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Abstract

This module introduces estimation theory and its terminology, including bias, consistency, and e�-

ciency.

In searching for methods of extracting information from noisy observations, this chapter describes esti-
mation theory, which has the goal of extracting from noise-corrupted observations the values of
disturbance parameters (noise variance, for example), signal parameters (amplitude or prop-
agation direction), or signal waveforms. Estimation theory assumes that the observations contain an
information-bearing quantity, thereby tacitly assuming that detection-based preprocessing has been per-
formed (in other words, do I have something in the observations worth estimating?). Conversely, detection
theory often requires estimation of unknown parameters: Signal presence is assumed, parameter estimates
are incorporated into the detection statistic, and consistency of observations and assumptions tested. Con-
sequently, detection and estimation theory form a symbiotic relationship, each requiring the other to yield
high-quality signal processing algorithms.

Despite a wide variety of error criteria and problem frameworks, the optimal detector is characterized
by a single result: the likelihood ratio test. Surprisingly, optimal detectors thus derived are usually easy
to implement, not often requiring simpli�cation to obtain a feasible realization in hardware or software. In
contrast to detection theory, no fundamental result in estimation theory exists to be summoned to attack
the problem at hand. The choice of error criterion and its optimization heavily in�uences the form of the
estimation procedure. Because of the variety of criterion-dependent estimators, arguments frequently rage
about which of several optimal estimators is "better." Each procedure is optimum for its assumed error
criterion; thus, the argument becomes which error criterion best describes some intuitive notion of quality.
When more ad hoc, noncriterion-based procedures1 are used, we cannot assess the quality of the resulting
estimator relative to the best achievable. As shown later2, bounds on the estimation error do exist, but
their tightness and applicability to a given situation are always issues in assessing estimator quality. At best,
estimation theory is less structured than detection theory. Detection is science, estimation art. Inventiveness
coupled with an understanding of the problem (what types of errors are critically important, for example)
are key elements to deciding which estimation procedure "�ts" a given problem well.

1 Terminology in Estimation Theory

More so than detection theory, estimation theory relies on jargon to characterize the properties of estimators.
Without knowing any estimation technique, let's use parameter estimation as our discussion prototype. The
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1This governmentese phrase concisely means guessing.
2"Cramer-Rao Bound" <http://cnx.org/content/m11266/latest/>
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parameter estimation problem is to determine from a set of L observations, represented by the L-dimensional
vector r, the values of parameters denoted by the vector θ. We write the estimate of this parameter vector

as θ (r), where the "hat" denotes the estimate, and the functional dependence on r explicitly denotes the
dependence of the estimate on the observations. This dependence is always present3, but we frequently

denote the estimate compactly as θ. Because of the probabilistic nature of the problems considered in
this chapter, a parameter estimate is itself a random vector, having its own statistical characteristics. The

estimation errorε (r) equals the estimate minus the actual parameter value: ε (r) =θ (r)− θ. It too is a
random quantity and is often used in the criterion function. For example, themean-squared error is given
by E

[
εT ε
]
; the minimum mean-squared error estimate would minimize this quantity. The mean-squared

error matrix is E
[
εεT
]
; on the main diagonal, its entries are the mean-squared estimation errors for each

component of the parameter vector, whereas the o�-diagonal terms express the correlation between the
errors. The mean-squared estimation errorE

[
εT ε
]
equals the trace of the mean-squared error matrix

tr
(
E
[
εεT
])
.

1.1 Bias

An estimate is said to be unbiased if the expected value of the estimate equals the true value of the

parameter: E
[
θ | θ

]
= θ. Otherwise, the estimate is said to be biased: E

[
θ | θ

]
6= θ. The biasb (θ) is

usually considered to be additive, so that b (θ) = E
[
θ | θ

]
− θ. When we have a biased estimate, the bias

usually depends on the number of observations L. An estimate is said to be asymptotically unbiased if
the bias tends to zero for large L: limit

L→∞
b = 0. An estimate's variance equals the mean-squared estimation

error only if the estimate is unbiased.
An unbiased estimate has a probability distribution where the mean equals the actual value of the

parameter. Should the lack of bias be considered a desirable property? If many unbiased estimates are
computed from statistically independent sets of observations having the same parameter value, the average
of these estimates will be close to this value. This property does not mean that the estimate has less error
than a biased one; there exist biased estimates whose mean-squared errors are smaller than unbiased ones.
In such cases, the biased estimate is usually asymptotically unbiased. Lack of bias is good, but that is just
one aspect of how we evaluate estimators.

1.2 Consistency

We term an estimate consistent if the mean-squared estimation error tends to zero as the number of
observations becomes large: limit

L→∞
E
[
εT ε
]

= 0. Thus, a consistent estimate must be at least asymptotically

unbiased. Unbiased estimates do exist whose errors never diminish as more data are collected: Their variances
remain nonzero no matter how much data are available. Inconsistent estimates may provide reasonable
estimates when the amount of data is limited, but have the counterintuitive property that the quality of
the estimate does not improve as the number of observations increases. Although appropriate in the proper
circumstances (smaller mean-squared error than a consistent estimate over a pertinent range of values of L,
consistent estimates are usually favored in practice.

1.3 E�ciency

As estimators can be derived in a variety of ways, their error characteristics must always be analyzed and
compared. In practice, many problems and the estimators derived for them are su�ciently complicated to
render analytic studies of the errors di�cult, if not impossible. Instead, numerical simulation and comparison
with lower bounds on the estimation error are frequently used instead to assess the estimator performance.

3Estimating the value of a parameter given no data may be an interesting problem in clairvoyance, but not in estimation
theory.
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An e�cient estimate has a mean-squared error that equals a particular lower bound: the Cramér-Rao
bound4. If an e�cient estimate exists (the Cramér-Rao bound is the greatest lower bound), it is optimum
in the mean-squared sense: No other estimate has a smaller mean-squared error (see Maximum Likelihood
Estimators5 for details).

For many problems no e�cient estimate exists. In such cases, the Cramér-Rao bound remains a lower
bound, but its value is smaller than that achievable by any estimator. How much smaller is usually not
known. However, practitioners frequently use the Cramér-Rao bound in comparisons with numerical error
calculations. Another issue is the choice of mean-squared error as the estimation criterion; it may not su�ce
to pointedly assess estimator performance in a particular problem. Nevertheless, every problem is usually
subjected to a Cramér-Rao bound computation and the existence of an e�cient estimate considered.

4"Cramer-Rao Bound" <http://cnx.org/content/m11266/latest/>
5"Maximum Likelihood Estimators of Parameters" <http://cnx.org/content/m11269/latest/>

http://cnx.org/content/m11263/1.2/


