

 [image: Two's Complement and Fractional Arithmetic for 16-bit Processors]

 Two's Complement and Fractional Arithmetic for 16-bit Processors
By: Douglas Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel Sachs, and Jason Laska
Online: <http://cnx.org/content/m10808/2.9/>
This module is copyrighted by Douglas Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel Sachs, and Jason Laska.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/1.0
Module revised: 2005/01/30

Two's Complement and Fractional Arithmetic for 16-bit Processors
By: Douglas Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel Sachs, and Jason Laska
Online: <http://cnx.org/content/m10808/2.9/>
This module is copyrighted by Douglas Jones, Swaroop Appadwedula, Matthew Berry, Mark Haun, Dima Moussa, Daniel Sachs, and Jason Laska.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/1.0
Module revised: 2005/01/30

Two's Complement and Fractional Arithmetic for 16-bit Processors

Summary
Two's-complement notation is a mathematically convenient way of representing signed numbers in microprocessors. The most significant bit of a two's complement number represents its sign, and the remaining bits represent its magnitude.
Fractional arithmetic allows one to multiply numbers on an integer processor without incurring overflow. Fractional arithmetic requires sign-extension of multipliers and multiplicands, and it requires the product of two numbers to be left-shifted one bit.

1. Two's-complement notation

	 Two's-complement notation is an efficient way of
	representing signed numbers in microprocessors. It offers the
	advantage that addition and subtraction can be done with
	ordinary unsigned operations. When a number is written in
	two's complement notation, the most significant bit of the
	number represents its sign: 0 means that the number is
	positive, and 1 means the number is negative. A positive
	number written in two's-complement notation is the same as the
	number written in unsigned notation (although the most
	significant bit must be zero). A negative number can be
	written in two's complement notation by inverting all of the
	bits of its absolute value, then adding one to the result.

 Example 1.

	 Consider the following four-bit two's complement numbers (in
	 binary form):
	
Table 1. 	
		
		 1 = 00012
		
		 	
		
		 -1 = 11102 + 12 = 11112
		
		
	
		
		 2 = 00102
		
		 	
		
		 -2 = 11012 + 12 = 11102
		
		
	
		
		 6 = 01102
		
		 	
		
		 -6 = 10012 + 12 = 10102
		
		
	
		
		 8 = 10002
		
		 	
		
		 -8 = 01112 + 12 = 10002
		
		

	
 Note

	 10002
	 represents -8, not 8. This is because the topmost
	 bit (the sign bit) is 1, indicating that the number is
	 negative.
	

	

	The maximum number that can be represented with a
	
	 k
	 -bit two's-complement notation is
	
	 2k-1 − 1
	, and the minimum number that can be represented is
	
	 -2k-1
	 . The maximum integer that can be represented in a
	16-bit memory register is 32767, and the minimum integer is
	-32768.

2. Fractional arithmetic

	The DSP microprocessor is a 16-bit integer processor with some
	extra support for fractional arithmetic.
	Fractional arithmetic turns out to be very useful for DSP
	programming, since it frees us from worries about overflow on
	multiplies. (Two 16-bit numbers, multiplied together, can
	require 32 bits for the result. Two 16-bit fixed-point
	fractional numbers also require 32 bits for the result, but
	the 32-bit result can be rounded into 16 bits while only
	introducing an error of approximately
	
	 2-16
	 .) For this reason, we will be using fixed-point
	fractional representation to describe filter taps and inputs
	throughout this course.

	Unfortunately, the assembler and debugger we are using do not
	recognize this fractional fixed-point representation. For this
	reason, when you are using the assembler or debugger, you will
	see decimal values (ranging from -32768 to 32767) on screen
	instead of the fraction being represented. The conversion is
	simple; the fractional number being represented is simply the
	decimal value shown divided by 32768. This allows us to
	represent numbers between -1 and
	
	 1 − 2-15
	 .

	
 Note

	 1 cannot be represented exactly.
	

	When we multiply using this representation,
	an extra shift left is required. Consider the two examples
	below:

 Example 2.
Table 2. 	fractional	
		
		 0.5 × 0.5 = 0.25
		
		
	decimal	
		
		 16384 × 16384 = 4096 × 216
 : 4096/32768
 = 1/8
		
		
	hex	
		
		 400016 × 400016 = 100016 × 216
		
		

Table 3. 	fractional	
		
		 0.125 × 0.75 = 0.093750
		
		
	decimal	
		
		 4096 × 24576 = 1536 × 216
 : 1536/32768
 = 0.046875
		
		
	hex	
		
		 100016 × 600016 = 060016 × 216
		
		

	You may wish touse the MATLAB commands hex2dec and dec2hex.
 When we do the multiplication, we are primarily interested in
	the top 16 bits of the result, since these are the data that
	are actually used when we store the result back into memory
	and send it out to the digital-to-analog converter. (The
	entire result is actually stored in the accumulator, so
	rounding errors do not accumulate when we do a sequence of
	multiply-accumulate operations in the accumulators.) As the
	example above shows, the top 16 bits of the result of
	multiplying the fixed point fractional numbers together is
	half the expected fractional result. The extra left shift
	multiplies the result by two, giving us the correct final
	product.

	The left-shift requirement can alternatively be explained by
	way of decimal place alignment. Remember that when we
	multiply decimal numbers, we first multiply them ignoring the
	decimal points, then put the decimal point back in the last
	step. The decimal point is placed so that the total number of
	digits right of the decimal point in the multiplier and
	multiplicand is equal to the number of digits right of the
	decimal point in their product. The same applies here; the
	"decimal point" is to the right of the leftmost (sign) bit,
	and there are 15 bits (digits) to the right of this point. So
	there are a total of 30 bits to the right of the decimal in
	the source. But if we do not shift the result, there are 31
	bits to the right of the decimal in the 32-bit result. So we
	shift the number to the left by one bit, which effectively
	reduces the number of bits right of the decimal to 30.

	Before the numbers are multiplied by the ALU, each term is
	sign-extended generating a 17-bit number from the
	16-bit input. Because the examples presented above are all
	positive, the effect of this sign extension is simply adding
	an extra "0" bit at the top of the register
	(i.e., positive numbers are not affected by
	the sign extension). As the following example illustrates,
	not including this sign-bit for negative numbers produces
	erroneous results.

Table 4. 	fractional	
		
		 -0.5 × 0.5 = -0.25
		

	decimal	
		
		 49152 × 16384 = 12288 × 216
 : 12288/32678
 = 0.375
		
	
	hex	
		
		 C00016 × 400016 = 3000000016 = 300016 × 216
		
	

	Note that even after the result is left-shifted by one bit
	following the multiply, the top bit of the result is still
	"0", implying that the result is incorrectly interpreted as a
	positive number.

	To correct this problem, the ALU sign-extends negative
	multipliers and multiplicands by placing a "1" instead of a
	"0" in the added bit. This is called sign
	extension because the sign bit is "extended" to the
	left another place, adding an extra bit to the left of the
	number without changing the number's value.

Table 5. 	fractional	
		
		 -0.5 × 0.5 = -0.25
		

	hex	
		
		 1C00016 × 400016 = 7000000016 = 700016 × 216
		
	

	Although the top bit of this result is still "0", after the
	final 1-bit left-shift the result is E000 000h
	which is a negative number (the top bit is "1"). To check the
	final answer, we can negate the product using the two's
	complement method described above. After flipping all of the
	bits we have 1FFF FFFFh, and adding one yields
	2000 0000h, which equals 0.25 when interpreted as
	an 32 bit fractional number.

content/cover.png
Two's
Complement and
Fractional
Arithmetic for
16-bit Processors

