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Abstract

The module looks at decomposing signals through orthonormal basis expansion to provide an alter-

native representation. The module presents many examples of solving these problems and looks at them

in several spaces and dimensions.

1 Main Idea

When working with signals many times it is helpful to break up a signal into smaller, more manageable parts.
Hopefully by now you have been exposed to the concept of eigenvectors1 and there use in decomposing a
signal into one of its possible basis. By doing this we are able to simplify our calculations of signals and
systems through eigenfunctions of LTI systems2.

Now we would like to look at an alternative way to represent signals, through the use of orthonormal
basis. We can think of orthonormal basis as a set of building blocks we use to construct functions. We will
build up the signal/vector as a weighted sum of basis elements.

Example 1

The complex sinusoids 1√
T
eiω0nt for all −∞ < n <∞ form an orthonormal basis for L2 ([0, T ]).

In our Fourier series3 equation, f (t) =
∑∞

n=−∞ cne
iω0nt, the {cn} are just another representation

of f (t).

note: For signals/vectors in a Hilbert Space, the expansion coe�cients are easy to �nd.

2 Alternate Representation

Recall our de�nition of a basis: A set of vectors {bi} in a vector space S is a basis if

1. The bi are linearly independent.

∗Version 2.6: Jul 29, 2010 2:42 pm -0500
†http://creativecommons.org/licenses/by/1.0
1"Eigenvectors and Eigenvalues" <http://cnx.org/content/m10736/latest/>
2"Eigenfunctions of LTI Systems" <http://cnx.org/content/m10500/latest/>
3"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
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2. The bispan
4S. That is, we can �nd {αi}, where αi ∈ C (scalars) such that

∀x, x ∈ S :

(
x =

∑
i

αibi

)
(1)

where x is a vector in S, α is a scalar in C, and b is a vector in S.

Condition 2 in the above de�nition says we can decompose any vector in terms of the {bi}. Condition
1 ensures that the decomposition is unique (think about this at home).

note: The {αi} provide an alternate representation of x.

Example 2
Let us look at simple example in R2, where we have the following vector:

x =

 1

2


Standard Basis: {e0, e1} =

{
(1, 0)T

, (0, 1)T
}
x = e0 + 2e1

Alternate Basis: {h0, h1} =
{

(1, 1)T
, (1,−1)T

}
x =

3
2
h0 +

−1
2
h1

In general, given a basis {b0, b1} and a vector x ∈ R2, how do we �nd the α0 and α1 such that

x = α0b0 + α1b1 (2)

3 Finding the Coe�cients

Now let us address the question posed above about �nding αi's in general for R2. We start by rewriting (2)
so that we can stack our bi's as columns in a 2×2 matrix.(

x
)

= α0

(
b0

)
+ α1

(
b1

)
(3)

(
x
)

=


...

...

b0 b1
...

...


 α0

α1

 (4)

Example 3
Here is a simple example, which shows a little more detail about the above equations. x [0]

x [1]

 = α0

 b0 [0]

b0 [1]

+ α1

 b1 [0]

b1 [1]


=

 α0b0 [0] + α1b1 [0]

α0b0 [1] + α1b1 [1]

 (5)

4"Linear Algebra: The Basics": Section Span <http://cnx.org/content/m10734/latest/#span_sec>
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 x [0]

x [1]

 =

 b0 [0] b1 [0]

b0 [1] b1 [1]

 α0

α1

 (6)

3.1 Simplifying our Equation

To make notation simpler, we de�ne the following two items from the above equations:

• Basis Matrix:

B =


...

...

b0 b1
...

...


• Coe�cient Vector:

α =

 α0

α1


This gives us the following, concise equation:

x = Bα (7)

which is equivalent to x =
∑1

i=0 αibi.

Example 4

Given a standard basis,


 1

0

 ,

 0

1

, then we have the following basis matrix:

B =

 0 1

1 0


To get the αi's, we solve for the coe�cient vector in (7)

α = B−1x (8)

Where B−1 is the inverse matrix5 of B.

3.2 Examples

Example 5
Let us look at the standard basis �rst and try to calculate α from it.

B =

 1 0

0 1

 = I

5"Matrix Inversion" <http://cnx.org/content/m2113/latest/>

http://cnx.org/content/m10760/2.6/
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Where I is the identity matrix. In order to solve for α let us �nd the inverse of B �rst (which is
obviously very trivial in this case):

B−1 =

 1 0

0 1


Therefore we get,

α = B−1x = x

Example 6

Let us look at a ever-so-slightly more complicated basis of


 1

1

 ,

 1

−1

 = {h0, h1} Then

our basis matrix and inverse basis matrix becomes:

B =

 1 1

1 −1



B−1 =

 1
2

1
2

1
2

−1
2


and for this example it is given that

x =

 3

2


Now we solve for α

α = B−1x =

 1
2

1
2

1
2

−1
2

 3

2

 =

 2.5

0.5


and we get

x = 2.5h0 + 0.5h1

Exercise 1 (Solution on p. 6.)

Now we are given the following basis matrix and x:

{b0, b1} =


 1

2

 ,

 3

0


x =

 3

2


For this problem, make a sketch of the bases and then represent x in terms of b0 and b1.

note: A change of basis simply looks at x from a "di�erent perspective." B−1transformsx from
the standard basis to our new basis, {b0, b1}. Notice that this is a totally mechanical procedure.

http://cnx.org/content/m10760/2.6/
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4 Extending the Dimension and Space

We can also extend all these ideas past just R2 and look at them in Rn and Cn. This procedure extends nat-
urally to higher (> 2) dimensions. Given a basis {b0, b1, . . . , bn−1} for Rn, we want to �nd {α0, α1, . . . , αn−1}
such that

x = α0b0 + α1b1 + · · ·+ αn−1bn−1 (9)

Again, we will set up a basis matrix

B =
(
b0 b1 b2 . . . bn−1

)
where the columns equal the basis vectors and it will always be an n×n matrix (although the above matrix
does not appear to be square since we left terms in vector notation). We can then proceed to rewrite (7)

x =
(
b0 b1 . . . bn−1

)
α0

...

αn−1

 = Bα

and
α = B−1x

http://cnx.org/content/m10760/2.6/
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Solutions to Exercises in this Module

Solution to Exercise (p. 4)
In order to represent x in terms of b0 and b1 we will follow the same steps we used in the above example.

B =

 1 2

3 0



B−1 =

 0 1
2

1
3

−1
6


α = B−1x =

 1
2
3


And now we can write x in terms of b0 and b1.

x = b0 +
2
3
b1

And we can easily substitute in our known values of b0 and b1 to verify our results.

http://cnx.org/content/m10760/2.6/


