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Non-Random Parameters

Summary





 
      In those cases where a probability density for the parameters
      cannot be assigned, the model evaluation problem can be solved
      in several ways; the methods used depend on the form of the
      likelihood ratio and the way in which the parameter(s) enter the
      problem.  In the Gaussian problem we have discussed so often,
      the threshold used in the likelihood ratio test
      
	        η
      
      may be unity.  In this case, examination of the resulting
      computations required reveals that implementing the test
      does not require knowledge of the variance of the
      observations (see this problem).  Thus, if the common
      variance of the underlying Gaussian distributions is not known,
      this lack of knowledge has no effect on the
      optimum decision rule.  This happy situation - knowledge of the
      value of a parameter is not required by the optimum decision
      rule - occurs rarely, but should be checked before using more
      complicated procedures.
    
 
      A second fortuitous situation occurs when the sufficient
      statistic as well as its probability density under one of the
      models do not depend on the unknown
      parameter(s).  Although the sufficient statistic's threshold
      
	        γ
      
      expressed in terms of the likelihood ratio's threshold
      
	        η
      
      depends on the unknown parameters,
      
	        γ
      
      may be computed as a single value using the Neyman-Pearson
      criterion if the computation of the false-alarm
      probability does not involve the unknown parameters.
    
 Example 1. 
 
	Continuing the example of the previous section, let's consider the
	situation where the value of the mean of each observation
	under model
	
	           ℳ
            1
	        
	is not known.  The sufficient statistic is the sum of the
	observations (that quantity doesn't depend on
	
	           m
	        )
	and the distribution of the observation vector under model
	
	           ℳ
            0
	        
	does not depend on
	
	           m
	        
	(allowing computation of the false-alarm probability).
	However, a subtlety emerges; in the derivation of the
	sufficient statistic, we had to divide by the value of the
	mean.  The critical step occurs once the logarithm of the
	likelihood ratio is manipulated to obtain
	
	Recall that only positively monotonic
	transformations can be applied; if a negatively monotonic
	operation is applied to this inequality (such as multiplying
	both sides by -1), the inequality
	reverses.  If the sign of
	
	           m
	        
	is known, it can be taken into account explicitly and a
	sufficient statistic results.  If, however, the sign is not
	known, the above expression cannot be manipulated further and
	the left side constitutes the sufficient statistic for this
	problem.  The sufficient statistic then depends on the unknown
	parameter and we cannot develop a decision rule in this case.
	If the sign is known, we can proceed.  Assuming the sign of
	
	           m
	        
	is positive, the sufficient statistic is the sum of the
	observations and the threshold
	
	           γ
	        
	is found by
	
	Note that if the variance
	
	           σ
            2
	        
	instead of the mean were unknown, we could not compute the
	threshold.  The difficulty lies not with the sufficient
	statistic (it doesn't depend on the variance), but with the
	false alarm probability as the expression indicates.  Another
	approach is required to deal with the unknown-variance
	problem.
      



 
      When this situation occurs - the sufficient statistic
      and the false-alarm probability can be
      computed without needing the parameter in question, we have
      established what is known as a uniformly most powerful
      test (or UMP test) (Cramér;
      p.529-531 [link]), (van Trees;
      p.89ff [link]).  If an UMP test does not exist, which can only
      be demonstrated by explicitly finding the sufficient statistic
      and evaluating its probability distribution, then the composite
      hypothesis testing problem cannot be solved without some value
      for the parameter being used.
    
 
      This seemingly impossible situation - we need the value of the
      parameter that is assumed unknown - can be approached by noting
      that some data is available for "guessing" the value of the
      parameter.  If a reasonable guess could be obtained, it could
      then be used in our model evaluation procedures developed in
      this chapter.  The data available for estimating
      unknown parameters are precisely the data used in the decision
      rule.  Procedures intended to yield "good" guesses of
      the value of a parameter are said to be parameter
      estimates.  Estimation procedures are the topic of
      the next chapter; there we will explore a variety of estimation
      techniques and develop measure of estimate quality.  For the
      moment, these issues are secondary; even if we knew the size of
      the estimation error, for example, the more pertinent issue is
      how the imprecise parameter value affects the performance
      probabilities.  We can compute these probabilities
      without explicitly determining the
      estimate's error characteristics.
    
 
      One parameter estimation procedure that fits nicely into the
      composite hypothesis testing problem is the maximum
      likelihood estimate. [1] Letting
      
	        r
      
      denote the vector of observables and
      
	        θ
      
      a vector of parameters, the maximum likelihood estimate of
      
	        θ
      ,
      , is that value of
      
	        θ
      
      that maximizes the conditional density
      
      of the observations given the parameter values.  To use
      
      in our decision rule, we estimate the parameter vector
      separately for each model, use the
      estimated value in the conditional density of the observations,
      and compute the likelihood ratio.  This procedure is termed the
      generalized likelihood ratio test for the unknown
      parameter problem in hypothesis testing (Lehmann; p.16 [link]), (van
      Trees; p.92ff [link]).
      
      Note that we do not find that value of the
      parameter that (necessarily) maximizes the likelihood ratio.
      Rather, we estimate the parameter value most consistent with the
      observed data in the context of each assumed model (hypothesis)
      of data generation.  In this way, the estimate conforms with
      each potential model rather than being determined by some
      amalgam of supposedly mutually exclusive models.
    
 Example 2. 
 
	Returning to our Gaussian example, assume that the variance
	
	           σ
            2
	        
	is known but that the mean under
	
	           ℳ
            1
	        
	is unknown.
	
	  
	           ℳ
            0
	     : 
	     
	  
	           r ∼ (0, σ
            2
            I)
	  
	
	        
	  
	           ℳ
            1
	     : 
	     

	           r ∼ (m, σ
            2
            I)
	  
	
	        
	The unknown quantity occurs only in the exponent of the
	conditional density under
	
	           ℳ
            1
	        ;
	to maximize this density, we need only to maximize the
	exponent.  Thus, we consider the derivative of the exponent
	with respect to
	
	           m
	        .
	
	The solution of this equation is the average value of the
	observations
	
	To derive the decision rule, we substitute this estimate in
	the conditional density for
	
	           ℳ
            1
	        .
	The critical term, the exponent of this density, is
	manipulated to obtain
	
	Noting that the first term in this exponent is identical to
	the exponent of the denominator in the likelihood ratio, the
	generalized likelihood ratio becomes
	
	The sufficient statistic thus becomes the square (or
	equivalently the magnitude) of the summed observations.
	Compare this result with that obtained in Example 1.  There, an UMP test existed
	if we knew the sign of
	
	           m
	        
	and the sufficient statistic was the sum of the observations.
	Here, where we employed the generalized likelihood ratio test,
	we made no such assumptions about
	
	           m
	        ;
	this generality accounts for the difference in sufficient
	statistic.  Which test do you think would lead to a greater
	detection probability for a given false-alarm probability?
      



 
      Once the generalized likelihood ratio is determined, we need to
      determine the threshold.  If the a priori
      probabilities
      
	        π
         0
       and
      
	        π
         1
      
      are known, the evaluation of the threshold proceeds in the usual
      way.  If they are not known, all of the conditional densities
      must not depend on the unknown parameters lest the performance
      probabilities also depend upon them.  In most cases, the
      original model evaluation problem is posed in such a way that
      one of the models does not depend on the unknown parameter; a
      criterion on the performance probability related to that model
      can then be established via the Neyman-Pearson procedure.  If
      not the case, the threshold cannot be computed and the threshold
      must be set experimentally: we force one of the models to be
      true and modify the threshold on the sufficient statistic until
      the desired level of performance is reached.  Despite this
      non-mathematical approach, the overall performance of the model
      evaluation procedure will be optimum because of the results
      surrounding the Neyman-Pearson criterion.
      
 Figure 1. 
 [image: Figure (bsc1.png)]
	  The two-model testing problem can be abstractly described as
	  a communication channel where the inputs are the models and
	  the outputs are the decisions.  The transition probabilities
	  are related to the false-alarm
	  (
	              P
               
                  F
               
	           ) and detection
	  (
	              P
               
                  D
               
	           ) probabilities.
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[1] The maximum
      likelihood estimation procedure and its characteristics are
      fully described in this
      section.
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