Connexions module: m10994

Sampling CT Signals: A Frequency Domain Perspective*

Robert Nowak

This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License †

Abstract

The module will provide an introduction to sampling a signal in the frequency domain and go through a basic example.

1 Understanding Sampling in the Frequency Domain

We want to relate $x_c(t)$ directly to x[n]. Compute the CTFT of

$$x_{s}(t) = \sum_{n=-\infty}^{\infty} x_{c}(nT) \delta(t - nT)$$

$$X_{s}(\Omega) = \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x_{c}(nT) \, \delta(t-nT) \, e^{(-i)\Omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} x_{c}(nT) \int_{-\infty}^{\infty} \delta(t-nT) \, e^{(-i)\Omega t} dt$$

$$= \sum_{n=-\infty}^{\infty} x [n] \, e^{(-i)\Omega nT}$$

$$= \sum_{n=-\infty}^{\infty} x [n] \, e^{(-i)\omega n}$$

$$= X(\omega)$$
(1)

where $\omega \equiv \Omega T$ and $X(\omega)$ is the DTFT of x[n].

NOTE:

$$X_s(\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(\Omega - k\Omega_s)$$

$$X(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c (\Omega - k\Omega_s)$$

=
$$\frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(\frac{\omega - 2\pi k}{T}\right)$$
 (2)

where this last part is 2π -periodic.

^{*}Version 2.2: Jul 26, 2005 3:46 pm -0500

[†]http://creativecommons.org/licenses/by/1.0

Connexions module: m10994 2

1.1 Sampling

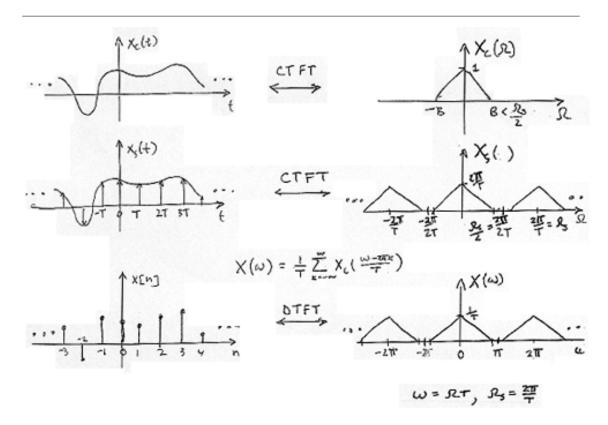


Figure 1

Example 1: Speech

Speech is intelligible if band limited by a CT lowpass filter to the band ± 4 kHz. We can sample speech as slowly as ____? Connexions module: m10994 3

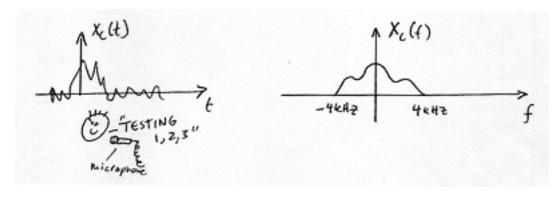


Figure 2

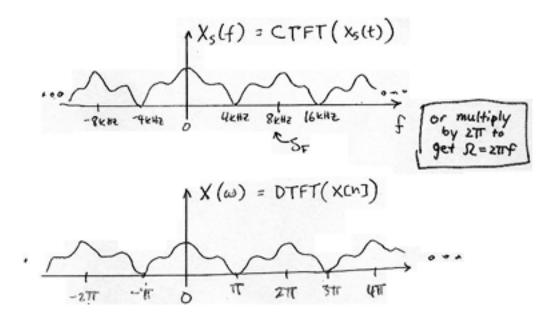


Figure 3: Note that there is no mention of T or Ω_s !

2 Relating x[n] to sampled x(t)

Recall the following equality:

$$x_{s}(t) = \sum_{nn} x(nT) \delta(t - nT)$$

Connexions module: m10994

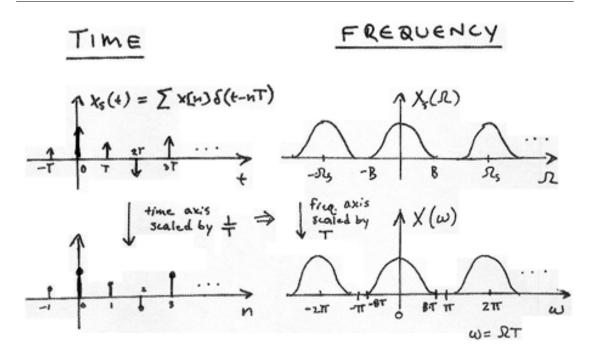


Figure 4

Recall the CTFT relation:

$$x(\alpha t) \leftrightarrow \frac{1}{\alpha} X\left(\frac{\Omega}{\alpha}\right)$$
 (3)

where α is a scaling of time and $\frac{1}{\alpha}$ is a scaling in frequency.

$$X_s\left(\Omega\right) \equiv X\left(\Omega T\right) \tag{4}$$