1

Wavelets, Splines, and the Reproduction of Polynomials*

Rebecca Willett

This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 1.0^{\dagger}

Abstract

On well-known property of valid scaling functions in wavelet analysis is that the scaling functions can perfectly reproduce a polynomial of degree no more than the wavelet smoothness. This property can be easily derived using the Unser-Blu Scaling Function / Spline Factorization Theorem.

Recall from spline theory that fractional B-splines reproduce polynomials of order less than or equal to the ceiling of the spline order. This means that any polynomial of a certain order can be expressed as a linear combination of B-splines; that is, the B-splines form a basis for polynomials. Specifically, for some p which is a nonnegative integer no greater than $\alpha + 1$, we have

$$\sum_{kk\in\mathbb{Z}} k^p \beta_+^{\alpha}(x-k) = x^p + a_{p,1} x^{p-1} + \dots + a_{p,p-1} x + a_{p,p}$$
(1)

The collection of all these polynomials for all p no greater than $\alpha + 1$ forms a basis for polynomials of order no greater than $\alpha + 1$.

This combined with the Unser-Blu Scaling Function/Spline Factorization Theorem leads to a straighforward proof of the fact that scaling functions reproduce polynomials up to a degree proportional to their smoothness.

Proposition 1:

Let ϕ_0 be any distribution ¹ such that $\int \phi_0(x) dx = 1$ adn $\int x^i \phi_0(x) dx < \infty$, for all $i \in \{1, ..., n\}$, where $n = \lceil \alpha \rceil$. Then $\phi(x) = \beta_+^{\alpha} * \phi_0(x)$ reproduces polynomials of degree lesser or equal to $n = \lceil \alpha \rceil$. **Proof:**

1. First note that

$$\sum_{kk\in\mathbb{Z}} k^p \phi(x-k) = \sum_{kk\in\mathbb{Z}} k^p \beta_+^{\gamma-1} * \phi_0(x-k)$$
 (2)

$$\sum_{kk\in\mathbb{Z}} k^p \phi(x-k) = \phi_0 * \sum_{k=0}^p a_{p,k} x^{p-k}$$
(3)

2.
$$\phi_0(x) * x^p = x^p + b_1 x^{p-1} + \dots + b_p$$

^{*}Version 2.3: Jun 7, 2005 3:43 pm -0500

[†]http://creativecommons.org/licenses/by/1.0

 $^{^{1}}$ http://mathworld.wolfram.com/GeneralizedFunction.html