

 [image: Relations and Logic: using relations]

 Relations and Logic: using relations
By: Ian Barland, John Greiner, Phokion Kolaitis, Moshe Vardi, and Matthias Felleisen
Online: <http://cnx.org/content/m10724/2.25/>
This module is copyrighted by Ian Barland, John Greiner, Phokion Kolaitis, Moshe Vardi, and Matthias Felleisen.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/1.0
Module revised: 2009/01/09

Relations and Logic: using relations
By: Ian Barland, John Greiner, Phokion Kolaitis, Moshe Vardi, and Matthias Felleisen
Online: <http://cnx.org/content/m10724/2.25/>
This module is copyrighted by Ian Barland, John Greiner, Phokion Kolaitis, Moshe Vardi, and Matthias Felleisen.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/1.0
Module revised: 2009/01/09

Relations and Logic: using relations

Summary
We motivate the use of relations, as a way to
encapsulate the information previously spread
across a swath of propositional variables.

1. Relations: Building a better (representation of) WaterWorld

 So far, we have represented WaterWorld boards using
 propositions like A-has-2 and B-unsafe.
 You've probably already felt that this is unwieldy, having hundreds

 propositional variables running around,
 with only our naming convention implying
 any relation between them.
 Worse, this zoo of propositions doesn't reflect how we actually
 think about WaterWorld.
 For instance, the only way the rules recognize that locations

 A
 and
 B
 are near each other is because of several
 axioms which simultaneously involve A-has-2 and B-unsafe,
 etc.,
 in just the right way to result in our idea of the concept
 “neighbor”.
 In fact, there is no way of talking about the location
 A
 directly;
 we only had propositions which dealt with its properties, such as
 whether or not it neighbored exactly two pirates.

 If writing a program about WaterWorld,
 our program should reflect our conception of the problem.
 However, as it stands, our conception corresponds
 to having many many Boolean variables named A-has-2, B-unsafe,
 etc.
 Even worse, the rules would be encodings of the hundreds of axioms.
 A long enumeration of the axioms is probably not how
 you think of the rules.
 In other words, when explaining the game to your friend, you probably
 say “if a location contains a 2,
 then two of its neighbors are pirates”,
 rather than droning on for half an hour about how
 “if location
 A
 contains a 2, then either
 location
 B
 is unsafe or …”.

 Moreover, the original rules only pertained to a
 fixed-size board; inventing a new game played on a 50×50 grid
 would require a whole new set of rules!
 That is clearly not how we humans
 conceptualize the game!
 What we want, when discussing the rules, is a generic way to
 discussing neighboring locations, so that
 we can have one single rule, saying that if a (generic) location has
 a zero, then any neighboring location is safe.
 Thus, we allow the exact details of “neighboring location”
 to change from game to game as we play on different boards
 (just as which locations contain pirates changes from game to game).

 In a program, you'd probably represent the board as a collection
 (matrix, list, whatever) of Booleans.
 In our logic, to correspond to this data structure, we'll introduce
 binary relations.

 Note

 By including relations (rather than sticking entirely with propositions),
 we are leaving the realm of propositional logic;
 we'll soon reach first-order logic once
 we also
 introduce quantifiers
 — corresponding to aspects of program control-flow (loops).

 We'll start by adding a way to express whether any two locations
 are adjacent: a relation nhbr,
 which will encode the board's geography as follows:
 nhbr(A, B)
 and
 nhbr(Z, Y)
 are true, while
 nhbr(A, D)
 and
 nhbr(M, Z)
 are false.

 What, exactly, do we mean by “relation”?
 We'll see
 momentarily,
 that we can represent nhbr as a set of pairs-of-locations
 (or equivalently, a
 function
 which takes in two locations, and returns either true or false.)

 This relation "nhbr" entirely encodes the board's geography.
 Giving somebody the relation is every bit as good as to showing
 them a picture of the board
 (in some ways, better — the relation makes it perfectly clear whether
 two locations which just barely touch at a single point,
 like
 B
 and
 G
 , are meant to be considered neighbors.)

 Exercise 1. (Go to Solution)

 We used a binary (two-input) relation to describe neighboring
 locations.
 How can we use a relation to capture the notion
 “location
 A
 is safe”?

 After defining relations and discussing their properties,
 we'll talk about
 interpreting logic formulas
 relative to particular relations.

 Using relations gives us additional flexibility in modeling our domain,
 so that our formal logical model more closely corresponds to our
 intuition.
 Relations help separate the WaterWorld domain axioms (code) from
 the data, i.e., the particular board we're playing on.

2. Solutions to Exercises

 Solution to Exercise 1. (Return to Exercise)

 We'll use a unary (one-input) relation:
 safe(
 A
) is true if and only if
 (“iff”) location
 A
 is safe.

content/cover.png
[
Relations and
Logic: using
relations

