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Relations and Logic: using relations

Summary
We motivate the use of relations, as a way to
encapsulate the information previously spread
across a swath of propositional variables.




1. Relations: Building a better (representation of) WaterWorld



 
  So far, we have represented WaterWorld boards using
  propositions like A-has-2 and B-unsafe.
  You've probably already felt that this is unwieldy, having hundreds
  
  propositional variables running around,
  with only our naming convention implying
  any relation between them.
  Worse, this zoo of propositions doesn't reflect how we actually
  think about WaterWorld.
  For instance, the only way the rules recognize that locations
  
            A
          and 
            B
          are near each other is because of several
  axioms which simultaneously involve A-has-2 and  B-unsafe,
  etc.,
  in just the right way to result in our idea of the concept
  “neighbor”.
  In fact, there is no way of talking about the location 
            A
          directly;
  we only had propositions which dealt with its properties, such as
  whether or not it neighbored exactly two pirates.

 

  If writing a program about WaterWorld,
  our program should reflect our conception of the problem.
  However, as it stands, our conception corresponds
  to having many many Boolean variables named  A-has-2, B-unsafe,
  etc.
  Even worse, the rules would be encodings of the hundreds of axioms.
  A long enumeration of the axioms is probably not how 
  you think of the rules.
  In other words, when explaining the game to your friend, you probably 
  say “if a location contains a 2,
  then two of its neighbors are pirates”,
  rather than droning on for half an hour about how 
  “if location 
            A
          contains a 2, then either
    location 
            B
          is unsafe or …”.

 
  Moreover, the original rules only pertained to a
  fixed-size board; inventing a new game played on a 50×50 grid
  would require a whole new set of rules!
  That is clearly not how we humans
  conceptualize the game!
  What we want, when discussing the rules, is a generic way to
  discussing neighboring locations, so that 
  we can have one single rule, saying that if a (generic) location has
  a zero, then any neighboring location is safe.
  Thus, we allow the exact details of “neighboring location” 
  to change from game to game as we play on different boards
  (just as which locations contain pirates changes from game to game).

 
  In a program, you'd probably represent the board as a collection
  (matrix, list, whatever) of Booleans.
  In our logic, to correspond to this data structure, we'll introduce
  binary relations.
  
 Note

    By including relations (rather than sticking entirely with propositions),
    we are leaving the realm of propositional logic;
    we'll soon reach first-order logic once 
    we also 
    introduce quantifiers
    — corresponding to aspects of program control-flow (loops).
  


  We'll start by adding a way to express whether any two locations
  are adjacent: a relation nhbr,
  which will encode the board's geography as follows:
  nhbr(A, B)
  and
  nhbr(Z, Y)
  are true, while
  nhbr(A, D)
  and
  nhbr(M, Z)
  are false.

 
  What, exactly, do we mean by “relation”?
  We'll see 
  momentarily,
  that we can represent nhbr as a set of pairs-of-locations
  (or equivalently, a
   function
   which takes in two locations, and returns either true or false.)

 
  This relation "nhbr" entirely encodes the board's geography.
  Giving somebody the relation is every bit as good as to showing
  them a picture of the board
  (in some ways, better — the relation makes it perfectly clear whether 
  two locations which just barely touch at a single point,
  like 
            B
          and 
            G
         , are meant to be considered neighbors.)
  

 Exercise 1. (Go to Solution)

          
             
      We used a binary (two-input) relation to describe neighboring
      locations.
      How can we use a relation to capture the notion 
      “location 
                  A
                is safe”?
    

         


  
      


 
  After defining relations and discussing their properties,
  we'll talk about
  interpreting logic formulas
  relative to particular relations.

 
  Using relations gives us additional flexibility in modeling our domain,
  so that our formal logical model more closely corresponds to our
  intuition.
  Relations help separate the WaterWorld domain axioms (code) from
  the data, i.e., the particular board we're playing on.


2. Solutions to Exercises



 Solution to Exercise 1. (Return to Exercise)

          
      We'll use a unary (one-input) relation:
      safe(
               A
            ) is true if and only if
      (“iff”) location 
               A
             is safe.
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