# Connexions

You are here: Home » Content » History of Normal Distribution

### Recently Viewed

This feature requires Javascript to be enabled.

# History of Normal Distribution

Module by: David Lane. E-mail the author

Summary: This module introduces the history of the normal curve.

In the chapter on probability, we saw that the binomial distribution could be used to solve problems such as "If a fair coin is flipped 100 times, what is the probability of getting 60 or more heads?" The probability of exactly x x heads out of N N flips is computed using the formula: Px=N!x!(Nx)!πx1πNx P x N x N x x 1 N x where xx is the number of heads (60), NN is the number of flips (100), and π is the probability of a head (0.5). Therefore, to solve this problem, you compute the probability of 60 heads, then the probability of 61 heads, 62 heads, etc, and add up all these probabilities. Imagine how long it must have taken to compute binomial probabilities before the advent of calculators and computers.

Abraham de Moivre, an 18th century statistician and consultant to gamblers was often called upon to make these lengthy computations. de Moivre noted that when the number of events (coin flips) increased, the shape of the binomial distribution approached a very smooth curve. Binomial distributions for 2, 4, and 12 flips are shown in Figure 1.

de Moivre reasoned that if he could find a mathematical expression for this curve, he would be able to solve problems such as finding the probability of 60 or more heads out of 100 coin flips much more easily. This is exactly what he did, and the curve he discovered is now called the normal curve.

The importance of the normal curve stems primarily from the fact that the distribution of many natural phenomena are at least approximately normally distributed. One of the first applications of the normal distribution was to the analysis of errors of measurement made in astronomical observations, errors that occurred because of imperfect instruments and imperfect observers. Galileo in the 17th century noted that these errors were symmetric and that small errors occurred more frequently than large errors. This led to several hypothesized distributions of errors, but it was not until the early 19th century that it was discovered that these errors followed a normal distribution. Independently the mathematicians Adrian in 1808 and Gauss in 1809 developed the formula for the normal distribution and showed that errors were fit well by this distribution.

This same distribution had been discovered by Laplace in 1778 when he derived the extremely important central limit theorem, the topic of a later section of this chapter. Laplace showed that even if a distribution is not normally distributed, the means of repeated samples from the distribution would be very nearly normal, and that the the larger the sample size, the closer the distribution would be to a normal distribution. Most statistical procedures for testing differences between means assume normal distributions. Because the distribution of means is very close to normal, these tests work well even if the distribution itself is only roughly normal.

## Content actions

PDF | EPUB (?)

### What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks