) eiMω

Therefore, samples of the real-valued amplitude A (ω) can be obtained from samples of the function Hf (ω)
as:

A

(
2π
L
k

)
= (−i)H

(
2π
L
k

)
eiM

2π
L k = (−i)G (k)WMk

L

Therefore, the samples of the real-valued amplitude function can be obtained by zero-padding h (n), taking
the DFT, and multiplying by the complex exponential.

A

(
2π
L
k

)
= (−i) DFTL ([h (n) , 0L−N ])WMk

L (2)
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Example 1: EVALUATING THE AMP RESP (TYPE I)
In this example, the �lter is a Type I FIR �lter of length 7. An accurate plot of A (ω) can be
obtained with zero padding.

Figure 2

The following Matlab code fragment for the plot of A (ω) for a Type I FIR �lter.

h = [3 4 5 6 5 4 3]/30;

N = 7;

M = (N-1)/2;

L = 512;

H = fft([h zeros(1,L-N)]);

k = 0:L-1;

W = exp(j*2*pi/L);

A = H .* W.^(M*k);

A = real(A);

figure(1)

w = [0:L-1]*2*pi/(L-1);

subplot(2,1,1)

plot(w/pi,abs(H))
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ylabel('|H(\omega)| = |A(\omega)|')
xlabel('\omega/\pi')
subplot(2,1,2)

plot(w/pi,A)

ylabel('A(\omega)')
xlabel('\omega/\pi')
print -deps type1

The command A = real(A) removes the imaginary part which is equal to zero to within computer
precision. Without this command, Matlab takes A to be a complex vector and the following plot
command will not be right.

Observe the symmetry of A (ω) due to h (n) being real-valued. Because of this symmetry, A (ω)
is usually plotted for 0 ≤ ω ≤ π only.

Example 2: EVALUATING THE AMP RESP (TYPE II)

Figure 3

The following Matlab code fragment produces a plot of A (ω) for a Type II FIR �lter.

h = [3 5 6 7 7 6 5 3]/42;

N = 8;

M = (N-1)/2;

http://cnx.org/content/m10707/2.5/
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L = 512;

H = fft([h zeros(1,L-N)]);

k = 0:L-1;

W = exp(j*2*pi/L);

A = H .* W.^(M*k);

A = real(A);

figure(1)

w = [0:L-1]*2*pi/(L-1);

subplot(2,1,1)

plot(w/pi,abs(H))

ylabel('|H(\omega)| = |A(\omega)|')
xlabel('\omega/\pi')
subplot(2,1,2)

plot(w/pi,A)

ylabel('A(\omega)')
xlabel('\omega/\pi')
print -deps type2

The imaginary part of the amplitude is zero. Notice that A (π) = 0. In fact this will always be the
case for a Type II FIR �lter.

An exercise for the student: Describe how to obtain samples of A (ω) for Type III and Type IV
FIR �lters. Modify the Matlab code above for these types. Do you notice that A (ω) = 0 always
for special values of ω?

4 Modules for Further Study

1. Zero Locations of Linear-Phase Filters1

2. Design of Linear-Phase FIR Filters by Interpolation2

3. Linear-Phase FIR Filter Design by Least Squares3

1"Zero Locations of Linear-Phase FIR Filters" <http://cnx.org/content/m10700/latest/>
2"Design of Linear-Phase FIR Filters by DFT-Based Interpolation" <http://cnx.org/content/m10701/latest/>
3"Linear-Phase Fir Filter Design By Least Squares" <http://cnx.org/content/m10577/latest/>
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